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Abstract
The fundamental building block of quantum information processing technologies is the
quantum-bit a ‘qubit.’ These technologies require the ability to prepare, control, and read out a
qubit state. Spins confined in self-assembled quantum dots are promising candidates for a
quantum bit, because semiconductors are compatible with mature modern opto- and
micro-electronics. These quantum dot systems offer two more advantages: they are excellent
interfaces between the spin state—an anchored qubit and a photon—a ‘flying qubit’ and they
provide means to coherently control the spin qubit by ultrashort optical pulses. In this review,
we thoroughly discuss the qubit provided by an optically-excited electron in a quantum
dot–the exciton qubit. We demonstrate its spin state initialization, coherent control and
read-out using ultrashort optical pulses.

Keywords: quantum dots, excitons, quantum optics, quantum information processing,
optical spectroscopy

(Some figures may appear in colour only in the online journal)

1. Introduction

The field of quantum computing and quantum information
processing has generated substantial interest in the past
three decades. Quantum computers promise to solve certain
problems much faster than is currently possible with
classical computing, such as Shor’s algorithm for factorizing
large numbers [1] and Grover’s algorithm for searching
databases [2]. In the field of quantum communication, secure,
commercial quantum key distribution [3, 4] was demonstrated
in an intracompany fibre optic network in Vienna [5].
However, a fully scalable quantum computer has not yet been
demonstrated.

The basic building block of quantum information is a qubit
[6, 7], a quantum state of the logical one and zero,

ψ = α|0〉 + β|1〉 |α|2 + |β|2 = 1. (1)

In contrast to a classical bit, the qubit can be in a superposition
of |0〉 and |1〉, enabling the simultaneous calculation of the
outcome of a function for both logical values. To implement
a quantum computer, these qubits need to be well-defined and

scalable [7]. It must be possible to initialize the qubit system in
a known pure state. The performance of quantum computations
requires a universal set of gates. A universal set of operations
for quantum computation can be constructed from a complete
set of single qubit controls—the SU(2) rotations group–and
another two qubit gate, such as the controlled not [7–10]. Such
multi-qubit gates have been demonstrated experimentally in
ion traps [11], atoms [12], superconducting qubits [13], and
linear optics [14]. The implementation of these quantum gates
requires that the coherence time of the qubit be substantially
longer than the gate time [7]. Qubit-specific measurement
is necessary to read out the result of the computations [7].
Quantum communications applications require, in addition,
the ability to transfer a state between a stationary qubit and a
travelling qubit and to then transmit these qubits to distributed
locations [7]. A physical quantum computer will probably
consist of matter ‘anchored’ qubits for information storage
and processing, with an interface to ‘flying’ photonic qubits
that will carry the information.

There are several candidates for the physical
implementations of qubits, reviewed by Ladd et al in
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[15]. The most promising candidates are ions in electrical
traps [16], neutral atoms in optical lattices [17], nuclear
magnetic resonances of molecules in liquid solutions
[18, 19], superconducting circuits [20], nitrogen-vacancy
centres in diamond [21] and charge carrier spins in
semiconductor quantum dots (QDs) [22], which are the main
focus of the present review.

Semiconductor QDs, frequently referred to as ‘artificial
atoms’ [23–26], are confinement regions for charge carriers in
semiconductors. In electrically defined QDs, the confinement
of a two dimensional electron gas is created by applying
voltage to lithographically defined metallic gates [27, 28].
Recent attempts to define QDs in a double quantum
well using gate structures have also been successful [29].
Self-assembled QDs (SAQDs) are nanometric regions of
low bandgap semiconductor surrounded by another, higher
bandgap semiconductor.

As opposed to electrically defined QDs, SAQDs confine
both types of carriers-electrons and holes-making direct
bandgap QDs optically active and particularly efficient. The
recombination of a confined electron-hole pair, an exciton,
in a single SAQD results in the emission of a single photon.
Thus, a single optically active QD is a single photon source
[30–35]. Moreover, it has been experimentally demonstrated
that the cascaded emission from a biexciton in a single QD
is a source of entangled photon pairs, since the first emitted
photon is entangled with the spin of the remaining exciton
[36–38]. Entanglement between a photon emitted from a QD
and the spin of a confined electron in the QD has been
demonstrated experimentally [39–41], as well as entanglement
between two QDs [42]. More recently, teleportation of the
quantum state from a photon into a QD spin state [43] has
also been demonstrated. Mature semiconductor processing and
fabrication technologies make it possible to embed SAQDs
into photonic structures, making them very efficient quantum
light sources [44, 45].

The spin state of an electron in a SAQD is a two level
system that can serve as a qubit. The control of a QD
confined electron spin, a single qubit operation, was recently
demonstrated through the coupling of an electron to a trion
state consisting of two electrons and a hole by the use of
an off-resonant laser pulse that created a stimulated Raman
transition [46, 47]. The accumulation of a geometric phase
through a 2π -area laser pulse was proposed as an alternative
method of coherent control [48, 49], and was experimentally
demonstrated on multiple QD spins locked into the same
transition energy [50], on a single QD electron spin [51],
and on the spin configuration of two electrons in a pair of
vertically stacked QDs [52]. Coherent control of the confined
hole has also been demonstrated [53, 54]. Table 1 summarizes
the lifetime and coherence times of the electron spin, hole spin,
and the neutral exciton.

In all of these works, complete coherent control is
achieved by a set of two sequential optical pulses. The coherent
evolution of the precessing spins between the pulses is an
essential part of the electron control scheme. This is due to
the fact that the trion is composed of two Kramers degenerate
states, where each electron spin state is coupled to one of the

Table 1. Lifetimes and coherence times for spin qubits in a
self-assembled semiconductor QD.

Lifetime Coherence time

Without With Without With
B field B field B field (T ∗

2 ) B field (T2)

Electron 10s of μs 10s of ms 1–10 ns Few μs
[27, 47, 55]
Heavy hole ∼1 μs Few ms 1–20 ns 10s of μs
[50, 53, 54, 56]
Bright exciton ∼1 ns >1 ns 1 ns >1 ns
[57, 58]

trion states through either a right or left circularly polarized
photon. The result is that the optical control can be performed
only in these polarizations. A neutral exciton has a whole
integer total spin. In contrast to the electron, it can be coupled
to biexcitonic levels with zero angular momentum which have
no degeneracy. In this system, the optical control can be in any
arbitrary polarization, consequently enabling complete control
of the exciton spin with a single pulse [59]. Thus, the duration
of the control operation is reduced to that of the laser pulse
and is not related to the precession period of the two level
system. Here we mainly review complete coherent control of
the SAQD exciton as an anchored qubit, using a single optical
pulse.

This review is organized as follows:
Section 2 presents a very brief introduction to QDs

and their energy states. In section 3, we briefly review the
growth process for SAQDs. Section 4 outlines experimental
techniques that can be used to study the single SAQD system
and to probe the dynamics of confined carriers. Section 5
discusses more fully the energy levels and spin states of a
neutral SAQD, presenting both a theoretical and experimental
analysis. Optical initialization of a QD spin state is presented
in section 6, and two different methods of optical control of
the exciton qubit are presented in sections 7 and 8.

2. Quantum dot states: bright states, dark states,
and photoluminescence

QDs consist of a potential well that confines electrons in
the conduction band and holes in the valance band of a
semiconductor. An electron-hole pair is called an exciton.
When the electron and hole spins are antiparallel, the exciton
can recombine radiatively and emit a photon. This process
is called photoluminescence (PL), and states that are able to
recombine radiatively or that can be formed by absorption of
a photon, are called bright states. When the electron and hole
spins are parallel, radiative recombination is not possible and
the states are referred to as dark states. Two excitons form a
biexciton. Charged states are also possible, where a negatively
charged state has more electrons than holes and a positively
charged state has more holes than electrons [60, 61].

There is a correspondence between the spin state of
QD-confined charge carriers, and the polarization of the
photon emitted upon recombination of these carriers [57].
Recombination of a ⇑↓ exciton results in a right-hand

2



Semicond. Sci. Technol. 29 (2014) 053001 Tutorial

(a) (b) (c)

(d) (e)

Figure 1. Schematic drawing of the PCI growth technique, a variation of the Stranski–Krastanow QD growth process. (a) Deposition of
InAs on a GaAs substrate. (b) As deposition continues, droplets form. (c) A GaAs layer of known width is deposited. (d) The deposition is
stopped, and diffusion occurs. (e) The deposition is resumed, and the QDs are capped by a GaAs layer.

circularly polarized (R) photon carrying the energy released
by the pair recombination. Recombination of a ⇓↑ exciton
emits a left-hand circularly polarized (L) photon. Horizontal
and vertical polarization are linear combinations of R and L; up
to a normalization coefficient they can be written as H = R+L
and V = R − L. Diagonal (D) and anti-diagonal (B) polarized
photons are shifted by a phase: D = R + iL and B = R − iL.
SAQDs tend to have a slight elliptical structure in the plane of
the sample, and this structure itself provides a reference axis for
linear polarizations. Horizontally (vertically) polarized light is
parallel to the major (minor) axis of the QD.

Similarly to atoms, the lowest energy level in a QD has
an orbital wavefunction whose spatial part has no nodes.
Consequently, we refer to this state as the ground state or s
level. The spatial wavefunction for the first excited state has
one node, similar to that of a p atomic orbital, so we refer to
these levels as p levels or excited states. There are multiple
p energy levels in the QD. Since the QD height is usually
very small relative to its in-plane dimensions, the pz levels are
substantially higher in energy than the in-plane pH (node on
the major (H) axis) and pV (node on the minor (V ) axis) energy
levels. This deviation from cylindrical symmetry removes the
degeneracy between pH and pV , but their energy splitting
remains on the order of the carrier exchange interaction.

The energy of the emitted photon depends on what other
carriers are present in the QD. Consequently, the energy of
the emitted photons can be used to determine the initial and
final population of the QD, and the polarization of the emitted
photon provides information about the QD spin configuration.
This information is used in techniques called polarization-
sensitive PL spectroscopy and photoluminescence excitation
(PLE) spectroscopy to characterize QD states and to study the
dynamics of photo-excited carriers in QDs.

3. Growth of self-assembled quantum dots

SAQDs are grown using molecular beam epitaxy (MBE).
MBE is a technique for growing semiconductor thin films
on substrates. This process occurs in an ultra high vacuum
system to minimize impurities in the resulting films. Ultra

pure elements are heated in separate furnaces until they begin
to evaporate or sublime. The atomic or molecular gases are
then allowed into the substrate chamber where they adhere
to the substrate and react with other atoms on the surface.
The rate of deposition is kept low and the film is effectively
grown layer by layer. In MBE systems, the layer thickness can
be monitored with reflection high-energy electron diffraction
(RHEED) [62], allowing for precise control of the layer
thickness. RHEED can also be used to monitor the shape and
density of the deposited QDs [62, 63].

One of the most common methods for growing QDs
with MBE is the Stranski–Krastanow mode (figure 1)
[64–66]. This method relies upon the lattice mismatch between
different semiconductor crystal structures, such as GaAs and
InAs. The bulk lattice structure of InAs differs from the bulk
structure of GaAs, in that the lattice constant of InAs is
significantly larger (∼8%) than the lattice constant of GaAs.
When InAs is grown by MBE on a GaAs substrate, the
initial InAs layer (called the wetting layer) will form with
the same lattice parameters as the bulk material. This causes
a strain in the InAs layer, and this strain energy increases
with InAs layer thickness. After a critical thickness is reached,
the InAs will form three-dimensional islands of material as
opposed to a two-dimensional film. These islands have an
increased surface energy and a decreased strain energy, and
the island size is spatially limited through the minimization
of the total energy. In the case of InAs on a GaAs substrate,
the critical thickness is 1.5 monolayers of InAs, or about 4 Å
[67]. As the QDs form independently, as a consequence of the
lattice mismatch between the two materials, QDs grown by this
method are referred to as self-assembled Stranski–Krastanow
QDs. In order for Stranski–Krastanow growth to be possible,
the lattice mismatch must be greater than about 2%. Several
combinations of semiconductors satisfy this requirement, such
as GaAs/InAs, SiGe, InAs/InP, and GaInN/GaN.

As a result of the growth process, there will be variation
in the geometric and optical properties of the various SAQDs
on the substrate. The QD size, height, and composition are all
variable, though careful control of the growth conditions can
reduce the fluctuations in QD size to <10% [67]. The density
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Figure 2. Schematic description of the low temperature polarization sensitive μ-PL setup.

of the QDs is controlled by varying the coverage of InAs on top
the GaAs substrate [68, 69]. Changing the MBE growth rate or
temperature changes the QD sizes, density, and composition
[70]. The optical properties of the QDs can also be changed
by postgrowth thermal annealing [71, 72].

The height of the QDs can be controlled using the partially
covered island (PCI) growth technique [73] (figure 1). Here,
after InAs islands start to form on the GaAs substrate, a GaAs
spacer layer of known thickness is deposited on the sample,
following which the sample growth process is paused. InAs
above the height of the GaAs spacer layer is desorbed, and
diffusion of In out of and Ga into the islands changes the
chemical composition of the new QDs [74]. The QD height
determines the smallest confinement scale of carriers inside
the QDs, thus enabling the tunability of the QDs emission
energy [73].

In order to enhance the collection efficiency of light
emitted from a single QD, the QD layer can be embedded in the
middle of a one-wavelength microcavity formed by two sets
of distributed Bragg reflectors (DBRs) with a one-wavelength
thick GaAs layer between them. The DBRs are composed of
stacked pairs of quarter wavelength thick AlAs/GaAs layers.
Such a structure enhances the collection efficiency of emitters
coupled to the cavity mode. A QD resonant with cavity
emits into the cavity mode, directly into the collection lens
[75]. This results in the enhancement of the collected intensity
from QDs resonant with the cavity mode.

Stopping the rotation of the sample during the growth
of the strained InAs layer results in a variable density of
QDs across the sample surface [35]. Isolation of a single QD
can be achieved by taking advantage of both this variable
surface density and the properties of the microcavity. The
microcavity limits the energies at which photon collection
is possible. Therefore, the density of QDs emitting efficiently
in the microcavity is approximately two orders of magnitude
lower than their actual density on the sample [75]. If the as-
grown density is 108 cm−2, the density of QDs resonant with
the microcavity is thus ∼106 cm−2 and single QDs separated
by a few tens of micrometers can be easily located by scanning
the sample surface during PL measurements [76].

4. Experimental techniques for optical analysis of
single quantum dots

4.1. Polarization-sensitive single quantum dot spectroscopy

Figure 2 schematically describes a low temperature
polarization-sensitive micro-PL (μ-PL) setup. In a PL
experiment, the sample is excited by a laser whose energy is
above the bandgap, populating the QD under investigation with
hot carriers. These carriers relax to their ground state in the
QD, and then upon radiative recombination of an electron-hole
pair, a photon is emitted. Recording the polarized emission
spectrum reveals information on the exciton ground state
energies and the polarization selection rules for recombination.

Polarization control can be achieved by the use of two
liquid crystal variable retarders (LCVRs) positioned in the
mutual optical path of the excitation laser and collected
emission. An LCVR induces a voltage controlled phase,
ranging from zero to 2π , to the polarization of light parallel
to its extraordinary (fast) axis. The effect of an LCVR on
incident laser light can be described as a rotation around the
LCVR fast axis on the Poincaré sphere. In figure 2, the first
LCVR fast axis lies 45◦ from the laser polarization, which is
the same as the polarizing beam splitter (PBS), and the second
is parallel to that polarization. This configuration provides
the ability to rotate a polarized laser beam to any desired
elliptic polarization or to project the emitted PL on any desired
measurement polarization.

Here, the incoming laser is passed through a PBS, marked
as PBS1 in figure 2. The light polarized transverse to the
plane of incidence (s-polarized) is reflected by the PBS to the
optical path denoted CH1 while the light polarized in the plane
of incidence (p-polarized) is transmitted to the path denoted
CH2. Thus, by the choice of the laser linear polarization, either
s or p, one can choose through which polarizing arm the laser
will pass, or through both. The two arms are combined back
together by the use of a non-polarizing beam-splitter (NPBS)
and then focused on the sample by an objective with high
numerical aperture. The cryostat system is used to cool the
QD to the desired temperature, often in the range of 4–20 K.
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VanguardTM

Dye laser w/etalon

Dye laser w/etalon
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Figure 3. Time-resolved spectroscopy with three pulsed lasers. Here, two dye lasers are driven by the same pump laser, Vanguard, to which
is locked a third laser, a Ti:Saph Tsunami laser. The relative timing of pulses in the pulse sequence is varied by the use of delay lines. In this
setup, three synchronized pulses of three different energies can be used in a ‘write-control-read’ experiment.

The emitted PL is collected by the same objective, where
the high numerical aperture allows the collection of photons
emitted to most of the upper hemisphere (85%). This collection
is translated to both increased spatial resolution and also to a
wider spectral window of light collected from the microcavity
sample [75]. The emitted PL is then split by the NPBS to the
two polarizing arms. The LCVR pairs rotate the polarization
of the emitted light such that at each arm the measured
polarization is now parallel to either the p-polarization at
CH1 or the s-polarization at CH2. The two paths are now
combined by PBS1 and the reflected laser is filtered by a long-
pass interference filter.

The PL emission is now projected onto another PBS
(PBS2 in figure 2) where each of the s- and p-polarizations
are passed to a different meter-long monochromator where
the spectrum can be recorded either by a charge coupled
device or a fast avalanche photodiode. This setup enables
the measurement of two independent polarizations from two
independent spectral regions during the same experiment.

4.2. Photoluminescence excitation spectroscopy

As mentioned above, the ground state recombination energies
are probed in a PL experiment. In order to probe optical
transitions to excited states in the QD, we use PLE
measurements. In such experiments, the excitation energy of
the laser is varied while the emission at a certain recombination
energy is recorded. Enhancement in the recorded signal with
respect to the laser energy reveals the transition energies
of the excited excitonic states while the polarization of
both excitation and emission reveal the polarized absorption
selection rules [57, 61, 76]. Both continuous-wave (CW) and
pulsed excitation can be used.

4.3. Time-resolved spectroscopy

In some experiments, the temporal evolution of the optically
excited QD is investigated. In order to conduct these
experiments, two or three synchronous pulsed lasers are used,
where the delay between the lasers is varied by a mechanical
delay line as displayed in figure 3. The first resonant polarized
pulse initializes the state of the QD, while a second, delayed,
resonant pulse probes the state of the QD after various time
delays. The two pulses are usually not resonant to the same

transition, enabling the probing of the excited population. In
section 8.1, for example, an intermediate pulse is introduced
to the sample. In these experiments, two of the lasers are tuned
to the same energy. In order to probe the effect of only a single
laser, lock-in detection can be used, with an optical chopper
on the path of the one relevant laser.

4.4. Polarization-sensitive correlation measurements

The second-order intensity correlation function between two
spectral lines a and b is defined as

g(2)(τ ) = 〈Ia(t)Ib(t + τ )〉
〈Ia(t)〉〈Ib(t)〉 (2)

where Ia(b) is the intensity of the given spectral line and 〈〉
means averaged over time t [77].

In a radiative cascade,the emission of multiple photons
is correlated. Detecting one of the photons increases the
probability of detecting the other photons. If states A and B
are connected in a radiative cascade, where a is the spectral line
corresponding to the transition from A and b is the spectral line
corresponding to the transition from B, Ib at time t +τ depends
on the intensity Ia at the earlier time t. The emission intensity
Ia(t) is proportional to the probability that the system is in
state A, PA(t). Emission of a photon from line a at time t sets
the system to the final state of the relevant optical transition.
Therefore, we can write 〈Ia(t)Ib(t + τ )〉 = 〈Ia(t)〉〈Ib|a(t + τ )〉
where 〈Ib|a(t + τ )〉 is the intensity of transition b at time t + τ

conditional on the system being in the final state of transition
a. Equation (2) consequently becomes

g(2)(τ ) = 〈Ia(t)〉〈Ib|a(t + τ )〉
〈Ia(t)〉〈Ib(t)〉 = 〈Ib|a(t + τ )〉

〈Ib(t)〉 = PB|A(τ )

PSS
B

(3)

where PB|A is the population of state B at time τ given that
at time zero, the system was in state A and PSS

B is the steady
state population of B (i.e. PB(τ → ∞)). If the states A and
B form a radiative cascade, then the value of g(2)(τ ) should
be greater than 1 for some range of times τ > 0 because the
transition from state A increases the population in state B to a
value above the steady state expectation value. This increase in
g(2)(τ ) is called photon bunching, and is used to check if two
spectral transitions are related via a radiative cascade [78–80].

If A = B, the function g(2)(τ ) is referred to as the
intensity autocorrelation function. The second-order intensity
autocorrelation function is used to check if a source is a
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single photon emitter [77]. Since two photons cannot be
emitted at the same time from a single photon emitter, for
τ = 0, either Ia or Ib is zero, resulting in g(2)(0) = 0. More
generally, g(2)(τ = 0) ∼ 1 − 1/n where n is the number
of photons emitted at τ = 0. For a single photon emitter,
n = 0 → g(2)(0) = 0. In practice, due to the finite temporal
resolution of the detectors, the value observed is nonzero
but less than 1. This decrease in g(2)(τ ) is called photon
antibunching. Observation of photon antibunching identified
QDs as single photon emitters [32, 33, 35, 81–83].

Charging processes can also lead to the observation of
photon bunching between spectral lines [84]. Measurements
of g(2)(τ ) can be used to check if two photons are entangled
[36] and to study the dynamics of the system in time or in
response to a control laser pulse. These techniques were used
to study the dynamics of the bright and dark excitons [85].

This second-order intensity correlation function is
measured experimentally using a Hanbury Brown and Twiss
apparatus [86]. This apparatus provides the necessary means to
temporally correlate between the emission intensities of two
spectral lines, each one of them projected onto any desired
polarization state.

The apparatus is schematically described in figure 2.
The time difference between the pulses from the two
detectors, described in figure 2, is repeatedly measured using
a time to analogue converter. A multi channel analyser then
builds a histogram of time differences between the detection
times of the two photons. This histogram converges to the
intensity correlation function (up to the temporal resolution
of the detectors and normalization) as the statistics of the
experiment grow. In CW measurements the histogram can
be straightforwardly normalized by its value at long time
differences.

5. Spin states of a neutral self-assembled quantum
dot

5.1. Energy levels of a neutral quantum dot—ground and
excited levels

The wavefunctions of single carriers in semiconductor
nanostructures can be calculated in various ways, starting
for example with simple one band approximations through
multiple band k · p-like approximations [87, 88] to many atom
models [89], in which the actual knowledge of the arrangement
of the atoms in the nanostructure is required. Depending on
the complexity of the model, the calculated wavefunctions are
then usually known numerically only. The precision to which
one needs to know these wavefunctions in order to calculate
the Coulomb and exchange interactions between carriers
occupying single carrier levels requires enormous computer
resources. Moreover, the intuition gained in these calculations
is rather limited. For these reasons, we decided to describe the
QD using a simple parabolic one-band model for the electrons
and the heavy holes. Such a model results in analytical
expressions for these carrier wavefunctions. Since in (In,Ga)As
QDs, strain and quantum size effects separate the light holes
band from that of the heavy holes, this approximation can be

justified. In this simple model, the QD is represented as an
infinite parabolic potential that acts separately on the electrons
and the holes [90]. The envelope wavefunctions (orbitals) are
given by the 2D harmonic solutions
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Hnx

(
x
lx
p

)
Hny

( y
ly
p
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2(nx+ny )nx!ny!π lx

ply
p

· e
− 1

2

[(
x
lxp

)2
+
(

y

l
y
p

)2]
(4)

where p = e(h) stands for electron (heavy hole) and Hnx(y)

are the Hermite polynomials of order nx(y). The extent of
the potential along the x− (y−) direction is described by a

characteristic length lx(y)
p =

√
�/M∗

⊥,pω
x(y)
p . This characteristic

length lx(y)
p is related to the in-plane effective mass of the charge

carrier, M∗
⊥,p, and the harmonic potential inter-level separation

�ω
x(y)
p .

Once the eigenenergies and envelope wavefunctions for
the single carriers are computed, the many-carrier energies
and states are calculated using the configuration interaction
(CI) method [10, 30, 91]. A more detailed description of
the CI model that we used, which includes also electron-hole
exchange interaction can be found in [60].

To describe the states in the QD, the following notation
system [76] will be used in the rest of this tutorial. A single
carrier state will be first described by its envelope wavefunction
or orbital mode, O = 1, 2, . . . , 6. The number represents the
energy order of the level, where O = 1 represents the ground
state, O = 2 the first excited state and so forth. The O number
is followed by a letter indicating the type of the carrier, electron
(e) or heavy hole (h). A superscript to this letter describes the
occupation of the single carrier state. A superscript can be
either 1 for an open shell or 2 for a closed shell, subject to the
Pauli exclusion principle. Non-occupied states are omitted in
this notation. Subscripts indicate the mutual spin configuration
(σ ) of occupied states of carriers of the same type.

5.2. The neutral exciton

The ground exciton state, X0
1,1 ≡ |(1e1)(1h1)〉, or X0 for short,

is a two-carrier state, formed primarily1 by one electron and
one heavy hole in their respective ground states. The exchange
interaction couples the spins of the electron and the hole,
resulting in the observed excitonic fine structure. Using the
method of invariants [92], the exchange interaction between
the electron and the hole is described by the spin Hamiltonian
[60, 93, 94]

HX0
1,1

=
∑

i=x,y,z

(
a1,1

i S(e)
i S(h)

i + b1,1
i S(e)

i S3(h)
i

)
, (5)

where S(e)
i (S(h)

i ) represents the ith Cartesian component of the
electron (hole) spin, and a1,1 (b1,1) is the spin–spin coupling
constant. The total spin projection on the ith direction is given
by Ji = S(e)

i + S(h)
i . In matrix form, the basis |S(e)

z 〉 ⊗ |S(h)
z 〉 is

given by
| − 1/2, 3/2〉 = ↓1⇑1 Jz = 1
|1/2,−3/2〉 = ↑1⇓1 Jz = −1

|1/2, 3/2〉 = ↑1⇑1 Jz = 2
| − 1/2,−3/2〉 = ↓1⇓1 Jz = −2

(6)

1 The complete wave function also has components from other excited carrier
states. However, the major part of the wave function (>95%) is composed from
carriers in the ground state.
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Figure 4. Schematic description of the energy levels of the
|(1e1)(1h1)〉 exciton and the allowed optical transitions from exciton
states to the vacuum. The major parts of the spin wavefunctions are
described to the right of each level. ↑(⇓) represents an electron
(hole) with spin up (down) and a blue symbol represents a carrier in
its ground level. A blue (red) vertical arrow represents linearly
polarized optical transition along the major (H) (minor (V )) axis of
the QD. The bracketed numbers are the total spin projection of the
carriers along the QD growth direction. Image from [76].

where ↑ j (⇓ j) indicates a spin up (down) electron (heavy hole)
in the jth orbital, and the Hamiltonian is given by

HX0
1,1

= 1

2

⎛⎜⎜⎝

1,1

0 
1,1
1 0 0


1,1
1 
1,1

0 0 0
0 0 −
1,1

0 
1,1
2

0 0 
1,1
2 −
1,1

0

⎞⎟⎟⎠ (7)

where 
1,1
0 = 3(a1,1

z + 2.25b1,1
z ), 
1,1

1 = 1.5(b1,1
x − b1,1

y ) and

1,1

2 = 1.5(b1,1
x + b1,1

y ) [93]. The three constants, 
1,1
0,1,2, fully

characterize the exchange interaction between the ground state
charge carriers [92].

The degeneracy between the four possible combinations
of the electron-hole pair spin states is completely removed by
the exchange interaction. Figure 4 schematically illustrates the
eigenenergies and eigenstates of this electron-hole pair. The
four states are split into two doublets, one corresponding to
the dark exciton and one corresponding to the bright exciton.
The two states of the dark exciton form the lower doublet,
|X0

1,1,D±〉 ≡ 1√
2
|[(1e1)1/2(1h1)3/2 ± (1e1)−1/2(1h1)−3/2]〉.

These two states are split by 
1,1
2 . 
1,1

2 is known to be quite
small and believed to be orbit-independent [92]. From the
temporal period of the coherent precession of the dark exciton
spin, 
1,1

2 has been measured to be 1.4 μeV [85].
Bright exciton energy states contain an electron and

heavy-hole with anti-parallel spins. These states lie 
1,1
0

above the dark exciton states. The isotropic e-h exchange,

1,1

0 , is about 300 μeV, as determined from magneto-optical
measurements [95]. The anisotropic e-h exchange, 
1,1

1 , splits
the symmetric and antisymmetric bright exciton states,∣∣X0

1,1,B±
〉 ≡ 1√

2
|[(1e1)−1/2(1h1)3/2 ± (1e1)1/2(1h1)−3/2]〉.

(8)

Polarization-sensitive PL spectroscopy can be used to directly
measure the magnitude and sign of 
1,1

1 = −34 μeV in the
QD used extensively as an example in this tutorial. Since 
1,1

1
is negative, the antisymmetric state is higher in energy than
the symmetric one [60, 94].

When a ↓⇑ (↑⇓) e-h pair recombines radiatively, the
conserveration of angular momentum requires emission of
a right- (left-) hand circularly polarized photon. It then
follows that radiative recombination from the antisymmetric
(symmetric) bright exciton state is linearly polarized vertically
(V ) (horizontally (H)) along the minor (major) in-plane axis
of the QD [92, 96]. The four states of the neutral exciton
discussed above are not unique to the first single carrier levels
(Oe = Oh = 1). Instead, any combination of Oe and Oh single
carrier states forms similar bright and dark ‘excitonic’ states.
In general, 
Oe,Oh

0,1,2 depends on the orbital mode of the carriers
[60, 94].

5.3. The neutral biexciton

The ground biexciton state is formed primarily by two spin-
paired heavy holes and two spin-paired electrons in their
ground states, |XX0

1,1,1,1〉 ≡ |(1e2)(1h2)〉. Since, due to the
Pauli exclusion principle, the spin-paired carriers can only
form an antisymmetric spin singlet state, the σ subscript is
redundant and is omitted from the spin state description of
the pair. However, for unpaired carriers such as those found
in excited biexcitonic states, the spin configuration can be
either an antisymmetric singlet or a symmetric triplet state.
To indicate the singlet state, the σ subscript is S. To indicate
the triplet state, the subscript σ is Tm, where m is the total
spin projection along the QD growth direction. For a pair
of electrons (heavy holes), m can take the values of 0 or ±1
(0 or ±3). The full description of a biexciton with two unpaired
electrons and two unpaired holes is∣∣XX0

Oe1,Oe2,Oh1,Oh2,σe,σh

〉 ≡ (Oe1e1Oe2e1)σe (Oh1h1Oh2h1)σh . (9)

This set of four unpaired spatial coordinates results in 16
different states with different spin configurations. The 16 states
can be divided into four subgroups. There is one state where
the two heavy holes form a singlet (h-singlet) and the two
electrons also form a singlet (e-singlet). This state is similar in
nature to the ground biexciton state, which is also an e-singlet/
h-singlet state. Next, there are three states in which the holes
form an h-triplet and the electrons an e-singlet (e-singlet/
h-triplet). Likewise, there are three possible states in which
the holes form a h-singlet and the electrons an e-triplet
(e-triplet/h-singlet). Finally, there are nine possible states in
which both the holes and the electrons form triplets (e-triplet/
h-triplet). Due to the exchange interactions between carriers
of the same type, these four subgroups have different energies.
The lowest energy levels include the nine e-triplet/h-triplet
states. The two intermediate energy levels include the six
e-singlet/h-triplet and e-triplet/h-singlet states. The highest
energy level is the single e-singlet/h-singlet state. The full
mapping of the biexcitonic states is beyond the scope of
this tutorial. There are, however, two states which are used
extensively in the QD exciton spin control experiments

7
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Figure 5. Schematic description of the energy levels and spin
wavefunctions of the configuration |(1e2)(1h14h1)〉. The major parts
of the spin wavefunctions are presented to the right of each level.
The notations are as in figure 4, where ↑(⇓) represents an electron
(hole) with spin up (down) and a blue (red) symbol represents a
carrier in its first (excited) level. Calculated two-laser PLE spectra
are presented by dashed (solid) lines for cross- (co-)linearly
polarized excitonic and biexcitonic transitions. Blue (red) lines
represent H(V ) polarized biexcitonic transitions. Image from [76].

described in this tutorial: the |(1e2)(1h14h1)T0〉 and the
|(1e11e2)T±1 (1h11h2)T∓3〉 biexciton states. Figures 5 and 6
display the energy levels of these states. A more detailed
description of all of the mentioned biexciton states can be
found in Benny et al [76].

In principle, the singlet/triplet and singlet/singlet
biexcitonic resonances may also occur when the two carriers
that form the singlet reside in the same single carrier
orbital mode, such that the two carriers are paired. However,

due to the small spatial overlap between electron and hole
orbital modes belonging to different O numbers, intuitive
considerations based on single band models suggest that
these transitions should be weak [97]. Specifically, since
their dipole moment vanishes, transitions which involve
orbital modes of different symmetries should be forbidden.
Nevertheless, PLE spectroscopy measurements of quantum
wells [98] and QDs [99, 100] have observed some of these
forbidden transitions.

In figure 5, we schematically describe the energy
levels and the spin wavefunctions of the configuration
|(1e2)(1h14h1)〉. The major parts of the spin wavefunctions
are displayed to the right of each level, where ↑ (⇓) represents
an electron (hole) with spin up (down) and a blue (red) symbol
represents a carrier in its first (second) level. The bracketed
numbers are the total spin of the configuration. H(V ) polarized
optical transitions are represented by blue (red) vertical
arrows.

The electrons in this configuration are paired in their
ground single carrier level, while the holes are unpaired and
in different energy levels. One hole is in the Oh = 1, s-like,
orbital and the other is in the Oh = 4, dHH-like orbital. The total
spin of the electrons vanishes since the paired electrons form a
singlet. Consequently, the degeneracy between the hole triplet
states is not removed by the e-h exchange interaction. However,
many-carrier mixing effects slightly remove this degeneracy.
Our model does not contain anisotropic h–h exchange
interactions, to which previous works have attributed this effect
[99, 101].

Two absorption resonances are expected from the bright
exciton states into an e-singlet/h-singlet biexciton state. These
two transitions form a typical cross linearly polarized doublet,
similarly to the optical transitions from the vacuum to the
bright exciton state. From the exciton states into the three

1 11e 1h

H V

4 4

4 4

0

1 1 3 3
1 1 3 3

1 1 3 3
1 1 3 3

2 2

2 2

B

B

D

D

11

00

22

1 1 1 1

T T
1e 2e 1h 2h

0

Figure 6. Schematic description of the energy levels of the |(1e12e1)T (1h12h1)T 〉 biexciton and optical transitions to these energy levels.
The major parts of the spin wavefunctions are displayed to the right of each level. A blue (red) vertical arrow represents linearly polarized
optical transition along the major (H) (minor (V )) axis of the QD. Image from [76].
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e-singlet/h-triplet states, four transitions are expected. There
will be two cross-linearly polarized transitions from the bright
exciton states into the T0 triplet state with anti-parallel hole
spins. There are also two cross-linearly polarized transitions
from each of the dark exciton states into the corresponding
symmetric and anti-symmetric combinations of the biexciton
state with heavy holes in spin triplet states with parallel hole
spins, T±3. The oscillator strength of the optical transitions
from the bright excitonic states is exactly half that of the
transitions from the dark exciton states, as can be seen by
inspection of the wavefunctions of the initial and final state of
each transition. Additionally, the two transitions from the dark
excitonic states form one unpolarized spectral line since both
the dark exciton and corresponding biexciton pair states are
nearly degenerate. Consequently, this spectral line is four times
more intense than that of the other two transitions. Figure 5
presents the calculated spectra. To take into the account the
finite lifetime of the spin blockaded biexcitons, the calculated
transition energies are convoluted with normalized Gaussians
of 50 μeV width to obtain the theoretical spectra. Colour is
used to represent H (blue) and V (red) linear polarizations.
Transitions in which the exciton and biexciton photons are
co- (cross-)linearly polarized are presented by solid (dashed)
lines.

We now consider optical transitions from the excitonic
states into the e-triplet/h-triplet biexcitonic states. The
degeneracy between the states within this subgroup is removed
by electron-hole (e-h) exchange interactions. In the QDs
discussed as examples in this tutorial, these interactions
are typically about an order of magnitude smaller than
the same-carrier exchange interactions. The eigenenergies
and eigenstates can be accurately calculated using a CI
model [30, 60]. Perhaps more intuitively, an effective
biexciton e-h exchange Hamiltonian for the subspace of
|(1e12e1)Te (1h12h1)Th〉 can be built using the single exciton
effective e-h exchange Hamiltonian of equation (5), such that
an element is defined as follows [102]

f
〈
S(h),2

z , S(h),1
z , S(e),2

z , S(e),1
z

∣∣HXX0
1,2,1,2

∣∣S(e),1
z , S(e),2

z , S(h),1
z , S(h),2

z

〉
i

= f
〈
S(h),1

z , S(e),1
z

∣∣HX0
1,1

∣∣S(e),1
z , S(h),1

z

〉
i

+ f
〈
S(h),2

z , S(e),1
z

∣∣HX0
1,2

∣∣S(e),1
z , S(h),2

z

〉
i

+ f
〈
S(h),1

z , S(e),
z 2

∣∣HX0
2,1

∣∣S(e),2
z , S(h),1

z

〉
i

+ f
〈
S2

z , S(e),2
z

∣∣HX0
2,2

∣∣S(e),2
z , S(h),2

z

〉
i

(10)

where HX0
i, j

is the e-h pair spin Hamiltonian for an electron and
hole in the orbital modes i and j respectively, and the subscript
i ( f ) denotes the initial (final) spin state. After transformation
to a new basis where the same-carrier exchange states are
diagonal, the weak e-h exchange interactions can then be
treated as perturbations on the basis states. Charged excitons
(trions) have been described using a similar mathematical

approach [103, 104]. If we consider only the subspace of the
e-triplet/h-triplet spin states, |Te〉 ⊗ |Th〉,

| − 1, 3〉 =↓1↓2⇑1⇑2 Jz = 2

| − 1, 0〉 =↓1↓2 (⇓1⇑2+⇑1⇓2)√
2

Jz = −1

| − 1,−3〉 =↓1↓2⇓1⇓2 Jz = −4

|0, 3〉 = (↑1↓2+↓1↑2 )√
2

⇑1⇑2 Jz = 3

|0, 0〉 = (↑1↓2+↓1↑2 )(⇓1⇑2+⇑1⇓2)

2 Jz = 0

|0,−3〉 = (↑1↓2+↓1↑2)√
2

⇓1⇓2 Jz = −3

|1, 3〉 = ↑1↑2⇑1⇑2 Jz = 4

|1, 0〉 = ↑1↑2 (⇓1⇑2+⇑1⇓2)√
2

Jz = 1

|1,−3〉 = ↑1↑2⇓1⇓2 Jz = −2

(11)

the following matrix, neglecting many-body mixing
corrections, is obtained:

HXX0
T T

= 1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


̃0 0 0 0 
̃1 0 0 0 0
0 0 0 
̃2 0 
̃1 0 0 0
0 0 −
̃0 0 
̃2 0 0 0 0
0 
̃2 0 0 0 0 0 
̃1 0


̃1 0 
̃2 0 0 0 
̃2 0 
̃1

0 
̃1 0 0 0 0 0 
̃2 0
0 0 0 0 
̃2 0 −
̃0 0 0
0 0 0 
̃1 0 
̃2 0 0 0
0 0 0 0 
̃1 0 0 0 
̃0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(12)

where


̃0 = 

Oe1,Oh1
0 + 


Oe1,Oh2
0 + 


Oe2,Oh1
0 + 


Oe2,Oh2
0

4


̃1,2 = 

Oe1,Oh1
1,2 + 


Oe1,Oh2
1,2 + 


Oe2,Oh1
1,2 + 


Oe2,Oh2
1,2

8
. (13)

Figure 6 presents the energy levels and spin wavefunctions
of the effective Hamiltonian HXX0

T T
for the case 
̃2 � 
̃1 �


̃0. The polarization selection rules of the optical transitions
from the ground exciton states are also presented in the figure.
Since a photon can carry only a single quanta of angular
momentum, biexciton resonances of total spin 0 and 2 can only
be reached optically from the bright exciton states. Likewise,
biexciton resonances of total spin 1 1 and 3 can be reached
only from ground dark exciton states. Biexciton states with a
total spin projection of ±4 are not optically accessible from
the exciton.

5.4. Measured PL and PLE spectra of a neutral quantum dot

Figure 7 presents the polarization-sensitive PL spectrum of
a single QD in resonance with the microcavity mode. In
this case, the QD is a self-assembled InGaAs QD on a
GaAs substrate. The QD layer was positioned in the centre
of a 1λ microcavity, where the width of the spacer layer
approximately corresponds to the wavelength in matter of a
photon emitted by the recombination of a ground state exciton.
The microcavity is formed by distributed Bragg reflecting
(DBR) stacks of alternating λ/4 layers of AlAs and GaAs.
The bottom DBR consists of 25 periods of AlAs/GaAs, and
the top reflector has 11 periods of AlAs/GaAs [60, 76].
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Figure 7. Rectilinear polarization-sensitive PL spectrum, showing
the neutral exciton and biexciton lines of a single QD excited by a
501.4 nm CW laser. The corresponding spectral transitions are
identified in the figure. Image from [76].

Excitation of the QD with a 501.4 nm CW AR+ laser
was used to obtain the measured spectrum. The QD is, on
average, charge neutral at this excitation energy [80]. In
order to obtain equal emission intensity from the exciton
and biexciton lines, the excitation intensity was roughly
1 W cm−2 [31]. The corresponding optical transitions are
identified above each spectral line in the figure. In addition
to the ground bright exciton (|X0

1,1,B±〉) emission lines at

∼1.2833 eV and ground biexciton (|(1e2)(1h2)〉 to |X0
1,1,B±〉)

lines at ∼1.2800 eV, three additional lower-energy biexcitonic
lines are observed at ∼1.2770 eV. Recombination from
the metastable biexciton configurations |(1e2)(1h12h1)T 〉
to excited |(1e1)(2h1)〉 exciton eigenstates accounts for
these spectral lines. The two cross-linearly polarized lines
at ∼1.2769 eV are due to the transitions from the
|(1e2)(1h12h1)T0〉 biexciton configuration to the excited bright
exciton eigenstates, |X0

1,2,B±〉. The unpolarized line at ∼1.2771
eV is due to the two almost energy-degenerate transitions [85]
from the |(1e2)(1h12h1)T±3〉 biexciton configurations to the
excited dark exciton configurations, |X0

1,2,D±〉. The observed
emission intensity ratio of 1:1:4 corresponds to that discussed
previously in section 5.1 [80].

Figure 8 presents the PLE spectra of neutral excitonic
and several biexcitonic PL lines. The PL line measured in the
corresponding PLE spectrum is indicated by the arrow on the
small expanded-scale PL spectra to the left of each graph.
Combined with polarization-sensitive PL measurements and
the intuition gained from the model outlined in section 5.1,
these measurements resulted in the identification of most
of the observed one- and two-photon absorption resonances. In
the PLE spectral measurements, the identified final states of the
optical transitions are marked above the observed transitions.

5.5. Experimental identification of excitonic lines

Figure 8(a) displays single photon absorption resonances.
The emission from excitonic spectral lines is enhanced upon
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Figure 8. Linearly polarized PL spectra (left panels and the lower energy region in (a)) and PLE spectra (right panels) of a single QD. The
PLE in (a) is measured by a continuous scan of the emission energy of one laser, while a photon detector measured emission from the
excitonic emission spectral line. The PLE spectra in (b)–(d) are measured using two lasers. One laser’s emission energy was tuned to the
excitonic resonance (2e1)(1h1) at 29 meV (as shown in (a)), while the energy of the second laser was continuously scanned. The PL line
monitored in each case is marked on the corresponding left panel by a vertical black arrow. The assignment of the measured resonances is
given by the state to which the QD is excited, and written above each resonance. Image from [76].
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resonant absorption of a photon by the empty QD. The
|(2e2)(2h2)〉 absorption resonance dominates the spectrum. In
this excitonic state, both the electron and the heavy-hole are in
their second, pH-like orbital mode. The large overlap between
the orbitals of the two charge carriers accounts for the observed
strength of this resonance. Though PLE spectrum contains
other sharp absorption resonances, such resonances are weaker
by almost an order of magnitude. These resonances correspond
to states in which the heavy hole and the electron differ in their
orbital mode symmetry, so-called ‘non-diagonal’ excitonic
states. Since the spatial overlap between the modes is small, the
oscillator strength of the transition is correspondingly weaker.
The |(1e1)(6h1)〉 transition is the highest energy non-diagonal
transition which can be identified in this spectrum. Here, the
hole is in its dVV -like mode. Since the s-like and dVV -like
orbitals are both of even symmetry, there is some amount of
overlap which results in a non-vanishing oscillator strength for
these transitions [98].

Non-diagonal excitonic transitions between different
symmetries, like that to the |(1e1)(2h1)〉 state, are
also, somewhat surprisingly, observed. This transition is
unambiguously identified by its spectral position and shape,
and is the lowest energy resonance in the measured PLE
spectrum. It is a cross linearly polarized doublet, with the
same energy-order of polarizations and splitting as the ground
state excitonic PL line. This is due to optical transitions
from the |(1e2)(2h11h1)T0〉 spin-blockaded biexciton to this,
|(1e1)(2h1)〉, excited non-diagonal exciton state (figure 7). In
both cases, the same final exciton states dictate the spectral
shape. Likewise, the next highest energy order doublet can
be identified as corresponding to the non diagonal transitions
to the bright levels of the |(1e1)(3h1)〉 exciton. In both of
these resonances, |(1e1)(2h1)〉 and |(1e1)(3h1)〉, the electron
is excited into its first, s-like, symmetric orbital mode,
whereas the hole is excited into the second, pH-like, and third
pV -like, antisymmetric mode. Since the orbital mode overlap
vanishes, these optical transitions are expected to be forbidden.
Symmetry breaking, possibly resulting from mixing with other
bands, could account for the observation of these transitions
[99, 100].

Phonon-induced mixing is another important mechanism
permitting symmetry-forbidden transitions. When the phonon
energy is resonant with the single-carrier energy level
separation, this mixing is particularly strong [105]. The
spectrally broad resonance 29 meV above the exciton line
shows clear evidence of such mixing-induced excitation. This
energy separation corresponds to the energy of LO phonons
in GaAs and InAs compounds [106–109]. The InxGa1−xAs
optical phonon energy corresponds closely with the 1e-2e
energy level separation, resulting in an enhanced absorption in
this spectral domain. The fact that the |(2e1)(2h1)〉 is higher
in energy by about 29 meV from the |(1e1)(2h1)〉 resonance
also supports this observation.

5.6. Experimental identification of biexcitonic lines

PLE spectra of the various biexcitonic emission lines are
presented in figure 8(b)–(d). To perform these measurements,
one laser was tuned to the broad excitonic resonance at 29 meV

in order to populate the QD with a bright exciton. The emission
from the biexcitonic emission lines was then measured as a
function of the continuously-varied emission energy of the
second laser.

Figure 8(b) presents the PLE spectrum of the ground
biexciton doublet, |(1e2)(1h2)〉 −→ |(1e1)(1h1)〉. The
allowed transitions from the bright exciton states of total
spin ±1 into the e-triplet/h-triplet biexcitonic states
|(1e12e1)T0 (1h12h1)T0〉 (total spin zero) and |(1e12e1)T±1

(1h12h1)T∓3〉 (total spin ±2) are clearly observed and dominate
the measured PLE spectrum.

The PLE measurement of the emission line corresponding
to decay of the spin-blockaded metastable biexciton,
|(1e2)(1h12h1)T±3〉, is presented in figure 8(c). This emission
line corresponds to recombination of the ground e-h pair,
resulting in the excited dark exciton states, |X0

1,2,D±〉. The
e-triplet/h-triplet resonances dominate this spectrum, which is
unsurprising due to the h-triplet of the monitored emission line.
The lowest energy resonance in this PLE spectrum corresponds
to the absorption resonance transition from the ground state
dark exciton |X0

1,1,D±〉 directly to the monitored resonance,
|(1e2)(1h12h1)T±3〉, by photogeneration of an Oe = 1 Oh = 2
e-h pair. Resonances in which the hole is excited into the
Oh = 3 and Oh = 4 orbitals are also clearly identifiable.
Photogenerated holes in these resonances relax nonradiatively
to the Oh = 2 level. Since further non-radiative relaxation is
spin-blockaded, this is where recombination occurs [79, 80].

A broad resonance is observed ∼29 meV above the
|(1e2)(1h12h1)T±3〉 biexciton resonance. This resonance is due
to absorption into the |(1e12e1)S(1h12h1)T±3〉. One LO phonon
strongly couples this state to the |(1e2)(1h12h1)T±3〉 state,
analogously to the coupling between the |(2e1)(1h1)〉 and the
|(1e1)(1h1)〉 states of the bright exciton that was observed in
figure 8(a).

Figure 8(d) presents PLE measurements of the
metastable biexciton |(1e2)(1h12h1)T0〉 to the excited bright
exciton state |X0

1,2,B+〉. Similar features are observed. The
absorption resonances from the bright exciton states to
the |(1e2)(1h12h1)T0〉 and the |(1e2)(1h14h1)T0〉 states are
identified in this spectrum. Missing from this spectrum due
to poor signal-to-noise ratio is the weaker resonant absorption
into the |(1e2)(1h13h1)T0〉 state.

The energy difference between the optical
transitions |(1e1)(1h1)〉 −→ |(1e2)(1h12h1)T0〉 and
|(1e2)(1h12h1)T0〉 −→ |(1e1)(1h1)〉 is 15.7 meV. This
difference exactly matches the energy of the optical transition
from the vacuum into the first excited exciton state,
|(1e1)(2h1)〉, as expected.

Absent from the PLE spectrum of the ground biexciton
(figure 8(b)) are the transitions to the states |(1e2)(1h12h1)Tm〉
which were clearly observed in figures 8(c) and (d). In the
latter cases, the emitting state is directly excited and no
intermediate non-radiative relaxation process is necessary.
However, when the |(1e2)(1h14h1)T0〉 state is excited, it is
not the case that the emitting state is directly excited. Here,
non-radiative relaxation of the hole must occur prior to optical
recombination. Consequently, this absorption resonance is
observed in the PLE spectrum of the ground biexciton state
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Figure 9. (a) A schematic description of writing and reading the
exciton spin state. Horizontal lines describe the relative energies of
the states, and the spin wavefunctions are provided to the left of the
corresponding line. ↑ (⇓) represents a spin up (down) electron
(hole). Blue (red) symbols are used to represent a carrier in the
ground (excited) energy state. Resonantly tuned light pulses are
denoted by green arrows. The first pulse is tuned to an excited
exciton state, and the second pulse is tuned to an excited biexciton
state. Non-radiative relaxation is indicated by curly lines. Blue (red)
lines indicate radiative H(V ) polarized recombination. The
linewidth of the laser pulses is indicated by a schematic drawing of
the pulse spectrum to the right of the energy level diagram, next to
the marker for the X0∗ state. (b) The initialization of an exciton spin
state with a polarized laser pulse is illustrated on the Bloch sphere.
The point P0(θ, φ) represents a spin state of arbitrary polarization.
State precession after initialization is indicated by a circle. Image
from [57].

as well, suggesting that the hole spin may slightly scatter in
the relaxation from the OH = 4 to the Oh = 2 orbital state
[79]. Finally, the resonances |(1e12e1)T±1 (1h12h1)T∓3〉 and
|(1e12e1)T0 (1h12h1)T0〉, corresponding to optical transitions
from the bright exciton states, are only observed in the PLE
spectrum of the ground biexciton emission line (figure 8(b)).
Similarly, the resonances |(1e12e1)T±1 (1h12h1)T0〉 and the
|(1e12e1)T0 (1h12h1)T±3〉, due to optical transitions from the
dark exciton states, are observed only in PLE spectra of
the spin blockaded biexcitons (figures 8(c) and (d)). Due
to the spectral overlap of the bright exciton resonances
|(1e12e1)T±1 (1h12h1)T∓3〉 and the dark exciton resonances
|(1e12e1)T±1 (1h12h1)T0〉 and |(1e12e1)T0 (1h12h1)T±3〉, the final
identification of these resonances was based on time-resolved
and polarization-sensitive spectroscopy [76].

6. Writing and reading the exciton spin
configuration

A single, polarized, resonantly-tuned, picosecond light pulse
can be used to initialize the exciton spin state in any coherent
superposition of its eigenstates. Likewise, a second, delayed
picosecond laser pulse, tuned to a biexcitonic absorption
resonance and of a given polarization, can be used to
project, or ‘read out’ the spin state of this initialized exciton
onto given polarization direction. Figure 9(a) is an energy
level diagram schematically describing the exciton spin state
reading and writing process. To photogenerate an exciton, the

first polarized laser pulse is resonantly tuned to an absorption
resonance corresponding to an excited exciton state. From this
excited state, the exciton rapidly relaxes to its ground state via
a non-radiative, spin-preserving process [79, 80].

We will now discuss why the polarization of the light
in the exciting laser pulse is related to the spin state of the
photogenerated exciton. First, in the direction of propagation,
the angular momentum projection of right- (left-) hand
circularly polarized light, R(L) is 1 (−1). When such a right-
(left-) hand circularly polarized photon generates an e–h pair,
the electron spin is oriented downward (upward) while the
heavy hole spin is pointing upward (downward) in order to
conserve the total angular momentum. The spin state of such
a pair can be associated with the polarization of the light
by the definition |R〉 =⇑↓ (|L〉 =⇓↑). This notation enables
a straightforward expression of the correspondence between
horizontal (H), vertical (V ), diagonal (D), and anti-diagonal
(B) linear polarizations of the excitation laser light and the spin
state of the photogenerated e-h pair:

|H〉 = 1√
2
(⇑↓ + ⇓↑) |V 〉 = −i√

2
(⇑↓ − ⇓↑)

|D〉 = e−iπ/4

√
2

(⇑↓ +i ⇓↑) |B〉 = eiπ/4

√
2

(⇑↓ −i ⇓↑). (14)

Figure 9(b) describes these spin states on the Bloch sphere for
the exciton spin.

The Poincaré sphere can be used to describe arbitrarily
elliptically-polarized pulses. The polarization of such a pulse
is represented by a point on the surface of the Poincaré
sphere. The coordinates of this point have two components.
The D and R directions are contained in the component on
the equatorial plane, deflected by an angle φ from D. There
is also a component parallel to the H–V axis. Therefore, only
two angles are necessary to completely define an arbitrary
elliptical polarization—the angle φ and the angle θ between
the polarization and the H–V axis. An arbitrary exciton spin
state can be analogously described as a point on the surface
of a Bloch sphere. In this case, the north and the south poles
of the Bloch sphere are the non-degenerate symmetric and
antisymmetric eigenstates of the exciton spin, |H〉 and |V 〉.

The exciton can be photogenerated in its symmetric
(antisymmetric) spin eigenstate |H〉 (|V 〉) by a resonantly
tuned H(V ) polarized laser pulse. Since, in this experiment,
the ‘write’ pulse was resonant to an excited exciton state,
the photogenerated exciton must relax nonradiatively into its
ground state before recombination occurs. The exciton then
remains in the corresponding eigenstate until it radiatively
recombines. The two spin eigenstates |H〉 and |V 〉 are
non-degenerate–they evolve at different rates. Consequently,
a coherent superposition of these eigenstates precesses in
time, with the precession frequency given by the difference
between the eigenenergies, divided by the Planck constant.
Excitation in such a coherent superposition of spin eigenstates
requires a resonant pulse whose spectral width contains both
eigenenergies. In the time domain, this corresponds to a laser
pulse that is much shorter than the precession period. In
figure 9(b), the orange circle on the equator describes the
evolution of an exciton excited by a resonant L-polarized pulse.
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This pulse initiates the exciton in a superposition of the |H〉
and |V 〉 eigenstates with equal probabilities. The initiated spin
then precesses counter-clockwise. The spin state becomes, in
order, |D〉, |R〉, |A〉 and |L〉 again after 1/4, 1/2, 3/4 and 1
period. The precession of an exciton spin photogenerated with
a pulse of arbitrary polarization P0(θ, φ) is represented by a
purple circle.

To verify the polarization of the initialized exciton state,
a second polarized pulse is applied with a delay of 
τ from
the first pulse. This pulse is tuned to an excited resonance of
the biexciton. The probability of photogenerating a biexciton
depends on the orientation of the exciton spin state relative to
the second pulse polarization. Just like the excited excitonic
state, the excited biexciton relaxes nonradiatively into its
ground state. Monitoring the dependence of the PL from
the ground state biexciton as a function of 
τ yields direct
information on the evolution of the spin state of the exciton. It
is worth noting here that both the writing of the exciton state
and its spin projection read-out are single-shot experiments.
That is, if a π -pulse is used to photogenerate the exciton, every
laser pulse will result in an exciton with a well-defined spin
polarization state, depending on the polarization of the optical
pulse. Likewise, if a π -pulse is used to project the exciton spin
state or to read it out, it is a single shot operation. This being
said, in the actual experimental demonstrations we rely on the
detection of an emitted photon from the QD, and temporal
averaging over many pulses is required. This is because the
efficiency of light harvesting from single QDs is typically
limited to a fraction of a per cent. This impediment can in
principle be overcome either by increasing light harvesting
efficiency [110] or by using photocurrent spectroscopy to read
the signal [111, 112].

The ‘writing’ and ‘reading’ process which we have
described here is not restricted to any specific resonance
of the exciton and the biexciton. Phonon-induced mixing is
very strong if the single carrier energy level separation [113]
resonates with a phonon energy. In this situation, symmetry-
forbidden transitions are allowed, and the rate at which the
excited state relaxes to the ground state is enhanced. Writing
with polarization can also be performed under resonant
excitation of the ground state exciton. Larger fidelity of the
initialized state is expected in cases where the exciton spin
state is directly written.

7. Optically induced rotation of the exciton spin

The technique used for verifying the exciton spin state after
initialization, namely transfer of one of the exciton eigenstate
populations to an associated biexcitonic state, can also be used
to rotate the exciton spin state. The polarized, picosecond,
biexcitonic read-out pulse discussed in section 6 selectively
couples one of the exciton spin states, while leaving the other
state unaffected. The effect of this coupling is a control over
the spin state of the exciton manifested as a rotation of the
exciton spin on the Bloch sphere about an axis determined by
the pulse polarization, by an angle which depends on the pulse
detuning. The duration of the pulse is two orders of magnitude
shorter than the exciton lifetime (∼1 nsec), permitting many

Jz=-1 Jz=+1

Jz=-2
L R

Jz=+2

|L |R
|L|R

|V

|H

(a) (b)

Figure 10. (a) The exciton spin state represented on a Bloch sphere.
At t = τ , an R-polarized biexciton pulse is applied. The circle along
(on top of) the equator describes the precession of an exciton spin
initialized at t = 0 by an R-polarized pulse, for t < τ (t > τ ). (b)
The relevant exciton and biexciton energy levels and the
polarization selection rules for a control laser resonant to an excited
biexciton transition. The symbol ↑ (⇓) represents an electron
(heavy hole) with z-direction spin projection 1

2 (− 3
2 ). Short (long)

symbols represent charge carriers in their ground (first excited)
state. Image from [58].

coherent operations. Methods recently used on ensembles of
charged QDs [50, 114] are conceptually similar.

This control experiment begins when the exciton spin
wavefunction is written by a R- or L-circularly polarized laser
pulse into the corresponding |R〉 or |L〉 spin state. As discussed
in section 5.1, the spin precesses in time between the |R〉 and
|L〉 states [57, 115–117] (figure 10(a)). R-polarized resonant
excitation yields the spin state wavefunction

ψi(t) = 1√
2
(ei
·t |H〉 + i|V 〉) = a|L〉 + b|R〉

a = iei
·t/2 sin(
 · t/2); b = ei
·t/2 cos(
 · t/2) (15)

where �
 is the energy difference between the exciton
eigenstates. The sample is then excited with a second, delayed,
circularly polarized pulse tuned into (or slightly detuned from)
an excited biexciton resonance. For this particular control
scheme, the |(1e11e2)T±1 (1h11h2)T∓3〉 biexciton resonance is
used (figure 6). However, as the physical phenomena are
general, this scheme can be applied to any excited state
resonance. This particular resonant level includes two states
where the electron spins are parallel each other and antiparallel
to the two hole spins. Figure 10(b) schematically illustrates
these two biexcitonic states. The total angular momentum
projection of these states is Jz = ±2.

The R (L) polarized pulse carries with it angular
momentum of 1 (−1). Consequently, this pulse can couple
only the Jz = 1 (−1) exciton state to the Jz = 2 (−2)

biexciton state. The laser pulse duration is much shorter
than the exciton precession period. Consequently, the coupled
exciton-biexciton states can be safely viewed as an isolated
two-level system during the pulse [48]. This system has been
solved analytically for the case of a hyperbolic-secant pulse
shape [48, 118, 119]. The laser-induced coupling between
relevant exciton and biexciton states is given by [119], C(t) =
−�� · sech(σ t)e−iωt , where ω is the laser frequency, σ is
the pulse bandwidth, and � is the Rabi frequency. When the
exciton spin state just before the second pulse is given by (15),
the state after an R-polarized hyperbolic-secant pulse is thus
by [48, 119],

ψ f = a|L〉 + bF(α,−α, γ , 1)|R〉
+ b

iα

γ
F(α + γ ,−α + γ , 1 + γ , 1)|Jz = 2〉 (16)
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where F is the Gaussian hypergeometric function (also denoted
as 2F1), and α = �/σ ; γ = 1

2 − iδ/(2σ ), where δ = ω − ω0

is the detuning from resonance frequency ω0. The probability
to populate the biexciton as a function of the time difference
τ between the two pulses can then be derived using known
properties of hypergeometric functions [119] and is given by

PXX = |〈Jz = 2|ψ f 〉|2 = P0
XX |b(τ )|2

= sech2

(
πδ

2σ

)
sin2

(
π�

σ

)
·
[

1

2
+ 1

2
cos(
 · τ )

]
. (17)

From (17), we see that at τ = 0 (i.e. the initialization
and control pulses are coincident in time), a non-detuned
(δ/σ = 0) π -pulse (�/σ = 0.5) transfers the entire excitonic
population to the biexciton state [48]. However in general,
the absorption of the second pulse depends on the precession
of the exciton spin relative to the control pulse polarization.
This results in oscillations in PL emission from the biexciton
spectral line, as described in section 6 and [57]. The second
pulse also affects the component of the excitonic population
which is not transferred to the biexcitonic state. This circularly
polarized control pulse couples only to one component of
the exciton spin state, affecting the relative amplitude and
phase between the excitonic spin eigenstates. The change in
the relative phase induced by the control pulse corresponds
to a rotation of the exciton Bloch sphere about the |R〉–|L〉
axis. The control-induced change in the relative amplitude can
likewise be viewed as a compression of the Bloch sphere from
the |L〉 pole towards the |R〉 pole. Up to normalization, the
exciton state after such a control pulse can be expressed by
the first two terms of (16). To measure this changed exciton
spin state, the spin direction of the exciton must be measured
after the control pulse. Measuring the net polarization of the
PL from the excitonic emission lines readily yields the spin
projection on the |H〉–|V 〉 axis of the Bloch sphere.

Figure 10 illustrates this idea schematically on the Bloch
sphere. When the exciton spin is oriented along the equator,
its projection on the |H〉–|V 〉 axis is zero. This corresponds
to an overall spin state where both eigenstates of the exciton
are equally populated. However, if the control pulse forces
the exciton spin to move in a trajectory which leaves the
equator, the populations of the two exciton eigenstates are
no longer equal. After the control pulse, the exciton spin again
precesses on the Bloch sphere around the |H〉–|V 〉 eigenstate
axis. However, the population difference in the eigenstates,
created during the control pulse, remains constant and nonzero.
The exciton spin state now has a nonzero projection on the
|H〉–|V 〉 axis of the Bloch sphere. The exciton PL emission
is proportional to the probability of population, and |H〉
and |V 〉 exciton emission can be differentiated energetically.
Thus, variations in the PL from exciton spectral lines can
be measured and related to the exciton population. The
normalized difference between the emission intensities of the
two cross-linearly polarized exciton emission lines directly
measures the spin projection on the |H〉–|V 〉 axis of the Bloch
sphere. Since the energy difference between the spectral lines
of the two exciton eigenstates is larger than their spectral width,
the two emission intensities can be simultaneously measured
by placing a circular polarizer in front of a monochromator.

Figure 11. Polarization sensitive PLE spectrum of the |(2e1)(1h1)〉
excitonic resonance. The blue (red) line represent the emission from
the bright exciton doublet into the vacuum versus the exciting laser
energy, while both the laser and the detection of PL where
horizontally (vertically) polarized. The dashed black line represents
a measurement where the laser and the PL emission are cross
linearly polarized.

In the absence of temporally-resolved PL measurements,
the excitonic PL emission will also contain contributions
from incoherent decay of the biexcitonic population into
the excitonic population. However, excitons resulting from
incoherent decay of the biexciton equally populate the |H〉
and |V 〉 eigenstates due to the polarization selection rules
(figure 10(b)). Thus, decay of the biexcitonic population
does not contribute to the difference between excitonic
eigenstate populations. Immediately after the control pulse,
the population difference can be calculated directly from (16).
Using (15) and properties of hypergeometric functions [119]
yields,

DV H = |〈V |ψ f 〉|2 − |〈H|ψ f 〉|2
= −2Re[a(τ ) · b(τ )∗ · F(α,−α, γ , 1)∗]

= D0
V H sin(
 · τ ) (18)

D0
V H = Im

[
�2

(
1
2 + iδ

2σ

)
�

(
1
2 + iδ

2σ
+ �

σ

)
�

(
1
2 + iδ

2σ
− �

σ

)]
, (19)

where �(z) is the Gamma function. Equation (18)
demonstrates that the oscillations in DV H have the same
frequency as those of the biexcitonic population, (17).
However, they are shifted in phase by π/2. Equation (19)
provides the amplitude of the oscillations and depends on
the pulse intensity (�/σ ) and its detuning normalized by the
pulse bandwidth (δ/σ ). The sign of the detuning gives the sign
of the amplitude, and the amplitude vanishes on resonance
(δ/σ = 0). From equations (16)–(19), the angle of the induced
rotation can be written as

θ = sin−1 (
D0

V H/

√
1 − P0

XX

)
. (20)

7.1. Demonstration of optically induced rotation

Figure 11 presents the polarization sensitive PLE spectrum
of the (2e1)(1h1) excitonic resonance. The blue (red) line
represent the emission from the bright exciton doublet into
the vacuum versus the exciting laser energy, while both the
laser and the detection of PL where horizontally (vertically)
polarized. The dashed black line represents a measurement
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Figure 12. R-polarized PL intensity as a function of the photon
energy (horizontal axis) and the time difference (vertical axis)
between two R-polarized laser pulses. The first is tuned into the
exciton resonance and initializes the exciton spin state, and the
second pulse is detuned by −63 μeV from the biexciton resonance
and is used to control the exciton spin state. The temporally
averaged spectrum is shown at the bottom. Image from [58].

where the laser and PL emission are cross linearly polarized.
As discussed in section 5.5, this resonance is mixed with the
ground bright exciton state through induced phonon mixing
[105]. The lifetime of this excited state, as judged by its
linewidth (∼1 meV), is much shorter than its precession
period, as judged by the energy difference between its H
and V co-linearly polarized components (60 μeV—figure 11).
The fast relaxation predominantly preserves the initiated
spin. Thus, pulsed excitation to that resonance imprints the
polarization state of the laser pulse into the spin state of the
exciton [57].

Figure 12 presents the R-polarized PL intensity (colour)
from the QD versus the PL energy (horizontal axis) and the
time difference τ (vertical axis) between the initialization and
control pulses. The initialization pulse writes the exciton spin–
spin state and is tuned to the |(2e1)(1h1)〉 excitonic absorption
resonance. The control pulse is detuned by −63 μeV from
the |(1e12e1)T±1 (1h12h1)T∓3〉 biexcitonic resonance (figures 6
and 8). The two lasers are co-circularly R polarized. Emission
from the ground state biexciton (exciton) is the lower (higher)
energy emission line doublet. The precession of the exciton
spin state after initialization by the first pulse [57] is reflected
in the oscillations of the PL emission from the biexciton,
whose intensity reads out the exciton spin state. Equation (17)
describes this behaviour. The variations in the exciton spin
projection on the eigenstate axis of the Bloch sphere induced
by the control pulse, as described by equation (18), are visible
as oscillations in the PL from the two excitonic components.
Recombination of the positively charged exciton results in the
faint spectral line at 1.282 93 eV is due to the positively charged
exciton. PL emission from the positively charged exciton does
not oscillate with τ .

The angle by which the exciton spin projection is rotated
depends on the detuning of the control pulse from resonance.
First, the energy of the control laser was varied around the
Jz = ±2, |(1e12e1)T±1 (1h12h1)T∓3〉 absorption resonance for
a fixed time difference between initialization and control of
30 ps. The intensity of the second, control, pulse was tuned to
slightly below the intensity required for population inversion

at resonant excitation, a value chosen in order to observe both
exciton and biexciton emission lines during the experiment.
Simultaneous observation of exciton and biexciton emission
lines allows simultaneous testing of equations (17) and (19).
Figure 13(a) shows this PLE spectrum of the biexcitonic
absorption resonance. The calculated biexciton population
(17) for a 9 psec FWHM hyperbolic-secant pulse (�σ =
145 μeV) is represented by a dashed line. The measured
values deviate from the calculated values at low energies.
This deviation is due to a nearby excited biexciton absorption
resonance, Jz = 0, |(1e12e1)T0 (1h12h1)T0〉. Allowing for this
deviation, the width of the Jz = ±2 resonance corresponds
well to the calculated theoretical width. The fact that the
resonance width is completely determined by the spectral
width of the laser indicates that this excited biexciton state
does not relax into lower-energy biexciton states during the
control pulse. The different spin configuration of these states
and the slow spin dephasing rate of the QD-confined charge
carriers [46] explain this effect. The resonance width implies
that the Jz = ±2 biexciton remains coherent during the entire
control pulse.

Figure 13(b) presents the biexciton PL intensity as a
function of τ . The black (blue) line represents off (almost
on) biexcitonic resonant excitation. The dependence on
time difference is cosinusoidal in both cases, as seen in
equation (17). The intensity of the PL emission from the
exciton lines as a function of τ , for the same almost-on- and
off-resonant biexcitonic excitation is presented in figure 13(c).
The solid (dashed) line denotes the PL from the H- (V -)
polarized component of the excitonic emission line doublet.
The difference between the PL intensities from these two
cross-linearly polarized exciton emission lines, normalized
by the sum of their intensities at negative delay time, before
the arrival of the control pulse, is presented for a variety of
detuning values in figure 13(d). As in (18), the oscillations
are sinusoidal in τ . The dependence of the amplitude on the
detuning is clearly visible. Below resonance, the amplitude
is negative. Above resonance, the amplitude is positive. On
resonance, the amplitude vanishes, as expected from (19).

Figure 14 summarizes this dependence by displaying the
measured excitonic PL oscillation amplitudes as a function
of the normalized detuning, δ/σ . The dashed lines present the
amplitude calculated by equation (19), for �/σ = 0.35 (0.7π -
pulse), which corresponds well to the control pulse power used
in this experiment. Co- (cross-)circularly polarized laser pulses
are displayed in blue (red). The inset displays the measured
and calculated spin rotation angles from (20) on the same
normalized detuning axis.

8. Complete control of the exciton spin by a 2π-area
pulse

The realization of quantum information processing requires
matter qubits. The spin of a particles is a promising matter
qubit candidate, since electronic, nuclear, or atomic spins are
natural and relatively protected two-level physical systems.
The spin state of these particles can be described as a coherent
superposition of the two spin states, and geometrically
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Figure 13. (a) The solid line displays the measured biexciton PL intensity versus the control laser detuning from the biexciton absorption
resonance at a fixed τ = 30 ps. Circles represent the specific energies used for the measurements presented in (b)–(d). The dashed line is the
calculated PXX (17), for a pulse of 9 ps FWHM (�σ = 145 μeV). (b) Biexciton intensity versus τ close to (light blue) and far from (black)
resonance. The vertical dashed line denotes τ = 30 ps. Detuning values are given next to the corresponding curve. (c) The solid (dashed)
line denotes the PL intensity of the H (V ) component of the exciton doublet versus τ , close to and far from resonance, as in (b). The curves
are vertically shifted for clarity. (d) The differences between the PL from the V and H components, normalized by their sum at negative τ ,
for the energies marked by circles in (a) and specified in μeV next to each curve. Vertical dotted lines present integer spin precession periods
T =h/(34 μeV) = 122 psec. Image from [58].
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Figure 14. Measured (symbols and error bars obtained by model
fitting to the data in figure 13(d)) and calculated (dashed line)
oscillation amplitudes of the exciton polarization versus the
normalized detuning δ/σ , where �σ = 145 μeV and �/σ = 0.35
(0.7π -pulse). Blue (red) colour describes co- (cross-)circularly
polarized pulses. Inset: the measured and calculated rotation angles
for a 0.7π pulse. Image from [58].

represented as a vector from the centre to a point on the surface
of a Bloch sphere, a unit sphere whose poles correspond to the
two spin eigenstates of the system. For a qubit, the state of
the system must be fully controllable. This type of universal
operation can be described geometrically as a rotation of the
qubit state vector about any desired axis, by any desired angle
[7, 8]. These universal operations must be performed with high
fidelity, and they must be completed in a short time. The time
required by the operation should be shorter than the qubit’s
life and decoherence times by orders of magnitude [15].

When the two spin eigenstates are not degenerate, such
as in the presence of a magnetic field, a state composed of a

superposition of these eigenstates will evolve in time. This time
evolution can be described geometrically as a precession of the
state vector about an axis connecting the poles of the Bloch
sphere. The frequency of precession is given by the energy
difference between the two eigenstates, divided by the Planck
constant.

So far, demonstrated control methods use a sequence of
optical pulses to induce fixed rotations of the qubit around axes
that differ from the precession axis. Between these pulses,
a delay allows for coherent precession of the qubit, thus
achieving a universal operation. Clearly, the addition of this
fixed delay stage in such a sequence of steps increases the time
necessary to perform the operation. This results in an operation
time comparable to the precession period. Additionally, the
overall fidelity of the operation is the product of the fidelities
of each step, such that an operation with more steps will have
a lower overall fidelity.

In contrast, we demonstrated [59], that it is possible to
achieve complete control of a matter qubit using a single
picosecond optical pulse. This qubit was composed of an
optically excited electron (exciton) in a single semiconductor
QD [57, 58, 79, 120–122]. The techniques we used to achieve
single-pulse control are not unique to this qubit system. They
are generally applicable to other systems as well. This single-
pulse control was one of the first demonstrations of a fast and
efficient universal single-qubit gate, something which had not
been demonstrated previously in other qubit systems.

As a candidate qubit, spins of charge carriers confined in
semiconductor QDs are particularly important [22, 123] since
they are compatible with current semiconductor technologies
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and since they enable an interface between flying qubits such
as photons and the anchored spin qubit. Spin control in QDs
has already been well-demonstrated, and techniques include
radio-frequency pulses [27, 28] and by optical means using
stimulated Raman scattering [46, 47, 54] or by accumulation
of a geometrical phase through resonant excitation
[48–52, 114].

We have discussed previously how an excitonic qubit
can be prepared in a given spin state [57] (section 6).
The ability to prepare the qubit in a given state enables
the next demonstration, that of full control over this state
after initialization. The control pulse is a single 2π -area
optical pulse, tuned or slightly detuned from a non-degenerate
biexciton resonance. The excitonic population is transferred
into itself via the 2π -pulse, through a process of photon
absorption and stimulated emission. During this pulse, the
two eigenstates of the exciton spin acquire a relative phase
difference, and it is this phase difference that results in rotation
of the exciton spin state. The energy detuning of the control
pulse from the biexciton resonance determines the rotation
angle, and the polarization of the control pulse determines
the spin rotation axis [57, 58]. This process is different from
control of a single carrier spin as demonstrated in [27, 28,
46–52, 54, 114] or the process we described previously in [7]
and [58] for controlling the exciton spin with a degenerate
resonance. In these cases, polarization is used to distinguish
between degenerate optical transitions. Consequently, the
polarization degree of freedom is lost and only a fixed,
well-defined rotation axis is present.

We now describe the control of a coherent exciton spin
state, which can be described as a vector on the Bloch sphere

|X (θ, φ)〉 = cos

(
θ

2

)
|H〉 + ieiφ sin

(
θ

2

)
|V 〉

= α(θ )|H〉 + β(θ, φ)|V 〉 (21)

where |H〉 and |V 〉 are the two spin eigenstates
1/

√
2[(1e1)−1/2(1h1)3/2 + (1e1)1/2(1h1)−3/2] and

1/
√

2[(1e1)−1/2(1h1)3/2 − (1e1)1/2(1h1)−3/2] respectively.
The poles of the Bloch sphere are these two non-degenerate
eigenstates (figure 9). A short optical pulse, resonantly tuned
to an excitonic transition and whose bandwidth is larger than
the energy splitting between the eigenstates, can generate an
exciton in this coherent superposition. The pulse polarization
is given by:

�PX (θ, φ) = cos

(
θ

2

)
Ĥ + ieiφ sin

(
θ

2

)
V̂ , (22)

where Ĥ (V̂ ) represents a linear polarization parallel to the
major (minor) axis of the QD [57, 76].

Here, the biexcitonic resonance used for the probe and the
control contains two excitons with different spatial symmetries
and antiparallel spins. In our notation, this resonance is
described as |(1e2)(1h14h1)T0〉. The two electrons form a spin
singlet in the ground energy state. The holes are in two different
energy levels, one in the ground s-like level and one in the
dHH-like forth level, and they form a triplet state with zero
total spin projection [76] (figure 5). Consequently, a polarized
pulse in such a resonance couples exclusively to the exciton
with the opposite spin state. This means that an R-polarized

XX

0*XX

Figure 15. A schematic energy level diagram of the exciton and
biexciton states involved in the single-pulse control experiment.
Here, |X〉 (|X̃〉) is the coupled (uncoupled) state. The
|(1e2)(1h14h1)T0 〉 biexciton state is represented by |XX0∗〉. The
curved arrows depict 2π -pulses with different energy detunings. The
dashed grey arrow represents the restricted uncoupled transition.

pulse couples to |L〉, D to |D̄〉, and H to |V 〉, where P is the
probe pulse polarization and |P〉 is the corresponding exciton
spin state of the exciton [57]. The absorption is maximized if
the polarization of the second pulse is cross-polarized relative
to the exciton spin, or with the polarization of the first pulse in
the case that the two pulses are simultaneous,

�PXX (π − θ, π + φ) = sin

(
θ

2

)
Ĥ − ieiφ cos

(
θ

2

)
V̂ , (23)

as described in [57, 76]. The cross-polarized exciton state

|X̄ (θ, φ)〉 = |X (π − θ, π + φ)〉
= sin

(
θ

2

)
|H〉 − ieiφ cos

(
θ

2

)
|V 〉

= α(θ )|H〉 + β(θ, φ)|V 〉 (24)

is maximally coupled to ‘cross polarized’ pulses with
polarization described by (22), but unaffected by resonant
pulses that are ‘co-polarized’. Figure 15 illustrates this control
scheme.

An arbitrary coherent excitonic state such as:

|X (θ ′, φ′)〉 = cos

(
θ ′

2

)
|H〉 + i eiφ′

sin

(
θ ′

2

)
|V 〉

= α(θ ′)|H〉 + β(θ ′, φ′)|V 〉 (25)

can be conveniently expressed also in terms of the coherent
states |X (θ, φ)〉 and |X̄ (θ, φ)〉 as:

|X (θ ′, φ′)〉 = α(θ p)|X (θ, φ)〉 + β(θ p, φp)|X̄ (θ, φ)〉, (26)

where spherical symmetry considerations are used, and the
angles θ p and φp are measured relative to the pulse polarization
direction.

The |X̄ (θ, φ)〉 part of the exciton wavefunction acquires
a geometrical phase relative to the|X (θ, φ)〉 part, since the
�PXX polarized 2π -area pulse couples only to the |X̄ (θ, φ)〉
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0 t-T t

0XX

0X ↓ − ↑

±↓ ↑
↓ ↑

( )↓↑ +

↓ + ↑

Figure 16. A schematic description of the pulse sequence used for initialization (pump), control and read-out (probe) of an exciton spin
state. To the right of each level, the relevant exciton and biexciton levels and corresponding spin wavefunctions are presented. ↑ (⇑) denotes
electron (hole) spin state. Short blue (long red) symbols are used to denote the ground (excited) state. Image from [59].

component. This induced phase shift results in a rotation angle
that depends on the pulse shape and energy detuning. The
phase shift (η) for a hyperbolic secant 2π -pulse of temporal
form of sech(σ · t)ei(E0−δ)t/� is given by

η = π − 2 arctan

(
δ

σ

)
(27)

where E0 is the energy of the biexciton resonance, δ is the
detuning of the pulse from resonance, and σ is the pulse
bandwidth [48, 49, 58]. After the control 2π -pulse, the new
exciton state is

|X (θ ′′, φ′′)〉 = α(θ p)|X (θ, φ)〉 + e−iφβ(θ p, φp)|X̄ (θ, φ)〉
= α(θ p)|X (θ, φ)〉 + β(θ p, φp − η)|X̄ (θ, φ)〉.

(28)

Geometrically, the control pulse action can be described as a
clockwise rotation by an angle η about an axis connecting the
states |X (θ, φ)〉 and |X̄ (θ, φ)〉, which is parallel to the control
pulse polarization direction.

It then follows that during a pulse that is exactly resonant
relative to the uncoupled state, the coupled part of the state
acquires a relative geometric phase shift of π radians, a
semicircle on the Bloch sphere [48, 49]. Continuing with the
Bloch sphere depiction, this relative phase acquisition can be
viewed as a clockwise π rotation of the state vector about
an axis which is defined by the polarization direction of the
control pulse [48, 49, 58]. Angles of rotation differing from
π can be achieved by detuning from resonance [48, 49, 58].
These controls over angle and direction create a universal gate
operation from a single light pulse.

To describe the control action, we begin with a unit
vector in the exciton polarization direction |X (θ, φ)〉. This
state couples to a polarized 2π control pulse as:

n̂ = (nx, ny, nz) = (cos φ sin θ, sin φ sin θ, cos θ ) (29)

where we choose the Cartesian axes such that: x̂ ≡ |R〉 =
1/

√
2(|H〉+ i|V 〉), ŷ ≡ |D̄〉 = 1/

√
2(|H〉− i|V 〉), ẑ ≡ |H〉. As

discussed previously, the control pulse essentially rotates the

exciton wavefunction about n̂ by the angle η. In the eigenstate
basis, such a rotation is described by the operator:

Rn̂(η) = exp
(

i�σ · n̂
η

2

)
, (30)

where �σ ≡ (σx, σy, σz) is the vector of Pauli spin matrices.
Applying this operator to an exciton state such as |X (θ ′, φ′)〉
(equation (28)), the freedom in choosing φ, η and θ enables a
universal rotation of the exciton spin polarization.

8.1. Experimental demonstration of single-pulse complete
control

This single pulse control can be demonstrated experimentally
using a synchronized sequence of three optical pulses.
Figure 16 depicts the control sequence. The first optical pulse
is a polarized pulse tuned to the (2e1)(1h1) exciton absorption
resonance, which was described in figure 11. This pulse
photogenerates an exciton. The polarization of the laser pulse
translates into exciton spin polarization with high fidelity [57].

Another picosecond pulse, tuned into the
|(1e2)(1h14h1)T0〉 biexciton resonance [57], is used to
probe (read) the exciton spin state (figure 5). This pulse
transfers the excitonic population into a biexcitonic population
by photogenerating an additional electron-hole pair in the QD
[57, 58, 76]. As was previously explained, the absorption of
this probe pulse is dependent on the relative spin orientation
of the two electron-hole pairs. The spin of the second pair is
defined by the probe pulse polarization, and consequently,
absorption of the probe pulse measures the spin projection
of the initial exciton on the probe polarization direction [57,
58, 76]. The magnitude of the probe pulse absorption can
be directly deduced from the PL intensity of the biexciton
emission lines [76].

Figure 16 schematically describes the experiment and
depicts the relevant energy levels, the resonant optical
transitions between these levels, and the sequence of the laser
pulses. PL and PLE spectroscopy of the QD with one and two
resonant lasers [76], results of which are presented in figure 8,
were used to identify the absorption resonances used in this
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Figure 17. The biexciton PL intensity versus the probe pulsed laser
power tuned to the biexcitonic resonance, |(1e2)(1h14h1)T0 〉, 60 psec
after a resonant laser pulse to the (2e1)(1h1). The vertical blue and
magenta arrows indicate the laser power which corresponds to pulse
area of π (used for the probe) and 2π (used for the control) pulses,
respectively. The dashed line guides the eye. Image from [59].

experiment. Figure 17 presents the dependence of biexciton PL
emission intensity on the power of the excitation laser tuned to
the selected biexciton resonance. Rabi oscillations are clearly
visible, and the intensities corresponding to a π pulse (probe)
and 2π -pulse (control) are indicated with arrows.

Figure 18(a) schematically illustrates optical control on
the exciton spin Bloch sphere. The precession of the exciton
spin after initialization by an L-polarized pulse (thick red
arrow) is represented by a red circle. The direction of the
polarization of the control 2π pulse is described by the thick
magenta arrow in figure 18(a). The rotation of the exciton
state during the control pulse is represented likewise by a
dashed magenta line. The solid blue line describes the new
precession of the exciton spin state after the end of the
control pulse. In figure 18(b), the red solid line illustrates the
measured biexciton PL emission as dependent on the delay
time between the pump and the L polarized probe pulse for an
|L〉 initiated exciton (
t). In contrast, the blue curve represents
the measured biexciton PL emission versus the time difference


t between the pump and probe pulses. However, in this case,
a control pulse is applied exactly one precession period before
the probe pulse. Thus, the control action is detected a period
after it occurs. The control pulse changes the phase of the
oscillation relative to the experiment in the absence of a control
pulse.

In figures 19–20 we display three series of experiments
which demonstrate our ability to perform universal gate
operations on the exciton state using a single optical pulse.
In these experiments, like in figure 18, the exciton is always
photogenerated in its |L〉 coherent state by an L polarized
pulse. The probe pulse, which in these experiments is delayed
continuously relative to the pump, is also L polarized, thus
projecting the exciton state onto the |R〉 state. The lowest, black
solid line in each figure describes for comparison the two-
pulse experiment in the absence of a control pulse, in which
the precession of an |L〉 photogenerated exciton is probed by
the delayed L-polarized probe pulse [57].

The control 2π-pulse in these experiments is always
applied one precession period (T = 122 psec) before the
probe pulse. This means that for 
t less than the precession
period, the control pulse arrives before the pump pulse and
no exciton is present in the QD in these cases. Consequently,
when 
t < T , the observed biexciton emission resembles that
visible in the case of no control pulse. However for 
t > T ,
the control pulse arrives after the pump pulse, and its effect on
the phase of the biexciton emission signal is clearly visible.

The first two sets of experiments are presented in figure 19.
Here, the control pulse is tuned to resonance. Its polarization
is given by �P(θ, φ) = �P(π/2, π + α) in figure 19(a) and
�P(θ, φ) = �P(π/2 + α, π ) in figure 19(b). The angle α spans
seven equally spaced values from 0 (L polarization) to π/2,
corresponding to D polarization in (a) and V polarization in
(b). The values of α are provided to the left of each curve. The
Bloch spheres to the left of figures 19(a) and (b) describe the
rotation schematically. The control pulse rotates the exciton
state vector around the polarization direction �P by an angle π .
The depicted Bloch sphere trajectory (dashed line) represents
this control rotation as applied to the initial |L〉 state. In

(a)

(b)

Figure 18. (a) The red circle represents precession of the exciton spin after photogeneration by an L polarized pump pulse. The polarization
of the control pulse is represented by the magenta arrow. The dashed magenta trajectory represents the rotation of an |L〉 exciton state about
the polarization direction, imposed by the control pulse. The blue line represents the precession of the spin after the control pulse. (b) The
biexciton PL intensity (orange arrows in figure 16) as a function of the delay time (
t) between the pump (red arrow in figure 16) and
probe (blue arrow in figure 16) pulses. The red line depicts initialization with an L polarized pulse and probing with an L polarized pulse.
The blue trace, in contrast, represents the signal where the control pulse, polarized as shown in (a), is applied one period (T = 122 psec)
before the probe pulse. Note that the control pulse changes the phase of the oscillation relative to the two-pulse experiment. Image from [59].
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Figure 19. Experimental measurements of biexciton PL intensity (lock-in detected with the probe laser pulse) versus 
t for various control
pulse polarizations given by (a) �P(θ, φ) = �P( π

2 , π + α) and (b) �P(θ, φ) = �P( π

2 + α, π ). α varies from α = 0 (L polarization) to α = π/2
(D polarization in (a) and V polarization in (b)). The control pulse is applied one period of oscillation before the probe. The lowest, black
curve in (a) and in (b) describes the measurement without the control pulse and is used for normalization. The Bloch spheres to the left of
each panel schematically describe the rotation of the exciton spin state induced by the polarized control pulse. The arrow represents control
pulse polarization direction and the dashed line is the exciton spin state trajectory. (c) (d) Symbols represent the phase shifts (normalized
visibilities) of the exciton spin precession induced by the control pulse versus α. The circle (triangle) colouring corresponds to the colours in
(a) (b). The black solid (dashed) lines are best fits to the experimental points in (a) (b). Image from [59].

figure 19(a) the rotation always leaves the exciton state on the
equator plane, but adds a phase shift corresponding to twice
the angle α. In contrast, in figure 19(b) the rotations leave the
exciton phase unchanged but varying the state projection on
the equator, or visibility, as cos(2α).

Figure 19(c) displays the measured phase shift of the
exciton state and figure 19(d) displays its projection on the
Bloch sphere equator, or visibility, as a function of α for both
of the control pulse schemes presented in parts (a) and (b) of
the same figure. As expected from the Bloch sphere description
of the effect of the control pulse, the visibility does not vary for
the rotation scheme in (a) while the phase shift varies linearly,
increasing from 0 to π as alpha varies from 0 to π/2. Solid
lines describe the best fits for this control pulse sequence.
Likewise, for the control scheme in (b), the visibility varies
as cos(2α) while the phase is unaffected. The best fits to this
control pulse sequence are presented by dashed lines.

The demonstration of single pulse control is completed
by showing the effect of pulse detuning from the resonance
energy. Figure 20(a) presents a series of measurements of
fixed control pulse polarization corresponding to �P(θ, φ) =
�P(π, π ) (V polarization). The pulse detuning from resonance
is varied. The situation is schematically described on the Bloch
sphere on the left of figure 20(a) to demonstrate the rotations
of the exciton state by the control pulse. In this case, rotation
is achieved through variation in the angle by which the control
pulse rotates the state around the polarization direction. The
exciton state remains on the equator, as shown in the figure.
The control pulse adds an additional phase of η (equation (27))
to the exciton state azimuthal angle φ. Figure 20(c) presents
the measured phase shift and figure 20(d) the visibility of the
biexciton PL emission as functions of the detuning δ in units
of the laser bandwidth σ . As expected, the visibility does not
vary with the detuning, while η varies from ∼3π/2 to π/2 as
δ/σ varies from −1 to 1.
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Figure 20. (a) Biexciton PL intensity versus 
t for a V polarized variably detuned control pulse. The control pulse induces a rotation of the
exciton spin state, which is schematically described as a trajectory on the Bloch sphere to the left of the graph. (b) (c) Circles: the phase
shifts (normalized visibilities) of the exciton spin versus the detuning δ in units of the pulse bandwidth σ . The solid lines are best fits using
(27) in (b) and to a constant dependence on δ/σ in (c). Image from [59].

9. Conclusions

We reviewed above optical methods for controlling quantum
dot (QD) spins in general and exciton spins in particular.

We first briefly discussed the growth process for
self-assembled semiconductor QDs. We then outlined the
experimental techniques used to characterize single self-
assembled QDs and to probe the dynamics of confined carriers
in them. Characteristic optical studies were then compared
with a detailed many carrier model used to comprehensively
understand the rich one- and two-pulse photoluminescence
and photoluminescence excitation spectra of single QDs.
We then demonstrated how the polarization of a short laser
pulse is translated with high fidelity into a coherent state of
the exciton spin. We concluded by reviewing an all-optical
method which enables full coherent control over the exciton
spin using a single, picosecond long resonant optical pulse.
We showed that this coherent control can be conveniently
described geometrically as a rotation of the exciton spin state
vector around the direction of the optical pulse polarization,
while the angle of rotation is fully defined by the amount
by which the pulse is detuned from resonance. The method
presented above should be applicable to other qubit systems as
well, including but not limited to nitrogen-vacancy centres in
diamonds [124]. The only requirement is an optical transition
to a non-degenerate auxiliary level or a truly � system.
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