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The emission properties of single quantum dots in planar microcavities are studied experimentally and
theoretically. Fivefold enhanced spontaneous emission outside the microcavity is found for dots in resonance
with the cavity mode, relative to detuned dots. Using high-power excitation we obtain the in-plane cavity
dispersion. Near-field images of the emission show spatial distributions of several micrometers for resonant
dots, which decrease in size with the detuning from resonance. These experimental findings are explained using
a simple and intuitive model.
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I. INTRODUCTION

The potential applications of semiconductor quantum dots
�QDs� as quantum light emitters have generated considerable
research efforts in recent years.1,2 Single-photon sources us-
ing quantum dots are an important ingredient in quantum
information applications such as quantum cryptography and
teleportation,3 and may be further employed to implement
efficient linear optics quantum computation4 with the attain-
ment of on-demand indistinguishable single-photon pulses,5

and recently entangled photon pairs.6 Single QDs can be ex-
cited either with continuous wave �cw�, where they emit an-
tibunched photons obeying a sub-Poissonian statistics, or
with pulsed light, where a single photon, or correlated pairs
are emitted per pulse.1,2 It is the cascaded radiative recombi-
nation of electron-hole �e-h� pairs �or excitons� confined in
single QDs that gives rise to the emission of single and cor-
related photons.

QD-based devices have several advantages as single-
photon emitters. These include relatively large oscillator
strengths, narrow spectral linewidths, and compatibility with
mature semiconductor technologies. A major hindrance in
their usefulness, though, is the low extraction efficiency of
the emitted photons due to the high refraction index of the
host semiconductor. Typically, only about 2% of the photons
will be emitted from a GaAs-based device, while the rest will
be lost due to total internal reflection. The general approach
to overcome this problem has been to place the QDs at the
antinode of a microcavity whose dimensions are comparable
to the wavelength of the emitted photons.7 In these cavities
the number of allowed optical modes is reduced and at the
same time, the in-cavity intensity of the allowed modes in-
creases. As a result, the spontaneous recombination rate of
excitons within these resonating modes is increased, a phe-
nomenon known as the Purcell effect.8,9

Several approaches to realize three-dimensional �3D� pho-
ton confinement have been studied, including whispering-
gallery modes in microdisks,10 defect modes in 2D photonic
crystals,11 and lateral patterning of planar dielectric cavities
using electron-beam lithography and etching.9,12 The latter
has proved particularly useful, demonstrating efficient pho-

ton emission in the weak-coupling regime,9 and more re-
cently strong coupling, paving the pathway for solid state
realization of coherent control schemes.12 In the strong-
coupling regime, the interaction between the cavity mode
and the emitter is larger than their combined decay rates, and
the irreversible spontaneous emission from the QD exciton is
replaced by a coherent exchange of energy between the ex-
citon and the cavity mode. Among the challenges in the
implementation of strong coupling in structured cavities, one
notes the reduction in the cavity’s Q factor due to the lateral
patterning, and the lack of control in the in-plane positioning
of the QD with respect to the lateral microstructure, resulting
in a reduction in the oscillator strength of the confined
exciton.12,13

In view of the technological difficulties associated with
systems of QDs in 3D cavities, it seems important to study a
system of QDs embedded in a planar microcavity, which is
easier to fabricate. These cavities consist of distributed
Bragg reflectors, which are typically stacks of alternating
quarter-wavelength-thick layers of GaAs and AlAs, sepa-
rated by a spacer layer of GaAs. Planar cavities can attain
high Q factors due to the excellent control in their fabrication
and embedding the QDs at the field’s antinode is straightfor-
ward. These structures support an in-plane continuum of
modes, and the interaction with QD excitons is therefore not
expected to be in the strong-coupling regime.14 Nevertheless,
the spontaneous emission and the light extraction efficiency
can still be enhanced considerably.15 For example, a rela-
tively weak planar cavity has been utilized recently to pro-
duce a tenfold increase in the efficiency of light collection of
GaAs-based light-emitting diode structures.16

Unlike systems of quantum wells embedded in planar
cavities, where polariton effects prevail and have been exten-
sively studied �see, e.g., Refs. 17–20�, QDs in planar cavities
have received little attention.21,22 Among the few experimen-
tal studies of this system, angle-resolved photoluminescence
spectroscopy was used to detect TE-TM mode splitting �not
to be confused with Rabi splitting, which is discernible only
in the strong-coupling regime�.23

In the present paper we study experimentally and theoreti-
cally single QD emitters in a planar microcavity. Using a
partially covered layer of InGaAs self-assembled QDs placed
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at the center of a � microcavity, we have measured various
characteristics of the spontaneous emission dynamics of the
system such as spatial and angular distributions of the radia-
tion field and its temporal decay. Our results are compared
with a relatively simple theoretical analysis, which follows
the treatment of Sugawara21 and gives a simple and intuitive
picture of the spontaneous emission properties of recombin-
ing excitons confined in QDs embedded in a planar micro-
cavity. This approach accounts reasonably well for our ex-
perimental findings, including emission rates, radiative
lifetimes, and angular and spatial distributions of the emis-
sion. In all of these measurements, a crucial parameter is
found to be the detuning of the emitter energy from that of
the cavity resonant mode. Since we do not have an exact
knowledge of the QD size, shape, and composition, detuning
from resonance is modeled in our approach either by varying
the QD size or by varying its material band gap, while keep-
ing the optical properties of the microcavity fixed.

The paper is organized as follows. In Sec. II we provide
the details of our experimental system. Section III gives the
theoretical model including the exciton wave functions and
their interaction with the cavity field. In Sec. IV we give the
experimental measurements and compare them with model
calculations. A summary is given in Sec. V, and some details
pertaining to the calculation of the excitonic wave function
are given in the Appendix.

II. EXPERIMENTAL SETUP

The samples were grown by molecular-beam epitaxy on a
�100�-oriented GaAs substrate. One layer of strain-induced
InGaAs QDs was deposited in the center of a one-
wavelength GaAs spacer layer. The height and composition
of the QDs were controlled by partially covering the InAs
QDs by a 30-Å-thick layer of GaAs and by subsequent 30 s
growth interruption24 to allow diffusion of In �Ga� atoms
from �into� the strained islands. The growth resulted in
InxGa1−xAs QDs whose estimated radius and composition are
150�RQD�250 Å and 0.47�x�0.53, respectively, and
height of 30 Å.

The sample was not rotated during the growth of the
strained layer, resulting in a variable dot density across the
sample’s surface.2 The estimated QD density in the sample
areas that were measured is 108 cm−2; however, the density
of QDs that emit in resonance with the microcavity mode is
more than two orders of magnitude lower. The GaAs spacer
layer was grown to a width whose resonance mode matches
the QD emission due to ground-state e-h pair recombinations
�1� cavity�. The microcavity was formed by 25- and 11-
period stacks of alternating quarter-wavelength layers of
AlAs and GaAs below and above the spacer layer, respec-
tively. The samples were not patterned or processed laterally
to prevent obscuring the emission and its polarization.

For the optical measurements we used a diffraction-
limited low-temperature confocal optical microscope.33,34

The sample was cooled by a copper braid attached to the
cold finger of a He-flow cryostat. The sample mount was
accurately manipulated in three directions using computer-
controlled motors. An X60 in situ microscope objective was

used in order to focus cw or pulsed laser light at normal
incidence on the sample. The emitted light was collected by
the same microscope objective. The collected light was spa-
tially filtered, dispersed by a 0.22 m monochromator, and
detected by a nitrogen-cooled charge-coupled device �CCD�
array detector. The system provides diffraction-limited spa-
tial resolution, in both the excitation and the detection chan-
nels. For the time-resolved spectroscopy, the dispersed light
from the monochromator was focused onto a small, thermo-
electrically cooled, single-channel avalanche silicon photodi-
ode. The signal from the photodiode was analyzed using con-
ventional photon-counting electronics. The photodiode dark
count rate was 100 s−1, and the system temporal resolution
was approximately 250 ps.

III. THEORETICAL FRAMEWORK

The following approach assumes a single 1s exciton con-
fined in a QD interacting with a discrete cavity mode. No
charged exciton or biexciton states were considered, al-
though their presence was confirmed in the measurements
�see Sec. IV A�. Our main interest in the current study is in
the cavity effects on the exciton emission dynamics. The
assumption of discrete cavity modes is justified for high-
finesse cavities �we have verified that only the basic � mode
contributes appreciably to the interaction with the exciton�.
Although more complete description of the electromagnetic
density of states in the cavity is available,19 the main features
of the exciton-photon coupling are well demonstrated within
the framework of our simplified model.

A. Model wave function for quantum dot excitons

We start by solving for the excitonic wave function in a
quantum dot, considering a finite potential barrier in the
growth �z� direction and a parabolic potential in the lateral
direction.

The effective mass Hamiltonian is given by

H = −
�2

2me
� ���e

2 + ���h

2 + �ez�ze

2 + �hz�zh

2 �

−
e2

����e − �h�2 + �ze − zh�2
+ Ve��e,ze� + Vh��h,zh� ,

�1�

where ri= ��i ,zi� are the electron or hole in-plane and z co-
ordinates, and �=me

� /mh
� , �ez=me

� /me
z, and �hz=me

� /mh
z are

the appropriate effective mass ratios in the plane and z direc-
tions, and � is the background dielectric constant screening
the Coulomb interaction. In Eq. �1� we have neglected the
differences in the conduction- and valence-band masses and
in the dielectric constant value of the two semiconductors
that comprise the QD and its host. In the case of strong
z-direction confinement, the electron and hole potentials can
be approximated as

Vi��i,zi� � Vi��i� + Vi�zi�, i = e,h �2�

thus decoupling the problem into lateral and z parts, and
enabling us to write the envelope wave function for the ex-
citon in the form
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�x�re,rh� = 	x��e,�h�
e�ze�
h�zh� �3�

�for infinite z-direction potential, this approximation is ex-
act�. Transforming to center of mass �c.m.� and relative in-
plane coordinates,

R =
��e + �h

1 + �
, r = �e − �h, �4�

we separate the c.m. motion and relative-motion wave func-
tions, 	x�R ,r�=��R���r�, by choosing parabolic potentials
for the lateral confinement of both electron and hole:25,26

Vi��i� =
1

2
mi

�

2�i

2, i = e,h . �5�

Employing natural units of length and energy, namely, the
bulk effective Bohr radius �aB=�2� /me

�e2� and Rydberg
�Ry=�2 /2me

�aB
2�, the Hamiltonian in Eq. �1� takes the form

H = HR + Hr,

HR = −
�

1 + �
�R

2 +
4�R2

�4�1 + ��
,

Hr = − ��1 + ���r
2 + �ez�ze

2 + �hz�zh

2 � −
2

�r2 + �ze − zh�2

+
4�2r2

�4�1 + ��3 + Ve�ze� + Vh�zh� �6�

where � is a dimensionless lateral localization parameter re-
lated to the confining potential by

� =
1

aB

� 2�

Mx

�7�

and Mx=me
� +mh

� is the in-plane c.m. exciton mass.
We identify the in-plane c.m. motion part with a 2D har-

monic oscillator Hamiltonian, which is solved analytically
resulting in wave functions ��R� that are given by the asso-
ciated Laguerre polynomials.27 In what follows, we will be
interested only in the c.m. motion ground state which is a 2D
Gaussian function. By equating the areal size of the c.m.
wave functions with the physical QD radius: �	��R�d2R�2
=2��2=�RD

2 , we relate the potentials �5� to the QD size.
For the in-plane relative coordinates we employ a trial

wave function27

��r� = Nre
−�r/���

�8�

where Nr is a normalization constant and � ,� are variational
parameters. � has values between 1 �no lateral
confinement—very large QDs� and 2 �strong lateral
confinement—very small QDs�. Considering finite-height
potentials in the z direction, Vi�zi�=Vi

z���zi�−L /2� where i
=e ,h and L is the QD height, we have for the z wave
functions28,29


i�zi� = Nzi
� 
cos�kizi� , �zi� � L/2,

ki

�ki
2 + �i

2
e−�i��zi�−L/2�, �zi� � L/2, � �9�

where i=e ,h, Nzi
= �L /2+1/�i�−1/2 is a normalization con-

stant,

ki =�2mi
z

�2 Ei0
z , �i =�2mi

z

�2 �Vi
z − Ei0

z � , �10�

and Ei0
z is determined by the ground-state quantization con-

dition

�Ei0
z

Vi
z = cos�L

2
�2mi

z

�2 Ei0
z 
 . �11�

The variational parameters in Eq. �8� are calculated by
maximizing the magnitude of the ground-state exciton bind-
ing energy EB=Ee0

z +Eh0
z +E1s

c.m.−Er, where E1s
c.m.=�


= 4�

�2�1+�� is the ground-state energy of the c.m. motion and Er

is the expectation value of the relative motion part of the
Hamiltonian in Eq. �6� �see the Appendix�.

The InGaAs self-assembled QDs that we are considering
have an estimated height of L=30 Å. The conduction- and
valence-band in-plane and normal-to-the-plane masses were
calculated for L=30 Å, assuming 50% InAs content, using
an eight-band Kane model, and taking into account both non-
parabolicity and lattice-mismatch strain effects.30 We find for
the electron me

� =0.0630, me
z =0.0897m, and for the heavy

hole mh
� =0.1573m, mh

z =0.3406m. For the potential barriers
we find Ve

z =441.9 meV and Vh
z =110.6 meV. Using these

values we minimize Eq. �A1� with respect to the two varia-
tional parameters � and �, and find the binding energy of the
ground-state heavy-hole exciton as a function of the QD ra-
dius shown in Fig. 1.

B. Exciton-photon interaction in a planar microcavity

In the following we assume weak coupling between the
QD exciton and the cavity modes. This is justified a poste-
riori by the calculated spontaneous emission linewidths,
which are always much smaller than that of the cavity. The
cavity photon escape rate was deduced from the measured
reflectivity of the cavity. We have put the cavity structure
into a linear dispersion model and calculated its reflectivity
using transfer matrix formalism. The resulting cavity mode
linewidth was close to the measured value.

The interaction between an exciton and the electromag-
netic field is given by

Hint = −
e

mc
�
k,�

p · Ak
� �12�

where Ak
� is the vector potential associated with the kth mode

with polarization � and we have neglected the quadratic term
in A. In a planar cavity, with z in the growth direction, the
Maxwell equations with the appropriate boundary conditions
yield two solutions for the electromagnetic field.31 These cor-
respond to the electric vector being normal to �TE� or in
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�TM� the plane defined by the wave vector k= �k� ,kz� and z,
and are given �using the Coulomb gauge� by

Ak
TE = − i�2��v

kVc
cos�kzz�e��eik�·�âk + e−ik�·�âk

†� ,

�13a�

Ak
TM =�2��v

kVc
�− i

kz

k
cos�kzz�e� +

k�

k
sin�kzz�e�


� �eik�·�âk + e−ik�·�âk
†� �13b�

where v=c /nef f is the velocity of light in the cavity medium,
Vc is the cavity quantization volume, and âk

† �âk� is the cre-
ation �annihilation� operator of the k field mode. In Eqs. �13�
kz satisfies the resonance condition

kz =
2m�

Lc
, �14�

where m takes any integer value and Lc is the cavity width.
Here we have considered only even modes which are the
only ones that couple with the exciton ground state.18 As-
suming a system of a single exciton and a single photon,
appropriate for low exciton densities, the time-dependent
state of the system is given by

�	�t�� = b�t�e−i
xt��x,0� + �
k,�

ck,��t�e−i
kt��g,1k,��

�15�

where 
x �
k� is the exciton �electromagnetic field� resonant
frequency, and � runs over the two light polarizations. Tak-
ing the system to be initially with one exciton and the radia-
tion field in the vacuum state �b�0�=1, ck,��0�=0� we write
the equations of motion for b�t� and ck,��t�, using the
rotating-wave approximation:

ḃ�t� = − i�
k,�

gk,�ei�
x−
k�tck,��t� −
�x

2
b�t� , �16a�

ċk,��t� = − igk,�
* e−i�
x−
k�tb�t� −

�c

2
ck,��t� . �16b�

In Eqs. �16� �x is the exciton broadening due to all processes
other than spontaneous emission �phonon scattering, nonra-
diative recombination�, and �c is the decay rate of the cavity
photon mode due to mirror losses, which is inversely propor-
tional to the cavity quality factor. The exciton-photon cou-
pling constant appearing in Eqs. �16� is given by

�gk,� = − ��x,0�
e

mc
p · Ak

���g,1k,�� . �17�

The coupling constant is related to the total oscillator
strength per unit area fk through

�
�=TE,TM

�gk,��2 =
2�e2
x

nef fmckLc
fk. �18�

Using the dipole approximation �ke�−kh�, considering both
polarizations, and neglecting intersubband mixing, fk is cal-
culated to be

fk = ��̃�k���2��1 +
kz

2

k2
cos2�kzz�f � +
k�

2

k2 sin2�kzz�f��
�19�

where

f � =
���0��2

m�
x
�PcvFe�

�2��
e�
h��2, �20a�

f� =
���0��2

m�
x
�PcvFe�

�2��
e�
h��2. �20b�

In Eqs. �19� and �20� �̃�k�� is the in-plane Fourier-
transformed exciton c.m. wave function, ��0� is the in-plane
exciton relative motion wave function at zero, Pcv is the bulk
transition matrix element, and Fe�

�Fe�
� is the parallel �per-

pendicular� polarization factor in quantum wells.27

We note that the coupling constant in planar cavities is
determined by fk /Lc, as opposed to 3D cavities where the
relevant quantity is f /Vm, where f is the oscillator strength
and Vm is the cavity mode volume. The main difference in
the oscillator strength for quantum well �QW� excitons ver-
sus that for QD excitons is due to the localization of the c.m.

FIG. 1. �Color online� �a� Exciton binding energy, �b� varia-
tional parameter �, �c� variational parameter �, and �d� detuning of
the exciton line with respect to the cavity mode, as functions of the
QD radius �resonance was assumed for RD=200 Å�.
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wave function of the latter �see Eq. �19��. Since only exci-
tons with in-plane wave vectors smaller than qx=
x /v can
radiate spontaneously due to the resonance condition, the
spread in the k-space c.m. wave function for QD excitons
results in a smaller effective oscillator strength, accounting
for their observed increased spontaneous emission lifetimes,
as compared with QW excitons.

Integrating Eq. �16b� and substituting the resulting ck,��t�
in Eq. �16a� we have the integro-differential equation

ḃ�t� = − �
k,�

�gk,��2�
0

t

d� b���e�−i�
k−
x�−�c/2��t−�� −
�x

2
b�t� .

�21�

In the weak-coupling regime, which is clearly our case, �c
�g and one can solve Eq. �21� to a good approximation by
taking b�t� out of the integral. For t��c

−1 the result is

ḃ�t� = −
�x + �SE

2
b�t� �22�

where

�SE = 2��
k,�

��gk,��2L�
k − 
x,�c�

=
4�2e2
x

nef f
2 mLc

�
k

�
fk


k
L�
k − 
x,�c� , �23�

and

L�
k − 
x,�c� =
1

2�

�c

�
k − 
x�2 + ��c/2�2 �24�

is the normalized Lorentzian cavity-mode broadening. The
prime over the sum in Eq. �23� indicates taking the lowest
cavity mode, kz=2� /Lc, and summing over the in-plane pho-
ton wave vectors, k� �qx, where qx=
x /v is the maximum
exciton in-plane wave vector that can still couple to the cav-
ity mode resulting in radiative recombination of the exciton.
The solution of Eq. �22� gives an exponential irreversible
spontaneous emission of the exciton due to its coupling with
the cavity field modes, representing Fermi’s golden rule. As
long as the calculated �SE is much smaller than the cavity
broadening �c, the weak-coupling approximation holds; oth-
erwise, one must solve the general equation �21�.

IV. RESULTS

We are interested in particular in the influence of the cav-
ity on the exciton’s spontaneous emission, radiative lifetime,
and emission distribution.

A. Exciton spontaneous emission

Figure 2 shows the measured reflectivity of the cavity and
the integrated photoluminescence intensity, using relatively
high-power, constant excitation. The same setup was used to
measure both the reflectivity and the photoluminescence.
Each point in the figure results from emission from a distinct
QD. For the reflectivity measurements, white light from a

tungsten lamp was reflected from the sample, dispersed by
the monochromator and detected by the CCD camera. The
measured reflectivity spectrum was then normalized by the
reflectivity of a front-surface aluminum mirror. The numeri-
cal aperture of our microscope objective in the photolumi-
nescence �PL� measurements was 0.8, resulting in a collec-
tion angle of �13.2° inside the sample. The figure shows a
sharp dip in the reflectivity corresponding to the resonant
cavity mode. The full width at half maximum is 1.94 meV
giving a Q factor of 670. The emission intensity shows a
pronounced enhancement for QDs in resonance with the cav-
ity mode. A rapid decrease in the emission intensity to a
value roughly five times smaller is found for QDs detuned by
20–25 meV. Emission from negatively detuned QDs is
largely inhibited due to the resonance condition, and no spec-
tral emission is observed below the cavity mode energy.

In order to discuss these data, we relate the detuned exci-
ton line to the � cavity width by21

Lc =
�x

nef f
� =

2�

qx
� , �25�

where � corresponds to the detuning of the exciton line from
resonance. We assume the cavity resonant mode matches the
emission from the heavy-hole 1s exciton of a QD with a
radius RD=200 Å, for which �=1. The corresponding reso-
nance energy is calculated using Eq. �A1� to be Ex

res=Ec
=1.2756 eV. In order to model microscopically the emission
from quantum dots that are detuned from this resonance, we
represent the detuning by either changing the QD size or by
changing the QD material band gap �via the dot composi-
tion�. The dependence of the detuning on the QD radius is
given in Fig. 1�d�. Considering only the basic cavity mode
expressed as kz=qx /�, Eqs. �23� and �19� are used to give

FIG. 2. �Color online� Measured reflectivity ��blue� line� and
integrated photoluminescence intensity ��red� points� of QDs at the
antinode of a planar � cavity.
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�SE =
�e2
x

2RD
2 f �

mc2�
�

0

qx

dq qe−RD
2 q2/4 q2 + 2qx

2/�2

�q2 + qx
2/�2�3/2

� L�v�q2 + qx
2/�2 − 
x,�c� . �26�

In deriving Eq. �26� we assumed that the QD resides in the
center of the cavity, where the cavity mode takes its maxi-
mum value, and considered only the heavy-hole exciton
whose perpendicular transition matrix element vanishes, f�

=0. To account for the experimental collection angle, the
upper limit of the integration in Eq. �26� is replaced with
q0=qx sin �, where � is measured from the z axis.

In the calculation we used nef f =3.5, �=13.9, resulting in a
QW exciton Bohr radius of aB=116.7 Å. The free �QW� ex-
citon oscillator strength per unit area was calculated for a
30 Å In0.53Ga0.47As QW and was found to be f � =7.1
�10−5 Å−2.27,32 This value increases as the QD size reduces,
due to the shrinkage of the relative motion wave function
�see Eqs. �20��. We stress that this effect is overshadowed by
the spread in the c.m. k-space wave function as the QD size
reduces; therefore fk will still decrease for smaller QDs. We
took an additional factor of 2 for the oscillator strength to
account for the two-spin configurations.

In Fig. 3 the calculated exciton spontaneous emission
rates are shown together with the measured PL values as
functions of exciton energy. The solid �blue� line corresponds
to a calculation where detuning of the exciton energy was
obtained by varying the QD radius whereas for the dashed
�green� line the QD size was fixed to RD=200 Å and its band
gap was varied. In order to put the measured and calculated
values on the same figure, a scaling factor of 3000 was taken
between the right �photon counts� and left �emission rate�
axes. This factor corresponds to the photon extraction effi-
ciency in the experiment, which was estimated from pulsed
excitation measurements.33

The calculated results obtained by varying the dot size
agree qualitatively with the experimental data, including the
rapid falloff in the PL intensity away from resonance. The
range of 90�RD�300 Å that accounts for a detuning range
of �20 meV is consistent with variations in typical self-
assembled InGaAs QDs. The two model calculations in Fig.
3 show marked differences. In particular, the emission en-
hancement shown for negative detuning in the case of vari-
able QD size is missing in the fixed-QD-size calculation. The
latter case shows a rapid inhibition of the emission as the QD
becomes negatively detuned out of the cavity mode line-
width, which is clearly a cavity effect. In the case of variable
RD the cavity effect competes with the localization of the
exciton c.m. wave function in k� space, as the QD size in-
creases � Eq. �26��. This effect is consistent with the strong
increase in QD exciton lifetime as compared with QW exci-
tons. The competition between the cavity and localization
effects is shown in the figure by the dip in the calculated
emission rate �solid line� for RD�300 Å �negative detun-
ing�. For yet larger QDs the localization effect takes over and
the emission rate rapidly increases �the figure includes QDs
with RD�600 Å�. Such large QDs are less likely to form in
our case and this increase is therefore not observed.

Figure 4 shows the dependence of the QD spontaneous
emission on the excitation power. At low excitation the PL is
dominated by a sharp emission line arising from the recom-
bination of the 1s exciton. As the excitation power is in-
creased, the dot is populated with more carriers and recom-
binations of multiexcitons from higher collective states
appear in the spectrum.33,34 For still higher excitation powers
the emission is broadened and is extended beyond the cavity
mode linewidth �see the reflectivity curve in Fig. 4�. This is
qualitatively confirmed by calculated emission rates that are
superimposed over the high-excitation-power PL curve �top-
most PL spectrum in Fig. 4�. As before, the detuning of
higher dot states is represented by varying either the dot size

FIG. 3. �Color online� Emission rates into a collection angle
13.2° vs exciton energy. Full �red� circles are the measured values
given in counts per second �right axis�. Solid �blue� line shows the
calculation where detuning is obtained by varying the QD radius
�given in the top axis�. Dashed �green� line shows the calculation
with QD size fixed to RD=200 Å and the detuning obtained by
varying the QD material band gap. A scaling factor of 3000 was
taken between the left and right axes �see text�.

FIG. 4. �Color online� Measured reflectivity �upper line� and
integrated PL intensity for various excitation powers. Calculated
emission rates with detuning by varying the QD radius �solid �blue�
line� and its material band gap �dashed �green� line� are superim-
posed on the measured PL with the highest excitation power.
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�solid �blue� line� or its material band gap �dashed �green�
line�.

In Fig. 5�c� we plot the experimental and calculated exci-
ton lifetimes as functions of the emission spectral energy.
Each point in the figure represents a measurement from a
specific QD �open circles�. The sample temperature during
the measurements was 15 K. The emission lifetime was es-
timated from a single-exponential fit to the initial part of the
measured PL decay curves ��black� lines in Fig. 5�b��. In
general, the decay curves were quite sensitive to the excita-
tion intensity and they were not single exponentials, as can
be seen in Fig. 5�b�. For the measurements we used excita-
tion intensities which exactly saturate the PL emission
��green� curve in Figs. 5�a� and 5�b��. We note that there is a
considerable scatter in the measured data. We believe that
this scatter is mainly due to nonradiative processes, which
may depend on the particular environment and charge state
of a given QD. Also, as mentioned above, the measured de-
cay times were excitation intensity dependent. Our particular
choice of excitation intensity, for which the exciton PL satu-
rates, may be somewhat arbitrary. The saturation excitation
may vary from one QD to the other in a way that has little to
do with the microcavity.

For the model in which the detuning is represented by
varying the QD material band gap �dashed line�, above reso-
nance there are always cavity modes in the 2D continuum
that can couple to the exciton due to the photon in-plane
dispersion; thus the coupling remains effective even for a
large positive detuning, resulting in a short recombination
time. The emission from negatively detuned QDs is largely
inhibited consistent with the experiment where emission
from these QDs is not observed. This inhibition depends
strongly on the cavity Q factor and would be much less
pronounced for weaker cavities. The calculations in which
detunings are represented by varying the dot size �solid line�
show a different behavior. When the QD radius is reduced
�energies above resonance in Fig. 5� the lifetime increases
due to the spread of the exciton c.m. wave function in k�

space, as explained above. The very different lifetime behav-
ior of the two detuning mechanisms may aid in identifying
the various QDs. The results of both Figs. 3 and 5 seem to
indicate that the majority of QDs have similar composition
and their variations are mainly in size.

We note that the increase in radiative lifetime with reduc-
tion of the QD size is suppressed in the limit of strong con-
finement. This is because the oscillator strength �f �� increases
due to the localization of the relative motion wave function.
This effect is superseded by the breakdown of the selection
rule caused by the spread of the c.m. k-space wave function
outside qx. Also note that the calculated linewidths due to
spontaneous emission are at most �SE�1.6 �eV��c; thus,
we are always in the weak-coupling regime where our ap-
proximate solution is valid.

Next, angle-resolved spectroscopy was performed on a
single QD using high-power excitation �8 �W�. In these
conditions the QD is populated with many carriers resulting
in many available recombination channels. The PL spectrum
therefore reflects the density of electromagnetic modes in the
cavity. Figure 6 shows a contour plot giving the measured PL
intensity of a highly excited single QD, as registered by the
CCD array camera at the exit of the monochromator. The
horizontal axis gives the spectral dispersion while the verti-
cal axis gives the angular distribution. Since the kz part of the
emission is fixed by the resonance condition to the cavity
mode, this angle corresponds to the in-plane wave vector of
the emission. From the geometry and lenses used for the

FIG. 5. �Color online� �a� Photoluminescence spectra of a single
QD for various excitation intensities; �b� corresponding decay time
measurements. The fitted monoexponential decay models are indi-
cated by the black lines. The green curve �obtained at excitation
power of 0.5 mW� was measured under saturation conditions and
was used for the measured PL decay time. �c� Exciton radiative
lifetime vs its energy. Open �red� circles are the measured values.
Solid �blue� line shows the calculation where detuning is obtained
with variable QD radius �given in the top axis�. Dashed �green� line
shows the calculation with QD size fixed to RD=200 Å and its band
gap varied.

FIG. 6. �Color online� Contour plot of the PL intensity from a
highly excited single resonant QD in a planar microcavity as a
function of photon wavelength and emission angle. Each contour
represents 10% of the maximal intensity.
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imaging we estimate that each row in the CCD camera is
equivalent to 0.38 mrad. The figure clearly demonstrates the
in-plane dispersion of the cavity mode. The peaks in the
emission intensity shown in the figure are most likely related
to recombinations from various carrier configurations, e.g.,
the neutral and charged excitons, biexcitons, and higher-
order multiexcitons,33,34 of the single QD. These multiexci-
ton lines appear due to the high excitation power used in this
experiment. Since our model accounts only for the neutral
exciton line, we cannot compare our experimental data di-
rectly with the model calculations. Nevertheless, by taking
the derivative of Eq. �26� with respect to the k� space area
�using q=qx sin ��, we can achieve a similar in-plane disper-
sion of the cavity mode, as shown in Fig. 7. The models of
QDs in which the size and the material band gap were varied
to represent the detuning show similar dispersion behavior.
The difference between the two cases is mainly that in the
case of fixed QD size the emission extends over a larger
energy range �Fig. 7�b��, which can be explained using the
preceding arguments. We attribute the difference between the
symmetric shape of the calculated angle-resolved spectrum
and the asymmetric shape of the measured one to the finite
aperture of the confocal setup. The data were taken from a
single QD that was positively detuned with respect to the
microcavity resonance. Due to the relatively large spatial dis-
tribution of the emission from the QD �see Sec. IV B�, we
could not collect the light from both negative and positive
emission angles.

B. Spatial distribution of the emission

We now turn to examine the in-plane spatial spread of a
single QD emission. Figure 8�a� shows a spatially integrated
emission spectrum from a particular QD under moderate ex-

citation power. Few discrete spectral lines are observed. Each
spectral line corresponds to a particular emission line arising
from the recombination of a ground-state e-h pair from dif-
ferent many-carrier collective states.34 For our purpose it suf-
fices to note that each line is spectrally detuned differently
from the cavity mode. In order to estimate the spectral de-
tuning of each line the reflectivity spectrum from this sample
is overlaid on the emission spectrum in Fig. 8�a�. The least-
and most-detuned lines are marked in the figure by A and B,
respectively. Wavelength-selective spatial images of the
least- �A� and most- �B� detuned spectral lines are shown in
Figs. 8�b� and 8�c�, respectively. The intensity distributions
of the electromagnetic fields associated with the emission
lines are essentially symmetric, though some obscuration,
which can be partially attributed to mechanical drift, is
present. The emission patterns contain a central strong spot
surrounded by concentric rings with decreasing intensities.
The intensities along the diagonals, which are marked by
dashed �red� and solid �blue� lines in Figs. 8�b� and 8�c�,
respectively, are displayed as functions of the in-plane dis-
tance from the image center in Fig. 8�d�.

Figures 9�a� and 9�b� show the calculated images for the
detunings of lines A and B, respectively. Since both spectral

FIG. 7. �Color online� Contour plot of the calculated emission
rate distributions as a function of photon wavelength and emission
angle �k��. Each contour represents 10% of the maximal rate. De-
tuning is obtained by �a� varying the QD radius, and �b� varying the
QD material band gap and fixing the dot radius to RD=200 Å.

FIG. 8. �Color online� �a� Spatially integrated emission spec-
trum measured from a single QD under moderate excitation power.
The dashed �green� line shows the normalized reflection of the
sample. Wavelength-selective spatial image measured for �b� spec-
tral line A and �c� spectral line B. �d� Emission intensities along the
diagonals which are marked by dashed �red� and solid �blue� lines
as functions of the distance from the image center.
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lines originate from the same QD, we used different band
gaps to obtain the detuning. The images were generated by
calculating the in-plane Fourier transform of the integrand in
Eq. �23�. The rates were calibrated so that their spatially
integrated emission would match the calculated values given
in Fig. 3. Figure 9�c� shows the intensities along the diago-
nals of the calculated images as functions of the in-plane
distance from the image center. In both measured and calcu-
lated images it is evident that when the QD is close to reso-
nance with the cavity mode, its emission exhibits an in-plane
spatial spread that is much larger than the QD size. The
closer the emission energy to resonance is the larger is its
spatial extent, and vice versa, the larger the detuning is, the
more localized the emission pattern becomes. Calculated im-
ages, where detuning was modeled by varying the dot size,
yielded similar behavior of the emission pattern, implying
that the PL spatial spread is mainly a cavity effect depending
only on detuning. In general, the calculated images agree
with the experimental observations, both in their spatial ex-
tent and in their dependence on the detuning, as can be con-
cluded by comparing Fig. 9 with Fig. 8.

A discernible feature in Figs. 8�d� and 9�c� is the depen-
dence of the spacing between the rings in the PL images on
the detuning. The rings become more pronounced and denser
for increasing positive detuning, where larger k� are needed
for the emission. This gives rise to oscillations that are su-
perimposed on the central emission line due to contributions
arising from larger k� modes. The dependencies of the calcu-

lated locations of the second and third peaks on detuning are
shown in Fig. 10�a�, and their intensities normalized to the
central peak are shown in Fig. 10�b�, confirming these obser-
vations. Identical results are obtained for both detuning mod-
els, suggesting again that this emission pattern is a cavity
effect, depending only on detuning. Together with the central
peak spread, the locations of the emission rings may aid in
evaluating the QD’s detuning. We note, though, that as Fig.
10�b� suggests, for spectral lines that are close to resonance
with the cavity mode, the relative intensity of the ring emis-
sion to the central spot decreases rapidly, making them dif-
ficult to measure.

V. SUMMARY

In this paper we have studied the interaction between the
electromagnetic modes in a planar cavity and excitons in
single QDs embedded at the antinode of the cavity.

We find that the spontaneous emission outside the micro-
cavity is enhanced considerably for dots in resonance with
the cavity mode. The emission intensity rapidly decreases
with detuning for lines that are positively detuned from the
cavity mode. Emission from negatively detuned QDs is
largely inhibited, and we were unable to observe any spectral
emission below the cavity mode energy. Lifetime measure-
ments have shown a decrease by a factor of roughly 2 for the
lifetime of resonant QDs as compared with QDs that are
20 meV detuned from the cavity line. In-plane dispersion of
cavity photons was directly observed by strong excitation of

FIG. 9. �Color online� Calculated spatial spread of the emission
from a single QD detuned from resonance by �= �a� 3, �b� 7.4 meV,
corresponding to the measured spectral lines marked A and B in
Fig. 8, respectively. Detuning is modeled by varying the QD mate-
rial band gap while the QD radius is fixed to RD=200 Å. �c� Cal-
culated emission intensities as functions of the distance from the
image center. �Constant background of 400 counts was added to the
calculated emission to facilitate comparison with the measured
data.�

FIG. 10. �Color online� �a� Calculated positions of second and
third rings in the emission distribution; �b� calculated emission in-
tensity of second and third rings normalized to central emission
peak.
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the QD, thereby transforming it into a broadband light
source. Finally, we obtained near-field images of the spatial
emission distributions from single QDs, showing a large
spread over several micrometers in the case of resonant QDs.
These images have also shown emission rings with separa-
tion and intensity that depend on the detuning of the QD
from the cavity mode.

All of these features were qualitatively accounted for by
calculations where detuning from the cavity mode was mod-
eled by varying either the QD size or its band gap. For most
of the experimental data we have found better agreement
with the first mechanism, suggesting that most of the QDs in
strain-driven self assembled samples vary in size rather than
in composition. The range of 90�RD�300 Å that accounts
for the observed phenomena is consistent with typical self-
assembled InGaAs/GaAs quantum dots.

ACKNOWLEDGMENTS

This work was supported by ONR, DARPA, and the ONR
Nanoscale Electronics Program. G.R. gratefully acknowl-
edges financial support from NRL/NRC. The work at the
Technion was supported by the U.S. Israel Binational Foun-
dation and by the Israeli Science Foundation.

APPENDIX

Here we provide some details of the calculation of the
exciton’s relative motion energy:
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