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PACS. 73.20Dx – Electron states in low-dimensional structures (including quantum wells,
superlattices, layer structures, and intercalation compounds).

PACS. 71.10+x – General theories and computational techniques (including many-body per-
turbation theory, density-functional theory, atomic sphere approximation
methods, Fourier decomposition methods, etc.).

Abstract. – The k ·p method + envelope function combination used for semiconductor het-
erostructures is based on approximations dubious under some conditions. We directly compare
8-band k ·p with pseudopotential results for [001] GaAs/AlAs superlattices and quantum wells
with all k ·p input parameters directly computed from bulk GaAs and AlAs pseudopotential
bands. We find generally very good agreement for zone-center hole states within ∼ 200 meV
of the GaAs valence band maximum, but i) systematic errors deeper in the valence band and
ii) qualitative errors for even the lowest conduction bands with appreciable contributions from
off-Γ zinc-blende states. We trace these errors to inadequate k ·p description of bulk GaAs and
AlAs band dispersion away from the zone center.

Nanostructures &100Å in size were until recently [1] beyond reach of the atomistic electronic
structure methods used for bulk crystals, i.e. direct solution of the Schrödinger equation[

− ~2

2m
∇2 +

∑
i,Ri

vi(r−Ri)
]
ψ(r) = ε ψ(r), (1)

with the crystal potential V (r) here written as a superposition of screened atomic pseu-
dopotentials vi for atom species i. The spectroscopy of A/B heterostructures was instead
interpreted [2] using an approach so common we term it the ‘standard model’ (SM): the k ·p
method combined with the envelope function approximation (EFA). Although the SM has
been eminently successful [3], even for ultrathin systems [4], approximations on which it is
based compromise its description of heterostructures. Their impact has been partially masked
by fitting of its parameters to experimental data, as described below. On general grounds
one expects the SM to fail for short-period superlattices but would like to know when (for
what thicknesses) and how (for which states) it fails. While detailed analyses of potential
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pitfalls of the SM have appeared [5], the SM cannot assess its own validity. Evaluations of
actual SM errors via non-SM methods, e.g. tight-binding [6], generally used input data (e.g.
effective masses) from different sources and did not necessarily reflect SM deficiencies. Only
by comparing direct solutions of the fully atomistic Schrödinger equation as in eq. (1) can
such errors be systematically assessed. This approach is free of approximations made in the
standard model, includes full-zone dispersion of all bands, and can predict complete Bloch wave
functions. We use [001] (AlAs)n(GaAs)n superlattices for n≤20 and (GaAs)n/AlAs quantum
wells to test the standard model against a direct pseudopotential approach (eq. (1)), with the
former’s input parameters computed from the latter to guarantee meaningful comparison. We
trace systematic errors in the SM for heterostructures to inadequate description of dispersion
of bulk bands in the Brillouin zone region where coupling to off-Γ states is important.

For periodic systems the cell-periodic part u of the Bloch function ψnk = exp[ik · r]unk(r)
may be expanded [7] about a reference point k0:

unk(r) =
N∑
n′

bn′ un′k0(r). (2)

Choosing k0 ≡ Γ , the unk(r) obey [8]

N∑
n′

{[
εn(Γ )−εn(k)+

~2k2

2m

]
δn,n′+

~
m

k·pn,n′
}
bn′=0; (3)

the effects of the microscopic crystal potential are now encoded in the pn,n′ ≡〈unΓ |p̂|un′Γ 〉.
Diagonalized with large enough N , eq. (3) would predict full (non-parabolic) bands throughout
the zone, equivalent to direct solution of the Schrödinger equation for Bloch electrons [9]. The
standard model [8], instead uses: i) Degenerate perturbation theory: For bulk semiconductors,
the three valence states degenerate at Γ are usually augmented by the first conduction state.
Including spin-orbit defines the 8-band k ·p model used below; ii) Fitting: The small N values
(. 20) in eq. (3) used in most k ·p calculations poorly describe band dispersion away from Γ
if the {pn,n′} are actually computed from exact Bloch states unΓ (r). The SM uses instead
‘effective’ matrix elements found [10] from measured gaps and band effective masses at Γ ,
mitigating the errors of i); iii) Envelope functions: To treat A/B heterostructures, the standard
model generally uses the Luttinger-Kohn formalism [7] for response of a homogeneous crystal
to a weak, slowly-varying external perturbation. The wave function in, e.g., material A, takes
the form

ψ(r) =
N∑
n=1

FAn (r) uAnΓ (r), (4)

where the FAn (r) are ‘envelope functions’. The {un,Γ } formally differ in A and B but virtually
all EFA’s assume the same set in both except insofar as they affect boundary conditions,
via materials properties (e.g., gaps) which differ in A and B. Winkler and Rössler [11] have
developed an alternate approach for solving the multiband problem.

Direct solution of eq. (1) makes unnecessary all the approximations above. To compare
on an equal footing this ‘direct’ approach with the ‘standard model’, 1) We use recent [12]
empirical pseudopotentials vi(r) (including spin-orbit) in eq. (1) to compute band structures
for bulk zinc-blende (ZB) GaAs and AlAs; the small GaAs/AlAs lattice mismatch is neglected.
These pseudopotentials fit to measured band structures of GaAs and AlAs (so that LDA
errors do not appear), also closely reproduce important symmetry-related trends in short-
period superlattices. 2) We then equate numerically computed effective masses to their formal
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Fig. 1. – AlAs and GaAs near-edge bands between Γ and X ([001] direction). Relativistic labels at Γ
and X and conventional names for valence bands are used. Gray circles show points which for [001]
(AlAs)5(GaAs)5 fold to the SL zone center.

expressions [10] in the 8× 8 Kane model to extract [13] Luttinger parameters and all relevant
matrix elements of eq. (3). 3) We use these as input to k ·p+ EFA calculations for [001]
GaAs/AlAs superlattices and quantum wells and compare results with direct solutions of
eq. (1) for the same structures. The direct ‘all band pseudopotential’ (ABP) calculations
use a conjugate gradient program with a plane wave basis and a 5 Ry kinetic energy cut-
off. ‘Standard model’ (SM) calculations use the 8× 8 k ·p+ EFA formulation of Baraff and
Gershoni [10]. Envelope functions are expanded in 75 Fourier components along the unit cell.

The procedure above permits clean evaluation of approximations made in the ‘standard
model’. Figure 1 contrasts pseudopotential and k ·p bands for bulk AlAs and GaAs. For
GaAs, k ·p and pseudopotential bands agree to within 50 meV only up to 12%, 18%, 14%,
and 14% of the distance toward X for the electron (CB1) heavy hole (hh), light hole (lh), and
split-off (s-o) bands, respectively. The SM GaAs X6c conduction state is 26 eV higher than
the direct pseudopotential value. This gross error in the bulk is important for heterostructures
since zinc-blende X states fold to the zone center and interact with zinc-blende Γ -derived
states. Since the (pseudopotential) GaAs X6c-Γ6c conduction band splitting is only 0.4 eV
this interaction is strong, but in the SM is unphysically negligible because the X6c state is
26 eV too high. Superlattice conduction bands in the SM will thus always be spuriously
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Fig. 2. – Band energies for [001] (AlAs)n(GaAs)n superlattices; nc indicates point of transition from
indirect to direct gap system. Overbars indicate SL states which derive mainly from the ZB state in
parentheses. Bulk ABP AlAs and GaAs band energies are given at right; the energy zero for a) and b)
are bulk GaAs Γ6c and Γ8v states, respectively. Dashed lines show band connectivity near crossings,
since Γ -X mixing is practically omitted.

Γ -like [14]. While the SM X7v GaAs valence state is almost 10 eV too low with respect to
the pseudopotential value, the resulting error for heterostructure states is small because the
pseudopotential X7v−Γ8v valence band splitting is large (2.4 eV), so that interaction between
heterostructure Γ - and X-derived valence states which fold to the heterostructure zone center
is relatively weak.

Figure 2 compares zone-center ABP and SM band energies for [001] (AlAs)n(GaAs)n
superlattices (SL) as a function of n. We label SL states via an overbar, with the ZB Brillouin
zone point from which they derive in parentheses. Γ (Γ ) states derive principally from ZB
Γ states, while Γ (Xz) states derive mostly from folded-in zinc-blende Xz states. Only the
lowest Γ (Γ ) and Γ (Xz) conduction and near-edge valence bands are shown. The extremely
high energy of the SM bulk GaAs X6c state (fig. 1) has important consequences: i) several
additional folded-in Γ (∆6c) ABP conduction states (not shown) in this energy window are
completely missing in the SM; ii) the SM thus misses the transition evident in ABP results
(circle in a)) from Γ (Xz) to Γ (Γ6c) as the lowest conduction band; iii) non-monotonicity in
the ABP Γ (Γ ) conduction band for small n (also present for other points in the SL zone [13]
and in first-principles calculations [15]) is absent in the SM, which iv) also overestimates its
energy (shading in panel a)). For valence bands, i) for states with a binding energy . 200 meV,
SM and ABP agree very well, though ii) deeper into the valence band, SM curves reproduce
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Fig. 3. – Square moduli of planar-averaged ABP Bloch states and SM envelope functions for Γ (Γ )

electron state and third hole state at Γ for n = 5 and n = 10 SL. Odd (even) n superlattices have
inversion symmetry about planes containing Ga (As) atoms. Note peaks on GaAs side of interfaces
for electron states (asterisks).

ABP trends but place them too deep in energy; iii) for systems lacking inversion symmetry,
lifting of the spin degeneracy away from the zone center is permitted in some directions. This
spin splitting —absent in the SM— is significant (& 30 meV for the first heavy-hole state for
q⊥a
2π > 0.1) for ‘in-plane’ dispersion in ABP calculations. SM band dispersion (not shown)

agrees with ABP results only relatively near the SL zone center [13]. For n = 5, ABP values of
m‖/m⊥ at Γ are, e.g., ' 3.4 for the hh1 state and ' 0.95 for the Γ (Γ6c) electron state, while
SM values are 4.4 and 1.3, respectively; the anisotropy of effective masses is thus exaggerated
within the SM. (GaAs)n/AlAs (1 ≤ n ≤ 10) quantum wells show [13] nc ' 9 (cf. fig. 2),
differences in valence band dispersion, and 1/n2 Γ (Γ ) conduction band behavior to smaller n
than for superlattices (fig. 2).

Figure 3 contrasts square moduli of ABP wave functions (full lines) averaged over transverse
dimensions of the primitive cell to facilitate comparisons with SM envelope functions (dashed
lines), for the Γ (Γ ) electron state and the third hole state at Γ . Envelope functions for states
whose energy (fig. 2) is well described by the SM closely average inner and outer envelopes of
Bloch states. The n = 5 Γ (Γ ) ABP electron wave function shows interfacial peaks absent in
the SM.

Projections of SL states onto zinc-blende states provide insight into why and where the
SM fails. [001] (AlAs)n(GaAs)n superlattice states at Γ derive from ZB states at the SL
reciprocal lattice vectors Gj = 2πj

na for j = 0, 1, 2, . . . , n along the [001] Γ -X (∆) line. We may
thus expand a Γ SL state in a complete set of ZB Bloch states at these Gj :

|ψSL
Γ
〉 =

∞∑
s

X∑
Gj=Γ

αs,Gj |ψZB
s,Gj 〉; (5)

the Gj 6=0 (gray circles for (AlAs)5(GaAs)5 in fig. 1) fold to Γ in the SL geometry. The
projection of a specified SL state onto zinc-blende band s at Gj is thus PsGj ≡|〈ψSL

Γ
|ψZB
s,Gj
〉|2 =
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Table I. – Projections PsGj of ABP near-edge (GaAs)5(AlAs)5 states at Γ (‘State’) onto GaAs band

s labeled ‘On’ at the Gj = 2πj
5a

, and net projection Ps on band s. G0 and G5 correspond to ZB Γ and
X points, respectively.

State On G0 G1 G2 G3 G4 G5 Ps

Γ (Γ ) CB1 0.80 0.08 0 0.05 0.02 0 0.94
Γ (Xz) CB1 0 0 0.00 0.00 0.03 0.95 0.99
‘hh1’ hh 0.84 0.15 0.00 0.00 0 0 1.00
‘lh1’ lh 0.93 0.06 0 0 0 0 0.98
‘s-o1’ s-o 0.80 0.01 0 0 0 0 0.81
‘hh2-a’ hh 0 0.89 0.04 0 0 0 0.93
‘hh2-b’ hh 0.14 0.81 0.02 0.00 0 0 0.97
‘lh2-a’ lh 0 0.93 0.02 0. 0 0 0.95
‘lh2-b’ lh 0.04 0.78 0.01 0 0 0 0.83

= |αs,Gj |2. The net contribution Ps ≡
∑n
j=0 PsGj measures how completely the SL state

derives from ZB band s. Similarly, the quantity P ≡
∑Nb
s=1 Ps measures how nearly the finite

set of Nb zinc-blende bands used is ‘complete’ (P ≡ 1), i.e. adequately describes the specified
SL state.

For near-edge ABP (AlAs)5(GaAs)5 superlattice states table I shows the projections PsGj
onto the (spin-split) first conduction band CB1 and hh, lh, and s-o valence bands (1) —the
same set used by the 8× 8 Kane model. We see that i) superlattice hh1, lh1, and s-o1 states
derive mostly from the ZB Γ point (G0), hh2 and lh2 states mostly from G1, etc. ii) hh1, lh1,
and s-o1 SL states, for example, have significant but monotonically decreasing contributions
from Gj 6=0, since GaAs valence bands disperse monotonically from Γ (fig. 1b)); iii) the Γ (Γ )
conduction state has only a ' 80% projection on the GaAs Γ -point (G0), with contributions
∼20% as large from Gj 6=G5 which depend non-monotonically on j, reflecting the dispersion
(fig. 1) of the GaAs CB1 band. We have also evaluated (not shown) Ps, describing mixing of
different zinc-blende bands in a SL state, and P , measuring basis set completeness. For the
two SL conduction states in table I the CB1 and CB2 bands of fig. 1 are quasi-complete, i.e.
1 − P < 0.004. Only the Γ (Γ ) state —ostensibly described by the SM— has an appreciable
(Ps ∼5.3%) contribution from a state (s=CB2) outside the set used in the 8-band k ·p approach.
For SL valence states there is appreciable mixing of ZB states only for s-o1 and deeper valence
states, and the hh, lh, s-o set is also quasi-complete.

This shows that provided their dispersion is accurately described (as for ABP bands in
fig. 1), a small number of near-edge zinc-blende bands suffice, in terms of projections, to
quantitatively describe SL states. If so, why is the SM unsatisfactory for SL conduction and
deep hole bands (figs. 2, 3)? Superlattice hh1, lh1, and s-o1 hole bands, which derive mostly
from the zinc-blende G0 (≡ Γ ) point, will be well described by the standard model since k ·p
bands are fit there (fig. 1). Deeper SL hole bands (hh2, lh2, etc.) derive mostly (table I)
from Gk 6=Γ points outside the quadratic region of good ABP/SM agreement (fig. 1) and will
be found too deep in the valence band (fig. 2). Since the quadratic region is largest for the
GaAs hh band, however, the SM tracks the ABP hh2 band quite well for most n in fig. 2. For
the Γ (Γ ) conduction band, however, contributions from Gj 6= Γ (where SM values are too

(1) Due to the great similarity of GaAs and AlAs Bloch states, projections would be very similar
had AlAs states been used.
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high in energy: fig. 1) are important (table I) and SM predictions must be too high (fig. 2)
until the shortest Gj move into the CB1 quadratic region. As the period n increases, points
along the zinc-blende ∆ direction which fold to Γ move into the region where k ·p adequately
represents the bulk zinc-blende band structures and all near-edge superlattice states will be
well described by the ‘standard model’.

We have thus traced errors in the k ·p+ EFA approach to poor k ·p description of dispersion
of bulk bands which are mixed in heterostructure states. The 8-band k ·p approach correctly
focuses on four spin-split bands, but fails to keep enough (N in eq. (3)) zone-center states
to adequately describe their dispersion for thin heterostructures. For GaxIn1−xP ordered al-
loys [16] zinc-blende states along the [111] Γ -L direction fold and couple, so the SMs inadequate
description of the bulk L point will cause errors similar to those for [001] superlattices. The
central issue is not the heterostructure thickness per se, but whether off-Γ bulk states poorly
described by the ‘standard model’ are significantly mixed (as determined by the proximity in
energy of bulk zinc-blende L, Γ , and X states) in heterostructure bands.
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