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Calculating the Optical Properties of
Multidimensional Heterostructures:
Application to the Modeling
of Quaternary Quantum
Well Lasers

D. Gershoni, C. H. Henry and G. A. Baraff

Abstract—A method for calculating the electronic states and
optical properties of multidimensional semiconductor quantum
structures is described. The method is applicable to hetero-
structures with confinement in any number of dimensions: e.g.
bulk, quantum wells, quantum wires and quantum dots. It is
applied here to model bulk and multiquantum well (MQW)
InGaAsP active layer quaternary lasers. The band parameters
of the quaternary system required for the modeling are inter-
polated from the available literature. We compare bulk versus
MQW performance, the effects of compressive and tensile
strain, room temperature versus high temperature operation
and 1.3 versus 1.55 pm wavelength operation. Our model shows
that: compressive strain improves MQW laser performance.
MQW lasers have higher amplification per carrier and higher
differential gain than bulk lasers, however, MQW performance
is far from ideal because of occupation of non-lasing mini-
bands. This results in higher carrier densities at threshold than
in bulk lasers, and may nullify the advantage of MQW lasers
over bulk devices for high temperature operation.

I. INTRODUCTION

HIS PAPER is basically concerned with calculating
the optical absorption and gain spectra of some quan-
tum well laser structures. To do so, we first need to be
able to calculate their electronic states and optical prop-
erties. The paper starts by describing a method for cal-
culating electronic band structure and optical properties
of multidimensional heterostructures realized in semicon-
ductor compounds. The method used here is based on the
k - p method [1]; uses envelope functions [2] and has
been described in partial detail elsewhere [3]. Lattice mis-
match strain, which is commonly used in heterostructures
grown by modern epitaxial techniques, is incorporated
into this calculation using deformation potentials [4].
Our method provides a common approach for calculat-
ing the optical properties of heterostructures with confine-

Manuscript received October 15, 1992

D. Gershoni is with Physics Department Technion, Haifa, 32000 Israel.

C. H. Henry and G. A. Baraff are with AT&T Bell Laboratories, Mur-
ray, Hill, N.J. 07974.

IEEE Log Number 9211356.

ment in any number of dimensions, e.g., bulk semicon-
ductors, one dimensional quantum heterostructure systems
(quantum wells, multiquantum wells and superlattices),
two dimensional quantum systems (quantum wires) and
three dimensional systems (quantum dots). For all these
systems, we provide essentially the same means of cal-
culating the spectra of both types of optical transitions,
namely, across the fundamental band-gap (interband tran-
sitions) and also within the conduction or valence band
(intersubband transitions).

We apply this method to the InGaAsP /InP quaternary
heterostructure system which is currently used for optical
communications. Relevant earlier calculations of gain in
AlGaAs/GaAs and InGaAs/GaAs active layer lasers,
taking into account the valence band structure were made
by Corzine et al. [5]. Strain effects on the valence
band structure and consequently on performance of
InGaAsP /InP quantum well lasers were considered by
Loehr and Singh [6] and also in [5]. Our approach is more
accurate in the sense that it takes into account the con-
duction band structure as well. It permits us also to model
any shape potential structure in the active layer in one or
more dimensions. We calculate miniband dispersion
curves and optical matrix elements and use them to obtain
gain spectra, curves of peak gain versus carrier density
and threshold dependence on temperature. We compare
MQW and bulk lasers, room temperature and high tem-
perature operation, 1.3 and 1.55 pm wavelength opera-
tion lasers, and compressively strained, tensilely strained
and unstrained MQW lasers. We also compare ideal and
actual MQW laser performance. In this way, we try to
draw conclusions about the advantages and disadvantages
of quaternary MQW lasers.

The manuscript is organized as follows: In Section II
we describe the theory and define the parameters needed.
In Section III, we describe the software code that we have
developed for the actual calculation of the multidimen-
sional heterostructure band structure and for optical tran-
sitions between the different bands. Section IV details the
calculation of optical spectra from the calculated elec-
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tronic band structure and Section V lists the material con-
stants and interpolation scheme for the InGaAsP /InP
quaternary system. We conclude in Section VI by calcu-
lating optical spectral gain of bulk and quantum well qua-
ternary lasers.

II. THEORY
A. The Hamiltonian and Its Parameters

The electronic states and the energy levels of the semi-
conductor device are found in principle by solving the
Schrédinger equation:

l)2
Hoy [Zmo + V(r)} R O
where H, is the Hamiltonian, ¢ is the electronic wave
function, E is the total energy, p is the momentum oper-
ator, r is the position vector, my is the free electron mass
and V (r) is the potential created by the atoms in the semi-
conductor device. This equation can be solved for the per-
fect spatially uniform semiconductor using a variety of
well known techniques [7], but in a heterostructure or a
quantum wire or dot, the crystal composition and/or strain
varies from region to region and approximations are
needed in order to solve equation (1). Many such approx-
imate methods are now well known and extensively used
[2], [8]-[10]. In this paper, we use the k * p method and
envelope functions. This means that in each (composi-
tionally homogeneous) region of the structure, the wave
function is assumed to be of the form

¥(r) = 2 U, (r)F,(r) )

where the U, (r) are zone center Bloch waves for the ma-
terial in a particular region. The F, (r) are called envelope
functions, and the summation is restricted to Bloch waves
whose energies are close to the fundamental gap. The
choice of how many functions will be needed depends on
the details of the problem to be solved: For the work being
reported here, it is appropriate to include eight functions
in the set, namely the spin up and spin down zone center
Bloch waves from the conduction band minimum, and the
spin up and spin down functions from each of the three
degenerate p-like states at the top of the valence band.
The result of this approximation is that the Schrédinger
equation is converted into a set of eight coupled differ-
ential equations for the envelope functions. The equations
are ordinary differential equations for quantum wells, and
partial differential equations for quantum wires and quan-
tum dots.

These equations must be augmented by boundary con-
ditions which describe how the envelope functions are to
be joined at the boundaries of adjacent regions. Although
there has been controversy associated with the question of
matching conditions, we have investigated this point and,
for reasons explained elsewhere [3], have accepted the
usual conditions which lead to envelope function conti-
nuity and current conservation across the boundary.
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The equations contain parameters: these parameters are
constants in each region. Their values are determined by
solving the differential equations (specialized to the form
representing a bulk semiconductor) and adjusting the pa-
rameters so as to fit various experimental quantities mea-
sured in the bulk material. The quantities fitted are band
gaps, band offsets, spin orbit splittings, effective masses
and effective mass anisotropies in various bands. One of
the parameters determined in this way has a special sig-
nificance for its dual role: not only is it important in the
differential equations but it also plays an important role
in evaluating the matrix element for optical transitions.

Not all of the parameters are known for all the semi-
conductor alloys of interest. In the cases where the param-
eters are not known a priori, we have interpolated their
values from the values they have in other related alloys.
This will be explained later. For now, we describe the
form of the coupled differential equations so as to be able
to exhibit and define the parameters they depend on.

The set of eight coupled differential equations can be
written in the general form

2 H(x, K)p,F, (r) = EF,(r). &)

Equation (3) can be used both to obtain the band structure
of a perfect semiconductor in the region of the Brillouin
zone near k = 0 for energies near the gap, and also to
obtain the wave functions in the heterostructure. In a bulk
semiconductor, the symbol k; is interpreted as a compo-
nent of the k vector that labels the Bloch waves. In the
heterostructure, the symbol k; is interpreted as the differ-
ential operator

k. —

1
T

2 @
an

The rows and columns are labeled by zone-center Bloch
waves in the following order: First, the spin up Bloch
wave for the conduction band, then the three for the va-
lence band [st>, xT>|yt>|z1>, then their time-
reversed conjugates. [si>, |[xi>, |[y!> and |z>. In
this basis, the matrix H takes the form:

G T
H=|: ] ®
—T* G*

where G and T are both 4 X 4 matrices.
We follow Kane [1] in defining the matrices G(K)
and I':

GKk) = G (k) + G,(k) + G,  where (6)
E, Pk, iPk, iPk,
—iPk, E, 0 0

G = ™
—iPk, 0 E, O
Pk, 0 O E,
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TABLE I
EIGENVALUES AND CORRESPONDING EIGENSTATES AT k = 0: THE STATES HAVE BEEN ARRANGED SO THAT EIGENSTATES IN THE SECOND SET ARE THE TIME-
REVERSE CONJUGATES OF THOSE IN THE FIRST SET

Energy First Kramers Set Second Kramers Set Name
E, 11 | B S Electron
|5,5> = |$T> ‘2, 2 > =|Si>
A 33 1 . 3 -3 1 . Heavy
ED=E,’,+§ E’E =“/—i[‘xT> +l|yT>] §,7> =$[|xl>—t|yl>] Hole
A Light
E =E +3 31 __ |2 1 ; 3,2t — _ 2 Hol
’2,2 = J;|2T>+Ja[|xi> +ilyl>] |2, 3 >_J§[IXT> ilyt>] J;lzl> ole
24 11 1 ) 1 -1 -1 ) S.0.
Eso=EZ—T IE,5> =E[|xl> +ilyl> + jz1>] |§'T> =ﬁ[|xT> —ilyt> - |zi>] Hole
AR Bk,k, Bk, k, Bk, k,
G Bkk, L'k? + Mk + kD) N'kk, N'k.k, ®
2 = r ’
Bk k, N'k.k, L'k + M@k2 + kD) N'kyk,
Bk, k, N'k.k, N'kyk, L'k? + M2 + k2
and
0 0 0O The matrix (5) can be solved exactly for k = 0. The
. eigenvalues and eigenstates for this case are listed in Ta-
G = A0 0 i 0 ©) ble I. The band edge effective masses are defined by
5o — T A .
0 0 0 my /; h* ok; ok;
The matrix T is . . . . .
Solving the dispersion relation to second order in k allows
00 0 O one to obtain
AlO O O -1 me Mo
r=-= 10 — = — 2 —_—= + 2 13
3lo0 0 i 0 maon ~ Y T pegy — it (139
01 - 0 my Mo
— = =7 —2y; — == +2y; (13b)
All the parameters appearing in (7)-(10) are real. The = M (111) ! > mu(111) ! }
parameters A’, B, L’, M, and N' are defined in Kane’s ) PXE. + %A
article in terms of k * p perturbation sums over all bands - _h__”;o <A' + —E%8—+3A—))> (130
other than the eight we consider. The parameter B, which et LA
is equal to zero for crystals with inversion symmetry, is my 2myP2A
set to zero in our calculations as well. The parameter P is — = (13d)

proportional to the momentum matrix element between the
conduction band and the valence band.
P= an
It is also known as the optical matrix element. It plays a
role in calculating the optical transition strength. The
quantity A is the spin orbit splitting parameter, while E,
and E, are the band edge energies in the absence of the
spin-orbit coupling.

To obtain the material parameters from the experimen-
tally measured properties of the bulk semiconductor crys-
tal, one considers the components of the k vector in ma-
trix (5) to be numbers, and diagonalizes the matrix to get
the dispersion relationship, namely, the k dependent
eigenvalues E, (k). The derivatives of this dispersion re-
lationship are effective masses, and the values of the ener-

. gies at k = 0 are the (experimental) band edges.

. h
i Glpd)

"7 3R7E (B, + A)

where my (i7k) is the heavy (light) hole band edge ef-
fective mass in the (ijk) crystallographic direction, m,; is
the conduction band effective mass and m, is the split-off
band effective mass. The v; are known as the Luttinger
parameters [11]. We use them here in order to facilitate
simple comparison with parameters from the available lit-
erature. In terms of the v, the constants in the matrix are
given by

L A% 1+ + 4v,) + il
= 2mo( Y1 Y2 E,
h2
=-—+ -2
M 2’"0( Y1 Y2)
3h? P?
N' = ——ny; + — 14
Y3 Eg ( )
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Fig. 1. Band diagram of bulk 1.55 um laser material (dashed lines). Bands
after 2% compressive strain (solid lines).

where E, = E. — E, is the band gap with E, = E, +
A /3. The mathematical relations (13)-(14) define all the
8 X 8 Hamiltonian parameters in terms of the experimen-
tal bandgap, effective masses and the spin orbit splitting.
Note that if P is known from experiment, then the knowl-
edge of the spin-orbit split-off band effective mass is not
necessary and vice versa.

In Fig. 1, we illustrate the band structure of 1.55 um
InGaAsP quaternary lattice matched to InP using the pa-
rameters listed in Table II. The dashed lines represent the
band structure for the unstrained lattice.

B. Strain in Bulk Semiconductors

The k - p 8 X 8 bulk Hamiltonian described by equa-
tions (9)-(14) acquires extra terms when the crystal is
strained. These extra terms can be obtained by repeating
the original derivation given by Pikus and Bir [12] using
Kane’s formalism [1] as has been recently done by Bahder
[13]. The strain interaction couples only parallel spins and
hence this interaction adds an additional term Gy, to the
Hamiltonian H in (5).

The additional matrix is:

aclex + ey + €]

b’eyz - ZPE]exJk]
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TABLE II
MATERIAL CONSTANTS
Constant GaAs InAs InP Ing s3,Gag 463AS

E,(300°K) eV 1.424° 0.354% 1.3512 0.75%
Ag eV 0.341° 0.371° 0.110° 0.356°
m¥(e.m.u) 0.0665°  0.023° 0.079° 0.041¢
7 6.790°  19.67¢ 4.95° 11.01¢
Y2 1.924¢ 8.37¢ 1.65° 4.18¢
3 2.7828 9.298 2.35° 4.84°
a, (eV) -9.77°  -6.0° -6.35° —-7.76°
a, (eV) -7.1" —5.4k —5.35% -6.2°
b, (eV) -1.7° -1.8° -2.0° -1.75°
d, (eV) —4.55* -3.6° —4.2° —4.,04°
E,(eV) 28.8' 22.2% 20.4% 25.3%4
C, (x10% 11.81¢ 8.329¢  10.22¢ 10.08°

dyn/cm?)
Cpp(x 10" 5.38¢ 4.53¢ 5.76% 4.98°

dyn/cm?)
Cre(x10" 5.94¢ 3.967 4,607 4.89°

dyn/cm?)
a(300°K)A 5.6532  6.0583¢  5.8587¢ 5.8687°
V of relative to InP 0.34 0.41 0 0.37

4Semiconductors, eds. O. Modeling, M. Schulz and H. Weiss, Landolt-
Borstein New Series, Group 3, vol. 17a (Springer, Berlin, 1982).

*R. E. Nahory, M. A. Pollack, W. D. Johnston, Jr., and R. L. Borus,
Appl. Phys. Lett. vol. 33, pp. 659-651, 1978.

‘Linearly interpolated from the binary parents constants.

9K. Alavi and R. L. Aggrawal, Phys. Rev. vol. B21, 1980, p. 1311.

“D. F. Nelson, R. C. Miller and D. A. Kleinman, Phys. Rev., vol. B35,
1987, p. 7770.

/D. Gershoni et al. Phys. Rev. B.

£P. Lawaetz, Phys. Rev. vol B4 p. 3960 (1971) calculated.

D, L. Camphansen, G. A. Nevill Connel and W. Paul, Phys. Rev. Letr.
vol. 26, 1971, p. 1847.

‘Hermann and C. Weisbuch, Phys. Rev. vol. B15, p. 823, 1977.

S. Adachi, J. Appl. Phys. vol. 53, p. 12, 1982.

potential, b, is the valence band shear deformation poten-
tial associated with strain along the (100) crystallographic
direction and d, is the shear deformation potential for
strain along the (111) direction. Most of the deformation
potentials can be measured by applying stress on a crys-
tal. Note, however, that experiments usually measure the
band gap hydrostatic deformation potential a, = a. — a,
and additional information is needed in order to determine
the individual band hydrostatic deformation potential a,

b’eu - lPEJeyjk, b'e,y - IPEjezjkj

G b'e,, + iPLie;k; le, + m(e, + e) ne., ne,, 15)
strain , .

b'e, + iPLjek; ne,, ley, + m(e, + €) ne,,

b'e, + iPL;e k; ne,, ney, le, + m(ey, + ey)

where ¢;; are the strain tensor components. The constants
I, m, and n are related to the material deformation poten-
tials by:

_1 PR P =1
a, = 3 (1 +2m): b, = 3(1 m) and d, = \/'3:”
(16)

where a. is the conduction band hydrostatic deformation
potential, a, is the valence band hydrostatic deformation

or a, [14]. In our calculations we set b’ = 0 since this
value agrees with the available experimental data.

In Fig. 1, the solid lines represent the band structure of
1.55 pm InGaAsP quaternary subject to 2% biaxial strain
in the (001) plane. Note that the band edges move relative
to the unstrained quaternary, and that the degeneracy be-
tween the light and heavy hole at k = 0 is removed. Each
state of the quantum system is still doubly degenerate,
due to time reversal degeneracy, although an additional
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degeneracy that used to be present (between two states
having the same value of k vector) is removed by the te-
tragonal distortion of the cubic lattice caused by the strain.

C. Electronic States of Semiconductor Heterostructures

The heterostructure is composed of several regions,
each of a definite composition and/or uniform state of
strain. In such a situation, the parameters in the Hamil-
tonian matrix (5) are constants in each region but differ
from region to region. Also in such a situation, the ques-
tion of how to match the envelope functions in one region
to those in the next region arises. We have studied this
problem elsewhere [3] and have found a simple prescrip-
tion for automatically including the correct boundary con-
ditions into the formulation of the problem. That prescrip-
tion is as follows: In every term of (7) and (8) in which a
matetial parameter and a derivative both appear, one is to
make the replacement

2 1 d d
Qa_xu - E[Q(r)a_xu + EQ(H]

3 48 1| d a a3 d
= 2 5o 2 2 4.2 ~Z

Qo ax, 2 [ébc“ 20 5, * ar, 20 axJ 1)
where Q(r) is any real material parameter or stain tensor
component.

The spatial dependence of the parameters Q(r) is ex-
pressed in terms of step functions for the interfaces i.e.,
for an interface at x = x, where material A is to the left
side of the interface and material B is to the right side:

Okx) = Q4+ (Qp — 09O — Xo) (18a)
where
{0 x < X
O@x — x) = (18b)
1 X = Xo-

The action of the derivative operator on the step function
is to produce a delta function. The delta functions are to
be retained in the elements of H,,,,. Their role is to impose
the correct slope-discontinuity boundary conditions on a
solution which is treated as being otherwise continuous.
(Later, when we employ Fourier series to evaluate the so-
lution, many terms will be needed to accurately reproduce
these slope discontinuities. In practice, the optical matrix
elements and the optical transition energies are given with
sufficient accuracy well before the slope discontinuity it-
self is precisely depicted. It is this feature that makes the
method a practical one.)

The 8 X 8 matrix obtained in this way has elements
H,, (r, V) and the eight coupled differential equations are

8

2 Hy(x, V)F,(r) = EF, (). 19)
These equations must now be solved. The easiest way we
have found to do this is to expand the envelope functions
F,(r) is a discrete Fourier series, and then to convert (19)
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to a giant algebraic set of coupled equations for the Fou-
rier coefficients. We use a one, two- or three-dimensional
Fourier series according to whether the structure has spa-
tial variation in one, two, or three dimensions. As ex-
ample, where all three dimensions are needed, the expan-
sion would take the form

Fo®) = 2 F, (jim)jm(x72) (20a)

where:
Sim(02) = (XYZ)™'/% exp [2’”' <i§ Hig+m %)]
(20b)

The F, (jlm) are complex numbers. A discrete Fourier se-
ries assumes that the overall structure is periodic with pe-
riod X, Y, and Z along the x, y, and z directions respec-
tively. In some cases, this is exactly what is wanted. In
other cases, one would like to solve for only a single iso-
lated heterostructure. In that case, one must choose X, Y,
and Z to be large enough relative to the actual size of the
structure that the periodic replicas of this structure do not
interact with each other. We shall return to this point later.

In order to convert the differential (19) into a set of
algebraic equations, we insert the expansion (20) into
(19), multiply by ¢ ;, (xyz) and integrate over the region
XYZ. The resultant matrix eigenvalue equation has the
form:

2 Hy(j, U, m, j, L, mF,(j'l'm)

o

nj'l'm’
= EF,(j, I, m) @1

where the matrix elements H,,.(j’, I’, m', j, I, m) are
given by:

Hy, (j', U, m', j, I, m)

= S dx dy dz ¢ o (YD H: (v, V)@ (xy2).  (22)

All matrix elements can be evaluated analytically if each
interface is perpendicular to one or another coordinate
axis.

The number of interfaces that can be taken into account
is not limited by this procedure, and in practice, a larger
number of interfaces will only increase the computation
time needed to form the matrix H. However, once formed,
the time required to diagonalize the matrix (which is the
most time consuming step) does not depend on the num-
ber of interfaces. By dividing space into many piecewise
continuous regions, any spatial dependence of the param-
eters Q(r) can be approximated.

When constructing the matrix H, there are two useful
checks on the numerical work. The first check is that the
matrix H is Hermitian:

Hnn'(j" 1’9 m,5ja l’ m) = Hn’n(ja la m, j’, l’; m')*'
(23)

The second check is that the matrix H expressed in a Kra-
mers basis [a basis containing 2N functions arranged so
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that the (j + N)-th function is the time-reverse conjugate
of the jth function] must also have the form (5). In con-
structing the Kramers basis for the matrix H, we note that
the original 8-function basis is a Kramers basis and that
é_), -1, -m(xyz) is the time reverse conjugate of ¢;,, (xyz).

We have assumed so far that the coordinates describing
the geometry of the heterostructure refer to axes which
coincide with the crystallographic axes of the underlying
crystal. When evaluating heterostructures or strained re-
gions which are not oriented parallel to the main crystal-
lographic axes [3], it is necessary to define a rotated co-
ordinate system, x’, y’, z’, to describe the heterostructure.
In this case, we expand the envelope functions in a Fou-
rier series @, (x'y'z’) and derive the appropriate differ-
ential equations by introducing the corresponding propa-
gation vector: k, — (1/i)(3/dx}), and specifying the
rotation that expresses k in terms of &’

k, = 2a,k), (24)
v

We then substitute (24) into (17) and (18), drop the primes
and proceed as explained before. In this case, however,
one needs to recall that, although the envelope wave func-
tions are oriented in accordance with the heterostructure
axes, the Bloch wave functions are defined as before, in
accordance with the coordinate system of the underlying
crystal.

When dealing with a single quantum structure with
confined states, use of the discrete Fourier series and the
repeated periodic array of heterostructures it represents
does not cause a problem, because the dimensions of the
super cell can be chosen large enough so that the eigen-
states and eigenfunctions do not depend on the cell di-
mensions. The wave functions from one structure do not
overlap those of the next, and the spectrum is discrete.
The need to use a large unit cell in this situation may be
considered to be a slight disadvantage. However, use of
a discrete Fourier series has a great advantage in the case
of a superlattice quantum structure. Such a structure has
periodicity in one or more dimensions, and the wavefunc-
tion in each unit super cell overlaps with wavefunctions
in other cells, Hence, the energy spectrum is made up of
minibands. The states for such a periodic system will be
labeled with a band index 7, which corresponds roughly
to the discrete states for the corresponding single quantum
structure, and with a continuous index q, which is a prop-
agation vector in the mini-Brillouin zone corresponding
to the super unit cell. The wave functions having a given
q value can be found by replacing the expansion functions
(2.20b) according to

¢jlm (x}’z) e ¢j +gx,l+gy.m+q; (x}’Z)

= (X¥2)"/? exp [21ri(j + qx);(

+ A+ a3+ mtq) %] 25)
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where —(1/2) < gq,, g5, 4. < 1/2. By evaluating the
energy spectrum for different values of q, the miniband
structure of the superlattice can be evaluated.

D. Optical Transitions Between Electronic States

After the states and energies of the semiconductor het-
erostructure system have been calculated via the method
described in the previous sections, optical transitions be-
tween the states can then be evaluated. For this purpose
one needs to consider the interaction of the radiation field
with the carriers. This interaction is described quantum
mechanically in terms of the vector potential A. The vec-
tor potential is related to the field E by:

1 0A
=—--— 26
E c ot (26)

A . .

A=A, coswt = 7" @ + e @7
The interaction with radiation is found by replacing p in
the starting Hamiltonian (2.1) by p + (e/c) A, where e
is the magnitude of the electron charge. Expanding the
altered term (p + (e/c) A)?, neglecting A?, and assuming
that the E field is transverse (which allows us to write
P ' A = A - p), we get a perturbation Hamiltonian H =
H_4, where

e A - p= Ao . p(eiwt + e-l’wl).

u e
= m,c 2m,c

28

The term ¢ induces upward transitions while the term
e ™' induces downward transitions. Both rates can be cal-
culated (as explained below) by Fermi’s golden rule [15].
(Note: The assumption of a transverse E field would be
exact in free space. In the heterostructure laser where the
dielectric constant is spatially dependent, this assumption
is no longer strictly valid, but the error produced is neg-
ligible for typical laser structures, and especially so for
TE polarized modes.)

For evaluating the transition rate between initial state
¥;(r) and final state ¥,(r) of the unperturbed Hamilton-
ian, one needs to calculate the term:

2
¥ () | Ha 1)) | = AS (ﬁ) M. (29

M; ; is known as the optical matrix element and it is given
by:

h
My = [<¥slé - S VIgan|* (30)

where é is a unit vector in the direction of the electric field
of the radiation. We note here that our approach is general
enough so that i and f may both be with the valence band,
(intravalence band transition), condition band (intracon-

duction band transition) or one may belong to the valence
band and the other to the conduction band (interband tran-
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sition). We now explicitly substitute
8

Vis® = 2 F/ U, @)

8

=2 ﬂzml FU(jlm)jim (xy2) U, () (31a)

into (30):
8
Myi=| 2 25 2 FI*(imF,(j'l'm')
nn'=1jim j'l'm
| Sy U (r)é
2

* V& m (y2)U, (r) dx dy dz dr| . (31b)

If we make use of the fact that the envelope functions vary
relatively slowly over regions the size of a unit cell, then
we can write the integral in (31b) as

S & i YU (1)8 * V; 1 (xy2) U, (v) dr dx dy dz
= S b i (XY2)B; 4 e (X32) dix dy dz

. S U¥@e - VU, (r) dr
Qxyz)

+ | 0 - V1m0 dr dy de

. *

gmm) U, U, (r) dr. 32)
The first integral over 2 (xyz) in (32) is actually a sum of
three integrals, each one being multiplied by a component
of é. Each of the three is proportional to the optical matrix
P or else vanishes unless n, n’, and the component of V
are related in a very specific way. (In particular, for the
element not to vanish, both n and »' must refer to the
same direction of spin, n must be in the conduction band
while n’ must be in the valence band or vice versa, and
finally the component of V must be the same as the label
(x, y, 2) of the valence band state). The second integral
over {2 (xyz) is the overlap of two Bloch waves. It vanishes
unless n = n'.

A very useful approximation in evaluating (32) is to
assume that the value of the parameter P (whose actual
variation from one region of the structure to another is
typically of the order of 10% or so) is independent of po-
sition so that the first integral over @ (xyz) in (32) does not
depend on (xyz). Doing so allows the remaining integrals
over the ¢ functions to be evaluated analytically, making
use of the fact that they are mutually orthonormal.

III. CoMPUTATION

In this section we describe the software code which was
written in order to numerically calculate absorption and
spectral gain of the semiconductor heterostructure sys-
tem.
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A. Computing Energies and States

We solve the heterostructure problem described in the
previous sections by diagonalizing the large matrix
H, (j,l',m,j, I, m)as given by (21) and (22). This
matrix is complex and Hermitian. The actual diagonal-
ization is done by calling the appropriate subroutines from
EISPACK [16]. Although the most time consuming part
of the numerical solution to the problem is the matrix
diagonalization, it is the easiest step in writing the soft-
ware code. The important steps in the software package
are actually those involved in constructing the matrix to
be diagonalized.

In the first step, the user defines the heterostructure,
i.e., specifies the material parameters and actual dimen-
sions for each spatial zone. A checkerboard like hetero-
structure with stepwise continuous semiconductor con-
stants is defined in space.

In the second step, the user must specify the number of
waves to be used in each direction. (In the actual numer-
ical solution, the series (20) can contain only a finite num-
ber of waves.) Obviously, the number depends on how
much the material parameters vary along each dimension.
Variation across a boundary sets up slope discontinuities,
and these discontinuities are the most slowly convergent
features of the solution. Convergence of eigenvalues and
eigenstates is checked by rerunning with increased num-
ber of waves. For any direction in which the structure is
uniform, only one wave is needed. The (k + q) vector of
that wave is a valid quantum label for the states.

Although the software is written a general way to solve
heterostructures in three dimensions (quantum dots), two
dimensions (quantum wires), one dimension (quantum
wells) and zero dimensions (bulk), the examples given
in the rest of this paper are for the last two cases only.
We concentrate on quantum wells. The generalization to
the other cases are straight-forward and differ only in the
amount of computing time needed to diagonalize the
multi-dimensional problem.

Let us denote the one dimensional heterostructure axis
by x, and call the length of the heterostructure X. Then
(20) is expressed as:

J
Fu) = 2 Fo(j)g;e® " (33)

j=
where J is the highest term in the Fourier expansion and
¢;(x) = exp [2mi (i(x /X))]. The transverse wave numbers
k, and k, can be arbitrary: there is no need to establish a
Fourier periodicity in any direction where the hetero-
structure is spatially uniform. When the differential op-
erators k, and k, in H act on the transverse exponentials,
the result, using (4), is to replace those operators by the
numbers k, and k,. After this step, the transverse expo-
nentials can be removed from the equations completely.
For the case of the one dimensional heterostructure, the
matrix (22) will then be expressed as

X

d
Ho (J'), ky’ kz) = SO dx ¢;f(x)Hnn' <xa kykz? a) d’j(x)'
(34)
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Fig. 2. Diagram of the quaternary system showing the lattice matched
composition and the compositions of compressive and tensile strain.

The integral in (34) extends over all spatial regions. In
each region, the material parameters are constant. The in-
tegrand also contains delta functions at each internal in-
terface. The strength of these delta functions is governed
by the discontinuity of material parameters at the inter-
face. There are thus two types of terms contained in (34):
bulk terms (integrals over the interior of the region), and
surface terms (the delta-function parts). The contributions
of each region and of each internal interface are additive.
The program calculates the matrix elements region by re-
gion, and interface by interface, and adds them together.

All the bulk contributions to the matrix elements con-
tain integrals of the form:

1 (™
If'j = — S dx e §'®/%) . GiG/X)

X Ja (35)

where R; is the left side edge of the zone R and Ry is its
right side. These integrals are given analytically by:

Re — R,

X
If; =

G =
Since the operators H,.,(x, k,, k,, 8/3x) contains only
constants and first- and second-order derivatives, all bulk
contributions to the matrix elements in (34) can be ex-
pressed as sums of integrals of the form (36), each inte-
gral being multiplied by some material constant. The sur-
face terms have an equally simple analytic structure. One
of the useful features of this technique is that, even in two
and three dimensions, the form of the elements of H,,,
also involve only sums over products of functions of the
form (35) or (36). This reduces enormously the number

of separate terms that must be evaluated.
After completing the construction of the matrix (34) it
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is diagonalized using the appropriate subroutines from
EISPACK. All the eigenvalues and eigenstates within a
user defined energy range are stored for later use. Then a
new k,, k, point is chosen and the whole procedure is re-
peated to complete the computation of a set of dispersion
curves, such as given by Fig. 1.

B. Computation of the Optical Matrix Element

In order to calculate absorption and gain, one needs to
evaluate the optical matrix element (31b). This element is
absolutely straightforward to evaluate if the approxima-
tion of ignoring the spatial variation of the optical matrix
element P is made, because in that case, evaluation of
(32) is trivial. We have done this. We have found that,
because the spatial integral of the gradient of the envelope
functions is small for slowly varying envelope functions,
the first of the two terms in (32) is the dominant one.
Interestingly, we find that this is so for intersubband tran-
sitions as well as for interband transitions.

IV. OpPTICAL SPECTRA
A. Formula of the Spectral Gain

The power in an optical waveguide with gain grows
exponentially as e $™¢, where gnoq. is the mode gain and
7 is the direction of propagation. An expression for gain
can be derived starting from Poynting’s theorem relating
the energy flux S to the rate of energy dissipation Q.

V:-S+0=0 €1))

S = cE X H/4~ is the Poynting vector in Gaussian units
and the bar represents a time average. Integrating this
equation over a thin volume bounded by planes at z and
at z + dz, dividing by dz, then using the fact that S is
growing exponentially at rate gmoge» We find

2
a—ZSSdCI:gmodeSSda: _SQda= = QuctAner-
(38)
i=J'
(36)
L —JDR .
exp i X J#FJ

The last equality follows because dissipation (or power
generation) only occurs in the active layer whose area is
Ay This equation defines Q,, as being the average dis-
sipation (or power generation) in the layer.

1t is convenient to calculate g4 in terms of g,., the
local gain in the active layers. This is the gain that would
occur in a uniform active medium having the same optical
properties as the quantum wells. For the same field
strength as in the active layer, this medium will have the
same value of power generation —Q,,. For such a me-
dium, gpoede § S da in (38) becomes gyt SactAact and (38)
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reduces to
8act Sact = —Qact~ (39)

Substituting the expression for the Poynting vector into
(39) and using |E| = n,|H|, where n,, is the refractive
index of the active medium, we find that the gain in the
active material is

41rQa_Ct

40)
NacE 2 (

Bact = —
where c is the velocity of light.

We can find Q by considering the interaction of the ra-
diation and the carriers. The rate of either upward or
downward optically induced transitions between a state in
the mini-conduction band |¢ (k) > and a state in the mini-
valence band |v(k)> is given by time dependent pertur-
bation theory (Fermi’s golden rule) using H,,4 (28).

_ 2wA? e
h \2m,c

2
> M S(E (k) — E, (k) — hw) (41)

where M, is the optical element for interband transitions
as defined by (28-(32). The notation |c (k) > should here
be understood to apply to a quantum well situation. In
such case, the index ¢ denotes one of the minibands whose
energy lies above the gap while k refers only to the trans-
verse wave numbers. The index v denotes one of the
minibands whose energy lies below the gap.

Transitions can only occur between occupied initial
states and empty final states with the same k. In calculat-
ing the optical spectra, we will sum over all initial and
final states and weight the transitions by the average oc-
cupations of the states. The weights are f, (k) (1 — £.(k))
for the upward transitions which contribute to the absorp-
tion rate w, and f.(k) (1 — f,(k)) for the downward tran-
sitions which contribute to emission rate w,, where f, (k)
and f, (k) are the occupation factors given below in (46).

The rate of dissipation Q is given by hw(w, — w,)/V,
where V is the volume of the part of the heterostructure
being considered. Substitution of this expression into (38)
and eliminating the electric field, we obtain an expression
for the gain g,. In doing this, we also change the sum-
mation over k to an integral.

= Vp., (hw) dhw 42)

hw < Ec(k) — Ev(k) < ho + dhw
where p,, is the joint density of states of the two mini-
bands. This integration removes the delta function in (39)
and the volumes cancel. The final expression for g, is

47 afs
gualhe) = — s ZZMMAMMU-MM
Pact ¢
= A0 - £&))) 43)
where o, = €’ /hc is the fine structure constant. It is

understood that k is selected such that E,(k) — E,(k) =
hw. If more than one value of k satisfies this condition,
then (43) is understood to be summed over all values of
Kk so selected.
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The above expression for g, shows it to be the differ-
ence between contributions of downward and upward
transitions.

eact(hw) — Gyt (hw)

where a,(w) and e, (w) are the coefficients of optical
absorption and emission.
We can relate g, t0 gnoqc Y use of (4.2) and (4.3)

8act(Aw) = 44)

8mod - SactAact

Sact

Thr 45)

SSda

T',: is known as the mode occupation factor of the active
layers. The mode occupation factors for bulk, multiquan-
tum well and single quantum well lasers are estimated in
Table III. They were computed by solving the two-di-
mensional scalar wave equation by the method of Henry
and Verbeek [17] using refractive indices established for
the quaternary system [18]. This method is quite similar
to the one used here. The optical field is expanded in a
two dimensional Fourier sine series converting the scalar
wave equation into a matrix eigenvalue equation

B. Computation of the Gain Spectrum

To evaluate g, in (43), we first compute the band
structure associated with the quantum well. We calculate
all conduction band and valence band dispersion curves
for minibands that are likely to be occupied with electrons
or holes respectively. Only these minibands can contrib-
ute to emission and, hence, to gain. We do this for a num-
ber of points (e.g., 30) in k space, taking them in a rep-
resentative direction, usually the z direction parallel to the
plane of the quantum well. Then we calculate the squared
matrix elements of each polarization for all the transitions
between these states.

To proceed further, we must set the quasi-Fermi levels
in the conduction band and valence band. The occupation
numbers f, (k) and f, (k) are given by

1
1® =% F
exp —-—kB T +1

1

exp <E———~————”(l;)8; F") +1

where F_ and F,, are the quasi-Fermi levels and k5 is Boltz-
man constant.

We find F, and F, from the requirement that the average
carrier density in the quantum well have specified values
n and p. The number of carriers in the quantum well re-
gion is found by summing over the bands and weighting
their occupations by f.(k) or (1 — f,(k)). Just as in the
optical transitions, in doing the sum over k, we replace
the sum by an integral over a density of states along a
representative direction in k space. The densities of states

S (k) = (46)
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TABLE III
MOoDAL PROPERTIES OF MQW LASERS AT 1.55um
Interval Facet Threshold Active
Well Strip Mode Mode Gain Threshold

Number Thickness Width Length Confinement loss Loss of mode gain

Type Wells A pm pm Factor cm™! cm™! cm™! cm™!
bulk 1 1500 0.8 250 0.245 25 48 73 298
MQW 7 80 0.8 250 0.085 20 48 68 796
MQW 4 80 1.0 500 0.039 10 24 34 874
SQwW 1 80 2.0 1000 0.0084 5 12 17 2023

depend upon the dimensionality of the k summation and
will be different in the three-dimensional bulk case and in
the two-dimensional quantum well case. In the bulk case
the carrier density equals the total number of carriers N
divided by the active volume. In a well-designed quantum
well laser, the injected carriers will nearly all reside in
the active layers. Therefore, in the quantum well case, we
compute the carrier density as N divided by the active vol-
ume.

The Fermi levels are then set in an iterative procedure
by varying them until the specified carrier densities 7 and
p are reached. In the common case of undoped active lay-
ers, electrical neutrality requires that # = p,. Once the
Fermi levels are established, g,.(hw) can be evaluated
with (4.7). The most time-consuming step is solving the
eigenvalue problem for all the energy levels and wave
functions. Once this is done, it is relatively quick to com-
pute the gain spectra for a set of carrier densities.

C. Broadening of the Gain Spectrum

The optical spectra computed by the procedures de-
scribed above have sharper features than are seen exper-
imentally. We shall follow the common practice and add
an empirical broadening to the spectra by convoluting with
a broadening function. It is found that in undoped semi-
conductors at room temperature, broadening gives rise to
a nearly exponential tail on the low energies sides of the
absorption and emission edges of the spectrum [19]. This
is usually referred to as an Urbach tail. This broadening
is thought to be due to interaction with the vibrating lat-
tice. Many body effects may also contribute. In a study
of 1.3-um quaternary lasers, the broadening did not in-
crease very much with carrier injection, indicating that
broadening by lattice vibrations may be dominant [19].

If the carriers in each band are in thermal equilibrium,
described by a quasi-Fermi level and temperature 7, the
emission and absorption spectra will be related by an Ein-

F,—F, — hw

stein relation.
eyt () = e (Aw) exp < < ks T > @7

The derivation of this formula is outlined below. (It is
easy to show that this relation will still hold even if the
interaction with the lattice produces phonon side bands,
provided that the lattice phonons are also described by the
same temperature 7.) A consequence of (47) is that the
broadening of emission and absorption spectra will be dif-
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Fig. 3. Optical absorption and gain spectra of a MQW laser with 80 A
wells and barriers. Spectra with and without broadening are compared.

ferent. For example, if the broadening of absorption is
symmetric, the emission will be asymmetric. Experimen-
tal studies [18] have verified that the Urbach tail is differ-
ent in absorption and emission in a way that is predicted
by the Einstein relation.

For simplicity, we chose an exponential broadening
function which can describe the observed Urbach tails.
We broaden the absorption spectrum a, (Aw) by convo-
lution with the broadening function

RN

hw = =4 @8)

To be consistent with the Einstein relation, we then cal-

culate e, (Aw) using (47). The gain spectrum is then given

by (44). We used A, = 9 meV, which is consistent with

the absorption broadening seen in 1.3 pm quaternary la-

sers material [18]. The effect of broadening of the ab-

sorption and gain spectra of a 1.55 um MQW laser with

compressive strain is shown in Fig. 3. The computation
of these spectra is discussed in Section VI.

The Einstein relation follows from the requirement that
the optical transition rates be consistent with the results
of statistical physics. In a quantum treatment of a laser
cavity, the rate of optical absorption is ~ @, (Aw)n,,
where n,, is the photon number. Similarly, the emission
rate is ~ €, (M) (n,, + 1) where the 1 is the contribution
of spontaneous emission. In the special case of thermal
equilibrium, these two rates must be equal. In thermal
equilibrium with an excited semiconductor, F, — F, is the
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chemical potential of the photons [20]. For a Bose gas
with this chemical potential, the average level occupation
number is

1
Mo = ho — (F, — F,) “9)
exp T )" 1

which results in the Einstein relation (47).

V. MATERIAL CONSTANTS

In the following, we calculate absorption and spectral
gain for realistic laser structures. We consider laser struc-
tures made of the quaternary material system
In, - ,yGa,As,P _,, grown on an InP substrate. This is
the current material of choice for the fabrication of lasers
for communication, since the 1.3y to 1.55u wavelength
range set by the optical properties of the silica fibers is
easily accessed by this choice. This choice has obvious
advantages, such as ability to compare calculated results
with available experimental data, obtaining insight
thereby in the design of new structures. A disadvantage
in having to deal with a quaternary mixed crystal system
is that the material constants are not very well known;
these are required for quantitative modeling of the design
and engineering of working devices.

The material constants of the quaternaries are in gen-
eral a function of their composition (y and x of Fig. 2)
and in principle should be measured for each composi-
tion. Another approach is to interpolate those constants
from the known constants of quaternaries of fixed com-
position (usually the binaries where x, y = 0,1). Inter-
polation schemes were given by Adachi [21]. The way we
have chosen to proceed is slightly different.

Since, in general, the quaternaries are aimed to lattice
match the InP substrate, we regard the lattice matched
quaternary as if it were composed of the ternary
(In0_532Gao_4sgAS) and InP. Thus:

In, _,Ga,As, P _,) = (Ings53Gag 468As),InP); _,. (50)

The particular ternary is one which happens to already be
lattice matched to InP. By doing this, we generate a line
of lattice-matching in the xy composition plane (Fig. 2).
Along this line we have:

z =7y = x/0.468. 1)

In this way, we treat the quaternary as being actually a
ternary material in the sense that all its properties can be
interpolated from the better documented properties of the
binary InP and the lattice-matched ternary
Ing 53,Gag 463As. In Table II, we list and reference all the
material constants that we use for our calculations. We
have made an effort to rely on experimental data rather
than calculated numbers wherever possible. All the ma-
terial constants for the quaternary are linearly interpolated
between these of InP and those of Ing s3,Gag 465AS

A%R) = (1 — 4% + 247, (52)

2443

where A is one of the material constants, Q stands for the
quaternary, B for the binary InP, and T for the lattice
matched ternary.

For the quaternary band gap, however, we use para-
bolic interpolation, to account for the bowing of the band-
gap [22].

E2( = (1 — DE: + zEL — z(1 — B2 (53)

where B¢ = 0.012 eV [22]. Using this equation, we make
one to one correspondence between the quaternary room
temperature luminescence wavelength and its composi-
tion as given by z.

The temperature dependence of the band gap is being
calculated using the Varshni phenomenological expres-
sion [23]:

2

B+T

where T is the temperature in K, o = 6.9 x 107™* eV /K?
and 8 = 327K. TemKin et al. [24] established that these
constants hold for a wide range of quaternary materials in
addition to InP. We emphasize here that the valence band
offset of the quaternary is linearly interpolated between
the values of In, 53,Gag 465As (Vg = 0.37 eV [25]) and
that of InP (V3; = 0). Since the bandgap is interpolated
parabolically, this leads to a composition dependent va-
lence band to conduction band offset ratio. The quaternary
can be biaxially compressively or tensilely strained by
changing its composition from the lattice-matching con-
dition (51). The change in the lattice matching condition
is usually done by changing x, i.e. moving only the ter-
nary from its lattice matched condition. The amount of
change in the group III composition of the quaternary Ax
which is needed in order to get a given lattice mismatch
strain ¢ is- given by:

EXT) = EZO -

G4

= aQ(x,,,,, 2) — aQ(xlm + Ax, 2)
aQ(x,m + Ax, 2)

)
i,, 9a"(xy, 2) Ax

a ox (53)

where x,,, = 0.468 and a? is the lattice constant of the
quaternary, while a® is the lattice constant of InP. Now
using (5.3) for a2 (z) and similar expression for a’(x), we
get

0a%(x,,
2002 — 2 (auns — and (56)
x
substituting back in (5.6) we get:
= , %nAs T QGaas Ax 57

Ap

The change in composition Ax introduces changes in the
material constants. These changes can be calculated in a
similar way to the change in the lattice constant:

Q
M"x, 9

o x = (A% — AMAHAy

AA%x, 7) = (58)
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where and are the relevant material constants
of the binary parents of the ternary, and AY is the constant
of the quaternary.

The bandgap, which is interpolated parabolically is
changed differently:

AE? = Z[E$™ — -1 - 2x,)BNAx  (59)

where the expression in rectangular brackets is simply the
partial derivative with respect to x, of (53).

Once the lattice mismatch e is known one can determine
all the components of the strain tensor by solving Hooke’s
Law. In the examples that follow, the direction of growth
is (100). In this relatively simple case we get:

InAs
E 4

ey = €; =€

2(.']2
€= ——€ e, =€, =€,=0
n

(60)
where the x axis is parallel to the growth direction (100).

V1. MODELING OF BULK AND QUANTUM WELL
QUATERNARY LASERS

In this section we will apply the computational proce-
dures described above to model bulk and quantum well
InGaAsP lasers. We will compare bulk and multiquantum
well (MQW) lasers, compare compressively and tensilely
strained MQW lasers with unstrained MQW lasers, com-
pare 1.55 pm lasers with 1.3 pm lasers and compare room
temperature and high temperature operation. The com-
parisons are made by calculating the gain spectra and peak
gains as a function of carrier density. No attempt will be
made to calculate laser currents, for this would require a
description of the nonradiative processes.

It should be borne in mind that these calculations are
quantitative but not exact. The spectra were phenomolog-
ically broadened in a way that corresponds with obser-
vations made on 1.3 um lasers at room temperature. In-
creased broadening with carrier injection or temperature
was not introduced. Coulomb interaction between elec-
trons and holes, which results in the formation of excitons
at low carrier density, was neglected. Changes in the po-
tential wells resulting from the distribution of injected
carriers are not calculated. Changes in mode occupation
due to changes in refractive index of the active layer
caused by carrier injection were neglected. The quater-
nary band parameters were estimated by linear extrapo-
lation of parameters of InP and the lattice matched ternary
materials. Despite these disclaimers, we expect that our
calculations give a nearly quantitative description of real
- lasers and that the trends we find should be borne out by
experimental observations.

Multiquantum well (MQW) lasers usually have four to
10 wells. Increasing the number of wells serves mainly to
increase the mode occupation factor (fraction of optical
power in the active area) and does not significantly change
8a (1), the gain within the active layer as a function of
carrier density n. Therefore, we simulated the MQW la-
sers by calculating a superlattice, which represents an in-
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finite number of wells and calculated g, (n) of a single
active layer (well). This required fewer Fourier waves be-
cause the envelope functions only had to be calculated for
one period of the structure. In the illustrations that follow,

we used 80 A wells separated by 80 A barrier layers.

The perlod of the superlattice was X = 160 A . The wells
were in the y-z plane. The quantum well wave functions
were expanded in a Fourier series in the x direction. We
usually use 11 waves (values of k,). The computed gain
spectrum was found to be negligibly altered when the
number of waves was increased from 11 to 13.

The basis states used were products of the 11 waves and
8 zone center Bloch functions. Thus the matrix to be di-
agonalized is of order 88. This matrix had to be solved
for each occupied point in the Brillouin zone (BZ). We
simulated the relevant section of the BZ by 30 points in
the z direction. A thorough simulation should take other
directions in the yz plane. It was shown, however, by Ger-
shoni et al. [26] that this direction, which is at 45° rela-
tive to the electric field of the electromagnetic radiation
in the laser cavity, is an excellent approximation for the
average over all directions in the quantum well plane yz.
To simulate the superlattice we repeated the calculations
with k, = 27 /X)(j + q,) where 27 /X) g, is the wave
vector describing propagation in the superlattice. The cal-
culation was repeated for six values of g, spanning the
range of —(1/2) to 1/2 Therefore the eigenvalues had to
be solved 6 X 30 = 180 times. This computation took
about 20 minutes on a Sun workstation and about 2 min-
utes on a Cray computer. Another 8 minutes of compu-
tation on a Sun work station was needed to calculate the
gain spectrum for 8 values of carrier density. In Fig. 3 we
display absorption and gain spectra of 1.55 pm MQW
laser, subject to 1% compressive strain. Spectra with and
without broadening are displayed for four different carrier
densities.

Computation of the bulk laser consisted of expanding
the wave function in the 8 zone center Bloch functions
with only one Fourier wave k, = 0, in the x direction.
The transverse BZ was simulated by k in the x, y, and z
directions, using 50 points in each direction. This com-
putation takes less than 1/10 the time for simulating a
quantum well laser (see Fig. 1).

A. Comparison of Bulk and Quantum Well Lasers at
1.55 pm

Let us begin by comparing bulk lasers with quantum
well lasers having compressive strain. As we discuss be-
low, of the various quantum well lasers that we consid-
ered, those with compressive strain are expected to have
the lowest threshold carrier densities and highest differ-
ential gains.

Fig. 4 shows the gain spectrum of a bulk laser operating
near 1.55 pm. As in all of our examples, the gain is that
within the active layer g,,, not the mode gain gmoq.. The
horizontal lines in the figure are the typical threshold val-
ues of g, expected for bulk, multiquantum well (MQW)
and single quantum well (SQW) lasers. Laser threshold is
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Fig. 4. Gain spectra of a bulk 1.55 um laser. The horizontal lines are the
active layer gains required to reach threshold for bulk, MQW and SQW
lasers.

reached when the g4 is equal to the modal loss. These
threshold gains are detailed in Table III. The horizontal
lines are equal to g, at threshold given by g,,.¢. at thresh-
old divided by T',., where I', is the active layer occu-
pation factor of the mode. Similar values of g, at thresh-
old are found for 1.3 um lasers. The peak gain moves to
higher optical energy with increasing carrier density n.
This shift occurs because for a bulk laser the joint density
of states increases approximately as (fw — Eg)l/ 2, As the
bands fill with carriers, higher lying densities of states
become inverted and the peak gain moves to higher opti-
cal energy. In the case of a quantum well, the joint density
of states associated with the optical transitions is nearly
independent of energy, increasing (in the absence of
broadening) in a step-like manner. This is evident in the
optical absorption spectrum of Fig. 3. Consequently, peak
gain occurs at a fixed optical energy until the second
quantum well transition becomes inverted, then an abrupt
shift in the wavelength of peak gain should occur. Broad-
ening of the optical transitions causes this shift to occur a
little more gradually. The gain spectrum for the compres-
sively strained quantum well laser is shown in Fig. 5. Only
a slight shift in the optical energy of peak gain occurs.

The peak gains of the bulk and compressively strained
MQW lasers are plotted versus carrier density n in Fig.
6. We see that the bulk laser achieves positive gain at
lower carrier density, but the gain of the MQW laser in-
creases more rapidly with increasing carrier density.

In comparing bulk and quantum well lasers and com-
paring quantum well lasers of different designs, we are
faced with the difficulty of comparing lasers with similar
modes, but very different active volumes V,.. Consider
the threshold condition of a Fabry-Perot laser.

1
model — L=1In
8mode Y mode Jm
where L is the length of the laser, R, and R, are the facet

power reflectivities and 7y ,,q4. is the internal loss. For dif-
ferent lasers, the amplification g;,,4.L must be nearly the

(61)
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Fig. 6. Peak active layer gain g versus carrier density for bulk and 1%
compressively strained lasers operating at 1.55 um versus carrier density
n within the active layer. The slopes of the lines from the origin are pro-
portional to 4 /N. The circles on the bulk loss line show the relative carrier
numbers at threshold.

0

same at threshold. We assume that different lasers have
similar mode areas A;,4.. Then

L= BactAact L

A (62)

8mode ~ Sact Vact-

The 108s Yol due to optical absorption by electrons
and holes is given by

dy ndy L

Ymode L = dn A ~ nVy. (63)
The threshold current / is given by
_ endgl ﬂ/a_ct )
() 7(n)

We see that to compare different lasers, we must multiply
both g, and n in Fig. 6 by V,,. The curves will change
in scale, but not in shape. Notice that the slopes of the
straight lines radiating from the origin in Fig. 6 are un-
changed by these multiplications. These slopes are pro-
portional to the amplification per injected carrier A/N,
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where A = gposel ~ ZactVaa and N = nV, .. Multiplying
8act and n by V,, transforms the plots in Fig. 6 into a plot
of A versus N. Since the A of each laser is nearly the same
at threshold, N at threshold diminishes as A /N (slope of
the straight line) increases. The horizontal positions of
circles in Fig. 6 along the bulk laser threshold line show
the relative values of N at threshold for the bulk, MQW
and SQW lasers.

Fig. 6 illustrates that the amplification per injected car-
rier A/N progressively increases as we go from bulk, to
MQW, to SQW lasers. As V., decreases, the laser oper-
ates at higher levels of inversion, a smaller fraction of the
injected carriers are used merely to reach transparency and
A/N increases. In addition, the MQW lasers are an im-
provement over bulk because of the confinement of the
carriers in the bands to two dimensions instead of three
and because of reduced hole band masses in some cases.

The loss of the mode due to absorption of light by free
electrons and intervalence band absorption by holes is
proportional to N (63). The reduction of N in MQW and
SQW lasers results in the remarkably high efficiency of
these lasers [27], [28]. The reduction of threshold current
I in going from bulk to a MQW laser will be less pro-
nounced than the reduction in loss, because the quantum
well laser operates at higher carrier density than bulk laser
and the carrier lifetime 7(n) in (64) is reduced.

B. Comparison of Bulk, MOQW and Ideal MQW lasers

In Figs. 7 and 8, we plot the peak gains versus carrier
density for bulk and MQW lasers having 1% compressive
strain, no strain and 1% tensile strain. These lasers are
designed to operate near 1.55 um at 27°C. The calcula-
tions in Fig. 7 are at 27°C and in Fig. 8 are at 87°C. In
addition, we show curves for an ‘‘ideal’” MQW laser,
which we discuss below. The curves indicate that com-
pressively strained MQW lasers are considerably better
than unstrained and tensile strained lasers. Tensile strained
MQW lasers appear to be somewhat worse than un-
strained MQW lasers. The curves have nearly the same
relations to one another at 87°C as at 27°C. All of the
quantum well lasers have better 4 /N slopes than the bulk
laser. This indicates that quantum well lasers are gener-
ally more efficient than bulk lasers in part due to their
smaller active volumes.

In a bulk laser, the carriers spread out three dimen-
sionally to fill the bands in k space. Roughly speaking, to
maintain a given level occu/pation, the carrier density will
have to increase as (k3 T)*/? due to the spreading of car-
riers in the bands. In a quantum well laser, the spreading
in k space is restricted to two dimensions. Ideally then,
the carrier density will increase as (kpT) due to the
spreading of carriers in the mini-bands. However, there
are many miniband associated with the various bound and
unbound levels of the quantum well. The quantum well
laser behaves ideally only if the levels are sufficiently well
separated that only lowest conduction miniband and high-
est valence miniband are occupied. Only these levels con-
tribute to the lasing transition.
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Fig. 7. Peak active layer gain g versus carrier density n for bulk, 1% com-
pressively strained, 1% tensilely strained and unstrained MQW 1.55 pm
lasers at 27°C. The fictitious **ideal’” case of a laser with 1% compressive
strain and occupation of only the uppermost valence band and lowermost
conduction band is also shown. The circles on the bulk loss line compare
the relative carrier numbers N at threshold.
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Fig. 8. Peak active layer gain g versus carrier density » for bulk, 1% com-
pressively strained, 1% tensilely strained, unstrained and *‘ideal”” MQW
1.55 um lasers at 87°C. The circles on the bulk loss line compare the
relative carrier numbers N at threshold.

The ‘‘ideal’’ quantum well behavior shown in Figs. 7
and 8 was simulated by only populating the lowest con-
duction miniband and highest valence miniband of a com-
pressively strained quantum well laser. The ‘‘ideal”’ laser
has a behavior that is much superior to that of the real
quantum well laser, because in real MQW lasers the car-
riers, particularly the holes, occupy other bands. These
carriers contribute nothing to the lasing transition, but they
do contribute to radiative and Auger recombination.

Figs. 9 and 10 show the band structure of the conduc-
tion bands and valence bands of 1.55 um lasers with a)
1% compressive strain, b) no strain, and c¢) 1% tensile
strain. The short horizontal lines in these figures show the
band edges of the bulk material. The long horizontal lines
in these figures show the energies associated with 90%,
50% and 1% occupation. The Fermi levels are the lines
of 50% occupation. These occupations were calculated
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Fig. 9. Comparison of the conduction band structure for 1% compres-

sively strained, unstrained and 1% tensilely strained 1.55 um MQW lasers.

forn =3 x 10'® cm™ at 27°C. We see in Fig. 9 that as
we go progressively from compressive to tensile strain,
the confinement of electrons within the well is reduced.
The position of the Fermi level in Fig. 9 shows that there
is a substantial occupation of higher conduction bands,
even in the case of compressive strain.

The most striking difference in the valence bands in Fig.
10 is that the band mass of the uppermost valence band is
much smaller for compressive strain than for tensile strain.
This is probably the most important factor in making
compressively strained lasers superior to tensile strained
lasers.

In a bulk laser, most of the holes occupy the heavy hole
band and the light and heavy hole bands are degenerate at
k = 0 (Fig. 2). In an unstrained quantum well laser, this
degeneracy is removed by the spatial quantization which
splits the light and heavy hole levels at k = 0, due to their
effective mass difference for motion normal to the quan-
tum well plane. This splitting of the heavy hole levels
above the light hole levels is enhanced by compressive
strain. On the other hand, the splitting is reduced and re-
versed with tensile strain. Tensile strain also reverses the
normal polarization of the lasing mode, the peak gain oc-
curring for TM polarization instead of TE. The heavy hole
level receives its name from the heavy hole associated
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Fig. 10. Comparison of the valence band structure for 1% compressively
strained, unstrained and 1% tensilely strained 1.55 um MQW lasers.

with motion within the quantum well (normal to the quan-
tum well plane). However, it has a light hole mass for
motion parallel to the plane and this is the mass that con-
trols carrier density. Thus compressive strain enhances
occupation of hole bands with light hole mass, while ten-
sile strain enhances occupation of hole bands with heavy
mass. These beneficial effects of compressive strain were
recognized in the early papers of Adams [29] and Ya-
blonovitch and Kane predicting the effect [30].

This effect is quite evident in Fig. 10. Comparing Figs.
10(a) and (c), we see that the uppermost hole band has a
much greater curvature in the case of compressive strain
than in the case of tensile strain and hence, tensile strain
requires a greater number of holes to achieve the same
occupancy of this band near k = 0. The unstrained laser
lies somewhat between these two extremes.

C. Bulk and MQW Lasers at 1.3 pm

We now turn to a comparison of bulk and quantum well
lasers operating at 1.3 um. Figs. 11-14 show the active
layer gain versus carrier density at 27°C and 87°C and
the conduction band and valence band dispersion curves
for 1.3 pm lasers. They can be compared with the corre-
sponding Figs. 7-10 for 1.55 um lasers.

Comparing Figs. 7 and 11, we see that even for bulk
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Fig. 12. Peak active layer gain g versus carrier density » for bulk, 1%
compressively strained, 1% tensilely strained and unstrained MQW 1.30
pm lasers at 87°C. The circles on the bulk loss line compare the relative
carrier numbers N at threshold.

lasers, somewhat higher carrier densities are required to
achieve threshold. This is probably due to the slightly
higher band masses and smaller optical matrix element for
the 1.3 pm laser materials compared to the 1.55 um laser
materials.

Fig. 11 and 12 plotting gain versus carrier density for
1.3 pm show that the MQW lasers require considerably
higher carrier densities than bulk lasers. Among the quan-
tum well lasers, the compressively strained MQW laser is
still superior, but it does not stand out from the others as
much as it does at 1.55 um. Its main advantage appears
to be higher differential gain. The probable reason for the
drop in performance of the quantum well lasers relative
to bulk at 1.3 um is that well confinement is reduced at
this wavelength. For both the valence band and conduc-
tion band, the energy separations between the active layer
and barrier layer are reduced for the 1.3 um laser as shown
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Fig. 13. Comparison of the conduction band structure for 1% compres-
sively strained, unstrained and 1% tensilely strained 1.30 um MQW lasers.

in Fig. 13 and 14. The shallower wells and higher band
masses reduce the separations between the quantum well
energy levels and hence the confinement of carriers in the
lasing bands. Despite the diminished advantage of quan-
tum well lasers relative to bulk lasers at 1.3 um, the slopes
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of the straight lines in Figs. 11 and 12 indicate that quan-
tum well lasers should still have slightly lower internal
losses than bulk lasers at this wavelength due to their
smaller active volume.

VII. SUMMARY AND DISCUSSION

We have described a program for calculating the elec-
tronic states and optical properties of heterostructures in
semiconductors. The program was applied to the study of
bulk and strained MQW lasers. A curve of peak gain ver-
sus carrier density could be generated in less that 30 min-
utes of computation on a Sun work station. The program
was particularly suited to modeling periodic structures,
but it could also be used to model QW lasers with one or
a few wells. For modeling MQW lasers with more than
four wells, a superlattice model was used. The envelope
functions only need to be computed for a single period of
the superlattice and this requires far fewer waves in the
Fourier expansion.

It was found that the MQW lasers were far from ideal
owing to the occupation of the closely spaced minibands.
This occupation leads to inefficiency because only the up-
permost valence band and the lowest conduction band
contribute to gain, while all the occupied bands contribute
to recombination. Despite this nonideality, MQW lasers
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were found to have higher amplification per injected car-
rier than bulk lasers at both 1.55 and 1.3 pm. This results
in lasers with high differential quantum efficiency, a prop-
erty for which MQW lasers are known to excel. The high
amplification per carrier is a consequence of the smaller
active volume of the MQW lasers which requires fewer
carriers to reach transparency and also due to the confine-
ment in one dimension. This is particularly true for com-
pressively strained MQW lasers which have the best per-
formance.

The advantage of compressive strain is that hole mini-
band associated with the lasing transition has a relatively
low effective mass. Another lesser advantage is that the
well depth for confining the electrons is deeper with com-
pressive strain. MQW lasers with compressive strain had
significantly higher differential gains both at 1.55 and 1.3
pm. This should result in higher modulation speeds of
MQW lasers than bulk lasers.

The main disadvantage of MQW lasers is that they op-
erate at higher carrier densities than bulk lasers. This is
especially true at 1.3 pm. The shallower wells of MQW
lasers operating at 1.3 pm made them even less ideal than
at 1.55 um. In view of the suspected importance of the
Auger recombination in determining the high temperature
performance of long wavelength semiconductor lasers, the
lower threshold density of bulk lasers at 1.3 pm may be
an advantage.
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