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Magneto-optics of a charge-tunable quantum dot: Observation of a negative diamagnetic shift
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We present magneto-optical studies of a self-assembled semiconductor quantum dot in neutral and positively
charged states. The diamagnetic shifts and Zeeman splitting of many well-identified optical transitions are
precisely measured. Remarkably, a pronounced negative diamagnetic shift is observed for spectral lines resulting
from a doubly positively charged excitonic complex. We use the Hartree-Fock approximation for describing the
direct Coulomb and exchange interactions between the quantum dot confined carriers in various configurations.
A simple harmonic potential model, which we extend to capture the influence of an externally applied magnetic
field in Faraday configuration, is then used to quantitatively account for all the measured diamagnetic shifts.
We show that the negative shift is due to the change in the hole-hole exchange interaction energy induced by
the magnetic field. Using this model and the measured shifts we extract the dielectric constant of the quantum
dot material and get a decent estimate of the quantum dot dimensions. Further, the measured Zeeman splitting
of the various spectral lines are also explained by a simple model using algebraic sums and differences of the
g factors of the confined charge carriers in their respective first and second discrete energy levels. Finally, the
obtained values of the electronic g factor and that of the dielectric constant are independently used to determine
the effective composition (x) of the ternary InxGa1−xAs quantum dot. Both agree to within the experimental
uncertainties.
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I. INTRODUCTION

Self-assembled quantum dots (QDs) in semiconductors
form a well-known platform for quantum technologies. They
have proven to be the best contemporary single-photon
sources [1–5], while providing an excellent interface between
anchored spin qubits and “flying” photon qubits [6]. Much
progress has been made in controlling confined-spin qubits
in QDs [7–10], entangling them with photons [11–16], and
allowing deterministic generation of long strings of entangled
photons [17–19]. In addition, QDs still provide a convenient
platform for studying many-body complexes composed of
multiple confined carriers. Interesting properties of such com-
plexes include the relative interactions between the constituent
particles, the form of their spatial wave functions, and their
response to externally applied fields. In particular, an exter-
nally applied magnetic field removes the Kramers’ degeneracy
and causes the optical transitions to energetically shift. The
first interaction, known as the Zeeman-interaction, depends
linearly on the field strength, while the second interaction
known as the diamagnetic shift, depends quadratically on the
field strength [20]. Modeling these shifts in confined systems

*Contact author: giora.peniakov@uni-wuerzburg.de
†These authors contributed equally to this work.

and in particular in semiconductor nanostructures is still a
subject of many research efforts [21–25].

We present here a magneto-optical study, mainly in
Faraday configuration, of a semiconductor QD with very well-
identified optical transitions between various few-confined-
carriers configuration in different charge states. In particular,
we focus our attention on the magneto optical properties of
the doubly, positively charged excitonic complex X +2.

The X +2 can be intuitively described as a confined mul-
ticarrier configuration containing three heavy holes and one
electron. After a radiative recombination of an electron-hole
pair, the QD remains with two holes, one in the lowest energy
level and one in the second level. These two holes may form
either three spin triplet states or one spin singlet state. Our
work was spurred by noticing an anomaly in the diamag-
netic shifts of the optical transitions into the singlet state,
labeled X +2

S0
, which we found to be negative. In the effort of

understanding this phenomenon, we found that the X +2 exci-
tonic transitions form an excellent platform for studying the
electron-hole and hole-hole exchange interactions and their
dependence on an externally applied magnetic field. Using the
Hartree-Fock approximation and a simple two-dimensional
(2D), cylindrically symmetric, harmonic-oscillator model for
describing the QD spatial potential, we quantitatively describe
all the measured diamagnetic shifts and in turn determine
the QD’s average dielectric constant and its dimensions. In
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addition, from the measured Zeeman splittings of the various
spectral lines we determine the electron and hole g factors in
their respective two lowest discrete energy levels. We show
that the heavy hole g factor switches sign between the first
and second confined levels.

Finally, we show that both the obtained dielectric con-
stant and the electron g factor provide a way to estimate the
InxGa1−xAs QD’s average composition (x).

The paper is organized as follows. In Sec. II, we briefly
describe the experimental system. In Sec. III we present full
polarization-sensitive magneto-PL measurements displaying
the diamagnetic shifts and Zeeman splitting of many well-
identified optical transitions and their polarization selection
rules. We provide a simple model to explain the measured
Zeeman splittings of the spectral lines and present in particular
the anomalous negative diamagnetic shift of the doubly posi-
tively charged exciton, the X +2

S0
. In Sec. IV we discuss in detail

the theoretical model that we use to analyze the measured
magneto-optics data and in Sec. V we compare the model
predictions and the measured results.

II. EXPERIMENTAL SYSTEM

We studied a single InxGa1−xAs self-assembled QD em-
bedded in a planar microcavity grown along the [001]
direction. The actual dimensions of the studied QD, about
35 nm in diameter and 3–4 nm in height, were estimated
from a set of detailed optical studies and comparisons with
many-carrier model simulations [26]. These structural charac-
terizations were also backed by atomistic simulations [27]. We
used an Attocube [28] closed-cycle cryostat to cool the sample
down to 4 K. A built-in vector magnet enabled the application
of a magnetic field in any desired direction. The emitted
photoluminescence (PL) was collected by a ×60 objective. Its
polarization was analyzed by pairs of liquid crystal variable
retarders and polarizing beam splitters, enabling PL polar-
ization projection on any direction in the Poincaré sphere.
The PL was then spectrally analyzed using an 80 cm double
monochromator, providing spectral resolution of ∼20 µeV.

The QD was optically excited using an above band-gap
continuous wave red HeNe laser or a blue diode laser, emitting
at 633 or 445 nm, respectively. The excitation color affects the
average charge state of the QD. While red HeNe illumination
results in positive charging, blue diode laser excitation leads
to neutral or negative charging [26].

We define the symmetry axis of the QD and the optical
beam path as the z direction. The x and y axes are defined
along the polarization eigenstates of the QD’s bright exciton
(BE), X 0

BE, as explained below.

III. RESULTS

A. Neutral bright and dark excitons

The X 0
BE is an electron-hole pair which can be expressed

in the spin basis {| + z〉 = |⇑↓〉, | − z〉 = |⇓↑〉} with ⇑⇓
and ↑↓ denoting the spin projections of the heavy-hole and
electron onto the z axis. Since a heavy-hole and an electron
have total angular momenta of 3/2 and 1/2, respectively, the
angular momentum projection of a |⇑↓〉 (|⇓↑〉) pair along this
axis is +1 (−1) [29]. Consequently, optical recombination of

the |⇑↓〉 and |⇓↑〉 pairs results in a right-handed (R) and left-
handed (L) circularly polarized photon emission, respectively.

The anisotropic electron-hole exchange interaction in this
QD lifts the degeneracy of the above basis by δ1e1h

1 ≈ 30 µeV
[30] thus forming new eigenstates

√
2|ψBE〉s,as = √

2| ± x〉 =
|⇑↓〉 ± |⇓↑〉, where the subscript s (as) stands for symmetric
(antisymmetric) spin wave functions. Recombination of those
excitonic eigenstates results in either horizontal,

√
2H = R +

L, or vertical
√

2V = i(R − L) rectilinearly polarized photon
emission, enabling a one-to-one correspondence between the
X 0

BE’s two-level system and the photon’s polarization [30]. We
use the cross-rectilinearly polarized components of the X 0

BE
spectral lines for defining the x and y axes of our experimental
system.

The dark exciton (DE), X 0
DE, is another electron-hole pair

state, but with parallel spins
√

2|ψDE〉s,as = |⇑↑〉 ± |⇓↓〉. In
general, the X 0

DE is optically inactive [10], however, small
optical activity of the X 0

DE was measured [31–33]. Zielinski
et al. attributed this activity to a small mixing of the X 0

DE
and X 0

BE eigenstates induced by symmetry reduction of the
QD potential [32]. This naturally occurred mixing is rather
small [10] but can be enhanced by externally applying in-
plane magnetic field perpendicular to the optical z axis (Voigt
configuration). For a magnetic field direction parallel to the z
axis (Faraday configuration) no additional mixing is expected,
thus the X 0

DE remains optically inactive [34].
The Zeeman interaction between an externally applied

magnetic field and QD confined carriers’ spin removes the
Kramers’ degeneracy between the confined carriers spin state.
The eigenstates are usually the parallel and antiparallel spin
directions relative to the direction of the magnetic field. The
Zeeman interaction depends linearly on the magnetic field
magnitude. This dependence is most generally expressed in
terms of a 3 × 3 g-factor tensor [35]. For simplicity, we as-
sume here that this tensor is diagonal and have only two
different components: along the symmetry axis (gz

e and gz
h)

and perpendicular to it (g⊥
e and g⊥

h ) [36]. Thus in Faraday
configuration the Zeeman splitting is given by Eq. (1):

H = −μBgz
eBzSz + 1

3μBgz
hBzJz. (1)

Here, μB is the Bohr magneton, Sz and Jz are the angular
momentum z projections ± 1

2 and ± 3
2 , of the confined electron

and heavy hole respectively and Bz is the magnitude of the
magnetic field.

In the first part of the experiment, we measured the con-
fined electron and hole g factors tensor components along the
z axis. This was done by measuring the Zeeman splitting of
the X 0

BE and X 0
DE under B field in the ẑ direction. Assuming that

the absolute magnitude of the g factors of those transitions are
given by the sum and difference of the absolute magnitudes of
the single-carrier g factors∣∣gz

BE(DE)

∣∣ = ∣∣gz
e

∣∣ ± ∣∣gz
h

∣∣ (2)

[37,38], we were able to extract gz
e and gz

h from the measured
gz

BE and gz
DE [34,36,39]. Equation (2) is derived from the

parallel and antiparallel spin nature of the DE and BE, using
the sign convention given by the Zeeman Hamiltonian Eq. (1).

If one takes into account also the excitonic fine structure
due to the electron-hole exchange interaction, the BE and DE
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FIG. 1. Polarization-sensitive magneto-PL of the bright and dark
excitons (X 0

BE and X 0
DE), for various magnetic field strengths. The

magnetic field has two components, one in the ẑ direction which
we vary, and one which is fixed (1.5T ) in x̂ direction. The resulting
Zeeman splittings are summarized in the Inset for both excitons using
yellow (DE) and brown (BE) data points. Blue data points in the Inset
represent measurements of the BE splittings without the x̂ field com-
ponent. The errorbars represent the experimental uncertainties due to
the finite spectral resolution of the measurements. Solid black lines
represent best fits to Eq. (3), by which the g factors are extracted.

Zeeman splitting is given by [34]

�EBE(DE) =
√(

δ1e1h
1,2

)2 + (
μBgz

BE(DE)Bz
)2

, (3)

where δ1e1h
1,2 are the fine-structure splittings of the X 0

BE and X 0
DE

at 0 field, respectively.
In Fig. 1, we present polarization sensitive PL spectra of

the QD neutral excitons under various magnetic field strengths
in Faraday configuration (z direction). To increase the visibil-
ity of the DE we added during these measurements an in-plane
magnetic field of 1.5 T. In the inset to Fig. 1 the measured
Zeeman splittings of the DE and BE as a function of the Bz

field strength deduced from these measurements are displayed
as yellow and brown data points, respectively, overlaid by
solid black lines representing best fit of Eq. (3). To estimate
the influence of the in-plane magnetic field on the measured
Zeeman interaction we repeated the measurements of the BE
in the absence of the in-plane field [blue data points and best
fitted Eq. (3) in the inset to Fig. 1]. The deduced g factor
of the BE with and without the in-plane field is −0.74 and
−0.81, respectively. This small difference (less than 10%) sets
an upper bound on the possible error in the measured g factor
of the DE. Moreover, we note that in the absence of Bz, the DE
measured splittings is negligible, setting even a lower bound

TABLE I. Measured excitonic fine structure splittings and g-
factor tensor z components. Here δ1e1h

1,2 is the bright (dark) exciton
line splitting at B = 0, and gz

(e/h) are the g factors of the electron and
hole in Faraday configuration, respectively.

Spectral line δ1e1h
1,2 [µeV] gz factor Model

X 0
BE 31(2) −0.81(2) gz

1e + gz
1h

X 0
DE 1.4(1)* −0.29(4) gz

1e − gz
1h

gz
1e = −0.55(4); gz

1h = −0.26(4); δ1e1h
0 = 270(10) µeV

*The X 0
DE zero-field splittings δ1e1h

2 is too small to be directly resolved
here. It was measured using time-resolved spectroscopy in Ref. [10].
δ1e1h

0 denotes the measured X 0
BE-X 0

DE zero-field splittings.

on the possible error in the value that we measure. This should
not come as a surprise, since the electron and hole in-plane
g factors (which we measured in a separate experiment) are
much smaller than those in the Faraday direction [36].

One also notices in Fig. 1 that the X 0
DE cross-polarized

doublet is not equally intense: at 0 field, its horizon-
tally (H) polarized component is much stronger than the
vertically (V) polarized one, a phenomenon observed and
explained in previous publications [10,27,40]. Adding mag-
netic field in Faraday configuration enhances the weaker
component and gradually increases the cross-circular po-
larization components of the the X 0

DE doublet. However,
up to the maximal field strength of 1.5 T, the two X 0

DE’s
components remain unequal. Nonetheless, we extracted the
g factors of the X 0

BE and X 0
DE by fitting their measured

Zeeman splittings to Eq. (3). Table I summarizes the values
of the measured excitonic g factors, and the deduced single-
carrier g factors extracted from a simple arithmetic model,
gz

BE(DE) = gz
1e ± gz

1h.

B. Diamagnetic shifts

In Fig. 2, we present a full set of Magneto-PL measure-
ments in Faraday configuration of the QD. We present the PL
spectra for two average charge states of the QD: negative and
positive. The QD average charge state is apparent in each case
by considering the emission ratio between the positive and
negative trions, X + and X −. Many identified lines are marked
in the PL following previous studies [26].

All the observed spectral lines split into two components
under the application of external magnetic field along the
optical axis z. At high fields the two components are mostly
cross-circularly polarized as can be seen in the lowest panel
of Fig. 2. The line splitting is known to be due to the Zeeman
interaction between the confined carriers and the external
magnetic field as expressed in Eq. (1).

On top of the splitting due to the Zeeman interaction, the
spectral lines undergo a clear quadratic-in-B (diamagnetic)
shift. This shift is well described for all the measured mag-
neto photo-luminescence lines by adding a term βB2 to the
Hamiltonian [Eq. (1)]. This term faithfully describes the ex-
perimentally measured shifts for all the spectral lines as shown
in Fig. 2. The diamagnetic shift refers to the spectral “center of
mass,” defined as E (B) = (ER(B) + EL(B))/2, where ER and
EL are the energies of the two Zeeman components emitting
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FIG. 2. Polarization-sensitive magneto-PL spectra in Faraday configuration for various magnetic field strengths, for negatively (a) and
positively (b) charged QD. The upper panel shows polarization-sensitive magneto-PL spectra. The panels below show the degree of circular
and rectilinear polarizations, given by the color bars to the right, as a function of the photon energy and the externally applied magnetic field
strength. The identified spectral lines are marked: X 0 and XX 0, the neutral bright exciton and biexciton, and XX 0

T0 (T3 ), the neutral metastable
biexcitons with the two holes in T0(T3) spin triplet configurations. The X + (X −) positively (negatively) charged trion, X +

T0 (T3 ), and XX +
T0 (T3 )

are similar positively charged excitons and biexcitons. The X +2 lines result from the recombination of the doubly positively charged exciton,
leaving behind two holes that can form either a singlet S0 or one of the triplets, T±3 or T0. Note the negative diamagnetic shift of the X +2

S0

(marked with an oval dash line). The energy scale is relative to the X 0
BE spectral line at zero magnetic field. The X 0

BE spectral line is clearly
observed when the QD is statistically closed to neutrality (a), but the line is suppressed when the QD is strongly positively charged (b).

in cross circular R and L polarizations, respectively. In most
cases, E (B) shifts toward higher energy (hence, the terminol-
ogy of “diamagnetic” versus “paramagnetic” shift). Figure 3
summarizes the diamagnetic shifts of several selected lines.
One can see that many lines, including the XX 0 and the trions,
X − and X +, exhibit similar diamagnetic shifts to that of the
BE (∼8 µeV/T 2).

FIG. 3. Measured energy shifts of various optical transitions as
a function of B2. The X +2

S0
spectral line is a prominent exception—it

shows a negative diamagnetic shift.

C. Diamagnetic shifts of the X+2 spectral lines

Interestingly, a few spectral lines in Fig. 2(b) when the QD
is positively charged shift toward lower energy as the external
field increases. In particular, one prominent spectral line at
−5.95 meV (at zero field) exhibits such a distinctive negative
diamagnetic shift. We focus our discussion on this particular
line (represented by the blue circles in Fig. 3). We identify
this line as the doubly charged exciton transition X +2

S0
, where

the subscript S0 refers to the singlet configuration of the two
holes in the final state of this transition. The other triplet
configurations of the final states result in the three optical
transitions at about −0.38 meV. We denote them by X +2

T0
and

X +2
T±3

. These spectral lines are presented on an expanded energy
scale in Fig. 4. The other less prominent lines which also
exhibit negative shifts result from two-hole singlet states in
which the second hole is in a higher level than the second
hole-level. Since the thermal population of these higher en-
ergy initial levels is lower, these lines are weaker. For the sake
of simplicity, they will not be further discussed in this work.

The identification of the spectral lines follows Ref. [26],
where the same QD was studied. The identifications are based
on the following arguments. (i) these spectral lines appear
in the spectrum only when the QD is strongly positively
charged, like in Fig. 2(b). (ii) the X +2

S0
and X +2

T0
transitions

exhibit the same fine-structure splitting of ∼70 µeV due to
the same splitting in their initial state, denoted δ1e2h

1 (see
detailed energy level scheme in Fig. 5). (iii) The energy dif-
ference between these states is ∼5 meV, matching previously
measured hole-hole exchange interaction energies, for exam-
ple, between the excited positive trion states (1e1)(1h12h1)S
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FIG. 4. Rectilinear polarization-sensitive PL spectra of the X +2

spectral lines relative to the neutral exciton state (a) at zero magnetic
field, (b) as function of the externally applied field in Faraday config-
uration, and (c) in magnetic field of 5T . The transitions are marked
by their final spin configurations (S0, T0, T±3). The energy difference
between the X +2

T0
and the X +2

S0
doublets (marked) equals twice the

hole-hole exchange interaction Khh
sp,0.

FIG. 5. Schematic description of the energy levels and optical
transitions associated with the doubly positively charged exciton
X +2. The configuration of each state is presented on the left,
where thin blue arrows represent electrons with spin 1

2 , and thick
arrows represent heavy-holes with spin 3

2 . The polarization se-
lection rules are marked by colored downward arrows. H (V )
marks the horizontal (vertical) rectilinear polarization, while R
(L) marks the circular right-handed (left-handed) polarization. A
schematic description of the emitted PL is drawn at the bottom. The
X +2

T±3
spectral line is drawn in red with a blue edge, symbolizing

that the R and L polarizations overlap such that the emission is
unpolarized.

and (1e1)(1h12h1)T , or between the positive biexciton states
(1e2)(1h22h1) [26]. Here, npm reads: n, the energy level order;
p, the particle type (e or h); and m, the number of particles
occupying this level (either one or two). The subscript of
parentheses that includes two carriers of the same type, de-
scribes their mutual spin configuration—either a singlet, S0, or
triplet, Tl , where l = 0,±1 for two electrons or 0, ±3 for two
heavy-holes, denotes the total spin projection on the z axis.

Figure 5 schematically describes the energy levels and the
optical transitions associated with the doubly charged exciton,
X +2. This exciton comprises one electron in the ground-level
1e1, and three holes: two of them forming a singlet in the
s-shell ground-level, 1h2, and the third one occupies the first
excited p-shell level 2h1. The exchange interaction between
the Pauli-unpaired electron (in the 1st level) and the Pauli-
unpaired hole (in the second level) removes the degeneracy
between the four possible two-carriers’ spin configurations,
forming four distinct eigenstates similar to the case of the neu-
tral exciton (X 0). As such, we borrow the exciton “bright” and
“dark” terminology to describe the eigenstates of the X +2 as
well. States with antiparallel e-h spins are called “brightlike,”
while states with parallel spins—“darklike” (see Fig. 5). We
emphasize that the dark and bright states are both optically
active since the optical recombination occurs mostly between
the unpaired s electron and one of the s-level singlet holes,
rather than with the unpaired p hole. The 1e1-2h1 recombina-
tion is very inefficient (about two orders of magnitude weaker
[10]) since it is forbidden by symmetry.

The final states of the X +2 recombination contain two
holes—one in the ground level and one in the first excited
level. As identical particles, they form either one singlet
spin state denoted by S1h2h

0 or three triplet states denoted by
{T 1h2h

0 , T 1h2h
±3 }, respectively. The two initial bright-like exciton

states can only recombine to the singlet S1h2h
0 or triplet T 1h2h

0
final states (but not to the T 1h2h

±3 ), resulting in two pairs of
cross-rectilinearly polarized doublets [41]; the darklike states
can only recombine to the T 1h2h

±3 states. Because in the absence
of external magnetic field the darklike states and the T 1h2h

±3
states are each nearly degenerate, the recombination results
in a single, unpolarized, strong spectral line. We label the
X +2 optical transitions by their final states, specified in their
subscripts: X +2

T0
, X +2

T±3
and X +2

S0
. The latter transition, X +2

S0
, is

the one exhibiting a negative diamagnetic shift. We note that
in the absence of external field, the unpolarized X +2

T±3
spectral

line is positioned exactly in between the two cross linearly po-
larized components of the X +2

T0
line. This indicates that δ1e2h

0 ,
denoting the splitting between the darklike and brightlike X +2

states, is equal to δ1h2h
T , the splitting between the holes’ triplet

states T 1h2h
0 and T 1h2h

±3 .
A detailed polarization-sensitive magneto-PL spectra of

the X +2 spectral lines are presented in Fig. 4. One can see
that while the triplet lines shift toward higher energy with
increasing B field, the singlet lines shift toward lower energy.
Since the initial states of the X +2

S0
and X +2

T0
transitions are

the same (the brightlike exciton states), we conclude that the
sign difference between the diamagnetic shifts of the two
transitions stems from the different influence that the external
magnetic field has on the final states. The h-h singlet final state
rises in energy faster than the initial state such that the overall
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TABLE II. g factors and zero-field splitting (ZFS) of the charged
excitons spectral lines transitions, compared to those of the neutral
excitons. The measured splittings are explained by a simple model
which assumes that the g factor of a given transition can be decom-
posed to the sum of the comprising charge carrier g factors of the
initial and final states of the optical transition. gz

n(e/h) denotes the g
factor of the electron (hole) in the n energy level of the QD, where
n = 1 is the ground level.

Spectral line ZFS [µeV] g factor Model

X 0
BE 31(2) −0.81(2)

X + 0 −0.81(2)
gz

1e + gz
1hX − 0 −0.94(2)

X +2
T±3

0 −0.97(5)

X +2
T0

56(2) 0.55(10)
gz

1e + gz
2hX +2

S0
69(7) 0.65(7)

gz
2h = 1.15(12); δ1e2h

0 = 130(10) µeV

spectral shift is negative (red shift). However, the h-h triplet
state rises in energy slower than the initial state, thus the total
spectral shift is positive (blue shift).

D. Measured g factors of the charged excitons X±1 and X+2

The measured g factors of the charged excitons X ±, and
X +2 optical transitions are summarized in Table II together
with that of the neutral bright exciton X 0. In discussing these
g factors, one should consider the Zeeman interaction both in
the initial and in the final states of the optical transitions. For
example, in the initial state of the X ± exciton the unpaired
electron (hole) interacts with the field while in the final state
the remaining hole (electron) interacts with the field. Thus,
like in the case of the BE, one expects that the measured
spectral line g factor is a sum of the electron and hole s-level
g factors. Similarly, the final states of the brightlike X +2

transitions are either the two-holes T0 triplet or S0 singlet
states. Both states have zero g factors, since they are nonde-
generate and their total angular momentum projection on the
magnetic field direction vanishes. Therefore, the g factors of
these transitions are due to the initial brightlike exciton state
only. This state contains a Pauli-unpaired electron in the first
s level and a Pauli-unpaired hole in the second p level. The
two paired holes occupying the ground level singlet state do
not contribute to the Zeeman interaction with an externally
applied magnetic field. Thus, the measured g factors of the
X +2

T0
and X +2

S0
lines are expected to be the same. In addition,

like the BE, their zero-field splitting is given by the anisotropic
electron-hole exchange term δ1e2h

1 . The overall g factor of this
transition is therefore:

(E initial − Efinal )/(μBBz ) = gz
1e − (−gz

2h

) = gz
1e + gz

2h. (4)

The extra minus sign results from the optical selection rule
stating that only an electron and a hole with antiparallel spins
can radiatively recombine.

The lines g factors are extracted by fitting their measured
Zeeman splittings to Eq. (3). Table II summarizes the ex-
tracted values. The results of this simple arithmetic calculation
are presented in the “Model” column of Table II. Comparing

this simple model with experiments, one indeed finds that the
measured g factors of spectral lines like X +, X −, and other
optical transitions whose g-factor arithmetics produces the
sum of the electron and hole ground level g factors, are similar
to the measured value of the BE [42,43]. The same arithmetic
shows that g factor of the doubly charged exciton triplet states
X +2

T±3
is yet another example. However, the g factors of the

X +2
S0

and X +2
T0

transitions are similar to those that include the
g factor of the hole in its second energy level (gz

2h) rather then
the first (gz

1h) [42,43]. It is interesting to note that it follows
(see Table II) that gz

2h = 1.15 ± 0.10. This value is opposite
in sign compared to the ground level g factors of the hole
and that of the electron [−0.26 and −0.55, respectively (see
Table I)]. The opposite sign of the excited-hole g factor was
directly measured on another similar QD sample using PLE
spectroscopy [43]. This finding is also supported by realis-
tic NextNano [28] simulations [42]. Similar results of sign
difference between the first and second confined levels were
observed and discussed for electrons and holes in quantum
wells [20,44].

IV. THEORETICAL ANALYSIS

A. Hartree-Fock approximation applied to QD-confined
multicarrier configurations

We use the Hartree-Fock approximation [45] for describing
the multicarrier configurations involved in the various initial
and final states of the optical transitions that we study. In this
approximation, the many-body state is a single Slater deter-
minant of single-particle states. The single-particle states are
found as confined states in the dot, described by a parabolic
model-potential, in the strong-confinement limit where any
possible single-particle reshaping by interaction with the other
particles is ignored. One expresses the energies of the many-
body states as sums of single-particle energies, plus the direct
Coulomb and exchange interactions between all pairs of par-
ticles in the particular configuration.

For example, the energy of the neutral bright (BE) and dark
(DE) excitons are given by

EX 0
BE

= Ee
s + Eh

s − Jeh
ss , (5)

and

EX 0
DE

= Ee
s + Eh

s − Jeh
ss − 2Keh

ss = EX 0
BE

− 2Keh
ss , (6)

where Ee(h)
s is the confinement energy of the electron (hole)

in the s level and Jeh
ss (Keh

ss = 0.5δ1e1h
0 ) is the direct Coulomb

(exchange) interaction between the electron and the hole. We
note here that as a rule, one subtracts twice the exchange en-
ergy when the spins of the two particles are aligned [45]. This
rule applies also for the case of electron and hole pair though
they are distinguishable quasiparticles [46,47]. The electron-
hole anisotropic exchange interactions, δ1e1h

1 (δ1e1h
2 ) which

removes the degeneracy between the bright (dark) exciton
eigenstates is usually much smaller than δ1e1h

0 [29], and does
not affect the excitonic transitions’ spectral center of gravity.
Therefore, we ignore these, as well as δ1e2h

1 (δ1e2h
2 ) in this

discussion.
Applying the same rules to the positively charged exciton,

the X +1, in which the initial state is formed from two holes in
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their respective s-level and one electron is in its respective s
level, one gets

E initial
X +1 = Ee

s + 2Eh
s − 2Jeh

ss − 2Keh
ss + Jhh

ss . (7)

After the electron-hole recombination, the final state contains
only one hole in its s level

Efinal
X +1 = Eh

s . (8)

The optical transition energy is therefore

EX +1 = E initial
X +1 − Efinal

X +1 = Ee
s + Eh

s − 2Jeh
ss − 2Keh

ss + Jhh
ss

= EX 0
DE

+ Jhh
ss − Jeh

ss . (9)

It turns out, that the energy difference between the X +1

and the X 0
DE transitions is given by the difference be-

tween the two direct Coulomb terms on the right hand side
of Eq. (9).

We proceed by applying the same rules to the doubly pos-
itively charged exciton, the X +2 spectral lines. Considering
first the energies of the initial states,

E initial
X +2

S0

= E initial
X +2

T0

= Ee
s + 2Eh

s + Eh
p + Jhh

ss + 2Jhh
sp

− 2Jeh
ss − Jeh

sp − 2Keh
ss − 2Khh

sp , (10)

E initial
X +2

T±3

= E initial
X +2

T0

− 2Keh
sp , (11)

and then of the final states,

Efinal
X +2

S0

= Eh
s + Eh

p + Jhh
sp , (12)

Efinal
X +2

T0

= Efinal
X +2

T±3

= Eh
s + Eh

p + Jhh
sp − 2Khh

sp . (13)

We note that here as well we subtract twice the exchange
energy whenever a pair of particles has parallel spins.

The transition energies are then given as before by the
differences between the initial and final states,

EX +2
T0

= EX +1 + Jhh
sp − Jeh

sp , (14)

EX +2
S0

= EX +2
T0

− 2Khh
sp , (15)

EX +2
T±3

= EX +2
T0

− 2Keh
sp , (16)

where we also used Eq. (9). It follows that the energy differ-
ence between the X +1 spectral line and the X +2

T0
spectral line is

given by the difference between the two direct Coulomb terms
Jhh

sp and Jeh
sp .

B. Two-dimensional parabolic potential model

To quantitatively compare our model [Eqs. (6), (9), (14),
(15), and (16)] with the measured PL spectra, we proceed
with a model for calculating the direct Coulomb and exchange
interactions. We follow Warburton et al. [48] who developed
a simple two-dimensional, cylindrically symmetric, harmonic
oscillator model for describing the QD confining potential
for charge carriers. In their model, the harmonic potential
is described by two parameters: ωe(h), the harmonic fre-
quency of the confining potential and me(h), the in-plane
effective mass, for each one of the confined carriers, the
electron (e) or the heavy hole (h), respectively. The effective

length of the potential lp is related to the effective mass and
frequency by

lp =
√

h̄

mpωp
, (17)

where lp is the effective length for particle type p ∈ {e, h}.
The single particle wave functions for the two lowest en-

ergy levels in this model are

�1p(ρ) = 1√
π lp

e
− ρ2

2l2p ; �
2p
±1(ρ, φ) = ρ√

π l2
p

e
(− ρ2

2l2p
±iφ)

,

(18)

where ρ and φ are the conventional inplane particle’s radius
vector length and polar angle, respectively.

The various direct Coulomb interaction integrals, J
pi p j

i j ,
where i, j indicate the confined carriers’ states and pi, p j

indicate their types, can be thus analytically calculated [48].
Relevant to our discussion, as discussed above, are the direct
and exchange terms between holes and electrons in their re-
spective lowest two energy levels “s and p shells.” Interactions
between particles of the same type are inversely proportional
to lp [48],

J pp
ss = 4

3
J pp

sp = 4K pp
sp = α

lp
, (19)

with

α =
√

π

2

e2

4πε0εr
. (20)

Here e is the electron charge, ε0 is the vacuum permittivity,
and εr is the relative permittivity (dielectric constant) of the
QD material.

In a similar way the direct Coulomb interactions between
carriers of different types are given by

J pp′
ss = α

(
2

l2
p + l2

p′

) 1
2

; J pp′
sp = α√

2

2l2
p + l2

p′(
l2
p + l2

p′
) 3

2

. (21)

Since the electron and the hole are distinguishable quasi-
particles [46,47] the exchange terms Keh

ss and Keh
sp are not

directly given by the Hartree Fock model. Yet, since these
exchange terms are known to be mainly short range they can
be approximated by [20,46]

Keh
i j ≈ Eeh

sr a3
0

∫ ∣∣ f X
i j (r, r)

∣∣2
dr, (22)

where Eeh
sr is the short-range electron-hole exchange interac-

tion, a0 is the crystal lattice constant [20,46] and f X
i, j (re, rh) is

the envelope function of the exciton formed by electron in the
i level and hole in the j level. We proceed by approximating
the exciton envelope functions as a product of the single
carrier envelope functions f X

i, j (re, rh) ≈ � ie(re)� jh(rh). This
approximation is valid for QDs in which the confining poten-
tial is larger than the electron hole direct Coulomb interaction.
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Hence,

Keh
ss ≈ Eeh

sr a2
0

∫
|�1e(ρ)|2|�1h(ρ)|2dρ = Eeh

sr a2
0

l2
e + l2

h

, (23)

Keh
sp ≈ Eeh

sr a2
0

∫
|�1e(ρ)|2|�2h(ρ)|2dρ = Eeh

sr a2
0l2

e(
l2
e + l2

h

)2 , (24)

where we used in Eqs. (23) and (24) the corresponding single
carrier envelope functions from Eq. (18) .

The ratio between these exchange terms is therefore
given by

Keh
sp

Keh
ss

= l2
e

l2
e + l2

h

= γ 2

1 + γ 2
, (25)

where we define the ratio between the characteristic lengths
of the carriers’ potential: γ = le

lh
.

Experimentally, as we show below for the QD under study,
it turns out that le and lh are nearly equal and γ ≈ 1. There-
fore by substituting γ = 1 + η, with |η| 
 1 in Eq. (25) and
keeping only leading terms in η, one gets that

Keh
sp

Keh
ss

≈ 1

2
(1 + η) ≈ 1

2
. (26)

In a similar way one gets for the direct Coulomb and same
particle exchange terms that

Jhh
ss − Jeh

ss = 4
(
Jhh

sp − Jeh
sp

) ≈ 1
2ηJhh

ss = 2ηKhh
sp . (27)

In addition, it is worth noting that the direct Coulomb
attraction between the electron and the hole in their respective
lowest energy levels Jeh

ss can be used as an estimate for the BE
binding energy EBE. Thus, using Eqs. (27) and (19), we get

EBE ≈ Jeh
ss ≈ Jhh

ss

(
1 − 1

2η
) = 4Khh

sp

(
1 − 1

2η
)
. (28)

Equations (25), (27), and (28) are useful since, as we show
below, the hole-hole and electron-hole exchange energies
Khh

sp , Keh
sp , and η can be determined experimentally from the

PL spectra at zero external magnetic field.

C. Magnetic field dependence of the direct and exchange
Coulomb interactions

To include the effect of the magnetic field in this model, we
replace ωp with ωp(B)≡

√
ω2

p+ e2B2
z

4m2
p

, obtained by adding a magnetic

field Hamiltonian to the harmonic oscillator one and solving
for the eigenenergies (harmonic spectrum plus Landau levels
spectrum). Using Eq. (17) the expression for the effective
length then becomes

lp(B) = lp,0

⎡
⎣1 +

(
el2

p,0

2h̄

)2

B2

⎤
⎦

− 1
4

, (29)

where we add the subscript “0” (such as in lp,0) to indicate the
value in the absence of magnetic field.

In low magnetic fields, the magnetic energy is much

smaller than the confinement energy, such that (
el2

p,0

2h̄ )2B2 
 1,

and to lowest terms in B:

lp(B) ≈ lp,0

⎡
⎣1 −

(
el2

p,0

4h̄

)2

B2

⎤
⎦. (30)

Since by Eq. (19), K pp
sp,0 is inversely proportional to lp,0, it fol-

lows from Eq. (30) that the field dependence of the exchange
energy can be approximated by

K pp
sp (B) ≈ K pp

sp,0 + βK pp
sp

B2, (31)

where

βK pp
sp

= K pp
sp,0

(
el2

p,0

4h̄

)2

(32)

is the diamagnetic shift coefficient of the same particle (hole-
hole or electron-electron) exchange interaction.

Using Eqs. (19) and (20), one obtains an expression for
the value of the particle-particle exchange diamagnetic shift
coefficient, βK pp

sp
:

βK pp
sp

= e10

222π2h̄2ε4
0ε

4
r

(
K pp

sp,0

)3 . (33)

Equation (33) is important, since both the hole-hole exchange
interaction Khh

sp,0 and its diamagnetic shift βKhh
sp

can be directly
deduced from our measurements, providing thus a way to
uniquely determine εr .

Since by Eq. (30) the field dependence of the effective
hole and electron lengths are different, γ and η are also field
dependent:

γ (B) = le(B)

lh(B)
≈ γ0

⎡
⎣1 + (

1 − γ 4
0

)(el2
h,0

4h̄

)2

B2

⎤
⎦, (34)

where γ0 and lh,0 are defined in the absence of magnetic field
and we keep only lowest order terms in B. Using η0 = γ0 − 1,
keeping only first-order terms in η0 one gets

η(B) = η0

⎡
⎣1 − 4

(
el2

h,0

4h̄

)2

B2

⎤
⎦. (35)

Therefore, the field dependence of the product η × Khh
sp up to

lowest order terms in B, used in Eqs. (27) and (28) is given by

η(B) × Khh
sp (B) ≈ η0Khh

sp,0 − 3η0βKhh
sp

B2. (36)

To conclude this section, we note that from the measured
hole-hole exchange term Khh

sp,0 and its diamagnetic shift βKhh
sp

,
one can straightforwardly calculate, using Eq. (32), the extent
of the hole parabolic confining potential lh,0. Then, by using
Eq. (23), the intrinsic short-range electron hole exchange term
Eeh

sr , can be estimated as well. Together with the measured
value of η0, as we show below, the diamagnetic shifts of prac-
tically all the measured optical transitions, can be estimated.

D. Magnetic field dependence
of the electron-hole exchange terms

The isotropic electron-hole exchange term, Keh
ss , which

equals half of the DE-BE fine structure splitting (δ1e1h
0 ,
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Table I) is, as mentioned above, mostly due to the short-range
exchange interaction [20,46]. Its dependence on the magnetic
field results as shown in Eq. (23) from its inverse dependence
on the term (l2

h + l2
e ) = l2

h (1 + γ 2) ≈ 2l2
h (1 + η) (or roughly

twice the QD area [46]). Therefore, by using the field
dependence of lh [Eq. (30)] and that of η [Eq. (35)] in Eq. (23),
while keeping only lowest terms in B2 and η0 one obtains

Keh
ss(p)(B) = Keh

ss(p),0 + βKeh
ss(p)

B2, (37)

where

βKeh
ss

= 2(1 + 2η0)
Keh

ss,0

Khh
sp,0

βKhh
sp

(38)

and

βKeh
sp

= 2
Keh

sp,0

Khh
sp,0

βKhh
sp

, (39)

where we also used Eq. (32).
Equations (38) and (39) relate the field dependence of the

electron-hole exchange to the hole-hole exchange and thus
provide a way for estimating the magnetic field dependen-
cies of the electron hole exchange interactions. We use these
relations to compare the model estimate with the actually
measured diamagnetic shifts.

E. Diamagnetic shifts of the bright and dark excitons

The diamagnetic shift of the free exciton is proportional to
its wave-function area [20] in a plane normal to the direction
of the magnetic field:

βX 0
BE

= e2

8μ
〈 f |ρ̂ex

2| f 〉. (40)

Here, ρex = ρe − ρh is the relative radius vector between
the electron and hole, f (ρex ) is the excitonic envelope wave
function, and μ = memh/(me + mh) is the reduced mass of the
electron and hole.

For a confined exciton the effect of the geometric confine-
ment potential on the exciton center of mass is approximated
by anisotropic deformation of the exciton wave function
f (ρex), which is taken to be a hydrogenic-like ellipsoid of
revolution, characterized by effective anisotropic Bohr radii
parallel to its three principal axes. Equivalently, since the
Bohr radii are inversely proportional to the reduced mass,
one uses in this approximation three direction-dependent re-
duced exciton masses (μi, i = x, y, z). For such an asymmetric
hydrogenic wave function, the diamagnetic shift in Faraday
configuration, with magnetic field along z, is given by first-
order perturbation theory [49,50] as

βX 0
BE

= 4π2h̄4ε2
0ε

2
r

e2μμxμy
,

1

μ
= 1

3

(
1

μx
+ 1

μy
+ 1

μz

)
. (41)

While the excitonic binding energy at zero magnetic field is
given by the regular Rydberg formula:

EBE = e4μ

32π2h̄2ε2
0ε

2
r

. (42)

After the exciton recombination, the QD remains empty
of carriers. This final “vaccum” state does not shift with the

TABLE III. Measured and modeled diamagnetic shifts (β val-
ues) in µeV/T2. The estimated relative errors are about 5%. For
the model we used the zero field measured Khh

sp,0 = 2.79(15) meV
[Eq. (46)], Keh

ss,0 = 0.5δ11
0 = 0.135(7) meV (Table I) and η0 =

−0.024(3) [Eq. (50)].

Measured Calculated Theoretical expression

βX 0
BE

8.44 8.44 Eq. (45) (χ = 1.36)
βX 0

DE
7.0 7.2 βX 0

BE
− 2βKeh

ss

βX+ 7.85 7.95 βX 0
DE

− 6η0βKhh
sp

βX+2
T0

7.6 8.09 βX+ − 3
2 η0βKhh

sp

βX+2
S0

−5.8 −5.6 βX+2
T0

− 2βKhh
sp

βX+2
T±3

6.9 6.9 βX+2
T0

− 2βKeh
sp

βKhh
sp

6.7 6.7 Eq. (33) (εr = 14.24)
βKeh

ss
0.62 0.62 Eq. (38)

βKeh
sp

0.55 0.35 Eq. (39)

magnetic field and therefore the measured diamagnetic shift
of the BE transition is positive and given by Eq. (41).

In our circularly symmetric QD model, μx = μy = μxy and
μz = μxy

a , where a = lz/lxy is the aspect ratio between the
normal and lateral dimensions of the QD confined excitonic
wave function. One can therefore express μ = χμxy, where
χ = 3

2+a . In the 2D limit a = 0, μz = ∞, and χ = 3/2.
Using Eqs. (41) and (42) one can now express the excitonic

diamagnetic shift in terms of the excitonic binding energy:

βX 0
BE

= χ2e10

213π4h̄2ε4
0ε

4
r

1

E3
BE

. (43)

From Eq. (6) and the quadratic field dependence of all the
direct Coulomb and exchange terms it immediately follows
that

βX 0
DE

= βX 0
BE

− 2βKeh
ss
. (44)

In a similar way one can calculate the expected diamagnetic
shifts of the charged excitons as well (see Table III).

To conclude this section we note that Eq. (43) much re-
sembles Eq. (33). In fact, if one uses Jeh

ss = (4 − 2η0)Khh
sp,0

[Eq. (28)] as an estimate for the excitonic binding energy
(EBE), then the ratio between the diamagnetic shifts of the
hole-hole exchange interaction and that of the bright exciton
depends only on the geometrical ratios χ and η0:(

βX 0
BE

βKhh
sp

)
≈ 8χ2

π2(1 − 6η0)
; lim
χ,η0−→ 3

2 ,0

(
βX 0

βKhh
sp

)
= 2

(
3

π

)2

.

(45)

Surprisingly, for equally confined electron and hole in the 2D
limit, the model predicts a universal ratio which is indepen-
dent of the QD dimensions and material properties.

V. DISCUSSION

A. Estimating the hole-hole and electron-hole exchange terms

The exchange terms can now be estimated directly from
the measured PL spectrum of the quantum dot.
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From Eq. (15) it directly follows that

Khh
sp,0 =

(
EX +2

T0
− EX +2

S0

)/
2 = 2.79(15) meV, (46)

[see Figs. 2(b) and 4]. From Eq. (6) it follows that

Keh
ss,0 =

(
EX 0

BE
− EX 0

DE

)/
2 = 0.135(5) meV, (47)

(see Fig. 1). From Eq. (22) one expects that Keh
sp,0 = 0.5Keh

ss,0 ≈
63(5) µeV. This result should be compared with Eq. (16) from
which it follows that Keh

sp,0 = (EX +2
T0

− EX +2
T3

)/2 ≈ 0(20) µeV

[see Figs. 2(b) and 4]. Unfortunately, there is a small discrep-
ancy here, probably because of the lack of spectral resolution,
due to the spectral lines’ widths and a possible degeneracy
removal between the T0 and T±3 two-heavy-hole triplet states
[51], which our model does not take into account.

From Eq. (9) it follows that

Jhh
ss − Jeh

ss = EX +1 − EX 0
DE

= −130(15) µeV. (48)

[see Figs. 1 and 2(a)]. Likewise, from Eqs. (14),

Jhh
sp − Jeh

sp = EX +2
T0

− EX +1 = −30(15) µeV (49)

[see Figs. 2(a) and 4], which within the limited resolution of
our measurements agrees well with the expected ratio of 1:4
between Jhh

sp − Jeh
sp and Jhh

ss − Jeh
ss , following Eq. (27).

We proceed by using Eqs. (19) and (27) to get an estimate
for η0:

η0 = (
Jhh

ss − Jeh
ss

)
/2Khh

sp,0 = −0.024(3). (50)

Likewise, using Eq. (28) we get an estimate for the binding
energy of the BE:

EBE ≈ Jeh
ss ≈ 4Khh

sp,0

(
1 − 1

2η0
) = 11.3(4) meV. (51)

B. Measured and estimated diamagnetic shifts

The measured diamagnetic shifts are summarized in the
second column of Table III. The diamagnetic shifts of
the spectral lines are displayed in the upper six rows of the
table. From these measurements, we directly obtain the mea-
sured diamagnetic shifts of the hole-hole and electron-hole
exchange terms: Using Eq. (15) we get

βKhh
sp

=
(
βX +2

T0
− βX +2

S0

)/
2, (52)

using Eq. (44) we get

βKeh
ss

=
(
βX 0

BE
− βX 0

BE

)/
2, (53)

and using Eq. (16) we get

βKeh
sp

=
(
βE

X+2
T0

− βE
X+2

T±3

)/
2. (54)

The obtained values are also listed in the last three rows of
Table III.

The calculated diamagnetic shifts are displayed for com-
parison in the third column of Table III. The expressions used
for these calculations were developed in Sec. IV using the
Hartree-Fock approximation and the cylindrical parabolic po-
tential model for the QD, are displayed and referenced in the
fourth column of the table. As one can see, the agreement is
surprisingly decent, despite the simplicity of our model for the

TABLE IV. The estimated average composition of the QD es-
timated from the deduced dielectric constant and the measured
electronic g factor. The dielectric constant and band parameters are
interpolated using Eq. (55) and the tabulated parameters.

GaAs InAs Bowing Best x InxGa1−xAs

εr 15.15a 12.46a 0.67b 0.71 14.24
Ep[eV] 28.8c 21.1c −1.48c 0.76 23.22
Eg[eV] 1.519c 0.418c 2.22c 0.76 1.295*

�[eV] 0.341c 0.39c 0.15c 0.76 0.351
ge Calculated −0.317 −14.3 0.76 −0.55
ge Measured −0.484d −14.9d −0.55

*The measured excitonic emission+excitonic binding energy (see
text).
aRef. [53].
bRef. [54].
cRef. [55].
dRef. [20].

QD potential and despite the fact that the Hartree-Fock model
completely ignores the correlation terms in the Coulombic
interactions [52] and we do not include any single-particle
reshaping that occurs from interaction.

C. QD dielectric constant and average composition

By substituting the measured Khh
sp,0 and βKhh

sp
in Eq. (33)

we find that the average dielectric constant of the QD is
εr = 14.24(4). This experimentally deduced value provides
a way to estimate the QD effective composition. Since the
QD comprises two binary semiconductors, GaAs and InAs,
one may interpolate the value of any material property (Q) of
the ternary material using an average effective composition
x for the QD ternary material InxGa1−xAs using quadratic
interpolation formula

Q(x) = xQIn + (1 − x)QGa − cQx(1 − x), (55)

where QIn (QGa) is the Q value of the binary material InAs
(GaAs) and CQ is a bowing parameter characterizing Q for
the ternary material. The material parameters that we use for
the dielectric constants are given in Table IV, in which we list
and reference the relevant input parameters for the quadratic
interpolations used in this work.

The effective QD composition which results in the ex-
perimentally deduced dielectric constant is x = 0.70 ± 0.05.
Interestingly, similar value for x is obtained if one interpolates
the measured electronic QD g factor.

The isotropic electronic g factor in bulk semiconductors
can be analytically calculated by the Roth’s formula [56]:

ge = 2 − 2

3

Ep�

Eg(Eg + �)
, (56)

where Eg is the band gap energy between the valence and
conduction bands, � is the split-off gap (between the va-
lence band and the spin-orbit band) at k = 0, and Ep is the

Kane energy defined as Ep ≡ 2h̄2

m |〈s|∂x|x〉|2, where |s〉 and
|x〉 are the crystal Bloch functions of the electron in the
conduction band and in one of the three p-like degenerate
valence bands, respectively. The quantum confinement due
to the QD potential breaks the periodicity of the electronic
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wave functions, and the derivation of the Roth’s formula
collapses [57]. Nevertheless, as long as the confinement en-
ergy is much smaller than the energies �, Ep, and Eg, one
still expects Roth’s formula to be a qualitative approxima-
tion that provides an upper bound on the band gap (a lower
bound of the composition x). Indeed, the typical separation
between the confined carriers’ energy levels in our QD is
of order 10–30 meV [58], much smaller than �, Ep, and Eg

(see Table IV).
Therefore, we proceed by interpolating the values of � and

Ep using Eq. (55) and the material parameters in Table IV. For
the QD band gap, EQD

g , we use the directly measured value
of the X 0

BE spectral line, as it takes into account the quantum
confinement and lattice mismatch strain effects [59]. To get
better estimate for the QD bandgap, however, one has to add
to the measured PL the excitonic binding energy. As discussed
above, we use the direct Coulomb term Jeh

ss [Eq. (28)], as
an estimate for the excitonic binding energy. Thus EQD

g =
EX 0

BE + Jeh
ss , where Jeh

ss ≈ 11.3 meV. The Roth formula for the
QD is therefore given by

ge(x) = 2 − 2

3

Ep(x)�(x)

EQD
g

[
EQD

g + �(x)
] . (57)

Using the measured value ge(x) = −0.55 in Eq. (57) and
the material parameters from Table IV we get an estimate
for the effective QD composition x = 0.76 ± 0.04, where the
uncertainty in x includes also the uncertainties in the tabulated
band parameters. This value agrees to within the experimen-
tal uncertainties with the value obtained from the dielectric
constant deduced from the diamagnetic shifts.

D. QD dimensions

One can use the magneto-PL spectroscopy to estimate the
QD dimensions. By substituting the measured βKhh

sp
in Eq. (32)

one can find the extent of the hole wave function as given by
Eq. (18). Using the experimentally estimated γ0 = 0.976(2)
the electron wave function extent can be obtained as well.
This way we find that lh and le are 11.7(3) and 11.4(3) nm,
respectively.

By substituting the measured ratio between the diamag-
netic shifts of the hole-hole exchange interaction βKhh

sp
and

that of the BE βX 0
BE

in Eq. (45) we obtain χ = 1.36(2),
which is slightly less than 1.5 expected for a truly 2D
exciton. To account for this discrepancy we consider the
extent of the excitonic wave function in the z direction lz.
This may be attributed to the fact that the electron mass
is isotropic, unlike that of the HH which is much heav-
ier in the z direction [20]. The aspect ratio a between the
extent of the BE wave function in the z direction to its ex-
tent in the plane is given by 3/ξ − 2 = 0.20(1) which leads
to lz ≈ 2.3(1) nm.

It follows that the estimated dimensions of the QD are
about 23 nm in diameter and 4.5 nm in height. We note that
the lateral dimensions are probably underestimated. This is
because the confining length of the parabolic potential well
model (lp) is about a factor of 2 smaller than that of an infinite
2D potential well model which produces the same energy dif-
ference between the s and p shells of the confined carrier [h̄ωp

as defined in Eq. (17)]. The estimated QD height is probably
slightly overestimated, due to the penetration of the electronic
wave function into the GaAs binary barriers. We note here that
the extent of the electronic wave function along the growth
direction leads to the following relations between the direct
Coulomb terms |Jee

ss | < |Jhh
ss | ≈ |Jeh

ss |. These relations leads in
turn to the quite general experimental observation that the
negatively charged exciton spectral line (X −1) is a few meV
lower in energy than the positively charged exciton (X +1) line,
while the later is quite close in energy to the neutral exciton
line [X 0

BE, see Fig. 2(a)].

VI. SUMMARY

We experimentally investigated using polarization
sensitive magneto-PL spectroscopy a well-characterized
InxGa1−xAs QD in the Faraday configuration. We
systematically measured the Zeeman splittings of neutral,
singly and doubly charged excitons. The g factors of the bright
and dark excitons were measured first and their values were
used to show that the Zeeman splittings of various charged
excitonic lines can be quite well described by a simple
arithmetic model resulting from sums and differences of the g
factors of the confined electron and holes in their respective
energy levels. In particular, from these measurements we
extracted the g factor of the hole in its second confined energy
level and showed that it has opposite sign with respect to the
hole in its first energy level.

The measured diamagnetic shifts of the excitonic transi-
tions were carefully measured as well. All the transitions
showed quadratic dependence on the magnitude of the ex-
ternally applied magnetic field. In particular, we observed a
pronounced negative diamagnetic shift of one of the sptec-
tral lines for transitions from the doubly positively charged
excitons (X +2

S0
). The magneto-PL measurements were all

quantitatively explained using a Hartree-Fock model to de-
scribe the direct Coloumb and exchange interactions between
up to four confined carriers in the QD.

We used a two-dimensional cylindrically symmetric
parabolic potential model to analytically calculate the
Coulomb and exchange integrals and their magnetic field
dependence. The model quantitatively describes the mea-
sured diamagnetic shifts of many excitonic transitions and
it accurately describes the hole-hole and electron-hole direct
Coulomb and exchange interactions and their magnetic field
dependence. From our measurements and model we obtained
an estimate for the QD average dielectric constant (εr), and for
its lateral dimensions lh ≈ le. In addition, we show that while
the 2D model is adequate for describing the confined heavy
hole wave functions, the perpendicular extent of the electron
wave function must be considered to quantitatively account
for the exciton diamagnetic shift. The latter extent provides
an estimate for the QD height, in decent agreement with the
structural data at hand. Last, we show that by interpolating
both the QD electronic g factor and its dielectric constant
between the QD’s binary constituents GaAs and InAs we
succeed to provide similar estimates for the InxGa1−xAs QD
average composition x. Although simple, the model provides
a good understanding of the experimental magneto optics of
charge-tunable quantum dots.
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