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III. THE TENFOLD CLASSIFICATION

Class Θ C Π d = 0 1 2 3

A 0 0 0 Z 0 Z 0

AIII 0 0 1 0 Z 0 Z
AI +1 0 0 Z 0 0 0

BDI +1 +1 1 Z2 Z 0 0

D 0 +1 0 Z2 Z2 Z 0

DIII -1 +1 1 0 Z2 Z2 Z
AII -1 0 0 2Z 0 Z2 Z2

CII -1 -1 1 0 2Z 0 Z2

C 0 -1 0 0 0 2Z 0

CI +1 -1 1 0 0 0 2Z
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The topological structure of quadratic Hamiltonians
of fermions (describing weakly interacting systems) is
based on two anti-unitary symmetries (Θ, C) and the
(unitary) chiral symmetry (Π):

Time reversal

Θ = 0,±

Particle hole

C = 0,±

Chirality

Π = 0, 1

"±" conserves the symmetry
"0" breaks the symmetry

This table has been generalised for the presence of
defects, for a D dimensional sphere surrounding the
defect, the spatial dimension d is replaced with

d→ δ = d−D
The winding or Chern topological invariant is calculated using the Hamiltonian symbol, its classical
counterpart, replacing operators with variables using a Weyl transform. For a Dirac symbol H (k, r) =

ĥ (k, r) · γ⃗ the winding or Chern number is

νd+D =
1

Sd+D

∫
Sd+D

ddk dDr J(h, d,D) , J(h, d,D) =

∣∣∣∣∣∣∣∣∣
h1 · · · hd+D+1

∂1h1 · · · ∂1hd+D+1

...
. . .

...
∂d+Dh1 · · · ∂d+Dhd+D+1

∣∣∣∣∣∣∣∣∣

The analytical index, IndexH , for chiral Hamiltonian

H =
(

0 Q

Q† 0

)
is equal to its symbol winding number

νd+D = Index H = dim ker Q− dim ker Q†

I. ABSTRACT
We propose a way to systematically measure topological winding numbers in
2D materials with chiral symmetry. We consider the example of graphene with
a vacancy, and model the vacancy potential in the continuum. The correspond-
ing winding number indicates that graphene with vacancies is a topological
material according to the tenfold classification generalised to defects by Teo
and Kane. As a result of bulk-edge correspondence, topological edge states ap-
pear in the spectrum (zero modes) and are localised around the vacancy. These
edge states and their topological winding number are measurable by the read-
out of wavefront dislocations in STM data. Comparison with STM pictures of
other (non topological) defects, e.g. adatoms, is discussed.

IV. GRAPHENE
Graphene is a single layer honeycomb lattice
composed of two sublattices A and B. In the
tight binding description, graphene Hamilto-
nian is bipartite {σ3, H0} = 0 under the near-
est neighbors approximation

H0 = −t
∑

i=0,1,2
R∈A

a†RbR+δi +H.c.

Close to the Fermi energy, set to be zero, graphene energy spectrum has a
linear dispersion relation around two distinguished Dirac points K and K ′.
Graphene Hamiltonian can be described by effective massless and non inter-
acting Dirac fermions,

H0 (k = K + q) = vFσ · q

Therefore, the effective low energy Hamiltonian for graphene in the continuum
limit describing the two valleys K and K ′ takes the form

H0 = vF


0 0 qx − iqy 0
0 0 0 −qx − iqy

qx + iqy 0 0 0
0 −qx + iqy 0 0


in the basis ψ =

(
ψK
A ψK′

A ψK
B ψK′

B

)T

II. WAVEFRONT DISLOCATIONS

LOCAL DENSITY

STM (scanning tunneling microscope) measures local density:

ρ(r) =

∫
dE ρ(r, E) =

∫
dE

∑
n

|ψn(r)|2δ(E − En)

WAVEFRONT DISLOCATION

For a general function of the local den-
sity

ρ (r) = Ref (r) eiχ(x,y)

with amplitude f(r), and oscillating
term χ(x, y).

Dislocations can form where the amplitude of ρ(r) vanishes, a point where a
new wavefront may appear.

ND - NUMBER OF DISLOCATIONS

In graphene with a defect (vacancy or adatom), oscillations can be seen in ρ(r).

GRAPHENE WITH ADATOM

Adatom, an atom added
to a lattice site

Two dislocations

GRAPHENE WITH VACANCY

Vacancy, a neutral site re-
moved from the lattice

One dislocation

V. VACANCIES IN GRAPHENE
A vacancy is created by the removal of a single neutral atom in the lattice. It
preserves the time reversal and particle-hole symmetries of graphene

Θ = 1, C = 1,Π = 1

The circle D = 1 surrounding the vacancy transforms the codimension into
δ = 2− 1 = 1

Measurement of 17nm × 17nm graphite sample after Ar+ ion
irradiation

VACANCY - TIGHT BINDING MODEL

We consider the vacancy as a destruction of the bonds connecting it site, R0, to
its neighbors, such that for a type A vacancy

VA,R0
= t

[
a†R0

bR0
+ a†R0

bR0+δ1 + a†R0
bR0+δ2

]
+ h.c.

Numeric results - a single wavefront
dislocation in red of ∆ρ(r).

VACANCY - LOW ENERGY LIMIT

Vacancy potential in the low energy limit, R0 = 0

VA(r) = a2vF


0 0 0 −δ (r)L†

x
0 0 δ (r)Lx 0

0 L†
xδ (r) 0 0

−Lxδ (r) 0 0 0


ψ =

(
ψK
A ψK′

A ψK
B ψK′

B

)T
, Lx = −i∂x − ∂y

The local density to first order

∆ρ(1) (r) =
C

r2
cos θ cos (∆K · r + θ)

C is a constant independent of the
location and ∆K ≡ K −K ′

VI. KEKULE DISTORTION
The Kekule distortion model describes graphene with fluctuating hopping
terms tr = t+δt(r). For specific spatial fluctuations, connecting the two valleys
with a ’twist’ the Kekule Hamiltonain in Dirac notations is HKekule = H0 + VKek

H0 = ivF∂xσx ⊗ τz − ivF∂yσy ⊗ Iτ

VKek = −∆(r) cosnθσx ⊗ τx −∆(r) sinnθσx ⊗ τy.

where ∆(r) is a radial function, and σi (τi) represents the sublattice (valley).

The topological winding number equals n

VII. MEASURING TOPOLOGICAL NUMBER

GRAPHENE WITH VACANCY

The Hamiltonian HV has a single zero mode.

The Hamiltonian’s symbol HV (r,k) produce ν3 = 1.

This winding number equals the number of dislocations measured by the
STM.

IndexH = ν3 = 1 =

DISLOCATIONS FOR WINDING NUMBER ν = n

For Kekule distortion ν3 =
n. The local density to first
order provide

ND = n = ν3

DISLOCATIONS FROM NON-TOPOLOGICAL DEFECTS

An adatom changes the chemical potential locally and breaks the particle-hole
symmetry. Since C = 0 the symmetry class is AI, with δ = 1. This implies no
topology .
Breaking the particle-hole symmetry enables Friedel oscillations, radial oscilla-
tions ∝ 2kF which create rings around the adatom with vanishing amplitudes
for specific radii.

The vanishing amplitude leads to different locations wherein the number of
dislocations vary with r.

This is not the case for a vacancy, which preserved the particle-hole symmetry
and does not exhibit Friedel oscillations. Such that for any loop radius there is
a single dislocation.

VIII. CONCLUSION
We were able to show that the topological winding number equals to the num-
ber of the local density dislocations, thus can be measured through it. This was
shown for a vacancy using the tight binding model to all orders, and calculated
analytically to first order. This is also the case for the Kekule model, where
the topological winding number is n. Non topological defect, adatom, was dis-
cussed wherein the number of dislocations change with the loop radius. Our
results also agree with the index theorem relating the topological number to the
number of zero energy modes. The number of zero modes is hard to measure
since they overlap in STS measurments.


