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Abstract 

We review the current understanding of the photoluminescence spectroscopy from single 

semiconductor quantum dots in general, and radiative cascades as part of it, in particular. We 

outline in simple terms the theory which is required for understanding few carriers’ states 

confined in semiconductor quantum dots and the selection rules for optical transitions between 

these states. We then compare the theoretical tools that we developed with measured polarization 

sensitive photoluminescence spectra. We proceed by discussing the dynamics of confined charge 

carriers in quantum dots and introduce tools for discussing semi-empirically spin scattering 

during carriers’ thermalization. The spin scattering rates are then deduced by measuring the 

degree of linear and circular polarization memory during resonant and quasi resonant excitations. 

We present rate and Master equation models for describing the temporal evolution of the 

population and coherence of the many carrier states in these nanostructures. Equipped with these 

tools we discuss polarization sensitive intensity correlation spectroscopy as an experimental tool 

for probing the dynamics of a system. We conclude this chapter by discussing various biexciton-

exciton radiative cascades in neutral and in charged quantum dots. 

Introduction 

Semiconductor quantum dots (QDs) are nanometric scale regions of a narrow-bandgap 

semiconductor embedded within a wider-bandgap semiconductor. They confine charge carriers 

(electrons and/or holes) in all three dimensions. The QD’s energy level spectrum is therefore 

discrete, much like that of the fundamental building blocks of nature – atoms and molecules. 
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QDs are therefore often referred to as “artificial atoms” [1- 3]. They have been extensively 

investigated recently as potential, technology-compatible quantum light emitters [4- 6] providing 

single photons, or “flying Qubits” on demand. More recently, it has been shown that QDs can 

emit pairs of entangled photons [7, 8]. Such capabilities are important for possible future 

applications such as quantum information processing [9] and cryptography [10]. Though similar 

effects were previously observed in the fluorescence of single atoms and molecules [11], 

semiconductor QDs offer many advantages. In particular, they exhibit large electrostatic 

capacitance, which enables a wide range of charge states [12]. This feature, among others, forms 

a sound base for the QDs’ potential applications. At the same time it makes them an excellent 

stage for studying inter-charge-carrier interactions in confined spaces. 

One of the experimental methods frequently used to investigate single QDs is micro-

photoluminescence (µPL). In a µPL experiment, the QD is optically excited by laser light, 

focused on the QD trough a microscope objective. The light emitted by the QD is collected 

through the same microscope objective and spectrally analyzed by a spectrometer. Spatial 

filtering using a confocal aperture could be used in order to enhance the spatial resolution. The 

exciting light promotes an electron from the full valence band, leaving there a hole, to the empty 

conduction band, thus creating an electron-hole (e-h) pair, or an ‘exciton’. If the excitation is off-

resonance, the pair is generated in the vicinity of the QD, and it moves in the semiconductor until 

it either recombines first, or captured by the QD and only then recombines. Since the energy 

levels of a QD are discrete, the recombination of an e-h pair in a QD gives rise to a discrete 

spectral line (See Fig. 1). In analogy to atomic physics, we denote PL lines resulting from the 

recombination of an e-h pair occupying the first (second, third) single-carrier levels by the letters 

s (p, d). 
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 Fig. 1. 

Schematic illustration of photoluminescence emission from a single semiconductor QD under 

non-resonant optical excitation. 

 

A QD may be populated by more than one e-h pair, or populated with an uneven number of 

electrons and holes. In such cases, the recombination energy of an e-h pair will be affected by the 

additional Coulombic interactions. Therefore, typically more than one spectral line is seen 

around the single e-h pair ground state recombination line, as illustrated in Fig. 2. 

We name the various transitions as follows: The letter X (for eXciton) is written as many times 

as there are e-h pairs in the initial state. The number and sign of unpaired charge carriers is 

written as a superscript after the last X. For example, transitions starting from states which 

contain 3 holes and 2 electrons will be denoted XX+1. Additional subscripts may be used to 

distinguish between different spin configurations of the initial and/or the final states, as will be 

explained later. The identification of a spectral line is thus the ability to identify an e-h pair 

recombination process, uniquely defined by its many-body initial and final states.  
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Fig. 2. Schematic description of various radiative pair-recombination processes in the presence 

of spectator charge carriers. The Coulombic interactions (blue arrow represents repulsion, while 

red one represents attraction) affect the many body state energies. Therefore, several different 

spectral lines are expected for the recombination of an s-shell (e-h) pair. 

 

Each of the properties of the line’s initial and final configurations can be obtained 

experimentally: The number of e-h pairs can be deduced from the dependence of the line’s 

intensity upon the excitation power. The number and sign of excess charge carriers can be 

deduced from experiments in which the charge of the QD is controlled (by means of electrical 

and/or optical excitations). The spin configurations can be deduced by polarization sensitive 

spectroscopy and polarization memory experiments. Polarization sensitive intensity correlation 

measurements can be used in addition, for verification of the line identification and for obtaining 

additional insight into the dynamical processes by which the excited QD relaxes, including the 

identification of radiative cascades.  
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The discussion of these processes is organized as follows: In the first section, we begin with 

theoretical description of the many-body states and energy levels of QD-confined charge-

carriers, and radiative transitions between them. In the second section we present measured 

polarization sensitive PL spectra of a single QD, and compare it to the theoretically predicted 

transitions. In the third section we discuss charge carrier dynamics. We present results obtained 

by polarization memory experiments and present a theoretical model to explain them. We discuss 

intensity cross-correlation measurements as an experimental tool for probing carrier dynamics, 

and present the theory behind it. In the last section we discuss the notion of radiative cascades, 

and present experimentally measured intensity cross-correlation functions which reveal such 

cascades in both neutral and charged QDs. We show that important information about the 

dynamical processes can be extracted from these measurements.  

 

Theoretical model for calculating few confined carrier states in semiconductor quantum dots 

The goal of this section is to provide theoretical tools for analyzing the optical spectrum of 

semiconductor QDs and its polarization selection rules. We provide such a tool by a model 

which is based on a full-configuration interaction (FCI) method [13-15]. Traditionally, this 

method provides a straight forward tool for calculating many- indistinguishable interacting 

carriers' levels from their known single carrier states. Our approach is unique, however, in the 

sense that it includes also the exchange interaction between the seemingly distinguishable 

electrons and holes [16-18]. This interaction is orders of magnitude smaller than the exchange 

interactions between carriers of same charge [17, 18], yet, as we show, it determines the 

polarization selection rules of the PL spectrum of semiconductor QDs. 

The FCI method requires as an input the energies and wavefunctions of single-carrier in the QD 
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potential. We supply this information both for the electron and for the hole. There are few 

methods for solving the single carrier problem [19-27]. However, since the actual composition, 

strain dimensions and shape of a particular QD is not accurately known, we prefer the simplest 

approach which provides a consistent set of single carrier states, of which a finite set of states is 

chosen. The interaction energies between pairs of carriers in any one of the chosen states are then 

calculated. For the Coulomb interaction, these elements are given by, 

       1 2 3 4 31 2 4

1 2 3 4 1 2 3 4

2
* *3 3

, , , 1 2 1 2 2 1
1 2ε

p p p p pp p p
n n n n n n n nC d r d r r r r r

r r
   


e   
         (1.1) 

where e is the electron charge,  is the dielectric constant, p1..4 can be either ‘e’ (for electron) 

or ‘h’ (for hole), and the indices n1..4 run over the appropriate single particle states. 

At this stage, in order to insure convergence, it should be verified that the interaction elements 

which connect low energy states to higher energy states are smaller than the energy differences 

between these states. For a QD of length L, the Coulomb interaction energy is roughly 

proportional to 1/L, while the single particle confinement energy is roughly proportional to 1/L2. 

Therefore, the smaller the QD is, the smaller is the ratio between the two and the faster the 

calculations converge (less single particle states should be considered).  

The FCI many-carrier Hamiltonian is written in second-quantization formalism [14], as 

0 ee hh ehH H H H H              (1.2) 

Where 
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H0 is the single particle Hamiltonian, presumed to be already diagonalized, where e
i  ( h

j ) is the 

energy of the single electron (hole) state number i (j). Hee (Hhh, Heh) is the electron-electron 

(hole-hole, electron-hole) interaction Hamiltonian. The operator †
ia  ( jb ) creates (annihilates) an 

electron (a hole) in the single-electron (hole) state number i (j). The electron and hole creation 

and annihilation operators have the usual Fermionic anti-commutation relations. This ensures the 

anti-symmetry of the created states in the exchange of any pair of particles [14]. The second term 

in Heh is the electron-hole exchange interaction. We show below that this term, which we add to 

our many –carriers' model for the first time [28] is the main source for linearly polarized spectral 

lines in the PL spectrum of single QDs.  

Since it commutes with the electron number operator, †
e i ii

N a a  and with the hole number 

operator, †
h j jj

N b b  [14, 15], the Hamiltonian (1.3) can be written as a separate matrix for 

each number of electrons and holes. We do so by using the population basis. Each wavefunction 

in this basis represents a Slater determinant (a complete particle-exchange anti-symmetric state) 

composed of products of the chosen single carrier states. The Hamiltonian matrix is then 

diagonalized, and the many-body states and eigen-energies are obtained. Finally, the energies, 

the oscillator strengths and polarization selection rules for optical transitions between the 
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obtained many-body states are calculated using the dipole approximation. 

In the following subsections, we discuss each step in the FCI model calculations. 

 

Single carrier states  

There are various methods for calculating single carrier energies and states in semiconductor 

hetero-structures in general, and in QDs in particular [19-27]. These can be divided into two 

groups. The first group includes atomistic approaches, such as the pseudo-potential method [19] 

and the tight-binding method [20, 21]. The second group includes envelope function and 

effective mass approximations, such as single and multi-band k·P approximations [22-27] for the 

solution of the Schrödinger equation for a single carrier in the QD potential.   

The methods in the first group consider the full atomic potential directly, and thus obtain the full 

wavefunctions in atomic resolution. They require the information about the type and position of 

every atom in the structure, and demand rather large amounts of computational resources.  

In methods of the second group it is assumed that the wavefunctions can be written as a sum of 

products of an intra-unit-cell Bloch function,  bu r , periodic over all unit cells, and an inter-

unit-cell envelope function,  b
n r
 . 

    b
n n b

b
r u r                 (1.4) 

The summation is over all bands b. The problem is then reduced to finding the envelope 

functions, given the bulk material parameters (e.g. band-edge energies, carriers' dispersion 

functions, bulk elastic moduli, etc.) as a function of position. Without magnetic fields, Kramers 

theorem applies, and the bands are arranged in degenerate pairs [29]. Generally, every pair of 

degenerate states can be mapped onto a pair of spin 1/2 states, even if the real spin of the original 

states is not 1/2 , or even not defined at all [14]. The new spin component associated with a state 
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is called the pseudo-spin component of the state.  If only one (twice Kramers degenerate) band is 

considered, the equation for the envelope function reduces to a simple Schrödinger equation with 

an effective mass and an effective potential. For a zero magnetic field, this equation does not 

depend on the pseudo-spin of the state, and yields the same envelope wavefunction for each 

pseudo-spin component.  Taking into account only one band is justified when the band in 

question is non-degenerate (except for the Kramers degeneracy) and energetically isolated from 

other bands. This is usually the case for an electron in the conduction band of wide band III-V 

semiconductors. The case of a hole in the valence band is more complicated. In these bulk 

materials the highest valence band states (the "heavy" and "light" hole states) are degenerate (at 

zero crystal momentum k=0). In quantum structures, however, the confinement and the strain lift 

this degeneracy [23-25]. When this degeneracy removal is substantial, the single band 

description of the heavy hole band is still a good approximation.  

Considering only a single band greatly reduces the amount of computational resources needed. It 

also offers direct intuitive insights into various model parameters and their influence on the 

calculated measurable properties of the QDs. It misses, though, some of the QD properties, 

notably properties which depend on orientation of the QD relative to the crystallographic axes of 

the semiconductor [28, 30]. These and other properties may require more complicated methods. 

However, due to the lack of structural information needed for these methods we prefer this 

approach and we shall use it throughout this chapter.  

For the effective potential acting on the single band carrier we use a very simple model:  A low 

constant potential inside a region in the shape of a rectangular or an elliptical slab, and a higher 

constant potential outside that region. These shapes belong to the D2h symmetry group. The D2h 

is the highest symmetry group without a 3-fold or higher symmetry axis. Higher symmetries 
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would not contain in-plane anisotropy, which is crucial for the appearance of linear polarizations 

in the PL emission. Lower symmetries would require a more complicated model for describing 

the QD potential, possibly with more free structural-parameters. Our model contains only three 

different geometrical parameters: the height, length and width of the lower potential volume. 

Due to the different band offsets and different strain effects, the potential for the hole has 

different parameters than that for the electron [25]. In an attempt to reduce the number of free 

parameters we express this freedom by only one additional parameter. Namely, the ratio between 

the length of the slab for the hole to that for the electron. 

 

Fig. 3. (a) Single electron eigen-energies, numerically calculated for an elliptic slab model with 

height=3nm, length=23.2nm, width=21.2nm, and an electron effective mass of 0.085m0. (b) In-

plane cross-sections of the calculated probability distributions (wavefunction squared) at half the 

slab's height.  
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For epitaxialy grown, self-assembled QDs, the height (defined to be along the growth direction) 

is usually much smaller than the length and width [31]. The single particle wavefunctions are 

therefore quasi-two-dimensional, and have no nodes along the growth axis (z). Each 

wavefunction can therefore be uniquely defined by two quantum numbers. These numbers, nx 

and ny respectively, reflect the number of the nodes in the carrier wavefunction along two axes 

perpendicular to the growth axis (nz=0). If the ratio between the width and length of the QD (the 

aspect ratio) is not far from 1 (a 'nearly symmetric' QD), all wavefunctions having the same total 

number of nodes, n=nx+ny, will have close energies, well separated from the energies of 

wavefunctions with different total number of nodes. The single particle spectrum is thus 

composed of 'shells'. Each shell contains 2(n+1) states, where n is the total number of nodes 

(n=0,1,2,..). The extra factor of 2 is due to the pseudo-spin (Kramers) degeneracy. As an 

example, Fig. 3 presents numerically calculated single-electron energies and wavefunctions for 

an elliptic slab. The model parameters where chosen to fit experimental measurements.  

 

Few carrier states – the role of the electron-hole exchange interaction  

The effects of the Coulomb interaction between the carriers, on the few-carrier energies and 

states can be quite generally divided into three types: Classical, Exchange and Correlation. In the 

classical picture, the few-particles states gain or lose energy due to the direct electrostatic 

interaction between their charge-densities. The interaction elements corresponding to this effect, 

the 'direct' Coulomb interactions - 
1 2 2 1 1 2 2 1 1 2 2 1, , , , , , , , ,, ,eeee hhhh ehhe
i i i i j j j j i j j iC C C , lie on the main diagonal of the 

Hamiltonian (1.2). Thus, they do not "mix" states of different symmetries and therefore do not 

have a direct effect on the form of the wavefunctions. The exchange Coulomb interaction 

elements result from the fact that in quantum mechanics, the carriers are indistinguishable. They 
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have the forms 
2 1 2 1 2 1 2 1 2 1 2 1, , , , , , , , ,, ,eeee hhhh hehe
i i i i j j j j j i j iC C C . Elements of this type can be off-diagonal, but then they 

connect only wavefunctions which have the same diagonal element (including the classical 

Coulomb terms) [14]. Thus, they can be viewed as first-order perturbations within degenerate 

subspaces. The form of the eigen-wavefunctions within each degenerate subspace is determined 

by the diagonalization of the exchange interaction in that subspace. These 'first-order' few-

particles wavefunctions, which still contain a well defined spatial wavefunction for each particle, 

are called ‘configurations’ (due to sub-space diagonalization, the pseudo-spin is often ill-defined 

for each single carrier separately). Correlation Coulomb interaction elements are all the elements 

which are neither classical nor exchange. They are all off-diagonal, and connect different 

degenerate subspaces. Thereby, they mix states of different configurations. The inclusion of such 

elements in the calculation is the source of the name ‘configuration-interaction’. The influence of 

each type of interaction elements is illustrated in Fig. 4. 

 

Fig. 4. Schematic description of the three type of coulomb interactions between two confined 

charge carriers and their effect on the mutual two carriers wavefunction and energy. Circles 

represent spatial single carrier wavefunctions. Arrows represent single carriers' peudo-spins. The 

wavefunction indices were separated into spatial (1,2,…) and pseudo-spin (,) components.     



13 

  

In order to calculate the Coulomb interaction elements, Eq. (1.1), in the envelope function 

approximation (Eq. (1.4)), it is convenient to separate the integration over the entire crystal into 

integration within a unit cell (of volume  , centered at the lattice vector R


), and summation 

over all unit cells: 

3 3

R
R

d r d r


 



   (1.5) 

When the potential varies slowly over the length of one unit cell, it follows that the envelope 

function of the confined carrier varies slowly on that length scale as well. It could therefore be 

considered constant over the volume of one unit cell. This approximation is the slowly-varying 

envelope function approximation (SVEFA). If only one (Kramers degenerate) band is included 

for each type of particle (band mixing is neglected), and the SVEFA is used, the integral (1.1) 

becomes, 
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   
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 
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  




e

   
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  (1.6) 

where we have defined r R l 
 , R


 being the lattice vector closest to r , and the Bloch 

amplitudes’ periodicity was used. We would now like to obtain the R


 dependence of the intra-

unit cell integral of Eq. (1.6). For this purpose, the Coulomb operator is decomposed into a sum 

of products of a function of 1 2R R
 

 and a function of 1 2l l
 

. This is done by dividing the 

integration space into two sub spaces: the long-range subspace, where 1 2 1 2R R l l  
  

, and the 

short-range subspace, where 1 2 1 2R R l l  
  

.  

For the short range subspace, since 1l


 and 2l


 are intra-unit-cell vectors, in most cases 1 2R R
 

, 
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and one can make the approximation, 

 0 1 2
1 2 1 2 1 2

1 1  v R R
R R l l l l

 
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 
      

where 0v  is the volume of a unit cell.  

For the long-range subspace, the Coulomb interaction operator can be expanded into a Taylor 

(‘multi-pole’) series, 
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 (1.7) 

where I is the 3x3 identity matrix.  

The intra-unit-cell integration can now be preformed independently for each element (of both the 

short- and long-range subspaces), yielding functions of known dependence of 1R


 and 2R


. Under 

the SVEFA the summation over 1R


 and 2R


can be replaced by an integral over the entire space, 

and it can be assumed that R r
  .  The Coulomb integrals thus have the general form,    

          1 2 3 4 31 2 4

1 2 3 4 1 2 1 2 3 4 3 4
1 2 3 4 1 2 3 4
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   (1.8) 

where m counts the orders of the long-range expansion and also the short-range term, and 

 
1 2 3 4
1 2 3 4

( )
, , , 1 2
, , ,

ˆ m
s s s s
p p p p

C r r   represents the operator in inter-unit-cell space remaining after the intra-unit-

cell integral has been performed. This operator depends on 1..4s  - the pseudo-spin components, 

and on 1..4p  - the particle identifiers, which together uniquely identify the Bloch amplitudes of 

the participating single carrier wavefunctions (see Eq. (1.6)). Other than the operator, the integral 
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contains only single carrier envelope functions, numbered by their own separate indices, 1..4n . 

Except for the case of the electron-hole-exchange interaction (EHEI), the zeroth order of the 

multi-pole series, Eq. (1.7),  (the monopole-monopole term), when integrated,  is much larger 

than all the other orders, including the short range term [15]. In such cases, to first 

approximation, one can keep only this order. The operator  
1 2 3 4
1 2 3 4

(0)
, , , 1 2
, , ,

ˆ
s s s s
p p p p

C r r
   for the monopole-

monopole long-range interaction is given by  
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This term gives rise to the well known same-carrier isotropic (Hisenberg-type) exchange 

interaction, which arranges the states according to their total pseudo-spin (separately for each 

type of carrier). For example, it divides the four-fold degenerate subspace of two identical 

carriers occupying two different spatial orbitals into a pseudo-spin-zero singlet and a pseudo-

spin-one triplet (as schematically shown in Fig. 4). In this approximation, this interaction is not 

sensitive to the anisotropy in the potential shape. This is, however, not the case for the EHEI, 

since for it the operator in Eq. (1.9) strictly vanishes. Thus, for the EHEI, the leading term 

includes a short-range term, and the long-range dipole-dipole term (the monopole-dipole terms 

contribute only to correlation integrals and only when band mixing is not neglected). The short 

range EHEI operator reads [17],  

   
1 2 3 4 1 4 2 3 1 3

( )
, , , 1 2 0 , , , 1 2
, , ,
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h e h e
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where 0v  is the volume of one unit-cell, and SRE  is the following intra-unit-cell integral: 
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The operator (1.10) is an isotropic contact interaction between an electron and a hole. The term 

differentiates in energy between a state in which the electron and the hole have parallel pseudo-

spins and that in which their pseudo-spins are anti-parallel.  

The EHEI long-range dipole-dipole operator reads [17], 

   
1 2 3 4 1 2 3 4

2 †
(2) †

, , , 1 2 , ,3
, , , 1 2
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   
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where I is the 3x3 identity matrix,  1 2 1 2n r r r r       , and    3 *
, ' , , 's s h s e sd lu l lu l



 
   .  

From symmetry considerations it can be shown that [17]  

   † † † †
, , , ,

ˆ ˆ ˆ ˆ; ; 0x iy x iy                     .   (1.13) 

Here  () represents an electron (hole) pseudo-spin 1
2  [32]. Using Bloch amplitudes at k=0 

and the connection between the position and momentum expectation values [33], the value 2  

can be estimated as [28], 

2
2

2
04

P

G

E
m E

 
    (1.14) 

where PE  is the conduction-valence band-interaction energy [25], GE  is the band-gap, and 0m  is 

the mass of a free-electron.   

When the operator (1.12) acts on the envelope functions, it resembles a quadruple interaction. As 

such it vanishes completely if the QD has in-plane rotational symmetry which is larger than two 

folds. Therefore, this interaction is the main mechanism which leads to the appearance of linearly 

polarized emission lines in the PL spectrum of self-assembled QDs.  

The leading terms in the EHEI interaction can thus be cast into an interaction Hamiltonian of the 

following form: 
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1 2 3 4 1 1 2 2 3 3 4 4
1 2 3 41 2 3 4

1 2 3 4

† †
, , , , , , ,
, , ,, , ,

, , ,

hehe
EHEI n n n n n s n s n s n s

s s s sn n n n
s s s s

H C a b b a      (1.15) 

For each combination n1..n4 of envelope functions, using (1.10), (1.12) and (1.13), the elements 

1 2 3 4
1 2 3 4

, , ,
, , ,

hehe
n n n n
s s s s

C can be arranged into the following 4x4 matrix in the electron-hole pseudo-spin basis, 

 2 1 4 3, , , ,s s s s       [17]: 

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4
1 2 3 4

1 2 3 4

, , , , , ,1
0 12

, , , * , , ,1
1 02

, , , , , ,1
, , , 22

, , , *1
22

0 0
0 0

0 0 0
0 0 0

n n n n n n n n

n n n n n n n n
hehe
n n n n n n n n
s s s s

n n n n

C

  
 

    
   

   (1.16) 

This matrix represents also the electron-hole-exchange Hamiltonian for the more familiar case of 

one electron and one hole [18] which is obtained from (1.16) by the subtraction of 

1 2 3 4, , ,1
02
n n n n from the main diagonal. 

The terms 1 2 3 4, , ,
0
n n n n  are often called the 'isotropic electron-hole exchange'. They are not sensitive 

to in-plane anisotropy, and separate only states with parallel pseudo-spins from those with anti-

parallel pseudo-spins. They contain the short-range interaction and the 'out-of plane' component 

of the long range interaction: 

       

       

1 2 3 4

1 2 3 4

1 2 3 4

, , , 3 * *
0 0

2 2 22 2
3 3 * *

1 2 1 2 2 13
1 2

2

n n n n h e h e
SR n n n n

z x yh e h e
n n n n

v E d r r r r r

n n n
d r d r r r r r

r r

   


   



 

 







e

   

   
 

    (1.17) 

Where 0v  and ESR are defined in (1.11), n  is defined in (1.12), and   is defined in (1.13).  

The terms 1 2 3 4, , ,
2
n n n n  split the states ,  . In the single-band approximation, this term vanishes 

[17]. However, from symmetry considerations it appears that for zincblende crystals of 

symmetry which is lower than that of a sphere [16] it should not vanish. These terms result from 
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the isotropic EHEI when band-mixing is considered. These terms do not have impact on the 

polarization selection rules and are generally quite small in respect to the other terms in (1.16) 

[34]. We set them to zero (unless stated otherwise) in the discussion that follows. 

The terms 1 2 3 4, , ,
1
l l l l are called the 'anisotropic electron-hole exchange interaction' [16-18].  

In the single-band approximation they are pure long-range, and are given by, 

       1 2 3 4

1 2 3 4

2 22 2
, , , 3 3 * *1

1 1 2 1 2 2 12 3
1 2

23 y x x yl l l l h e h e
l l l l

n n in n
d rd r r r r r

r r
    


 
 


e    

     (1.18) 

For electron and hole in their lowest single particle state, the anisotropic electron-hole exchange 

interaction removes the degeneracy between the states ,   by 1,1,1,1
1 . The resulting 

eigenstates are  2 2ie     (‘+’ for the lower energy). Here  is defined as the angle 

between the major axis of the QD and the x axis of the frame of reference. Thus, 

1,1,1,1 1,1,1,1 2
1 1

ie     . Obviously, by a proper choice of the coordinates   can be set to 0. As we 

show below, optical transitions to and from these states are cross linearly polarized.  

The integrals (1.18) can be numerically calculated if the single-carrier envelope wavefunctions 

are accurately known [17]. In order to get insight and to save computational resources we 

obtained approximate analytical model for these calculations. First, since lattice mismatch strain 

induced QDs are typically quite flat and their dimension along the growth direction is order of 

magnitude smaller than their lateral extent, we use a 2D model for describing the QD potential. 

The integrals’ dimensionality is thus reduced to four. We then approximate the QD potential by a 

parabolic expression and obtain analytical wavefunctions for the single charge carriers [26-28]. 

With these wavefunctions, three of the four integrations can be analytically obtained. The last 

integral can then be easily calculated numerically. For a nearly round QD, even this integral can 
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be obtained analytically by expanding it into a power series in the aspect ratio of the model QD, 

and then keeping terms up to first order only. The result of this derivation for 1,1,1,1
1  is,  

    
 

2 2
1,1,1,1
1 32 2

3 1

2ε 1 e
xl

  

  


 



e
      (1.19) 

where μ2 is given by Eq. (1.14), e
xl  is the characteristic length (semi-axis) of the electron 

Gaussian wave function in the x direction,   is the ratio between the characteristic length of the 

hole wave function to that of the electron, and   is the length ratio between the minor and major 

axes of the QD – namely its aspect ratio. We chose the x-axis to be along the long axis of the QD 

thereby setting   to zero. For 0.96  , 0.72  , and e
xl  =72Å [28] which result in fairly good 

agreement between the calculated PL spectra and the measured one, Eq. (1.19) yields 

1,1,1,1
1 15 eV  , not too far from the measured value of 30μeV [7]. All the other 1 2 3 4, , ,

1
l l l l  terms 

can be similarly obtained. Some examples for these terms are given in Table 1. 
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Table 1. Ratios of a few anisotropic electron-hole exchange terms to the term of a ground-state 

exciton, for a nearly symmetric QD ( 1 1   ). The values given in the third column are for the 

case where 0.96   and 0.72  .  

Electron-hole 
exchange term 

Ratio to 1,1,1,1
1  Value of the ratio to 

1,1,1,1
1  

1,2,1,2
1  2

2

2 1
1 1
 
 


 

 
-7.84 

2,1,2,1
1  

2
1 2 1

1 1


 


 
 

-15.16 

1,3,1,3
1  2

2
2

1 1
 
 


 

 
+8.88 

1,2,1,3
1  2

2
1

1 2( 1)
 
 


 

i  
-8.36i 

1,4,1,4
1  4

2 2
41 6

(1 ) 16
 





 
+0.256 

2,2,2,2
1  2

2 2
61 45

(1 ) 16( 1)
 
 


 

 
-4.76 

 

 

Optical transitions between the states and polarization selection rules 

Once the many carrier states are known, optical transitions between these states can be quite 

accurately and straight forwardly calculated using the dipole approximation. The dipole operator 

can be expressed as [13] 

ˆ
ij i j

ij
P p a b
     (1.20) 

In the single-band SVEFA, the inter-band transition momentum vector ijp  is given by  

   3 *
, ', , ' , ' '

h e
ij l l s s s s l lp p M d r r r   

        (1.21) 

where the electron and heavy hole state indices (i and j, respectively) are explicitly expressed in 
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terms of their spatial (l,l') and pseudo-spin (s,s') components. For Bloch amplitudes at k=0, The 

momentum matrix elements , 's sM


 are given by  

   † † † †
0 0, , , ,ˆ ˆ ˆ ˆ; ; 0

2 2P P
i iM m E x iy M m E x iy M M            

   
.  (1.22) 

The recombination of an e-h pair with anti-parallel spins with hole spin      relative to the 

growth direction (z), therefore yields a right- (left-) hand circularly polarized photon (emitted in 

the z-direction). Thus, the recombination of an e-h pair (exciton) in a coherent state expressed as 

     yields a photon of polarization    . In particular, if   , the emitted 

photon will be linearly polarized in a direction which is rotated by an angle  1
2 arg    with 

respect to the x-axis. For   , the polarization is elliptical. Exciton states with parallel 

electron and hole spins cannot recombine radiatively. Such states are called "dark excitons". 

The rate of optical transition at energy ε and polarization e , is calculated using Fermi golden 

rule and the dipole approximation [35]: 

 
2

,2 2
,0

4 ˆ
3 i fe i

i f

n f e P i F
m c   
     




    (1.23) 

where 
2 1

137c
  

e


 is the fine structure constant, and n is the refraction index of the QD 

material. The indices i and f stand for initial and final state respectively and i  and f  are the 

energies of these states. iF  is the probability to find the system in the initial state i. 

We now proceed to discuss some specific examples. 

(a) The neutral exciton: As a simple example let us first examine the recombination of the 

ground bright neutral exciton (X0) states. These states are mainly composed of the configuration 
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of one electron and one hole in their respective lowest single carrier states. The EHEI results in 

four non-degenerate states. In the lowest energy pair of states, the electron and hole spins are 

parallel and the states are "dark". The highest energy pair of states (the "bright exciton") 

are:    0 21
2

i
H VX e     . They are separated in energy by 1,1,1,1

1 . These states recombine 

radiatively by emitting cross linearly polarized photons and give rise to a doublet in the PL 

spectrum (See Fig. 5a). The lowest energy component of the doublet is polarized parallel to 

major axis of the QD and it is called "horizontal" (H). The highest one is polarized along the 

minor axis of the QD and is called "vertical" (V). Usually, the laboratory frame is chosen such 

that 0  . In such a frame we calculate [28]: 

2 2
0 0 0ˆ ˆˆ ˆ0 0 1.44

2
P

H V
m Ex P X y P X    

 
    (1.24) 

The factor 1.44 is due to the contributions of other spatial configurations to the ground-state 

wavefunction. Assuming equal population probabilities for the two bright X0 states, and the two 

dark X0 states, we obtain a total bright X0 rate of (0.8 ns)−1, in excellent agreement with the 

measured lifetime [7].  

The calculated rates of all other optical transitions presented below, are given in units of this rate. 

We now proceed to examine a few other examples. 

(b) Neutral biexciton recombination: A neutral biexciton (XX0) consists of two electrons and two 

holes. Its ground state is mostly composed of the configuration where all carriers are in their 

lowest single-carrier level. Since there are two carriers in each spatial state, due to Pauli's 

exclusion principle, the state must be anti-symmetric under spin exchange – a spin-singlet state. 

Due mostly to the Coulomb correlation [36], the energy difference between the XX0 and the X0 

states is different than that between the X0 states and the 0 (empty QD – "vacuum") state. This 
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leads to a difference in the recombination energies between the X0 and the XX0. This difference, 

mostly referred to as the "biexciton binding energy", is usually on the order of a few meV, and it 

can be either positive or negative [36]. Like in the X0 transition, the XX0 transition includes 

cross-linearly polarized doublet. The doublet originates from the exciton states as well. Therefore 

the XX0 splittings is the same as that of the X0. But, since in the biexciton transition the exciton 

is the final state, the energy order of the doublet’s components is opposite to that of the exciton 

(Fig 5a). 

(c) Singly charged excitons: If the QD contains an additional electron (hole) along-side the 

exciton, the combined state is called a singly negatively (positively) charged exciton, or a 

negative (positive) trion. We mark the relevant state as X-1 (X+1). In its ground state the three 

carriers are mostly in their respective lowest energy state. Due to Pauli's principle, the two 

carriers of same sign are in a spin-singlet state. The unpaired, minority carrier, can be in one of 

two possible spin states. Due to Kramers theorem [29], in the absence of magnetic field these 

states are degenerate.  

Upon recombination, one majority carrier is left in the QD. It, too, has two Kramers degenerate 

spin states. The selection rules for optical recombination (1.22) permit only two optical 

transitions between the trion and the charged state. These two transitions are in opposite 

polarizations. Thus, in the PL spectrum, only one, unpolarized PL line is expected for each 

charged exciton (Fig. 5b). Applying external magnetic field, which lifts the degeneracy, results 

(in Faraday configuration) in a cross-circularly, polarized doublet [18].  

(d) Singly charged biexcitons: The main configuration consists of two electrons and two heavy-

holes in their lowest single carrier level, and an additional charge in its second single carrier 

level. We mark these charged biexcitons as XX+1 or XX-1 for positive or negative extra charge, 



24 

  

respectively. Like the case of the charged exciton, Kramers degeneracy holds here as well. Due 

to the small spatial overlap between the wavefunctions of charge carriers of different orbitals, 

radiative recombination of such e-h pairs is weak [see Eq. (1.21)]. Therefore, we consider only 

recombinations between e-h pairs in their lowest levels. When such recombination occurs, the 

QD is left in an excited charged exciton state, with one of the majority carriers in its second 

orbital level (see Fig. 5c). Since there are 3 unpaired carriers now, there are 8 possible spin 

configurations. The strongest exchange interaction within this subspace is the same-particle 

exchange. It divides the 8 states into two groups by the total spin of the two same-charge 

carriers. The high energy group consists of the states where the same-charge carriers form a spin-

zero singlet (anti-symmetric under same carrier exchange) state and in the low energy group they 

form triplet (symmetric under same carrier exchange) spin states. We name the high energy 

group S and the low energy group T.  

The spin of the minority carrier in each of these groups can be oriented either up or down. 

The electron-hole exchange interaction (EHEI) between this carrier and the other two defines the 

energy of the configuration. Among the S states, in both cases, the spin of the minority carrier is 

parallel to one of the majority carriers and anti-parallel to the other one. Thus the S group 

remains doubly (Kramers) degenerate. Among the T states there are three possible 

configurations, resulting in three different energies. The lowest energy is the one in which all 

three spins are oriented along the same direction. The highest energy is the one in which the 

minority carrier is anti-parallel to both majority carrier spins. The one in between is the case in 

which it is parallel to one and anti parallel to the other (see Fig. 5c).  

It is easy to see that the lowest level, in which all the spins are parallel, cannot be reached by 

radiative annihilation of an e-h pair from the charged biexciton state. Therefore, the 
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recombination of the charged biexciton results in three spectral lines: a single, low energy line, 

which lead to the high energy S level, and two higher energy lines which lead to the two 

accessible T levels (Fig. 5c). We mark these optical transitions by S, T0 and T1 (T3), to associate 

the subscript with the total spin projection of the two electrons (heavy-holes) majority carriers. 

We note that the S and T0 lines have half the oscillator strength of the T1 (or T3) line, since only 

half of their wavefunctions is reached by annihilating e-h pair from the charged biexciton state 

(see Fig 5c).  

In the absence of additional interactions, these lines should be unpolarized. This is because each 

level is doubly (Kramers) degenerate and two orthogonally polarized transitions between the 

levels are equally probable.  

The anisotropic EHEI becomes important when the symmetry of the QD reduces. Due to its form 

(1.16) it mixes only states where there are antiparallel e-h spin components (assuming 2 is 

negligible [34]). This mixing results in photon emission which reflects the reduced symmetry of 

the system, i.e. with linear polarization components testifying to the preferred directionality of 

the system. The degree of linear polarization reflects the magnitude of the level mixing term (the 

anisotropic EHEI), relative to the levels separation. Therefore, while the mixing between the T0 

and the T1(3) results in partial orthogonal linear polarizations, the S level remains essentially 

unpolarized. A more detailed quantitative description of this dependence can be found in refs. 37 

and 38. 
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Fig. 5: Schematic description of energy levels and inter-level optical transitions. (a) Neutral 

exciton (X0) and biexciton (XX0), (b) negatively charged exciton (X-1) and (c) negatively 

charged biexciton (XX-1). The most significant electronic configuration is described above each 

level. In (b) and (c) only one of the two Kramers degenerate states is described. Thin (thick) 

arrows represent electron (heavy hole) pseudo-spin (see text). The subscript numbers represent 

the orbital part of the single carrier wavefunction (see Fig. 3). Note that the presented 

wavefunctions are not-normalized. Below each transition diagram, a schematic polarization 

sensitive PL spectrum is presented. Light (dark) gray line shows the spectrum in horizontal 

(vertical) polarizations.  



27 

  

 (e) Doubly negatively charged exciton: The main ground state configuration of a doubly 

negatively charged exciton consists of two paired electrons in the lowest single electron state, a 

hole in the lowest hole state, and an additional electron in the second electron state. The two 

paired electrons have spin zero, and are exchange-inert. The remaining is an e-h pair, where the 

hole is in its lowest state and the electron is in its second state. There are four spin 

configurations, similar to those of the neutral exciton. The main difference is in the actual value 

of the anisotropic EHEI which, as can be seen in Table 1, is larger in its absolute value than that 

of ground-state neutral exciton, and opposite in sign to it. After recombination of a ground level 

e-h pair, the QD is left with two electrons, in different orbital states. The final states are therefore 

divided into a high energy electronic singlet and low energy electronic triplet. These states are 

energetically separated by the same-charge (elect.-elect.) exchange interaction. While the triplet 

states can be reached from all four initial states, the singlet state can be reached only from the 

two states where the unpaired electron and hole's spins are anti-parallel. Therefore, there are two 

groups of spectral lines: A low-energy cross-linearly polarized doublet, and a high energy triplet, 

made of a higher energy cross-linearly polarized doublet and a lower energy, unpolarized single 

line (or more accurately a degenerate doublet). We note that within each doublet the two cross-

linearly polarized components appear in opposite energy order. This is a consequence of the 

difference in the symmetry under spin-exchange between the final states in each case (Fig. 6a). 

(f) Triply negatively charged exciton: This configuration contains one hole and four electrons 

confined in the QD. There are two possibilities for the configuration of the lowest energy state. If 

the energy difference between the second and third single electron levels is larger than the 

electron-electron exchange interaction between these levels, 2,3,2,3
, , ,

eeeeC
   

, than the electronic spin 

configuration would be of two closed shells. In this case the total electronic spin is zero (Fig. 6b). 
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In the opposite case, the two higher energy electrons would prefer to be in open shells, forming 

spin triplet configuration thereby reducing the level energy by the electron-electron exchange 

energy (see Fig. 6c). As shown in the figure, for the closed shell case, both initial and final states 

are doubly degenerate, giving rise to a single, unpolarized spectral line (like in the case of the 

ground state singly charged exciton). For the open shell case, the situation is markedly different, 

yielding a much richer spectrum. The initial states resemble the final states of the singly charged 

biexciton. They are arranged in three levels with a Kramers’ degenerate pair of states in each 

level. All the states are optically active. The final states are those of three electrons, each in its 

own spatial state. As shown in Fig. 6c, the 8 spin configurations are divided by the electron-

electron exchange interaction according to their total spin to a lower energy quadruplet (total 

spin 3/2), and two higher energy doublets (total spin 1/2). The quadruplet can be reached 

optically from all three levels of the initial configuration. The higher doublet can be reached only 

from the two higher energy levels of the initial state. The intermediate level cannot be reached 

from any one of the three initial levels. This gives rise to two groups of spectral lines, a higher 

energy group consisting of three lines, and a lower energy group consisting of two lines (Fig. 

6c). Considering the different spin configurations involved in each the transitions, it can be 

shown [39] that the intensity ratio between the lines in the group of three is 3:2:1 (from lowest to 

highest energy), and 2:1 in the group of two lines.  

Similar to the radiative decay of the singly charged biexciton, the two higher energy initial states 

of the open shells triply charged exciton are mixed by the anisotropic EHEI. This leads to partial 

linear polarizations in the spectral lines resulting from their recombinations. As we show below, 

our experimentally measured polarization sensitive PL spectra is compatible with the second 

case: The triply negatively charged exciton is best described by the open-shells configuration. 
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Fig. 6. Schematic description of energy levels and inter-level optical transitions: (a) Doubly 

negatively charged exciton (X-2), (b) triply negatively charged exciton (X-3) in closed-shells 

configuration, and (c) X-3 in open shells configuration. The most significant electronic 

configuration is given above each level. The notations are explained in Fig. 5. In (b) and (c) only 

one of the two Kramers degenerate states is given for each level. Below each transition diagram, 

a schematic polarization sensitive PL spectrum is presented. 
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Polarization sensitive photoluminescence spectrum 

In this section we present measured polarization sensitive PL spectra and compare the details of 

the spectral lines observed with the model calculated transitions. This comparison, together with 

polarization memory measurements [40] and external field dependent PL measurements [28], are 

used for the identification of the spectral lines.  

The sample used for the experiments presented here contains a single layer of In(Ga)As QDs 

embedded within a GaAs matrix. The QD layer was positioned at the middle of a one-

wavelength cavity, made of two unequal distributed Bragg reflecting mirrors (DBR) [7,41]. In 

order to apply electric fields on the QDs, the top (bottom) DBR was n- (p-) type doped. For 

charging the QD in a controllable way, a 10nm thick AlAs barrier was placed inside the cavity, 

between the QDs and the top, p-type doped mirror [28]. This barrier prolongs the tunneling time 

of heavy-holes into the QDs at forward bias and out of the QDs at reverse bias, while marginally 

affecting the tunneling time of electrons. As a result, negative charging is facilitated upon 

forward bias and positive charging upon reverse bias.   

Figs. 7a-d show the measured PL and linear polarization spectra of a single QD from this sample, 

under two external bias voltages. At zero bias (Fig. 7a, b) the charge state is between -1 and +1, 

while at forward bias (Fig. 7c, d) it is between -3 and -1. The various lines are marked by their 

initial state and where needed, their final state is also indicated. Figs. 7e-h show the 

corresponding calculated spectra.  

In Fig. 8, the measured polarized fine structure of various lines is compared with the calculated 

one. While most of the measured intensity ratios, relative PL energies and polarization degrees 

and directions are reproduced by the theory discussed above, some measured spectral lines show 

unexpected polarization directionality. We find spectral lines with linear polarization axes 
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rotated clockwise by 67.5° relative to the H and V axes. These rotated polarization directions, 

V+D and H+D, respectively, which roughly coincide with the [1, 2, 0] and [2,-1, 0] crystalline 

directions, appear only in spectral lines associated with configurations containing one unpaired 

px –shell charge carrier: X−2, XX−1, and XX+1. Other configurations, which contain only s-shell 

charge carriers or either closed shells or two unpaired p-shell carriers (px and py), the linear 

polarizations are along the H and V axes. The simple single band, single carrier, model that we 

presented above, is insensitive to the crystalline directions and cannot explain these observations. 

 

Fig. 7. [(a) and (c)] Measured PL spectra for bias voltages of 0 and 7.15 V, respectively. The 

energy is measured from the energy of the X0 line. [(b) and (d)] PL linear polarization spectra for 

bias voltages of 0 and 7.15 V, respectively. The black (orange) line presents projection on the H-

V ( D-D ) direction.  [(e) and (g)] and [(f) and (h)] Calculated PL and PL linear polarization 

(projected on the H-V direction) spectra for various single QD excitonic transitions. Vertical 

dotted lines at various spectral lines are drawn to guide the eye.    
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Fig. 8. Measured (top panel in each pair) and calculated (bottom panel in each pair) high 

resolution polarization sensitive PL spectra for various spectral lines. The solid (dashed) black 

line represents H (V) polarized spectrum, while the solid (dashed) gray line represents 

V+D (H+D) polarized spectrum. 
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Carrier dynamics in quantum dots 

In this section we discuss two experimental methods for probing the dynamics of confined 

charge carriers in QD: Polarization memory measurements and polarization sensitive intensity 

correlation measurements. The theory that we use in order to gain intuition and to understand the 

dynamics of photoexcited carriers in these nanostructures from the analysis of these experimental 

results is thoroughly discussed.  

  

Polarization memory in quasi resonant excitation 

In a polarization memory measurement, the system is excited by a polarized light, and the 

polarization of the PL emission is measured. If the polarization of a certain spectral line is the 

same as (opposite to) that of the exciting light, the line is said to have positive (negative) 

polarization memory. In general, the degree of polarization memory depends on the specific 

spectral line, its polarization and the energy to which the exciting light is tuned. The degree of 

circular polarization memory (DCPM) and the degree of linear polarization memory (DLPM) 

along the major axes of the QD are defined as 

H H
H V

circ lin H H
H V

I II IP P
I I I I

 
 
 
 


 

 
     (1.25) 

where I stands for the PL intensity, and the superscript (subscript) + (-) or H (V) stands for right- 

(left-) hand circular polarization, or horizontal- (vertical-) linear polarization of the exciting 

(emitted) light. The horizontal (vertical) direction is determined by the polarization direction of 

the lower (higher) energy fine-structure component of the neutral exciton (X0) line, (see Fig. 5a).  

Usually, when a QD is excited well above the band-gap of the host material (non-resonant 

excitation), no polarization memory is observed. This is due to fast spin scattering of both types 

of charge carriers during their relaxation from the continuum to the QD states [42, 43]. When the 
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excitation energy is below the continuum of the QD or its wetting layer bandgap, we refer to it as 

to a quasi resonant excitation. In this case the situation is different, and some polarization 

memory is observed. Resonant excitation into well defined low energy optical resonances of the 

QDs, will not be reviewed here.  

 

Fig. 9. Bias dependent PL spectra (a) and DCPM (b) from a single QD excited at 1.369 eV. The 

black horizontal lines marked 10 and 11 indicate the bias and spectral ranges from which Figs. 

10 and 11 were obtained. 
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For quasi resonant excitations, we find that different lines show different DCPM. However, none 

of the observed lines show any DLPM. The data and its discussion are presented below. 

In Fig. 9a we present bias dependent photoluminescence (PL) spectra from the same QD 

discussed above, optically excited at 1.369 eV. At this energy, a few meV below the bandgap of 

the InAs wetting layer, the QDs are quasi-resonantly excited [44]. At reverse bias the spectral 

lines are red-shifted due to the applied electric field, and lines due to optical transitions in the 

presence of positive charges are enhanced. At forward bias, flat-band conditions are reached and 

spectral lines due to the presence of negative charges appear, while lines in the presence of 

positive charges disappear. The various spectral lines are identified by their bias dependence and 

their order of appearance as the bias increases. As described above, their identifications also rely 

on their polarized fine structure [28].  

In Fig. 9b we present the DCPM spectra as a function of the bias applied on the QD. Clearly, the 

DCPM of each and every spectral line is almost bias independent. In general, it is obvious that 

while all positive lines have positive DCPM, various negative lines have negative DCPM signs.  

In Fig. 10a we present spectra of various spectral lines as obtained at a forward bias of 4.9 V. At 

this voltage the QD is negatively charged with either, one, two, or three electrons. The solid 

(dashed) line represents the spectrum obtained when the excitation and collection are co-(cross-) 

circularly polarized. In Fig. 10b we present the corresponding DCPM. In Fig. 10 one clearly sees 

that the DCPM sign depends on the specific optical transition. Some spectral lines show positive 

memory, like all the lines associated with positive charges do. Some show no polarization 

memory, and some show negative polarization memory. In Fig. 11a we present the spectrum 

obtained at 0 V. In Fig. 11b we present the measured DCPM and DLPM. The X0 line shows no 

DCPM, and in total no DLPM either, since its H and V polarized fine-structure components are 
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equally visible upon H linearly polarized excitation. We note that the X+1 (positively charged 

exciton) shows strong positive DCPM but no DLPM. 

 

Fig. 10. (a) Measured and (c) calculated polarization sensitive spectra at 4.9 V. The solid 

(dashed) line represents spectrum obtained with co- (cross-)circularly polarized excitation and 

detection: +
co +I =I  ( +

crossI =I ) . (b) Measured and (d) calculated degree of circular polarization 

memory. The dotted vertical lines are guides to the eye. 
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Fig. 11. (a) Measured and (c) calculated polarized PL spectra at 0 V. (b) Measured and (d) 

calculated degrees of circular (gray line) and linear (black line) polarization memory. 
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Spin scattering rates 

In order to explain these observations and to gain further insight into the phenomenon of 

polarization memory in quasi- resonantly optically excited single semiconductor quantum dots, 

we use the single band, full configuration-interaction model described in the previous sections. 

We use the model to calculate the quantum dot's confined many-carrier states and the selection 

rules for optical transitions between these states. Prior to the excitation, the states within 1 meV 

from the ground state of a given number of Nh holes and Ne electrons are considered to be 

populated with equal probability. This assumption is compatible with thermal distribution at the 

ambient temperature in which the experiment was held (~20K). We consider the polarized quasi-

resonant excitation at a given polarization by adding an additional electron-hole pair to these 

states. The spin state of the additional carriers are defined by their initial spin polarization, Sexc , 

dictated by the polarization of the exciting light, and by their spin dephasing rate during 

thermalization. Quite generally, we describe the spin orientation loss by four probabilities which 

apply to each carrier independently. The probabilities ,e h
jp  are for either spin orientation 

preservation, j=0, or for spin rotations by π radians about the spatial directions x, y, and z for j=1, 

2 and 3, respectively. The spin states of the thermalized pair can now be represented by a 4-by-4 

density matrix in the Hilbert space of the pair's spin states:  , , ,    :  

 
3

† †
' ' '

, ' 0

th e h e h e h
j j j j exc exc j j

j j
p p S S    



       (1.26) 

where ( )e h
j  are the Pauli matrices acting on the sub-space of electron ( ) (hole ( )) spin states, 

and 0  is the unit matrix. The operation  is the Kronecker product. In Eq. (1.26) we used the 

identity:  1
2exp j ji i    . If one further assumes that the spin orientation loss (or dephasing) 
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for both carrier types is isotropic, then the number of independent probabilities to be considered 

is reduced to two, ep  and hp , where,   

( ) ( ) ( ) ( ) ( ) ( )
1 2 3 0; 1 3e h e h e h e h e h e hp p p p p p        (1.27) 

We note here that the probabilities ep  and hp  can be written in terms of the spin-dephasing time 

2T * [45] and the thermal relaxation time  , as: 

 ( ) ( ) ( ) * ( )
24e h e h e h e hp T         (1.28) 

These relations arise from the master equations (see below) describing a single charge carrier 

undergoing simultaneous spin-dephasing and thermal relaxation from its orbital state.  

The photogenerated pair increases the number of charge carriers to Nh+1 holes and Ne+1 

electrons. The new many-carrier states are restricted to these many-carrier states which 

accommodate the photogenerated carriers with their spin orientation. For an initial state A  of 

Ne electrons and Nh holes, the resulting density matrix which defines the states with the 

additional thermalized pair is given by  

†

,

ˆ ˆth
A x A A x  

 

     (1.29) 

where †x̂  is the creation operator of an electron-hole pair with spin   in any combination of 

single electron and single hole spatial states:  

† † †
, ,

,

ˆˆ ˆ
e hm n

m n
x a b      (1.30) 

Here †
,ˆ

ema  ( †
,

ˆ
hnb  ) is the creation operator of an electron (a hole) in the single electron (hole) 

spatial state m (n), with spin state e  ( h ). With this notation the spin state of the electron-hole 

pair is given by  ,e h   . With this description of the Ne+1, Nh+1 many carrier state, we 
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proceed by projecting it on all the possible ‘ground’ states G  within 1 meV of the lowest 

energy level of Ne+1, Nh+1 charge carriers. Recombination of one e-h pair form these states, 

actually gives rise to the PL signal.  

We conclude by calculating the energies   and the relative intensities of polarized optical 

transitions  
em

G
SI   with polarization emS  from the ground states G  to the many body states of 

Nh holes and Ne electrons [29, 46]. The emS  polarized spectrum resulting from excS  polarized 

quasi-resonant excitation is finally obtained by summing over all the thermally populated initial 

states A  and over all optically excited G  states contributing to the photoluminescence:  

     
,

exc

em em

S G
S A S

G A
I Tr G G I        (1.31) 

We note that A  is obtained from the polarization of the exciting light excS  via Eqs. (1.26) 

through (1.30). The two probabilities in Eq. (1.27) ep and hp  can now be extracted from the 

measured DCPM and DLPM by fitting them to the calculated ones. The values 1
8

ep  and 

1
4

hp   describe very well the observations for this particular quasi-resonant excitation. In 

accord with Eq. these values mean that while the hole’s dephasing time is much shorter than it’s 

relaxation time, and thus it totally loses its spin polarization during the thermalization, the 

electron's degree of polarization is reduced only by one half, meaning that its dephasing and 

relaxation times are comparable. Kalevich et al. [47] used previously a similar assumption to 

successfully explain their observation of negative circular polarization memory in an ensemble 

of doubly-negatively charged QDs. 

The calculated spectra for co- and cross-circularly polarized emission from a negatively charged 

quantum dot with 1 up to 3 charges were added together to form the calculated polarization 
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sensitive spectra in Fig. 10c. Both single exciton and biexciton emissions were included. 

Gaussian broadening of 35 µeV was assigned for each optically allowed transition. The 

calculated DCPM spectrum is presented in Fig. 10d. By comparing the measured and calculated 

polarization sensitive spectra and DCPM, one clearly notes that all the features of the measured 

DCPM are given by this simple model.  

In Fig. 11c we present the calculated spectrum for the neutral exciton (X0), the neutral biexciton 

(XX0), and the singly positively charged exciton (X+1). In Fig. 11d we present the corresponding 

calculated DCPM (gray) and DLPM (black). The H (V) directions are along the long (short) 

semi-axes of the model QD [28]. The positive DCPM of the X+1 spectral line and the lack of 

DCPM from the neutral excitonic transitions are clearly reproduced by our model. In addition, 

the model clearly reproduces the experimentally measured lack of DLPM from all the observed 

spectral lines at this quasi-resonant excitation energy. We note here, however, that DLPM is 

observed in some cases of resonant excitations [48-51]. In these cases, (to be presented 

elsewhere), both the electron and the hole retain at least part of their initial spin polarization 

during their thermalization, before they recombine.  

Intuitively, one can easily comprehend the observed DCPM phenomena as a consequence of the 

isotropic-EHEI induced energetic separation between states where the electron and hole spins are 

parallel to those where they are anti-parallel. Since circularly polarized excitation and emission 

always involve electron-hole pairs with anti-parallel spins, states with (anti-) parallel spins can 

be reached only in cases where one (none) of the carriers flips its spin. This simple reasoning 

leads to negative (positive) circular polarization memory. As an illustration for the processes 

which lead to polarization memory, we schematically describe in Fig. 12 the case of quasi-

resonant excitation of the X-3 spectral line. 
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Fig. 12. Schematic description of the processes which lead to the observed DCPM among the X-3 

spectral lines. The symbol  ( ) represents a spin up (down) hole (electron). The subscript near 

each symbol denotes the particle’s energy level (see Fig. 3). Gray color represents states which 

do not participate in the described process. (a) An electron-hole pair is photogenerated in high 

lying energy levels (denoted by the subscript ‘n’) by a quasi-resonant    polarized excitation 

and added to three QD electrons residing in their ground states. (b) During the thermalization, 

the hole spin projection along the growth direction is either preserved (solid dark-gray arrows), 

or flipped (dotted dark-gray arrows). The lowest (highest) energy level of the ground Ne=4, Nh=1 

states, is reached only if the hole flips (preserves) its spin orientation. The intermediate level is 

reached in both cases. (c) All three levels return via radiative recombination of an s shell electron 

hole pair to the same four-fold degenerate Ne=3, Nh=0 level, giving rise to spectral lines with 

positive, negative and no DCPM, respectively. 
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Before we conclude this discussion we note that the appearance of negative DCPM in the lowest 

energy doublet of the doubly negatively charged exciton (X-2), indicates that the energy splitting 

between the two components of this doublet is smaller than the radiative width of the lines [47, 

51]. Consequently, we set this particular anisotropic EHEI energy to zero in our model [28]. 

 

Polarized intensity correlation spectroscopy 

The intensity (second order) correlation function between two spectral lines, A and B is defined 

as: 

 
   
   

(2)
,

A B t
A B

A Bt t

I t I t
g

I t I t





     (1.32) 

where ( )A BI  is the intensity of line A (B), and 
t
 means averaging over the time t. If B=A the 

function is known as the intensity autocorrelation function, and is commonly used to demonstrate 

quantum light or single photon sources [4-6]. 

Emission of a photon from line A at time t sets the system to the final state of the relevant optical 

transition. Therefore,        /A B A B At t t
I t I t I t I t    , where  /B AI t   is the intensity 

of transition B at time t+τ conditional on the system being in the final state of transition A at time 

t. Furthermore, the intensity of an optical transition is proportional to the population probability 

of its initial state (Eq. (1.23)). Therefore, for 0  ,  

 
   
   

 
 

 / / /(2)
, 0 A B A B A B At t t

A B SS
BA B Bt t t

I t I t I t P
g

PI t I t I t
  


 

      (1.33) 

where  /B AP   is the average population at time  of the initial state of transition B with the 

condition that the state of the system at time 0 was the final state of transition A. The steady-state 
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probability to find the system in the initial state of transition B,  /B AP   , is denoted by SS
BP .  

At negative time differences ( 0  ), the role of the two transitions is simply exchanged.  

     /(2) (2)
, ,0 A B

A B B A SS
A

P
g g

P


      (1.34) 

This simple analysis shows the usefulness of intensity correlation measurements as a tool for 

studying QD carriers’ population dynamics.  

Experimentally, intensity correlation measurements are usually performed using a Hanbury 

Brown and Twiss apparatus (HBTA) [52]. The apparatus that we constructed provides the 

necessary means to temporally correlate between the emission intensities of two spectral lines, 

each one of them projected onto any desired polarization state. The apparatus is schematically 

described in Fig. 13.  

The emitted light from the sample is split into two beams by a non polarizing beam splitter. By 

two monochromators, and two sets of polarizers and variable retarders, we select the desired 

spectral line at the desired polarization in each arm of the apparatus. A silicon avalanche 

photodetector in each arm detects a single photon and converts it to a current pulse. The time 

difference between the pulses from the two detectors is repeatedly measured using a time to 

analog converter. A multi channel analyzer then builds a histogram of time differences between 

the detection times of the two photons. In continuous wave (cw) measurements the histogram 

can be straight forwardly normalized by its value at long time differences, to yield the intensity 

correlation function.  
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Fig. 13. Schematic illustration of a Hanbury-Brown and Twiss apparatus. NPBS – Non 

polarizing beam splitter. LCVR – Liquid crystal variable retarder. MC – Monochromator. D – 

Detector. TAC – Time to analog converter. MCA – Multi-channel analyzer. 

 

Rate equations and Master equations 

In order to calculate the correlation functions, we calculate first the population probabilities.  

For energetically distinct levels, coherence effects can be neglected, and the populations can be 

calculated using a set of coupled classical rate equations [53]. Where by ‘energetically distinct’ 

we mean that the energetic distance between the levels is much wider than their total width.  

The set of classical rate equations can be generally written in the following form [40, 53], 

     n t R t n t
     (1.35) 

Here  n t  is a vector of level populations and  R t


 is a matrix containing the transition rates 

between all the levels involved. In cw excitation, the detected first photon sets the starting 

conditions, and then, Eq. (1.35) can be solved quite straightforwardly if the matrix  R t


 is 
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known [53]. 

When coherence matters, classical rate equations are not sufficient. A more general approach is 

formulated by a set of coupled Master equations acting on the density matrix instead of on the 

populations only. Lindblad formulated the problem in the most general form [54], 

          † † †1 1
2 2, k k k k k k

k

it H t L t L t L L L L t           


  (1.36) 

Here  is the density matrix, H is the Hamiltonian, and {Lk} describe non unitary processes.  

For example, a transition between the state i and the state f with a rate fi  is described by 

fi fiL f i  ; Pure dephasing of the state i with a rate d
i  is described by d d

i iL i i  .  

Similarly to Eq. (1.35), Eq. (1.36) can be written in a vector form, 

     t t t 
  L   (1.37) 

Here  t
  is a column vector formed from the columns of the density matrix, and  t


L  is the 

following matrix: 
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
L   (1.38) 

Here I is the unit matrix,  means Kronecker product, and T means transposition. As is the case 

of the classical rate equations, Eq. (1.37) can be solved quite straightforwardly. 

Once the populations and the coherences are found, Eq. (1.33) is used to find the intensity 

correlation function. Specifically, the intensity correlation function between a photon leading to 

the state 1  (or 1n ), and the photon emitted from the state 2  (or 2n ) is given by 

  
    

   
   1 1

1 2 1 2

2 20 0(2) (2)
, ,

2 2

or, n n
n n

SS SS

Tr n n
g g

Tr n n
 

 

   
 

 
 

 
 

 

 
 

 

    (1.39) 
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where SS  ( SSn ) is the density matrix (populations) at long time differences (τ→∞) – the steady 

state solution.  

 

Radiative cascades 

By radiative cascade we mean correlated emission of two or more photons. Radiative cascade 

usually occurs when a second photon is emitted within its radiative lifetime after the emission of 

a first photon. We distinguish here between two types of radiative cascades: direct ones and 

indirect ones. In a direct radiative cascade, the state of the system after the emission of the first 

photon is the state from which the second photon is emitted (Fig. 14a). In an indirect cascade, a 

mediating process occurs between the two emissions, and the second photon is not emitted from 

the final state of the first emission (Fig. 14b). Clearly, the mediating process rate should be faster 

or comparable to the radiative rate in order for the two emissions to form a radiative cascade. 

Experimentally, a radiative cascade reveals itself in the measured intensity correlation function 

between two or more relevant spectral lines. It always gives rise to “bunching” at τ≥0 and 

“antibunching” at τ≤0.  Here by “bunching” (“antibunching”) we mean that the intensity 

correlation function obtains values which are greater (smaller) than 1. These reflect the fact that 

there is a definite order between the two emissions and that right after the emission of the first 

photon, the probability for the emission of the second photon is greater than its average value. In 

other words emission of the second photon cannot precede the emission of the first one and that 

ordered emission of photon pairs is preferred over uncorrelated emissions.  
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Fig. 14. Schematic description of two types of radiative cascades: (a) A direct cascade. (b) An 

indirect cascade. 

 

In the following we discuss several examples of direct and indirect radiative cascades in single 

semiconductor quantum dots. 

 

The neutral biexciton cascade 

The most studied [7, 8, 53, 55-57] radiative cascade in semiconductor QDs is the neutral 

biexciton cascade. The initial state is a ground-state biexciton: two electrons and two holes 

occupying their respective lowest energy levels. Due to Pauli’s exclusion principle, both carrier 

pairs form spin-singlets with total spin 0. Optical recombination of one e-h pair results in the 

emission of a single photon, and a single e-h pair (bright exciton) remains in the QD. This pair 

then recombines within its radiative lifetime, resulting in emission of a second photon. At the 

end of the cascade the QD is left empty of carriers. This cascade is a direct one, as the single 

bright exciton is both the state at which the first photon emission ends and the state from which 
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the second photon emission occurs. As described in Fig. 15, this intermediate level has two spin 

states. Therefore, since the transition rate from one spin state to the other is very slow (relative to 

the radiative lifetime) the cascade has two distinctive paths along which it can proceed.  

 

Fig. 15. Schematic descriptions of the neutral biexciton radiative cascades (top) and PL spectra 

(bottom). (a) Degenerate exciton levels. (b) Split exciton levels. (c) Split exciton levels and 

spectral filters for entanglement distillation. 

 

Due to the different selection rules for the two bright exciton spin-states, the two paths differ by 

the polarization of the emitted photons. If the intermediate state is degenerate, then this is the 

only difference (Fig. 15a) and the two photons are polarization-entangled [55]. However, as 

discussed above, any anisotropy in the QD shape, strain distribution etc., lifts the degeneracy 

between the two bright exciton levels through the anisotropic EHEI (Fig 15b). When the levels 

are split, the two paths are also distinct by their photons’ energies. This distinction reveals the 

information about “which path” the cascade occurs. Therefore, the degree of entanglement in the 

two photons polarization state becomes very low, and their polarization state is said to be 



50 

  

classically correlated only: In each path the two photons are co-linearly polarized. The degree of 

entanglement depends on the ratio between the radiative width of the spectral lines and the 

splitting energy. There have been attempts to reduce the splitting energy by use of several 

techniques. Those include application of external fields (static [58] and alternating [59] electric 

fields, magnetic fields [60], strain [61]), or modification of the growth process (thermal 

annealing [62], growth along a different crystallographic direction [63]). Some of these 

techniques were successful, and recently there have been several demonstrations of the emission 

of entangled photon pairs from QDs using such techniques [8, 59, 63]. Alternatively, even if the 

splitting energy is larger than the radiative lifetime, entangled photons can still be produced by 

spectral filtering [7] (Fig. 15c). Spectral filters post-select only photons emitted in the energy 

regions between the two fine-structure components of both the biexciton and exciton emissions. 

In these regions, the energies of the photons in both paths are similar such that they do not reveal 

the “which path” information, and the entanglement is partially restored. Indeed, the very first 

demonstration of entangled photons from radiative cascades in QDs [55] was achieved this way 

[7]. 
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Fig. 16. Measured polarization sensitive intensity correlation functions between the XX0 and the 

X0 lines for various polarization combinations. (a) and (b), no spectral filtering. (c) and (d), with 

spectral filtering. The first (second) letter in each legend item specifies the polarization of the 

XX0 (X0) photon: H – horizontal, V – vertical, D – diagonal, R – right-hand circular, L – left-

hand circular. The coincidence rate at long time differences for (a) and (b) [(c) and (d)] is 5 [0.5] 

per minute per time bin (80ps). 

 

Figs. 16a and 16b show polarization sensitive measured correlation functions between the 

biexciton (XX0) and the exciton (X0) lines, without any spectral filtering (photons from both 

fine-structure components arrive at the detectors), for co- and cross-linear polarizations (a) and 
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for circular-circular and circular-diagonal polarization combinations (b). It is seen that for co-

linear polarizations the exciton photons “bunch” immediately after the biexciton is detected. The 

probability of two photons to be emitted together (at zero time delay) is at least 7 times larger 

than their average emission probability. The actual bunching is probably larger as the correlation 

function is smeared by the finite temporal resolution (~300 ps) of the detectors.  

For cross-linear polarizations the opposite happens: at small time differences the emission 

probability of a cross-linearly polarized photon-pair almost vanishes. This “antibunching” proves 

experimentally that the rate of cross-transitions between the exciton states is negligible relative 

to the radiative rate. The pairs of photons are always emitted with the same linear polarization. 

Different other polarization sensitive correlation measurements are all similar. For example, 

there is no difference between circular-circular and circular-diagonal polarization combinations. 

All show the same bunching signal, which amounts to one half of the signal in co-linear 

polarizations. This shows that preferred correlations exist only in the rectilinear basis, and thus 

the photons are only classically correlated, but not entangled [57].  

The situation is different when spectral filtering is applied. In Figs. 16c and 16d we present 

measured correlation functions with spectral filtering. A pronounced difference is observed 

between correlations in circular-circular and circular-diagonal polarization combinations.  

In order to unambiguously prove entanglement in radiative cascades, however, one should 

construct a set of measurements and demonstrate violation of the Bell inequality [64-67]. 

Another way is to construct by polarization tomography the entire density matrix of the two 

photon state [68]. This is done by measuring the XX0-X0 correlation function in 16 different 

polarization combinations. For each measurement, the number of events coming from the same 

cascade is extracted by integrating the background-reduced correlation function. The background 



53 

  

in these measurements is readily available from the measurements in cross-linear polarizations 

[7]. In this case all the measured events do not result from the same radiative cascade. Rather 

they result from cases in which the detected two photons were emitted in two different cascades. 

Therefore, they truly represent the background due to the cw nature of the experiment. Since this 

background is insensitive to the polarizations of the two photons, it can be safely subtracted from 

all the measured, normalized, intensity correlation functions.  

The density matrix fully described the system, and there are a few tests which can be applied to it 

in order to quantify the degree of entanglement between the polarization states of the emitted 

pair of photons. We use the Peres criterion, which states that a density matrix is entangled if its 

partial transpose has negative eigenvalues [69].  

Fig. 17 shows the measured density matrices without (a) and with (b) spectral filtering. While the 

matrix in Fig 17a fails to satisfy the Peres criterion within the measurement uncertainty, the 

matrix in Fig 17b satisfies it with a confidence level which is better than 3 standard deviations 

[7].  
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Fig. 17.  Measured two-photon polarization density matrices. (a) No spectral filtering. (b) With 

spectral filtering. Left (right) – real (imaginary) part. The Peres-criterion negativity for the 

matrix shown in (a) [(b)] is 0.03±0.04 [0.18±0.05]. 

 

Spin-blockaded radiative cascade 

We recently discovered a novel radiative cascade which initiates from a metastable spin 

blockaded biexcitonic state [70] rather than from the ground biexciton state. This cascade is an 

indirect one. The metastable biexciton state from which the cascade starts, is composed of two 

electrons in their ground singlet state and two holes, one in its ground state and the other in an 

excited state. The two holes can form either a spin-singlet or a spin-triplet. The singlet state can 

relax to the ground state without changing its spin. The triplet states cannot, and they are thus 

metastable, blockaded from thermalization into their ground singlet state by Pauli’s exclusion 

principle. These metastable biexciton states radiatively decay to form a single exciton which 
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contains a hole in an excited state. This hole is now free to relax to its ground state, by the 

emission of a phonon, resulting in a ground-state exciton. The ground-state exciton then 

radiatively decays to the vacuum state. Consequently, this cascade involves the emission of three 

particles: two photons and one phonon. The intermediate non-radiative decay is fast (~30 ps 

[71]), and as shown below, preserves the exciton’s spin. For a spin-preserving non-radiative 

decay, one expects all the ‘which-path’ information carried by the intermediate phonon to reside 

in its energy. Therefore, one may expect this cascade to be another example where spectral 

filtering would be effective in restoring entanglement. We found that this is not the case. We 

applied the same filtering scheme to the two types of radiative cascades, in the same quantum 

dot, and found that while for the ground-state biexciton cascade entanglement was restored, this 

was not the case for the spin-blockaded biexciton cascade. As discussed below, this is attributed 

to the “wrong” sign in the detuning of the two intermediate levels, combined with the fluctuating 

electrostatic environment (‘spectral diffusion’) [7].  

The relevant levels diagram of a neutral QD is presented in Fig. 18a. The ground-state biexciton 

is marked by S (for Singlet), and the excited singlet biexciton is marked by S*. The metastable 

biexciton states are marked by T0 and T±3. T stands for Triplet and the subscripts stand for the 

total- two holes’ spin projection on the QD’s growth direction. The triplet biexciton states are not 

split by the electron-hole exchange interaction since the total electronic spin is zero. High orders 

of the hole-hole exchange interaction can lower the T±3 states in respect to the T0 state [72]. In 

our case however, the separation is smaller than the isotropic electron-hole exchange, which 

splits the dark and bright exciton states. The order of the T0 and T±3 emission lines is thus the 

same as in the case of no hole-hole anisotropic exchange interaction (see Fig. 18a). We therefore 

neglect the contribution of these high orders to the hole-hole exchange in the following  
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Fig. 18. (a) Energy levels diagram for excitons and biexcitons in a neutral QD. Single-carrier 

level occupations are given along side each many-carrier level. The spin wavefunctions are 

depicted above each level. The symbol  () represents spin up (down) electron (hole). Short  

(long) symbols represent charge-carriers in the first (second) energy level. S (S*) indicates the 

ground (excited) biexciton hole-singlet state. T0 (T±3) indicates the metastable spin-triplet 

biexciton state with z-axis spin projection of 0 (±3). The solid (curly) vertical arrows indicate 

spin preserving (non-) radiative transitions. Dark (light) gray arrows represent photon emission 

in horizontal - H (vertical – V) polarization. (b) Polarized PL spectra. H (V) in dark (light) gray. 

Spectral lines which are relevant to this work are marked and linked to the transitions in (a) by 

dashed lines. (c) Linear polarization spectrum. The value 1 (-1) means full H (V) polarization. 
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discussion. Recombinations from the T±3 states lead to the optically inactive (‘dark’) exciton 

intermediate states (see the spectral line in Fig. 18b). Radiative decay does not proceed from 

these states and therefore they are not discussed here further [34].The T0 biexciton state 

recombines to form one of two excited exciton states. As in the case of the ground-state exciton 

discussed above, these states are the symmetric and antisymmetric combinations of spin 

projection eigenstates. Here however, the energetic ordering between the symmetric and 

antisymmetric combinations is the opposite of that between the ground-state exciton states. This 

is due to the opposite sign of the relevant anisotropic electron-hole exchange term, as seen in 

table 1 above. It can be understood by noting that the quadrupole moment of the px-type spatial 

wavefunction of the excited hole, is opposite in respect to that the s-type ground-state hole 

wavefunction.  

Another difference between the T0 and S biexciton cascades arises in the polarization selection 

rules for optical recombination of the biexciton. Due to the reversed spin-exchange symmetry of 

the T0 biexciton in respect to that of the S biexciton, the polarization selection rules are reversed: 

while in the S biexciton case horizontal polarization leads to the symmetric combination, in the 

T0 case it leads to the antisymmetric combination. This is similar to the case of the doubly-

charged exciton discussed above, where the selection rules depend on whether the final state 

belongs to a spin singlet or a spin triplet. Nevertheless, the order of polarizations of the emission 

line’s components will be the same for the two biexcitons. This is because the difference in the 

selection rules is compensated by the difference in the ordering of the levels. As seen in the 

polarized PL spectra presented in Fig. 18b, and in the corresponding spectrum of linear 

polarization degree shown in Fig. 18c, this is indeed the case.  
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Fig. 19. (a), (c) Measured intensity correlation functions for the spin-blockaded and ground-state 

biexciton cascades, respectively. Dark (light) gray line represents the correlation in co- (cross-) 

linear polarizations. The coincidence rates are indicated by the scale-bars in units of coincidences 

per time bin (80 ps) per minute. (b), (d) Real parts of the two-photon polarization density 

matrices measured for the spin-blockaded and ground-state biexciton cascades, respectively. 

 

The hole of the excited exciton states is not spin-blockaded, and it quickly decays (non-

radiatively) to its ground state, while preserving its spin. Therefore, horizontally (H) polarized T0 

biexciton recombination will be followed by vertically (V) polarized exciton recombination (see 

Fig. 18a). This leads to correlated cross-linearly polarized photons, unlike the correlated co-

linearly polarized photons emitted in the S biexciton cascade. 

In Fig. 19a (Fig. 19c) we present measured time resolved intensity correlation functions between 

the T0 (S) biexciton line and the exciton line, in both co- (dark-gray) and cross- (light gray) linear 

polarizations. It is clearly seen that while for the cascade starting from the S biexciton, the 
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emission of the exciton is “bunched” for co-linear polarizations and “anti-bunched” for cross-

linear polarizations, the opposite happens for the cascade starting from the T0 biexciton. This 

confirms that there is no change in the spin-configuration during the decay of the hole. 

 

Fig. 20. (a), (b) Measured two-photon polarization density matrices for the ground-state (S) and 

spin-blockaded (T0) biexciton cascades, respectively, as obtained with spectral filtering. Real 

(imaginary) parts are shown in the top (bottom) panels. The Peres-criterion negativity for the 

matrix in (a) [(b)] is 0.15±0.03 [0.05±0.1]. 

 

In addition, we performed full polarization tomography for both cascades, both with and without 

spectral filtering. The resulting two-photon polarization density matrices for the case of no 

filtering are presented in Fig. 19b (Fig. 19d) for the T0 (S) biexciton cascade. Since the 

imaginary parts of the matrices were zero to within the measurement uncertainty, only the real 

parts are displayed. In Fig. 20 we present the density matrices obtained for the case of spectral 

filtering. While entanglement could be restored for photon pairs emitted from the S biexciton 

cascade (Fig. 20a), no such restoration could be achieved for the T0 cascade (Fig. 20b). The 
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differences between the two cases are discussed below. 

Fig. 21a shows the cascade initiated by the ground state of a biexciton in an ideal, symmetric 

QD. In this case, the two exciton energy levels are degenerate, and emitted photon pairs will be 

entangled [55]. Fig. 21b shows the case of the ground-state biexciton cascade in an asymmetric 

QD, in which the exciton levels are split by an energy  . Here, spectral filtering (crosshatched 

rectangle) is necessary for the emitted photons to be entangled. Fig. 21c shows a schematic plot 

of the two-photon probability distribution. The x- (y-) axis represents the energy of the exciton 

(biexciton) photon. The dark-gray spots show the regions of high emission probability. Their size 

and shape are determined by the radiative width of the exciton ( X ) and biexciton ( XX ) lines. 

The emission in these regions is dominated by un-entangled photon pairs. The energies of the 

two photons are related by total energy conservation: if the first photon has high energy, the 

second one will have low energy, and vice-versa. This puts the two dark-gray spots on a line 

parallel to the (1,-1) direction. The cross hatched rectangle represents an optimal spectral filter 

for entanglement restoration. It is  X   by XX  in size. It rejects most of the un-entangled photon-

pairs while it keeps a measurable fraction of the entangled pairs, which lye mostly between the 

two dark gray spots, on the connecting line. The degree of entanglement within the transmitted 

photon pairs is thus increased. A smaller filter would yield higher degree of entanglement, but 

will transmit considerably less photons. Due to random fluctuations in the electrostatic 

environment of the QD, the energies of the spectral lines fluctuate with time.  
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Fig. 21. (a) Ideal direct cascade. The widths of the levels represent their decay rate. (b) Ground 

state biexciton cascade in an anisotropic QD. (c) Schematic two-photon probability distribution. 

Dark gray - high probability areas. Cross-hatched - spectral filter. Light gray - inhomogeneous 

broadening due to spectral diffusion. (d)-(f) Same as (a)-(c) (respectively), for an indirect 

cascade. In (e) and (f) only the case of splittings in opposite directions is shown. The dotted 

rectangle in (f) is an example for a filter not penetrated by the high-probability areas for any 

amount of spectral diffusion. 

 

This “spectral diffusion” happens on timescales much longer than the radiative recombination 

time of the exciton. The random electric field is thus quasi-static. Since all spectral lines 

experience almost the same shift in a given static electric field [44, 73] the energies of the 

exciton and biexciton lines will fluctuate in a correlated manner. The dark-gray spots of Fig 21c 

will thus randomly move along the dashed lines parallel to the (1,1) direction, as shown in the 

figure by the light-gray areas. As these areas are outside the filter, spectral diffusion does not 

interfere with the entanglement restoration. Indeed, as was discussed above (Fig. 20a), 
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entanglement can be restored by spectral filtering for the ground state biexciton cascade. 

The situation is different for an indirect radiative cascade. Figures 21d-21f present the case of the 

spinblockaded biexciton radiative cascade. Here there is a fast, non-radiative (phononic) decay of 

the hole from its first-excited state to its ground state between the biexciton and exciton radiative 

recombinations. Fig. 21d shows the ideal case where the excited and ground exciton states are 

each two fold degenerate. The short lifetime of the excited exciton states is represented by the 

large width of the energy levels. Since the spin of the exciton is conserved during the 

intermediate stage, and since the spatial parts of the exciton wavefunctions are identical for both 

decay paths, the emitted phonon does not carry any ‘which path’ information beyond its energy. 

In this case one expects that appropriate filtering of the photon energies will restore the which-

path ambiguity, resulting in entanglement of the polarization state of the photons. Fig. 21e shows 

the case of an asymmetric QD. The degeneracy is lifted for both ground and excited exciton 

sates, in opposite manners. Due to the opposite splittings, the energies of the two photons are 

positively rather than negatively correlated. This is shown in Fig. 21f, where the dark-gray spots 

again represent the regions of high probability. Their elongated shape is due to the larger width 

of the biexciton photon, which comes from the fast decay of its final state. Spectral diffusion will 

still shift these regions along the (1,1) direction, as shown by light gray. The analog of the 

optimal filter for this case is shown by the cross hatched rectangle. It is XX    by X    

where   is the excited exciton splitting (in absolute value) and XX  is the width of the spin-

blockaded biexciton transition. As in the previous case, such a filter excludes the dark-gray 

spots. However, it is not immune to spectral diffusion, as shown by the overlap of the cross 

hatched rectangle and the light gray areas. Indeed, as shown in Fig. 20b, no entanglement could 

be detected even when this filter was applied. Further decreasing the filter width may solve the 
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spectral diffusion problem, but then the photon pair collection rate would drastically decrease. 

We note that if the ground and excited exciton states would have split to the same direction, the 

situation would have been similar to that described in Fig. 21c, and entanglement restoration by 

spectral filtering would not have been affected by spectral diffusion. A quantitative condition for 

spectral filtering to effectively erase the which-path information can be formulated by inspecting 

Figs. 21c and 21f. Note first that spectral diffusion leads to motion of the dark gray spots along 

the (1,1) direction. Spectral filtering works if during this motion the spots stay strictly outside the 

filter area. The width of the filter that satisfies this condition is determined by looking at the 

projection of the filter on the orthogonal direction to the motion of the spots: the (1,-1) direction. 

Let f > 0 (F > 0) be the filter width for the exciton (biexciton) photon spectral line. The filter’s 

projection on the (1,-1) direction is given by   2f F . The projection of the line connecting 

the centers of the two dark-gray spots on the (1,-1) direction is given by 2   where the 

plus sign is for Fig. 21c and the minus sign is for Fig. 21f. For avoiding overlap one thus must 

have f F     . The case of a minus sign forces narrow filter widths, which makes spectral 

filtering ineffective. Taking into account the widths of the lines (the sizes of the dark-gray spots), 

leads to an even stronger constraint,  

 XX Xf F             (1.40) 

where XX  refers also to XX  as appropriate. This explains why spectral filtering was ineffective 

for the spin blockaded biexciton cascade. 
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Radiative cascades in singly charged quantum dots 

We recently demonstrated [71] that radiative cascades occur also when the QD is charged. In this 

case, the intermediate, charged exciton level maybe metastable, spin-blockaded from thermal 

relaxation. In the following we present and discuss measurements performed on a positively 

charged QD.  

The energy levels of a positively charged QD [37, 38] containing up to three heavy holes and 

two electrons are schematically described in Fig. 22a. The figure presents also the relevant 

radiative and nonradiative total-spin conserving transitions between these levels. The two photon 

radiative cascades start from the ground level of the three heavy holes and two electrons state. 

The unpaired hole’s spin projection along the growth axis determines the total spin of the two 

Kramers’ degenerate states (for simplicity only one state is drawn in Fig. 22a). Radiative 

recombination of first level e-h pair leaves three unpaired charge carriers within the QD. There 

are 8 possible different spin configurations for the remaining carriers. These configurations form 

4 energy levels of Kramers’ pairs [37, 38]. The three lowest levels are those in which the two 

unpaired holes are in spin-triplet states. Those states are separated from the highest energy level 

in which the holes are in a singlet spin state by the hole-hole isotropic exchange interaction, 

which is significantly stronger than the e-h exchange interaction. The later removes the 

degeneracy between the triplet states as shown in Fig. 22a. The lowest triplet level cannot be 

reached optically. The optical transitions into the other levels are optically allowed. The circular 

polarizations of the emitted photons are indicated in the figure. They depend on the spins of the 

annihilated electron hole pair. The measured emission contains also linear components (see Fig. 

22c), due to the anisotropic e-h exchange interaction [37, 38].  
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Fig. 22. (a) Schematic description of the energy levels of a singly positively charged QD. 

Vertical (curly) arrows indicate radiative (nonradiative) transitions between these levels. State 

occupation and spin wavefunctions are described to the left of each level where  () represents 

an electron (hole) with spin up (down). A short blue (long red) arrow represents a carrier in its 

first (second) level. S (T) stands for two holes’ singlet (triplet) state and 0 (3) for Sz = 0 (Sz = ±3) 

total holes’ pseudo-spin projection on the QD growth direction. The excited state singlet is 

indicated by S*. Only one out of two (Kramers’) degenerate states is described. (b) Measured PL 

spectrum on which the actual transitions are identified. Transitions which are not discussed here 

are marked by gray letters. (c) Measured degree of linear polarization spectrum, along the in-

plane symmetry axes of the QD. Positive (negative) value represents polarization along the QD’s 

major (minor) axis. 
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The relaxation proceeds by radiative recombination of the remaining first level e-h pair, leaving 

thus only one hole in its second level. The hole can then quickly relax non-radiatively to its 

ground level. There is a fundamental difference between the singlet and triplet intermediate 

states. While in the later, due to Pauli’s exclusion principle, radiative recombination must occur 

before the excited hole can relax to its ground state (resulting in two “direct” cascades), in the 

former non-radiative relaxation of the excited hole state may occur prior to the radiative 

recombination (resulting in one “direct” and one “indirect” cascade).  

In Fig. 22b we present the spectrum measured under non-resonant cw excitation with 1 μW of 

HeNe laser light (1.96 eV). The corresponding degree of linear polarization is presented in Fig. 

22c. The spectral lines participating in the radiative cascades described in Fig. 22a are clearly 

identified spectrally in the single QD PL and linear polarization spectra.  

In Fig. 23 we present the measured and calculated intensity correlation functions for photon pairs 

emitted in the four spin-conserving radiative cascades outlined in Fig. 22a. The measured data 

clearly reveal the sequence of the radiative events, reassuring the interpretations of Fig. 22.  

In Fig. 24 we present measured and calculated intensity correlation functions between different 

radiative cascades. Since spin blockade prevents the relaxation of the second level hole to its first 

level, they provide an estimate for the rate by which the holes' spin scatters [73]. In Fig. 24a and 

24c we probe possible transitions from the singlet intermediate state S* to the triplet T0 and T3 

intermediate states, respectively.  
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Fig. 23. Measured and calculated time resolved, polarization sensitive intensity correlation 

functions, for the 4 radiative cascades described in Fig. 22. The states involved in the first 

(second) photon emission are illustrated to the left (right) side of each panel. All symbols and 

labels are as in Fig. 22. Solid Blue (red) line stands for measured cross- (co-) circularly polarized 

photons. Dashed lines represent the corresponding calculated functions. The bar presents the 

acquisition rate in coincidences per time bin (80 ps) per hour. 

 

In Figs. 24b and 24d we probe possible transitions from the triplet T0 and T3 intermediate states, 

respectively, to the singlet ground state S. Assuming that relaxation from the intermediate triplet 

states to the ground singlet states must be preceded by transition to the intermediate singlet 

states, these measurements provide quantitative estimation for the reverse of the processes 

described in 24a and 24c. From the measured data in Fig. 24 one clearly notes that transition 

between the two holes’ singlet state to the T3 triplet state (Fig. 24c) and vice versa (Fig. 24d) are 
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forbidden (within the radiative lifetime), while transitions between the singlet and the T0 triplet 

states (Fig. 24a) and vice versa (Fig. 24b) are partially allowed.  

 

Fig. 24. Measured and calculated time resolved, polarization sensitive intensity correlation 

functions, across the radiative cascades. (a) [(c)] Correlations between the singlet biexciton 

transition and the exciton transition from the T0, [T3] state. (b) [(d)] Correlations between 

the T0, [T3] biexciton transition and the ground X+1 exciton transition. All symbols 

and labels are as in Fig. 22. The meanings of all line types and colors are as in Fig. 23. 

 

This means that the holes spin projection on the QD’s growth axis is conserved during the 

relaxation while their in-plane spin projection scatters [73]. The difference between the 

scattering rates from the singlet to triplet state and that from the triplet to singlet is due to the 
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energy difference between these two states (~4 meV), which is much larger than the ambient 

thermal energy (~0.5 meV).  

In order to calculate the expected correlation functions and to compare them to the measured 

ones, we used a classical rate equation model. In this model we include all the states as described 

in Fig. 22(a), together with their Kramers conjugates. In addition, we include four more states 

representing charged multi-excitons up to 6 e-h pairs [53]. There are clear spectral evidences for 

processes in which the QD changes its charge state and becomes neutral due to optical depletion 

[74, 75] (see Fig. 22b). These observations are considered in our model by introducing one 

additional state which represents a neutral QD. The transition rates between the states include 

radiative rate ( 11.25r ns   deduced directly from the PL decay of the exciton lines) and non-

radiative spin-conserving rate ( * 35 rS S



  , deduced from the intensity ratios of the S* and the 

S PL lines). We also include the rate for optical generation of e-h pairs ( 1e rG   forced by 

equating between the emission intensities of the biexciton and exciton spectral lines), and the 

optical depletion, and recharging rates ( 4D rG    and 0.1C rG   as deduced from the relevant 

line intensity ratios, and correlation measurements between the neutral and charged exciton). The 

data clearly show that hole spin scattering rates, (
3S T  ) which do not conserve the spin 

projection on the QD’s growth axis, are vanishingly small. Therefore we set them to 0. In order 

to account for the observed correlations between singlet (S) and T0 states, Fig. 3, we fitted in-

plane scattering rates [73] 
0

0.6T S r   and *
0

10 rS T



   (such processes still conserve the 

projection of the total spin along the growth axis). The ratio between these rates simply gives the 

temperature of the optically excited QD (~19K).  

\The anisotropic EHEI mixes the T0 and T3 states [37, 38]. This makes the natural polarizations 
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of the relevant transitions elliptical rather than circular. The mixing degree is obtained from the 

measured degree of linear polarization of the biexciton transitions [38]. Our model considers this 

mixing as well. It explains the non-zero correlations in co-circular polarizations. 

The two inplane hole’s spin scattering rates that we fitted describe very well the 16 measured 

intensity correlation functions. The calculated functions (convoluted with the system response) 

are presented in Fig. 23 and Fig. 24 by dashed lines. 

Over all, we identified 3 direct and one indirect radiative cascades in singly charged QDs and 

demonstrated unambiguous correlations between the polarizations of the emitted photons and the 

spin of the remaining charge carrier. Our correlation measurements show that while holes’ spin-

projection conserving scattering rates are a few times faster than the radiative rates, spin-

projection non-conserving rates are vanishingly small. 

 

Summary 

We discussed and reviewed photoluminescence spectroscopy from single semiconductor 

quantum dots in general, and radiative cascades from these nanostructures, in particular. For 

understanding in details the available rich experimental data we developed a theoretical many 

interacting carrier model. Our model, though relatively simple, describes very well the measured 

polarization sensitive photoluminescence spectra. In particular, we were able to explain linear 

and circular polarization memory in quasi-resonant optical excitation of the quantum dots. We 

concluded this chapter with quantitative analysis of polarization sensitive intensity correlation 

measurements of various biexciton-exciton radiative cascades in neutral and charged quantum 

dots. Emission of polarization entangled pairs of photons in these cascades was reviewed with 

strong emphasis on spectral filtering as a tool for distilling entanglement.  
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We believe that the insights and findings that we reviewed here be useful for future 

developments of semiconductor quantum dots as an important tool for quantum information 

processing technologies. 
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