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III. SYMMETRY AND TOPOLOGY
Quantum corrections to the Kubo formula depend on the anti-unitary sym-
metries of the system: time reversal, particle-hole, and (unitary) chirality. The
combination of these symmetries leads to 10 symmetry classes presented by
Altland and Zirnbauer (AZ) and associated topology via the periodic table.

0,Z2,Z indicate the
allowed topological

invariants of the
system.

Classes A, AI, and
AII correspond to the
unitary, orthogonal

and symplectic
Wigner-Dyson

classes.

α is positive for the symplectic class AII and negative for the orthogonal AI.
It vanishes for the unitary A, however the second order is negative so the
behaviour is similar to AI.

VANISHING OF β(g) IN CHIRAL CLASSES

Using the non-linear σ-model in d = 2, it can be shown that in the three classes
AIII, BDI, and CII, all corrections to the Drude conductivity vanish. Hence
there is no localization even at strong disorder. This behaviour of localization
in d = 2 seems to apply to d = 1 as well (yellow).
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I. ABSTRACT
The dependence of quantum transport properties upon topological features
is studied numerically. To that purpose, we use the Thouless formula as a
measure of quantum conductance. Different types of disorder which preserve
chiral symmetry (e.g. graphene) are considered. We present numerics for the
β(g) function which support the well accepted scaling assumption. Compar-
ison is made with existing results obtained using the non linear σ-model and
analytical calculations of weak localization corrections.

II. INTRODUCTION

SCALING

Consider a system of size L and a quantity
g(L). It displays a scaling behaviour if it sat-
isfies

g (λL) = f (λ, g(L))

which means that the change of g with respect
to L depends only on g:

d ln g

d lnL
≡ β(g)

The sign of β determines the flow of g(L) as L
increases.

Knowing g(L) at any
scale L, we can predict it

for all scales.

SCALING OF ELECTRICAL CONDUCTANCE

The electrical conductance g of disordered systems displays a scaling be-
haviour both in the Drude limit:

g (L) = σLd−2, g (λL) = λd−2g(L), β(g) = d− 2

and in the strong localized regime:

g(L) ∼ e−L/ξ, g(λL) = gλ(L), β(g) = ln g

These results are universal i.e. in-
dependent of material properties.
We consider two phases:

β(g) > 0 =⇒ g
L→∞−→ ∞ (Metal)

β(g) < 0 =⇒ g
L→∞−→ 0 (Insulator)

METAL-INSULATOR TRANSITION

Quantum corrections to the classical Drude limit are obtained in the metallic
regime by means of the Kubo formula. The conductivity then depends on the
system size L,

g(L) = σ(L)Ld−2

while preserving scaling of g(L) so that β(g) can be computed

β(g) = d− 2 +
α

g
+O(1/g2)

The gang of 4 scaling theory assumes continuity of β(g) in between the Drude
and localized limits. Since β < 0 for g ∼ 0, the sign of the first non vanishing
correction is very important at d = 2.

Weak localization α < 0
β(g) stays negative

No transition

Weak anti-localization α > 0
β(g) changes sign

Metal-Insulator transition

The sign of α depends on the symmetry class of the disordered system.

Numerically, we have checked these scaling behaviours:

IV. THOULESS CONDUCTANCE
The elecrical conductance is, in a way, a measure of the de-localization of the wavefunctions. We
can also achieve this measure by considering sensitivity to boundary conditions (BC). The logic
is that localized states in the bulk will tend to be insensitive to BC changes.

We change the BC by applying phase change ϕ to periodic BC. We define the Thouless conduc-
tance

gT =
1

∆

〈∣∣∣∣∂2E

∂ϕ2

∣∣∣∣
ϕ=0

〉
where ∆ is the average nearest energy level spacing and ⟨...⟩ denotes average over disorder.

The energy curvature is the Thouless energy, and in the diffusive regime it is equal to∣∣∣∣∂2E

∂ϕ2

∣∣∣∣
ϕ=0

=
2dℏ
τL

where τL is the system diffusion time. We can associate it with the width of the energy spectrum.

RELATION TO THE KUBO FORMULA

For a large (finite) system and in the diffusive regime, we can relate the Thouless (gT ) and Kubo
(gd) conductances using Random Matrix Theory (RMT),

gT = 2πgd

This relation also holds beyond RMT.

Consider a system made of two subsystems,
each with a different disorder realization

The broader the Thouless energy as compared
to the mean level spacing, the more we can construct

wavefunctions which span over the entire new system.

In contrast to local Kubo formula, both gT and gd depend on the spectrum only, not on the wavefunctions. It’s a very useful property in numerical calculations.

V. LATTICES AND DISORDER MODELS
We tested the behaviour of the Thouless conductance on four tight binding
models with different random disorder types, which belong to the AI, AII and
BDI symmetry classes.

CLASSES AI, AII

Here, i, j are sites on a square lattice with lattice
constant 1. We set t, λ = 1. εi is random uni-
form on-site disorder, ⟨εi⟩ = 0,

〈
ε2i
〉
= U2/12.

Spin-orbit coupling via Rashba effect is used
for AII.

HAI =
∑
i

εicic
†
i + t

∑
⟨i,j⟩

cic
†
j

HAII =
∑
i,σ

εiciσc
†
iσ+

+ iλ
∑

σσ′,⟨i,j⟩

c†iσ (r × σ)
σσ′

z cjσ′

BDI CLASS

We discuss two models of disorder - hopping
and random vacancy density. i, j are sites on a
honeycomb lattice. t = 1, δt are uniformly dis-
tributed ⟨δti⟩ = 0,

〈
δt2i

〉
= U2/12. For vacancy

disorder, I contains a random sampling of all
N atoms, and |I|/N = U .

Hhop
BDI =

∑
⟨i,j⟩

(t+ δt) cic
†
j

HV
BDI = t

∑
⟨i,j⟩

cic
†
j − t

∑
i∈I

∑
⟨j,i⟩

cic
†
j

All models have periodic BC in one axis while the other axis’ BC are
multiplied by a phase eiϕ (twisted boundary conditions).

For d = 2, the Hamil-
tonian has the follow-
ing structure. In RMT,
all matrix elements are
independently Gaussian
distributed. Here, we
are not in the RMT limit,
and gT can be related to
gd only in the diffusive
regime.

The spectrum E(ϕ) looks as follows. Disorder lifts the degeneracies, except for
Kramers degeneracies in AII. A flat band appears at the center of the spectrum
for the vacancy disorder model, indicating a spatially localized zero mode.

VI. RESULTS

CLASSES AI, AII

For the square lattice with (AII) or without spin-orbit (AI) coupling, we
calculated the Thouless conductance gT as well as gd.

The mean free path le is calculated using Fermi golden rule, and the diffusive
regime is determined. gT seems not to have scaling at the ballistic regime.

CLASS BDI

gT does not depend on L in the diffusive regime, i.e β(g) = 0 there.

VII. DISCUSSION AND FUTURE PLANS
We have shown, using Thouless conductance, that β(g) vanishes in BDI in
d = 2. The three chiral classes displaying this behaviour do not have an in-
teresting topology in d = 2, but they do all have the Z group at d = 1, which
is related to the fundamental group (π1) of their non-linear σ-model manifold.
We wish to relate the vanishing of the corrections of β to this group.

ANALYTICAL COMPUTATION

We study an analytical model of graphene with a random potential that pre-
serves chiral symmetry. We perform a perturbative computation of the first
order correction α (weak localization) using Kubo formula,

σxx =
1

π

∫
d2r Tr

(
jxGRjxGA − 1

2
jxGRjxGR − 1

2
jxGAjxGA

)

where GR (GA) are the retarted (advanced)
resolvant operators of our model.
Chirality implies that

σzG
Rσz = −GA

giving

σxx = − 1

π

∫
d2r Tr

(
jxGR(r)jxGR(r) + jyGR(r)jyGR(r)

)
Hence contributions from disorder-averaged GRGR (GAGA) should be taken
into account. They cancel out exactly the contribution from GRGA causing α
to vanish.


