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Quantum dots are arguably the best interface between matter spin qubits and flying photonic qubits.
Using quantum dot devices to produce joint spin-photonic states requires the electronic spin qubits to be
stored for extended times. Therefore, the study of the coherence of spins of various quantum dot confined
charge carriers is important both scientifically and technologically. In this study we report on spin-
relaxation measurements performed on five different forms of electronic spin qubits confined in the very
same quantum dot. In particular, we use all optical techniques to measure the spin relaxation of the confined
heavy hole and that of the dark exciton—a long-lived electron-heavy-hole pair with parallel spins. Our
measured results for the spin relaxation of the electron, the heavy hole, the dark exciton, the negative and
the positive trions, in the absence of externally applied magnetic field, are in agreement with a central spin
theory which attributes the dephasing of the carriers’ spin to their hyperfine interactions with the nuclear
spins of the atoms forming the quantum dots. We demonstrate that the heavy hole dephases much slower
than the electron. We also show, both experimentally and theoretically, that the dark exciton dephases
slower than the heavy hole, due to the electron-hole exchange interaction, which partially protects its spin
state from dephasing.
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I. INTRODUCTION

The electronic spin in semiconductor nanostructures can
often be described as an isolated physical two-level system.
As such it has long been considered an excellent qubit with
great potential to be used in future quantum information-
processing-based technologies [1,2]. Moreover, semicon-
ductor nanostructures, which confine single electrons, are
easily integrated into electronic and optical devices and
circuits, which dovetail with the contemporary semicon-
ductor-based electro-optic technology. Therefore, much
effort has been devoted recently to demonstrate that various
forms of the electronic spin in semiconductor nanostruc-
tures and in particular in quantum dots (QDs) can be
initiated and controlled with relatively high fidelities, using
optics and electronics means [3–6]. An important advan-
tage of semiconductor electronic spin qubits, which are

anchored to the device, is their strong interaction with
photons, which can be used as flying qubits to communi-
cate quantum information to remote locations [7–10].
These advantages have been recently used, for instance,
to demonstrate that a QD confined electronic spin, can be
used as an entangler for on-demand production of a long
string of entangled photons in a cluster state [11].
The main decoherence mechanism of the confined

electronic spin (central spin) in semiconductor QDs is
its interaction with the spins of the nuclei in its vicinity
[12–17]. Therefore, it is essential, both scientifically and
technologically, to study and to characterize these dephas-
ing processes.
In this work, we comprehensively study, both exper-

imentally and theoretically, the dephasing dynamics of QD
confined electronic spins in five different forms: (a) con-
duction-band electron, (b) valence-band heavy hole,
(c) negative trion, (d) positive trion, and (e) dark exciton
(DE). All in the same single QD.
Semiconductor QDs are formed by about 105 molecules

of one semiconductor compound embedded in another
semiconductor compound of higher band-gap energy.
These formations give rise to nanometer-scale three-
dimensional (3D) potential traps, which confine single
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electronic charge carriers (electrons in the conduction
bands and holes in the valence bands) and isolate them
from their environment. The energy spectrum of these
confined carriers is therefore discrete, giving rise to well-
defined and spectrally sharp optical transitions between
these discrete levels [18,19].
In Fig. 1 we display the electronic spin-wave functions

and Bloch-sphere representations of all the electronic spin
qubits used in this work. The confined conduction electron
levels have a vanishing atomic orbital momentum and thus
their total spin projection on the QD growth direction is
�1=2. Therefore, they form physical two-level systems or
qubits [20]. The spin state of the qubit is represented on the
Bloch sphere, where the spin-up and the spin-down states
are located at the north and south poles of the sphere,
respectively, and any superposition of these two states is
represented by a point on the sphere’s surface. The confined
valence-band electron states have a total atomic orbital
momentum of 1. The spin-orbit interaction, together with
the quantum confinement along the growth direction and
the biaxial lattice mismatch compressive strain, inherent to
our strain-induced QDs, results in a large energy splitting
between the upper most valence states [21]. The highest
valence electron states in which the orbital spin and
electronic spin are parallel, are few tens meV higher than
the states in which the orbital and electronic spins are
antiparallel. At low temperature, the valence-band states are
fully occupied. Confined positive charge carriers in the QD
are therefore formed due to the absence of valence-band
electrons. Thus, the lowest energy hole states have angular
momentum projection of �3=2 on the growth direction
(heavy holes). A heavy hole, is yet another form of a QD
confined electronic spin qubit [22,23] as shown in Fig. 1.
Another form of a confined electronic spin qubit is the
electron-heavy-hole pair, or the exciton [24,25]. Excitons in
which the heavy-hole spin and the electron spin are
antiparallel have a total spin projection of �1, they are
optically active and therefore called bright excitons (BEs).
The qubit that they form [24–26] recombines within a short
radiative lifetime (about 1 ns), which limits their use as a
matter spin qubit. In contrast, excitons in which the electron
and heavy-hole spins are parallel, are optically inactive
since the electromagnetic radiation barely interacts with the
electronic spin. These excitons are called dark excitons.
They have a total spin projection of �2 on the QD growth
axis and live orders of magnitude longer than the BE [27].
Consequently, they can be used for implementing sophis-
ticated quantum information protocols [11,28,29].
In the following, we denote these three long-lived forms

of spin qubits (electron, heavy hole, and DE)—ground-
level qubits. The ground-level qubits are stable, and once
generated in the QD they live in it for a very long time.
The ground-level qubits can be optically excited to their
respective excited-level qubits by absorbing a single
photon, which adds an electron-hole pair to the QD.

Moreover, by using a resonantly tuned optical π pulse,
this excitation can be done deterministically. The resonant
excitation converts the ground-level qubits to their

FIG. 1. (a) Spinwave functions andBloch-sphere representations
of the six matter spin qubits used in this work. The six qubits,
represented by their Bloch spheres, are divided into three pairs of
ground and excited-level qubits. The spin wave functions of the
ground-level (excited-level) qubits are schematically described
below (above) the respective Bloch spheres, where↑ (⇓) represents
spin-up electron (down heavy hole), and the blue (red) color
represents a carrier in its ground (excited) energy level. Green
upwardarrows represent laser pulseswhichconvert theground-level
qubit to its respectiveexcited-levelqubit.Magentadownwardarrows
represent single photons emitted from the excited qubits thereby
returning to the ground-level qubit. (b) The optical transitions and
polarization selection rules for the electron-trion system,which form
a ground-level–excited-level qubit pair.Note that in this example (as
in all other cases) an opticalΠ system is described, but the exciting
laser pulse is tuned to an excited trion level, in order to facilitate
polarization tomography of the emitted photon (magenta downward
arrows) by spectrally separating the emission from the exciting laser
pulse (green upward arrows). The fast (about 70 ps [29]) phonon-
assisted relaxation of the excited trion to the ground trion level is
represented by gray curly downward arrows. The right-hand (left-
hand) circular polarization of the photons which connect the 1=2
(−1=2) spin state of the ground-level qubit with the þ3=2 (−3=2)
spin state of the excited qubit are marked by R (L).
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excited-level qubits, as schematically described in Fig. 1.
In Fig. 1, green upward arrows represent the optical laser
excitations, which convert the electron spin qubit to the
negative trion qubit, the heavy-hole qubit to the positive
trion qubit, and the DE to the spin-blockaded biexciton
qubit. As can be seen in Fig. 1, the negative and positive
trion qubits are formed by three carriers. The negative trion
is formed by two ground-level conduction-band electrons
in a singlet state and a single ground-level heavy hole,
while the positive trion is formed by two ground-level
heavy holes and a single ground-level electron. In both
cases, the spin state of the trion qubits is determined by the
minority carrier, �3=2 for the negative trion, and �1=2 for
the positive trion.
Unlike the trions, which are formed by three carriers, the

biexciton is formed by four carriers. Two ground-level
electrons in a singlet spin state, and two heavy holes with
parallel spins in the ground and first excited valence-band
levels. Consequently, the biexciton-qubit spin states are
�3, and it is determined by the two parallel heavy holes’
spin directions.
Once formed, the excited spin qubits, which are optically

active, decay radiatively within the radiative lifetime of a
ground-level electron-hole pair (about 1 ns), by emitting a
single photon and the system returns to the ground-level
qubit. The photon emissions are schematically described by
the downward magenta arrows in Fig. 1.
If the upper qubit is properly initialized in a coherent

superposition of its two spin states, the polarization of the
emitted photon (“flying photonic qubit”) is expected to be
entangled with the spin state of the ground-level spin qubit,
which remains in the QD [8–11].
At low temperatures and in the absence of external

magnetic field, the main decoherence mechanism of these
electronic spin qubits is the hyperfine interaction between
the electronic (central) spin and the spin of the nuclei of
the approximately 105 atoms which form the QDs [14–16].
The two types of charge carriers in semiconductors, the
negative conduction-band electrons, and the positive,
valence-band holes interact differently with the nuclei,
since their orbital momentum around the nucleus is differ-
ent. The conduction electrons have zero atomic orbital
momentum, while valence-band holes have unit atomic
orbital momentum. Consequently, the conduction elec-
tron’s wave function strongly overlaps with the nucleus
and interacts with the nuclear spin via the Fermi contact
interaction. In contrast, the valence hole’s wave function
vanishes at the nucleus site and therefore its spin interacts
with the nuclear spin via the weaker dipole-dipole hyper-
fine interaction [17]. In addition, while the conduction-
electron interaction with the nuclei, which we denote by γe,
is isotropic, the interaction of the valence heavy hole for
which the orbital angular momentum and the spin are
aligned parallel to the growth direction, is anisotropic. We
denote by γhz the interaction of the valence heavy-hole spin

with the nuclei spin bath along the QD growth axis (ẑ) and
by γhp the interaction with nuclear spins in the plane
perpendicular to ẑ.
The dynamics of the electronic central spin can be

divided into two different time domains as schematically
described in Figs. 2(a)–2(c) for the electron, heavy hole,
and DE spins, respectively [15].
During the first stage, the central spin precesses around a

mean effective magnetic field generated by the frozen
fluctuations of the nuclear spins in its vicinity. The electron
interacts with the nuclear field via the isotropic Fermi
contact hyperfine interaction marked by γe, while the heavy
hole interacts via the anisotropic dipole-dipole hyperfine
interaction marked by γhz and γhp . As the DE is formed by
an electron-hole pair with parallel spins, each of these
carriers interacts with the nuclear magnetic field, while at
the same time they also interact with each other, via the
electron-hole exchange interactions. The most important
term in this interaction is the isotropic term Δ0 [21,30],
separating the DE and BE (an antiparallel electron-hole
pair) energy levels. Being much stronger than the hyperfine
interactions it prevents the separate spin flip of either one
of the two individual spins and consequently protects the
DE spin from dephasing. It turns out, as we show in
Appendix B, below, that the DE nuclear field-induced
dephasing is caused mainly due to small DE-BE mixing
terms (of order 10−3).
During the second stage, at longer times, the fluctua-

tions in the nuclear magnetic field can no longer be
considered “frozen” and they slowly evolve in time. This
evolution is described as local precession of the effective
magnetic field around local directions denoted by n̂.
A relatively simple model describes this motion as
generated by the quadrupole interaction (denoted by
γQ) of the nuclear spins with the strain-induced electric
field gradients in the QD [31–34]. We adopt this descrip-
tion, since it permits analytic solution to the problem,
thereby simplifying the comparison with the measured
data, while keeping the generality of our approach.
Finally, at yet longer times, which is beyond the scope
of this work, the nuclei also interact with each other via
the dipole-dipole nuclear interaction [35]. During the
second stage the central spin continues to interact with
the slowly varying effective nuclear magnetic field in the
same manner as it does during the first stage. Therefore,
the central spin dynamics can be described as a sort of
“convolution” between the relatively fast dynamics of the
spin around the average nuclear magnetic field, with the
dynamics of the slowly varying nuclear field.
The details of the model involved in these calculations,

which follow Refs. [15,31,33], describing the evolution of
the electron, and the generalization of the model to include
the heavy-hole evolution, are described in Appendix A.
The model, which describes the dynamics of the DE, is
developed in Appendix B.
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A great deal of effort was devoted to study the coherence
properties of the central electronic spin for both, conduc-
tion-band electrons [36–39], and valence-band heavy holes
[22,40–45], confined in QDs. The temporal evolution of a
single electron spin at vanishing external magnetic field
was experimentally measured recently by Bechtold and
co-workers [33]. To the best of our knowledge, similar
measurements for the heavy hole as a central spin have not
been reported so far. Here, we present comprehensive
measurements of the spin depolarization dynamics for
both the electron and the heavy hole as well as for their
correlated pair—the DE. All these forms of central elec-
tronic spin are confined to the same QD. In addition, we
show, by measuring the temporal evolution of the positive
and negative trions’ spins, that the presence of two addi-
tional paired charge carriers does not affect the central spin
depolarization. Our measurements are preformed optically
without applying any external magnetic field. In addition,
we carry out the experiments in a way which prevents the
generation of a steady-state nuclear Overhauser field or
influencing fluctuations in its distribution [46–50]. The
experimental methods and measurements are described
below and the measured results are compared with the
central spin models discussed in the Appendices.

II. THEDEVICEANDEXPERIMENTALMETHODS

The InP nanowire containing a single InAsP quantum
dot [51–53] is grown using chemical beam epitaxy with
trimethylindium and precracked PH3 and AsH3 sources.
The nanowires are grown on a SiO2-patterned (111)B InP
substrate consisting of circular holes opened up in the
oxide mask using electron-beam lithography and a hydro-
fluoric-acid wet etch. Gold is deposited in these holes
using a self-aligned lift-off process, which allows the
nanowires to be positioned at known locations on the
substrate. The thickness of the deposited gold is chosen to
give 20-nm to 40-nm diameter particles, depending on the
size of the hole opening. The nanowires are grown at
420 °C with a trimethylindium flux equivalent to that used
for a planar InP growth rate of 0.1 μm=h on (001) InP
substrates at a temperature of 500 °C. The growth is a two-
step process: (i) growth of a nanowire core containing the
quantum dot, nominally 200 nm from the nanowire base,
and (ii) cladding of the core to realize nanowire diameters
(around 200 nm) for efficient light extraction. The
quantum dot diameters are determined by the size of
the nanowire core. The particular QD reported on here has
a diameter of about 30 nm.

FIG. 2. Schematic description of the spin dephasing processes of the QD confined electron (a), heavy hole (b), and dark exciton (c).
Each process is divided into two temporal stages: During the first stage the initiated central spin precesses around the effective magnetic
field which results from the frozen fluctuation of the nuclear spins of about 105 atoms comprising the QD. The electron spin (Ŝ) interacts
with the nuclear spin (Î) via the isotropic Fermi contact interaction described by γe. The heavy-hole spin (Ĵ) interacts with the nuclear
spin via the anisotropic dipole-dipole hyperfine interaction denoted by γhz and γhp , where ẑ is the QD growth direction and p denotes
direction in a plane perpendicular to ẑ. The dark exciton contains an electron and a heavy hole. Both spins interact with the nuclear spin,
and in addition, the electron and hole interact with each other mainly via the isotropic exchange interaction denoted by Δ0 [30]. During
the second stage the nuclear spins react to strain-induced electric field gradients (EFG) in the QD [31]. This interaction has a quadrupole
nature, and we denote it by γQ. The motion of each nuclear spin is described by an effective local magnetic field in a direction marked by
n̂ which the nuclear spin slowly precesses around. During the second stage, we use the adiabatic approximation, by which the central
spin just follows the slowly varying effective nuclear magnetic field. The various interaction magnitudes are summarized and referenced
in Table I. Inset: schematic description of the InAsP QD (blue) embedded in the InP photonic nanowire (orange). The central spin is
represented by the black arrows, the nuclear spin bath are represented by the red arrows, and the EFGs are schematically represented by
green arrows in the magnified description of the QD.
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The sample is placed inside a sealed metal tube cooled
by a closed-cycle helium refrigerator maintaining a temper-
ature of 4 K. A ×60 microscope objective with numerical
aperture of 0.85 is placed above the sample and used to
focus the laser beams on the sample surface and to collect
the emitted PL from it. Pulsed laser excitations are used.
The picosecond pulses are generated by two synchronously
pumped dye lasers at a repetition rate of 76 MHz. The
temporal width of the pulses is 12 ps and their spectral
width about 100 μeV. Light from a continuous wave (CW)
laser, modulated by an acousto-optic modulator, synchron-
ized with the dye lasers, is used to produce pulses of up to
30-ns duration. These pulses are used to set the average QD
charge state [54]. A second CW laser, modulated by an
electro-optic modulator, is used to produce depletion pulses
of 30-ns duration [55]. The timing between the two
synchronized picosecond pulses is controlled using two
cavity dumpers which effectively reduce the repetition rate
down to 0.5 MHz. In addition, a computer-controlled
motorized delay line is used to finely tune the temporal
delay between the pulses. The polarizations of the excita-
tion pulses are independently adjusted using polarized
beam splitters (PBS) and two pairs of computer-controlled
liquid crystal variable retarders (LCVRs) [11]. The col-
lected PL is equally divided into two beams by a non-
polarizing beam splitter. Two pairs of LCVRs and a PBS
are then used to analyze the polarizations of each beam. In
this way the emitted PL is divided into four beams, allowing
the selection of two independent polarization projections and
their complementary polarizations. The PL from each beam
is spectrally analyzed by either a 1 or 0.5 meter mono-
chromator and detected by a silicon avalanche photodetector
coupled to a PicoQuant HydraHarp 400 time-correlated
photon counting and time tagging system, synchronized
with the pulsed lasers. In this way the arrival times of up to
four emitted photons have been recorded with respect to the
synchronized laser pulses.
We use the optical transitions between the ground-level

qubits and the excited-level qubits to initialize the spin state
of both qubits, and then for probing the spin state of the
qubits at a later time. We facilitate the optical transition
selection rules of the Π systems described in Fig. 1(b) in
order to do that.
For initializing the excited qubit, one simply applies

an R or L polarized π pulse. For probing the excited qubit
spin projection, one simply measures the degree of
circular polarization of the emitted photons Ŝz ¼
ðIR − ILÞ=ðIR þ ILÞ where IRðLÞ is the measured emission
intensity projected on right-hand (left-hand) circular
polarization.
The initialization of the ground-level qubit is provided

by detecting R or L polarized single photon, which heralds
the spin state of the qubit at the photon emission time.
Probing the ground-level qubit spin state is done by first
converting the state into the state of the excited-level qubit,

using an horizontally linearly polarized [H¼ðRþLÞ= ffiffiffi
2

p
]

π pulse, and then measuring the time-resolved degree of
circular polarization of the emitted photons. For example,
in Fig. 1(b) if the electron spin state before the pulse is
described by ρ̂electron ¼ pjΨelectronihΨelectronj þ ð1 − pÞ 1

2
I,

where I is the identity matrix and p is the probability
of ρ̂electron being in a pure state jΨelectroni ¼ αj↑i þ βj↓i,
then after the pulse the photogenerated trion spin state
is given by ρ̂trion ¼ pjΨtrionihΨtrionj þ ð1 − pÞ 1

2
I, with

jΨtrioni ¼ αj↑↓⇑i þ βj↓↑⇓i, with the same α, β, and p.
Here, we assume, of course, that the fidelity of the optical
excitation by the H polarized π pulse is unity and that the
experimental deviation from truly H polarization is neg-
ligible. The spin projection of excited qubit on the ẑ
direction is then deduced by measuring the degree of
circular polarization of the emitted photons.
We conduct five different experiments in order to

comprehensively study the central spin dynamics for
various confined spin qubits in the QD. In the first two
measurements, schematically described in Fig. 3(a), we
measure the depolarization of the negative or positive
trions. We first pump the QD to either a negative or a
positive charge state by using above band-gap CW1 pulse
of about 20-ns duration [54]. Then, either an excited
negative or positive trion is photogenerated by using a
short circularly polarized quasiresonant approximately
12-ps-long laser pulse. The polarization of the excitation
pulse determines the spin polarization of the minority
carrier in the initialized trion [hole (electron) in the
negative (positive) trion]. After a fast (about 70 ps
[29]) spin preserving phonon assisted relaxation of the
excited trion, a ground-level trion is formed. When the
trion decays radiatively, the polarization of the emitted
photon reflects the spin of the minority carrier at the
particular time in which the photon is emitted. Thereby,
by using time-resolved circular polarization-sensitive PL
measurements we probe the spin relaxation dynamics of
the minority carrier in the trion. This technique provides a
simple way of measuring the dynamics of the spin of the
confined electron (hole) in the presence of a spin singlet
pair of two holes (electrons). Unfortunately, this simple
method is limited by the relatively short radiative lifetime
of the trion. Only the evolution during the first time
domain can be measured this way. In order to avoid
generating a steady-state Overhauser field in the QD due
to the repeated circularly polarized quasiresonant excita-
tion pulse, a second pulse with opposite circular polari-
zation is used to reexcite the trion a few nanoseconds after
the first pulse, during the same excitation period. The
time-resolved degree of circular polarization is deduced
using the resulted PL from both pulses. As mentioned
above, the circularly polarized resonant excitation pulses
are preceded by a 20-ns-long, nonresonant and linearly
polarized excitation pulse (CW1). The CW1 pulses
determine the average charge state of the QD, but in
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addition further prevent the buildup of a nuclear magnetic
field in the QD.
The measurement of the spin dynamics of either the

single electron or heavy hole is carried out using the same

experimental system but in a somewhat different manner,
as schematically described in Fig. 3(b). In the inset to this
figure we describe the energy levels of the heavy-hole
system. Here, after the optical charging, a trion is generated
by quasiresonant excitation using a horizontal (H) polar-
ized pulse. Either the electron or the hole spin is initialized
by detecting the circular polarization of the emitted single
photon. In order to probe the temporal dependence of the
spin state of the carrier, a second, horizontal polarized
delayed 12-ps pulse is used to reexcite the carrier to its
respective trion and the resulting circular polarization of the
emitted photon is used to measure the spin polarization of
the carrier at the reexcitation time. This measurement is not
limited by the radiative lifetime of the trion, however, it
requires two photon intensity correlation measurements
in a relatively slow repetition rate (about 500 kHz). We
achieve this low repetition rate by using the cavity dumpers.
The feasible maximal delay time (about 1 μs) between the
pulses is defined by the rejection ratio (of about 2 × 10−3)
of neighboring pulses of the cavity dumpers. Note that in
these experiments the generation of an Overhauser field is
avoided because the initialization of the central spin is not
done deterministically by using circularly polarized exci-
tation, but rather probabilistically by postselecting the
detected circular polarization of the emitted first photon.
The spin dynamics of the DE is probed as schematically

described in Fig. 3(c). Here, we use above-band-gap optical
pumping of about 20 ns to neutralize the QD and then
another quasiresonant pumping of about 20 ns to deplete
the QD from the DE [55]. After depleting the QD, a
quasiresonant circularly polarized 12-ps pulse initializes
the DE in spin-up excited state [56]. Following this
initialization, the DE relaxes to its ground state within
approximately 70 ps by spin-preserving emission of a
phonon. In order to probe the DE state, a delayed, linearly
polarized resonant 12-ps pulse converts the DE qubit into
the biexciton qubit. Note that the horizontal polarization of
the laser preserves the phase of the qubit. The detection of a
circularly polarized photon, which results from the radia-
tive recombination (about 1-ns lifetime) of the biexciton is
then used to probe the spin state of the DE in the QD, at
the converting pulse time. Repetition rates as low as about
500 kHz, allow temporal delays of over 1 μs between
initialization and probing of the spin. In this experimental
method an Overhauser field is not generated in the sample
since the gated CW pulses used to optically pump and
deplete the QD are linearly polarized.

III. RESULTS AND DISCUSSION

In Fig. 4 we present the measured degree of the average
central spin polarization hSzðtÞi as a function of time after
its initialization, for the five spin qubits: the conduction-
band electron, the valence-band heavy hole, the positive
and negative trions, and the dark exciton. The error bars
represent one standard deviation of the experimental

FIG. 3. Schematic description of the experiments for measuring
the spin dynamics of (a) positive and negative trions, (b) single
electron and single heavy hole. (c) Dark exciton. The optical
transitions in each experiment are described by the energy-level
diagram to the right. The carrier’s spins are marked in the figure
using the notations of Fig. 1, where blue (red) color represents
ground (excited) single carrier states. CW1 and CW2 represent
the 20-ns gated CW laser pulses where P1 and P2 represent the
12-ps pulses produced by the synchronously pumped and cavity-
dumped dye lasers. Δt is the time delay between the two pulses in
each repetition period, controlled by two cavity dumpers and a
delay line. D1 and D2 represent the emission and time-resolved
detection of the two single photons emitted as a result of the P1

and P2 excitations.
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uncertainty. At time zero the central spin is initialized to the
spin-up state. Then, the projection of the spin on the ẑ
direction (the QD growth axis) is displayed as a function
of time.
The conduction-band electron spin state (blue rectan-

gles) depolarizes from its initial state within about 2 ns. The
spin polarization then revives to about a third of the initial
polarization. From this level the polarization continues to
decay at a much slower rate, reaching a second minimum at
about 200 ns. Afterwards, the spin polarization revives
again to about 10% of the initial polarization. This behavior
is similar to that reported in Ref. [33], as predicted by
Ref. [15]. Roughly speaking, the first fast dephasing step is
a measure for the strong Fermi-contact hyperfine inter-
action of the electron with the nuclear spin bath, while the
second step measures the strength of the quadrupole
interaction of the nuclear spin bath with the strain-induced
electric field gradients in the QD.
After initialization, the heavy hole (red triangles) spin

depolarizes in about an order of magnitude slower than the
electron spin. This is due to the much weaker dipole-dipole
hyperfine interaction. The hole spin polarization decreases at
approximately 20 ns to about one-half of its initial polari-
zation. Afterwards, it mildly revives followed by a slow
decay due to the quadrupole interaction of the nuclear bath.
The positive trion spin polarization (blue times symbols),

behaves similarly to that of the electron, while the neg-
atively charged trion spin polarization (red times symbols)
follows that of the heavy hole. This is not surprising, since
the trion polarization reflects the polarization of the
unpaired minority carrier, in the presence of the two paired
majority carriers. As explained above, the trion spin
measurements are limited by their radiative lifetime of
about 1 ns.

The dark exciton (black diamonds) decoheres slowly, in
a similar rate to the heavy hole. However, like the electron,
after the initial decay, it strongly revives to about two-thirds
of its initial polarization. This is due to the strong exchange
interaction between the electron and hole that protects both
carriers from flipping their individual spins. Later, after
about 200 ns, the dark-exciton polarization continues to
decay due to the quadrupole interaction.
We fit the measured temporal behavior of the electron,

heavy hole, and dark exciton using one conceptually simple
central spin model. For the fitting, only five free parameters
are used: (1) The hyperfine Fermi-contact interaction γe,
(2) the heavy-hole out-of-plain hyperfine dipole-dipole
interaction γhZ , (3) the heavy-hole in-plain hyperfine
dipole-dipole interaction γhp , (4) the DE in-plane inter-
action γDEp

, and (5) the quadrupole interaction γQ. These
parameters are accurately defined in the Appendices, where
the models are discussed for the electron and the heavy hole
(Appendix A), and for the DE (Appendix B).
The best-fitted parameters are given in Table I, where

they are also compared with the available literature.
Our analysis provides an estimation of the number of
atoms in the QD: NL ¼ 3 × 105. With this estimation our
fitted hyperfine Fermi contact γe is comparable to that
of Ref. [57].
Characteristic spin depolarization times during the first

and second temporal stages can be obtained from our fitting
procedure quite straightforwardly. Since the central spins in
this work are initialized in the z direction, depolarization is
caused by the in-plane interaction parameters. Thus, the
temporal location of the first minimum is a rough measure
of the in-plane interaction parameter: Tmin ¼ ℏ=γp ∼ 2, 20,
and 14 ns for the electron, heavy hole, and DE, respectively.

FIG. 4. Measured central spin polarization hSzi as a function of time after its initialization, for the QD confined electron (blue square
symbols), heavy hole (red triangle symbols), dark exciton (black diamond symbols), negative trion (red times symbols), and positive
trion (blue times symbols). Error bars represent one standard deviation of the experimental uncertainty. Solid color-matched lines
represent the fitted theoretical model (see Appendices), for each case. The spin wave functions are schematically described in the legend,
where the notations of Fig. 1 are used.
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Thus, γe, γhp , and γDEp
are given by 0.34, 0.031, and

0.047 μeV, respectively.
The central spin interaction with the nuclear field along

the z direction, acts as a restraining force, which actually
prolongs the spin coherence. Therefore, roughly speaking,
the ratio between these interactions (Rγ ¼ γZ=γP) deter-
mines the depth of the first polarization minimum and the
maximum value of the polarization after its revival. We thus
obtain Rγ ¼ 1, 3.5, and 5, for the electron, hole, and DE,
respectively. Note that for the electron the ratio is by
definition 1, and therefore the polarization degree revives to
1=3 of its initial value, while for the hole and DE it revives
to higher values. During the second temporal stage, the
polarization of all three central spins decays more or less at
the same rate, determined by the quadrupole interaction γQ.
Therefore, the temporal location of the second minimum
is about the same in all cases given by TminQ ¼ ℏ=γQ ∼
200 ns or γQ ∼ 0.003 μeV. The fact that three different
experimental measurements yielded the same value for γQ
further indicates that the optical excitations do not create a
net nuclear magnetic field or affect the statistical distribu-
tion of the field fluctuations.
The quadrupolar coupling that we deduce is larger

by about a factor of 3 than that reported by Bechtold
et al. [33]. We attribute this difference to the difference
in the QD material system studied in both cases, InAsP
here vs InGaAs, in Ref.[33], as further explained in
Appendix A below.
A common practice for quantifying the depolarization

value of a spin qubit is to define the depolarization time as
the time it takes for the polarization to reduce to 1=e of its
initial state. We adopt this practice, though the measured
depolarizations are clearly nonexponential. The measured
depolarization times thus obtained are 1.5, 130, and 145 ns
for the electron, heavy hole, and DE, respectively.

IV. SUMMARY

We investigate both experimentally and theoretically the
depolarization dynamics of five different electronic spin
configurations confined in the same semiconductor quan-
tum dot. Our measurements are carried out all optically and

in the absence of externally applied magnetic field. We
show that the measured temporal spin depolarization is well
described by a central spin model which attributes the
depolarization to the hyperfine interaction between the
electronic spin and the nuclear spin bath of the QD atoms.
We divide the depolarization into two temporal stages.

During the initial stage the central spin precesses around
the effective magnetic fields of the frozen fluctuations
of the 105 nuclear spins in the QD. During the second
stage the central spin precession follows adiabatically the
nuclear spin bath dynamics which ceases to be frozen and
effectively precesses around strain-induced electric field
gradients in the QD.
These two processes result in a relatively fast initial

depolarization of the central spin reaching a first minimum.
The depolarization minimum is then followed by a tem-
poral revival of the polarization degree and finally by a
second depolarization reaching a minimum at a much later
time which is more or less equal for all the electronic
central spin cases.
Our model assumes that while the hyperfine interaction

between the central spin and the nuclear spins is isotropic
for the electron, it is anisotropic for the heavy hole and
therefore also for the DE, which is formed by an electron-
heavy-hole pair. The depolarization times that we measure
in the zero magnetic field show that the electron depolarizes
much faster than the heavy hole. This observation is
explained by the difference between the strong isotropic
electron-nucleus hyperfine contact interaction (γe) and the
anisotropic hole-nucleus dipolar hyperfine interactions
(γhZ , γhp). The heavy-hole spin depolarizes faster than
the dark-exciton spin due to the electron-hole exchange
interaction, which protects the dark-exciton spin from
depolarizing. The depolarization of the dark exciton results
from residual dark-exciton–bright-exciton mixing. We
believe that this mixing can be significantly reduced by
increasing the QD symmetry and by avoiding alloying. In
this case the dark exciton may form an almost nondephas-
ing electronic spin qubit in a semiconductor environment.
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APPENDIX A: HYPERFINE INTERACTION OF
THE ELECTRON AND THE HEAVY HOLE

We outline here a model for describing the temporal
evolution of the QD confined central spin polarization in
the absence of externally applied magnetic field but in the
presence of effective magnetic field generated by the
nuclear spins, which comprise the QD. As the central spin

TABLE I. The various interaction energies as obtained by the
best model fitting to the measured temporal depolarization of five
different electronic spin qubits confined in the same QD. The
theoretical model and the fitted parameters are described in the
text and the Appendices.

Interaction This work (μeV) Literature (μeV)

γe 0.34� 0.03 0.33 [33]
γhz 0.11� 0.03 0.081 [41]
γhp 0.031� 0.006 0.047 [41]
γDEp

0.047� 0.006 � � �
γQ 0.0031� 0.001 0.00087 [33]
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we consider either the electron or the heavy hole. We then
apply the same model also to a central spin formed by the
DE—a long-lived electron-heavy-hole pair, as will be
discussed in Appendix B.
As all three cases involve a two-level system (a qubit)

they may be described using the Pauli matrices σx, σy, σz
and the effective Hamiltonian must take the form

H ¼ 1

2
C⃗ · σ⃗;

for some C⃗ ¼ ðCx; Cy; CzÞ. The exact expression of C⃗ will
be different, of course, for each type of central spin.
The hyperfine Fermi-contact interaction between an

electron and all the nuclei in the QD is given by [15]

H ¼ ν0
2

X
jψ envðr⃗iÞj2Ai

eI⃗i · σ⃗:

Here, ν0 is the volume of the unit cell, r⃗i and I⃗i are the ith
nucleus position and its spin operator, ψ envðr⃗Þ describes the
electron envelope wave function, and Ai

e is an effective
hyperfine interaction constant between the electron and the
specific nucleus in the r⃗i position where the index i runs
over all the nuclei in the QD. Since Ai

e depends on the
atomic nuclear spin it is much larger for indium atoms than
for all other atoms in the QD. Thus, in principle, one can
neglect other nuclei contributions. We proceed by defining
an expression for the effective magnetic field, which the
nuclei apply on the electron. The field, known also as the
Overhauser field, is defined as

B⃗N ¼ 1

geμB
C⃗e ¼

ν0
geμB

X
Ai
ejψ envðr⃗iÞj2hI⃗iiN;

where ge and μB are the electron g factor and Bohr
magneton, respectively, and h� � �iN denotes a quantum
mechanical average over the nuclear spins which interact
with the electron.
Assuming that different nuclear spins are not correlated

allows one to treat B⃗NðtÞ as having an isotropic Gaussian
random distribution satisfying

hB⃗i ¼ 0; hB2
Nxi ¼ hB2

Nyi ¼ hB2
Nzi ¼ σ2;

where the width of the distribution σ is given by [15]

3σ2 ¼
X ðAi

eÞ2
μ2Bg

2
e
ν20jψ envðr⃗iÞj4IiðIi þ 1Þ:

It is then convenient to define a modified unitless magnetic

field ⃗B̃ ¼ ð1=σÞB⃗N . In the following, we simply mark this
modified Overhauser field as B⃗. The electron spin

Hamiltonian can then be expressed by H ¼ 1
2
C⃗e · σ⃗ with

C⃗e ¼ γeB⃗, where γe ¼ geμBσ is the electron coupling
constant in energy units, which we use as a fitting
parameter.
While for the electron, s-wave molecular symmetry

results in a scalar effective coupling Ai
e, for the heavy

hole it is described by an anisotropic tensor

Âi
h ¼

0
BB@

Ai
h;p

Ai
h;p

Ai
h;z

1
CCA:

Where the in plane dipole-dipole interaction constant Ai
h;p

does not strictly vanish for the heavy hole due to mixing
with the light hole [41]. Therefore, for the heavy hole we
define Cz ¼ γhzBz, Cx;y ¼ γhpBx;y, where γhz > γhp are also

fitting parameters. Strictly speaking, the field B⃗ appearing
here is not exactly the same one as in the electron case. This
is due to differences in relative weighting of various nuclei
between electron and hole wave functions. For our purpose,
however, it is sufficient that the fields have the same
Gaussian statistics. For the moment we allow the functional
relation between C⃗ and B⃗ to be arbitrary and since our
discussion is independent of these relations, it applies to all
three cases.
At short times B⃗ and hence also C⃗ can be treated as time

independent and one readily find the solution

S⃗ðtÞ ¼ S⃗0 · C⃗
C2

C⃗þ
�
S⃗0 −

S⃗0 · C⃗
C2

C⃗

�
cos

�
C
ℏ
t

�

−
S⃗0 × C⃗

C
sin

�
C
ℏ
t

�
; ðA1Þ

where S⃗0 ¼ S⃗ð0Þ is the central spin initial value. The first
term is time independent and survives for long times. Upon
averaging over the random ensemble of possible C⃗s one
typically finds that the oscillating terms turn into exponen-
tially decaying transients, relevant at short times only. In
practice, the last term usually vanishes by symmetry under
C⃗ → −C⃗. In particular it applies to our experiments, which
are carried out in the absence of externally applied
magnetic field. Therefore, in the following we disregard
this term.
At longer times, we use the adiabatic approximation and

assume that the central spin follows the direction of C⃗,
while the rapidly rotating components orthogonal to C⃗
average to zero. We can therefore write

S⃗ðtÞ ¼ ½S⃗0 · Ĉð0Þ�ĈðtÞ ¼
S⃗0 · C⃗ð0Þ
Cð0ÞCðtÞ C⃗ðtÞ: ðA2Þ
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For small t this clearly coincides with the first term of
Eq. (A1). As the other terms of Eq. (A1) vanish at long
times one sees that the two relations, Eqs. (A1) and (A2),
can be combined into an expression which applies at
arbitrary time t:

S⃗ðtÞ ¼ S⃗0 · C⃗ð0Þ
Cð0ÞCðtÞ C⃗ðtÞ

þ
�
S⃗0 −

S⃗0 · C⃗ð0Þ
Cð0Þ2 C⃗ð0Þ

�
cos

�
Cð0Þ
ℏ

t

�
: ðA3Þ

The Gaussian probability density corresponding to
the dimensionless Overhauser field at a given moment is
given by

dP1 ¼
1

ð2πÞ3=2 exp
�
−
1

2
B2

�
d3B: ðA4Þ

Assuming further that

hBiðt1ÞBjðt2Þi ¼ δijfðt2 − t1Þ

[consistency requires fð0Þ ¼ 1], we can write the joint
probability density of B⃗1 ¼ B⃗ð0Þ and B⃗2 ¼ B⃗ðtÞ as

dP2 ¼
d3B1d3B2

ð2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðtÞ2

p
Þ3

× exp

�
−
1

2
½B2

1 þ B2
2 − 2fðtÞB⃗1 · B⃗2�=½1 − fðtÞ2�

�
:

ðA5Þ

Using the probability distributions, Eqs. (A4) and (A5),
we can write the average central spin evolution as

hS⃗ðtÞi ¼
Z

S⃗0 · C⃗ð0Þ
Cð0ÞCðtÞ C⃗ðtÞdP2

þ
Z �

S⃗0 −
S⃗0 · C⃗
C2

C⃗

�
cos

�
C
ℏ
t

�
dP1: ðA6Þ

Actual computation of the integrals requires using the
specific functional relation between B⃗ and C⃗.
For the electron as the central spin, we simply substitute

C⃗ ¼ γeB⃗ and S⃗0 ¼ ẑ in Eq. (A6) and obtain integrals which
can be evaluated analytically [15,33], resulting in

hSzi ¼
2

3

�
1 −

�
γet
ℏ

�
2
�
e−ð1=2Þðγet=ℏÞ2

þ 2

3π

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

fðtÞ2 − 1

s
þ
�
2 −

1

fðtÞ2
�
arcsin½fðtÞ�

#
:

For the heavy hole as the central spin we have Cz ¼ αBz,
Cx;y ¼ βBx;y with α ¼ γhz β ¼ γhp In this case hSzi is given
according to Eq. (A6) by a sum of two rather complicated
integrals. The second term of Eq. (A6) can be reduced into
a one-dimensional (1D) integral which we then calculate
numerically

β2

ðα2−β2Þ3=2
Z

α

β
dξ

ðα2−ξ2Þð1−σ2ξ2t2Þ
ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2−β2

p e−ð1=2Þσ2ξ2t2 : ðA7Þ

The first term of Eq. (A6) is a more complicated 6D
integral. If we use the following shortcuts:

a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
cos2θ
α2

þ sin2θ
β2

��
cos2θ0

α2
þ sin2θ0

β2

�s
;

a1 ¼ fðtÞ
�
cos θ cos θ0

α2
þ sin θ sin θ0

β2
cosφ

�
;

A0 ¼
½1 − fðtÞ2�3=2
4π2α2β4

sinð2θÞ sinð2θ0Þ;

then the 6D integral can be reduced into a 3D one

Z
2π

0

dφ
Z

π=2

0

dθ
Z

π=2

0

dθ0A0

�
3a1

ða20 − a21Þ2

þ a20 þ 2a21
ða20 − a21Þ5=2

arcsinða1=a0Þ
�
; ðA8Þ

which we then calculate numerically. The function fðtÞ is
essentially the Overhauser field-time correlator. An appro-
priate model for the evolution of the Overhauser field is
required for its evaluation.
By using B⃗ ¼ ðν0=geμBσÞ

P
Aijψ envðr⃗iÞj2I⃗i one obtains

3σ2fðtÞ ¼ hB⃗ð0Þ · B⃗ðtÞi

¼
X�

ν0
geμBσ

A2
i jψ envðr⃗iÞj2

�
2

hI⃗ið0Þ · I⃗iðtÞi:

A particularly simple model assumes that the Overhauser
field evolution is dominated by the quadrupole interaction
of the nuclear spins [31,33]. Though more complicated
models exist as well [15,33,58], this model permits
analytical solutions.
Within this model each nuclear spin I⃗k ¼ I⃗ evolves

independently of the others by a Hamiltonian of the form
HQ ¼ VijIiIj with random Vij ¼ Vji which relates to the
local electric field gradients (EFG) [31]. We take the initial
state of the nuclear spin to be random and we average over
the corresponding wave function, thereby obtaining

hI⃗ð0Þ · I⃗ðtÞi ∝ TrðI⃗ · eiHQtI⃗e−iHQtÞ:

DAN COGAN et al. PHYS. REV. X 8, 041050 (2018)

041050-10



As different nuclear spins have different EFG we obtain the
Overhauser correlator fðtÞ by averaging over the Vij terms.
We take (as common in randommatrix theory) the elements
of the symmetric matrix Vij to be independent Gaussian
random variables of variance γ2Q. Up to overall normali-
zation we obtain

fðtÞ ∝
Z

dVe−TrV
2=ð2γ2QÞTrðI⃗ · eiHQtI⃗e−iHQtÞ:

Noting that V can be taken as a traceless tensor and in
addition using its polar decomposition, we reduce the
above expression into a two-dimensional integral which
we express as

fðtÞ ∝
Z

dx1dx2dx3δ
�X

xi

�Y
i<j

jxi − xjje½−ðx
2
1
þx2

2
þX2

3
Þ�=2γ2Q

· TrðI⃗ · ei
P

xiI2i tI⃗e−i
P

xiI2i tÞ:

For I ¼ ð3=2Þ we evaluate this expression and obtain

f3=2ðtÞ ∝
Z

∞

0

dxx4e−x
2=ð2γ2QÞ½3þ 2 cosð

ffiffiffi
6

p
xtÞ�;

f3=2ðtÞ ¼
3

5
þ 2

5

�
1 − 2

�
γQt
ℏ

�
2

þ 12

�
γQt
ℏ

�
4
�
e−3ðγQt=ℏÞ2 :

ðA9Þ

For higher values of the nuclear spin I, we calculate fIðtÞ
numerically as a function of the dimensionless product
γQt=ℏ. This gives a qualitatively similar result to Eq. (A9)
with some modifications. Since our QD contains I ¼ 3=2,
I ¼ 9=2, and I ¼ 1=2 we averaged over these values using
the relative nuclear abundance multiplied by the squared
nuclear moments as weights. In Fig. 5 we display the
normalized Overhauser correlator for various types of
nuclear spins in the QD. For simplicity we assume the
same γQ for all atom types. In practice the indium
contribution dominates the average due to its large mag-
netic moment. This may explain why the quadrupolar
coupling that we deduce for the InAsP QD that we studied
is larger by about a factor of 3 than that reported by
Bechtold et al. [33] for InGaAs QDs. In both QDs the
nuclear field is mostly due to the indium atoms which have
a very large nuclear moment [I ¼ ð9=2Þ]. The quadrupolar
coupling is then due to the electric field gradient (EFG)
generated by neighboring atoms of the indium. In InGaAs
QDs all four nearest neighbors of the indium atom are
identical arsenide atoms and therefore their contribution to
the EFG is canceled by symmetry. In InAsP QDs, in
contrast, the nearest neighbors of an indium atom can be
either arsenide or phosphide atoms, and hence they may
generate a nonzero net EFG. The InAsP EFG is therefore
larger than that in InGaAs QDs where the main

contribution to the EFG comes from next nearest neighbors
atoms only (either indium or gallium atoms). In addition,
the indium content in InAsP QDs is at least a factor of 2
larger than the Ga-enriched InGaAs QDs studied in
Ref. [33], as judged by their emission wavelength.

APPENDIX B: HYPERFINE INTERACTION
OF THE DARK EXCITON

The spin projection [SzðtÞ] of the DE strongly depends
on the electron-hole exchange interaction.
We describe the DE qubit by its two spin states: j⇑↑i

and j⇓↓i, with Jz ¼ þ2, and −2, respectively. While the
DE interaction with the z component Bz of the Overhauser
field is similar to that of a spin 1=2 central spin (up to
multiplicative constant [30]), its interaction with the Bx;y

components is very different. Strictly speaking, a standard
B⃗ · J⃗ Hamiltonian would have to act four times in order to
flip a Jz ¼ 2 state into a JZ ¼ −2 state. However, if one
fully considers the electron-hole exchange interaction,
this is not the case. In the bright and dark excitons basis
fj⇑↓i; j⇓↑i; j⇑↑i; j⇓↓ig, the exchange interaction can be
expressed as [30,59]

1

2

0
BBB@

Δ0 Δ�
1 Δ3 Δ4

Δ1 Δ0 −Δ�
4 −Δ�

3

Δ�
3 −Δ4 −Δ0 Δ�

2

Δ�
4 −Δ3 Δ2 −Δ0

1
CCCA;

where Δ0 is the isotropic exchange interaction. It is a real
number, which defines the energy splitting between the DE
and BE eigenstates. It is measured to be Δ0 ¼ 260 μeV for
the QD under study. The term

Δ1 ¼ δ1 expði2θ1Þ

FIG. 5. The calculated normalized Overhauser correlator fIðtÞ
for the various types of nuclear spins which comprise the QD.
Imean is the mean value of the correlator taking into account
the isotopic abundances weighted by their squared magnetic
moments.
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is the anisotropic long-range exchange interaction. Here, δ1
is a positive number defining the magnitude of the bright
exciton (BE) fine-structure splitting (FSS) [21], and θ1
defines the directions of the two cross-linearly-polarized
components of the BE spectral lines with respect to the
crystallographic directions [30].

Δ2 ¼ δ2 expði2θ2Þ

describes the FSS of the dark exciton. Here, δ2 and θ2 are
real numbers mainly given by the short-range anisotropic
exchange interaction.

Δ3 ¼ δ3 expði2θ3Þ

and

Δ4 ¼ δ4 expði2θ4Þ

are also long-range exchange interactions that couple
between the DE and BE states.
Strictly speaking, for a C3v symmetrical QD, δ1, δ2, δ3,

and δ4 are all expected to vanish [60]. To within our
experimental uncertainty, we find it to be true only for
δ2ð< 0.1 μeVÞ, since it results from the short-range
exchange interaction and therefore affected mainly by
the symmetry of the QD’s unit cells [30]. Structural
deviations of the QD from symmetry such as composition
fluctuations, or faceting, destroy the QD long-range sym-
metry, without affecting its unit cell symmetry. Therefore,
they will result in finite δ1, δ3, and δ4. Indeed, we measure
δ1 ¼ 18 μeV by polarization-sensitive spectroscopy, and
estimate δ3 ⋍ δ4 ⋍ 15 μeV by measuring the DE radiative
lifetime, and verifying the fact that the DE weak absorption
line is linearly polarized in plane [29].
Since jΔ3j ¼ jΔ4j ≠ 0, these terms induce coupling

between the DE and BE states. We define ðΔ3 þ Δ4Þ=2
≜ΔDB, and since jΔDBj ≪ Δ0, the modified DE eigenstates
remain almost degenerate such that the symmetric and
antisymmetric spin combinations are expressed as

jDEASi ¼ NAS

�j⇑↑i − j⇓↓iffiffiffi
2

p −
ΔDB

Δ0

j⇑↓i þ j⇓↑iffiffiffi
2

p
�
;

jDESi ¼
j⇑↑i þ j⇓↓iffiffiffi

2
p ;

whereNAS ∼ 1 is a normalization constant. This also agrees
with the experimental observation that the DE has only one
weak optically active eigenstate, which is linearly polarized
like the symmetric BE eigenstate [59,61,62]. The mixing
term is sufficient to provide a nuclear-field-dependent
flipping of either the heavy hole or the electron in order
to change the DE state from the j⇑↑i to the j⇓↓i, or

vice versa. Hence, the interaction is linear in the nuclear
magnetic field and the DE Hamiltonian takes the form

H ¼ ð1=2ÞC⃗ðDEÞ · σ⃗ with

CðDEÞ
x;y ¼ 2Im½ΔDB�

Δ0

ðCðeÞ
x;y þ CðhÞ

x;yÞ;

CðDEÞ
z ¼ ðCðeÞ

z þ CðhÞ
z Þ:

If we express C⃗e, C⃗h as earlier in terms of the same
dimensionless B⃗, we conclude

γDEp
¼ 2Im½ΔDB�

Δ0

ðγe þ γhpÞ; ðB1Þ

γDEz
¼ γe þ γhz ¼ γe − jγhz j; ðB2Þ

where we used the fact that γhz < 0 [63].
Im½ΔDB�≦ δ3 ≈ 15μeV provides an estimate for γDEp

(see Table. I), and we note here that the fields C⃗e and C⃗h
experienced by the electron and by the heavy hole,
respectively, may not be in perfect correlation [17]. This
is expected to reduce their interference effects, making γDEz

slightly larger and γDEp
slightly smaller than the above

estimations.
The DE Hamiltonian as explained above is linear in B

and anisotropic, much like the one for the heavy-hole spin.
Consequently hSzðtÞi is derived in a similar way to that of
the heavy-hole spin in Eqs. (A7) and (A8) by replacing
α ¼ γDEz

and β ¼ γDEp
.
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