Deterministic coherent writing of a long-lived semiconductor spin qubit using one ultrafast optical pulse

I. Schwartz,1 D. Cogan,1 E. R. Schmidgall,1 L. Gantz,1 Y. Don,1 M. Zieliński,2 and D. Gershoni1

1Physics Department and Solid State Institute, Technion–Israel Institute of Technology, 32000 Haifa, Israel
2Institute of Physics, Faculty of Astronomy, Astrophysics, and Informatics, Nicolaus Copernicus University, ul. Grudziadzka 5, PL-87-100 Toruń, Poland

(Received 9 May 2015; published 9 November 2015)

We use one single, few-picosecond-long, variably polarized laser pulse to deterministically write any selected spin state of a quantum dot confined dark exciton whose life and coherence time are six and five orders of magnitude longer than the laser pulse duration, respectively. The pulse is tuned to an absorption resonance of an excited dark exciton state, which acquires nonnegligible oscillator strength due to residual mixing with bright exciton states. We obtain a high-fidelity one-to-one mapping from any point on the Poincaré sphere of the pulse polarization to a corresponding point on the Bloch sphere of the spin of the deterministically photogenerated dark exciton.

DOI: 10.1103/PhysRevB.92.201201 PACS number(s): 03.67.Lx, 42.25.Ja, 42.50.Dv, 78.67.Hc

Future technologies based on quantum information processing (QIP) [1–6] require the ability to coherently control matter two-level systems, or qubits. Since they are ultrafast and require no contacts, optical means of control are preferred. Spins of charge carriers in semiconductors are promising matter qubits since they complement contemporary leading technologies, specifically those of light sources and detectors. Semiconductor quantum dots (QDs) isolate single carriers and can be easily incorporated into nanophotonic devices, thereby providing an excellent interface between single spins and single photons. For these reasons, semiconductor QDs have been the subject of many recent works, which demonstrate significant progress in optical writing, readout, and control of confined spins [7–16].

In semiconductors, the absorption of a photon results in the promotion of an electron from the full valence band, across the forbidden band gap, to the empty conduction band, leaving its spin unaltered. The missing valence band electron (or “hole”) and the conduction band electron form an electron-hole pair with opposite spin directions, or a bright exciton (BE). The BE forms an integer spin (total spin 1) qubit in the matter.[1,2]

In a previous work, we demonstrated that, in strain-induced self-assembled quantum dots, the polarization of a resonantly tuned, single picosecond optical pulse can be used to deterministically write the bright exciton spin qubit in any desired coherent state [14]. Such a process is not possible for single spins, where a few pulses are required to prepare the spin in an eigenstate and then a three-step (Ramsey) rotation is needed to write the spin state at will [7,8,10], a process that can take a few nanoseconds. Moreover, while full coherent control (“rotation”) of the bright exciton can be achieved by one single optical pulse [15,17], single spins require two pulses and free precession in between [7–9,12]. However, these advantages of the bright exciton are not very useful, since its lifetime is rather short (sub-ns), limited by radiative recombination of the electron-hole pair.

Since light barely interacts with the electronic spin, an electron-hole pair with parallel spin directions is almost optically inactive. Such a pair is called a dark exciton (DE). The DE is also a spin integer (total spin 2) qubit [18], but since it is optically inactive, its lifetime can be orders of magnitude longer than that of the BE [16,19–21]. Very recently, we have demonstrated that the DE lifetime (~1 µs) is radiative and that it maintains coherence over at least ~100 ns [16]. As such, the DE has clear advantages over the bright exciton, provided that it can be externally accessed, despite its optical inactivity.

Here, we exploit the optical activity of an unpolarized absorption resonance to an excited DE state to deterministically photogenerate the DE and write its spin state in any desired coherent superposition of its two eigenstates with high fidelity, using a few picoseconds long polarized optical pulse. The duration of the pulse is several orders of magnitude faster than both the DE lifetime and coherence time. This achievement makes the DE an excellent matter qubit. It improves this qubit’s usefulness in comparison to a recent publication in which the deterministic generation of the DE and its control was first demonstrated [16]. In Ref. [16], the DE was photogenerated by resonant excitation to its ground state. The weak optical activity (and narrow linewidth) of the DE ground state, however, required pulses of a few tens of nanoseconds duration, and the transition polarization selection rules permitted generation in only one of the DE spin eigenstates. Therefore, full spin initialization required, in addition, three-step Ramsey control.

Figure 1 schematically describes the experiment. The DE is deterministically generated and its state is “written” using a variably polarized short pulse tuned to the DE s-like exciton [ground energy level (1é)±1/2]–p-like heavy hole [first excited energy level (2h)±3/2] absorption resonance, as shown by the green upward arrows in Fig. 1(a). The optical writing of the DE spin is made possible due to mixing between the s-p DE states and BE states. This mixing is induced mainly by the QD symmetry [22] and compositional disorder [23]. Thus, the overall wave functions of these excited DE (XDE polarization) states contain spin-antiparallel states in addition to the spin–parallel states: [XDE polarization]±2 = α((1é)±1/2(2h)±3/2) + β((1é)±1/2(2h)±3/2) + γ(1é)±1/2(2h)±3/2, where (1é)±1/2 (2h)±3/2 represents a single electron [hole] in its ground [first excited] state with spin projection ±1/2 (±3/2) on the optical axis (notation after Ref. [24]), and |α| > |β|, |γ|. 
absorption depends on the DE population and polarization at the photon absorption time. The temporal dependence of
the absorption is monitored by detecting the emitted $XX_{T,\pm 3}^0$ biexciton photon [magenta arrows in Fig. 1(a)]. The DE is
then optically depleted from the QD [28] and the experiment repeats itself from the beginning. The pulse sequence for
the experiment is shown in Fig. 1(b).

The experimental study was performed on a sample grown by molecular-beam epitaxy on a (001)-oriented GaAs sub-
strate. One layer of strain-induced InGaAs QDs was deposited in the center of a planar microcavity formed by two distributed
Bragg reflecting mirrors. The microcavity was optimized for the range of wavelengths corresponding to photolumi-
nescence (PL) emission caused by optical recombination between ground-state carriers in these QDs [24,27,29,30]. The
measurements were carried out at 4.2 K. The experimental setup that we used provides spatial resolution of about 1 µm,
spectral resolution of about 10 µeV, and temporal resolution of about 400 ps in measuring the arrival times of up to four
different photons originating from up to four different spectral lines, where each line polarization can be projected on a
different polarization direction. More details about the sample [24,31] and about the experimental setup [24,27] are given
in earlier publications. Pulsed excitation was performed using a frequency-tunable, cavity-dumped dye laser synchronously
pumped by a frequency-doubled Nd:YVO4 (Spectra Physics Vanguard) laser. The spectral width was ~150 µeV, and the
temporal width was about 10 ps, as reported in Ref. [16]. The repetition rate was set to 9.5 MHz, in which the cavity was
dumping 1 out of 8 pulses. For temporally longer pulses, we used a a grating-stabilized tunable diode laser modulated by an
electro-optic modulator synchronized with the pulsed laser, permitting a variable pulse duration with rise and fall times of
less than half a ns. The polarizations of the two lasers were independently controlled by a polarized beam splitter and two
pairs of liquid crystal variable retarders (LCVRs). Similarly, the polarization of the detected PL was analyzed by an addi-
tional set of two pairs of LCVRs and a polarized beam splitter.

In Fig. 2, we present measured PL and PLE spectra in which the various optical transitions discussed in Fig. 1 are identified.
Figures 2(a) and 2(b) presents rectilinear polarization-sensitive PL spectra of the QD. The BE ($X_{DE}^0$), the DE ($X_{DE}^0$), and
the positively charged ($X^+$) excitonic lines as measured using very weak excitation by a 445 nm light source [16] as well
as the $XX_{T,\pm 3}^0$ and $XX_{T,0}^0$ (where the holes form a triplet with antiparallel spins [18,27]) biexcitonic lines, measured
using a considerably stronger excitation intensity, are clearly marked in Fig. 2(b) and Fig. 2(a), respectively. In Fig. 2(c),
we use PLE spectra to spectrally identify the excited BE and DE absorption resonances. To obtain the BE resonances [solid
lines in Fig. 2(c)], one laser was tuned to the $XX_{T,\pm 3}^0$ absorption resonance [upward blue arrow in Fig. 1(a)] while the other laser
energy was scanned, and the emission from the $XX_{T,\pm 3}^0$ line [downward magenta arrow in Fig. 1(a)] was monitored. To ob-
tain the BE resonances [dashed lines in Fig. 2(c)], the emission from the BE was monitored during the same laser scan.

We identified the three lowest energy absorption resonances of the DE. One resonance at $-0.3$ meV is to its ground energy
level [$(1e^i)_{+1/2}(2h^i)_{\pm 3/2}$] and two others at 15 and 22 meV to its first [$((1e^i)_{+1/2}(2h^i)_{\pm 3/2}$] and second $[(1e^i)_{+1/2}(3h^i)_{+3/2}$]
This perfectly agrees with previous experimental [24,26,27] and theoretical [25,32] studies. In Fig. 2(d), the PL emission intensity as a function of the square root of the average power of the pulsed laser tuned to the first excited resonances of the BE and DE [color matched to the arrows in (a), (b), and (c)] are presented by magenta and green points, respectively. The dashed lines in Fig. 2(d) present a model fitting to the experimental data. Rabi oscillations [33,34] are clearly observed for both the BE (magenta) and DE (green), and intensities which correspond to $\pi$ and $2\pi$ area pulses are marked.

The ratio between the oscillator strength of the first excited BE $[[1e^{1}(1)_{\pm 1/2}(2h^{1})_{\pm 3/2}]$, resonance to that of the DE $[[1e^{1}(1)_{\pm 1/2}(2h^{1})_{\pm 3/2}]$, is about 6. The ratio between the oscillator strength of the ground BE state $[[1e^{1}(1)_{\pm 1/2}(1h^{1})_{\pm 3/2}]$, to that of the BE first excited resonance $[[1e^{1}(1)_{\pm 1/2}(2h^{1})_{\pm 3/2}]$, is about 35 [30]. Consequently, the oscillator strength of the excited DE resonance $[[1e^{1}(1)_{\pm 1/2}(2h^{1})_{\pm 3/2}]$, is about 200 times weaker than that of the ground state BE and about an order of magnitude stronger than that of the ground state DE [16]. The increase in the DE oscillator strength, and its equal distribution between the two rectilinear polarizations, is attributed to increased DE-BE mixing [22] at these elevated energies. These properties of the excited DE resonance enable deterministic photogeneration of the excited DE using few-ps-long

![Fig. 2](image)

**FIG. 2.** (Color online) (a) and (b) Rectilinear polarization-sensitive PL spectra of the QD. The biexciton (a) and exciton (b) transitions were excited by 5 µW and 10 nW 445 nm cw laser light, respectively. The observed spectral lines are identified by their initial states. (c) Rectilinear polarization-sensitive PL excitation (PLE) spectra of the BE (dashed line) and DE (solid line). Both spectra were obtained simultaneously by varying the energy of one laser while tuning an additional laser to the $XX_{T,0}^\pm$ line [green downward arrow in (a)]. The DE PLE was obtained by monitoring the PL emission from the $XX_{T,0}^\pm$ line [downward green arrow in (a)] and that of the BE by monitoring the $XX_{E}^0$ line directly [downward magenta arrow in (b)]. (d) Rabi oscillations of the $X_{DE}^0$ (green, measured using the $XX_{T,0}^{+}$ emission as a probe) and $X_{DE}^*$ (magenta). Color-matched downward arrows in (a) and (b) indicate the monitored emission lines. Magenta and green points represent the PL emission intensity from the $X_{BE}^0$ and the $XX_{T,0}^\pm$, as a function of the square root of the pulsed laser power tuned to the s-p resonances of the BE and DE [color matched upward arrows in (c)]. The color-matched dashed lines present model fittings to the measured data. Intensities which correspond to $\pi$ and $2\pi$ area pulses are marked.

![Fig. 3](image)

**FIG. 3.** (Color online) (a) The degree of circular polarization of the $XX_{E}^{\pm}$ biexciton emission (represented by the color bar) as a function of time (measured from the writing laser pulse) and the writing laser pulse polarization $\vec{P}(\theta, \phi)$. The degree of circular polarization was obtained by subtracting the PL resulting from left-hand circularly polarized probe pulse from that resulting from right-hand polarized probe pulse, dividing by their sum. The writing laser polarization was (a) $\vec{P}(\theta, 3\pi/2)$, (b) $\vec{P}(\phi, \pi)$, and (c) $\vec{P}(\pi/2, \phi)$. (d) Polarization degree as a function of time for the pulse polarizations $\vec{V} = \vec{P}(\pi, 0)$, $\vec{D} = \vec{P}(\pi/2, \pi/2)$, and $\vec{K} = \vec{P}(\pi/2, \pi)$. The colors of the curves match the colors of the horizontal lines on the images (a)–(c). (d) The writing pulse polarization is represented by the angles $\theta$ and $\phi$ on the Poincaré sphere.
polarized optical pulses, while “writing” the DE spin state. The BE-DE mixing is small enough to prevent significant BE generation upon the spin-preserving phonon-assisted relaxation of the excited DE. The DE predominantly maintains its DE character [16], this work paves the way for exploiting the dark exciton as a particularly appealing matter spin qubit. Moreover, there are many dark-exciton-like metastable spin triplet states in matter. Many are known to have long lifetimes even at room temperature and to give rise to phosphorescence, rather than to photoluminescence which occurs in the optically allowed transitions. The angles \( \theta \) and \( \phi \), which describe the polarization of the writing pulse.

In Fig. 3(d), the temporal dependence of the degree of circular polarization is presented for various writing pulse polarizations. The selected polarizations are presented by the blue, green, and azure lines, respectively. Thus, the pulse polarization deterministically “writes” the dark exciton coherently spin state. The maximal degree of polarization that we obtain (\( \sim 0.65 \)) is compatible with the finite temporal resolution of our detectors (\( \sim 400 \) ps) [18], indicating above 90% fidelity in writing the dark exciton qubit.

In summary, this work shows a one-to-one mapping between the polarization state of a picosecond long resonant laser pulse and the spin state of the quantum dot confined dark exciton that it deterministically photogenerates. The technique used in this work is similar to that used previously with the BE [14], though the dark exciton qubit lives three orders of magnitude longer and maintains coherence for at least 100 ns after its generation [16].

Combined with recent demonstrations of all optical depletion [28] of the QD from residual dark excitons and the ability to coherently control the dark exciton spin [16], this work paves the way for exploiting the dark exciton as a particularly appealing matter spin qubit. Moreover, there are many dark-exciton-like metastable spin triplet states in matter. Many are known to have long lifetimes even at room temperature and to give rise to phosphorescence, rather than to photoluminescence which occurs in the optically allowed transitions. The methods that we developed to coherently write and control the DE should be applicable to those systems as well.

The support of the Israeli Science Foundation (ISF), the Technion’s RBNI, and the Israeli Nanotechnology Focal Technology Area on “Nanophotonics for Detection” is gratefully acknowledged. I.S. and D.C. contributed equally to this work.

---


