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Temporal CW polarization-tomography of photon pairs from the biexciton radiative cascade:
Theory and experiment
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We study, experimentally and theoretically, temporal correlations between the polarization of photon pairs
emitted during the biexciton-exciton radiative cascade from a single semiconductor quantum dot, optically
excited by a continuous-wave light source. The system is modeled by a Lindbladian coupled to two Markovian
baths: One bath represents the continuous light source, and a second represents the emitted radiation. Very good
agreement is obtained between the theoretical model that we constructed and a set of 36 different time-resolved,
polarization correlation measurements between cascading photon pairs.
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I. INTRODUCTION

The temporal correlations between the polarization states
of two photons emitted during the biexciton-exciton radiative
cascade in a single semiconductor quantum dot (QD) have
been the subject of many studies during the last three decades
[1–4]. These studies were motivated by the quest to find
technological sources for entangled photons, which QDs, also
known as “artificial atoms” [5,6] are expected to form [2,7,8].

Unlike excited atoms, however, where the fundamental
optical excitation is typically Kramers’ degenerate, the fun-
damental optical excitation of QDs, the electron-hole pair (or
exciton) is typically nondegenerate due to the anisotropic ex-
change interaction between the electron and the hole [9–11].
The anisotropic exchange interaction is due to asymmetry
between the electron and hole envelope wave functions. This
asymmetry is due to deviation of the long-range exchange
interaction from a C3v symmetry expected from the (111)
crystallographic growth direction of the sample (see Sec. II
below) [12]. The deviation is most likely due to the QD’s
spatial composition fluctuations, strain fluctuations, and/or
misalignment between the symmetry axis of the QD and the
(111) growth direction [13].

The degeneracy removal of the optically active two-level
exciton system reflects itself in temporal dependence of the
correlations between the polarization states of the sequentially
emitted cascading photons [14]. As a result, the expected
measured entanglement between the polarization states of the
first (biexciton) photon and the second (exciton) photon is
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rather small, and its detection typically requires either spectral
[3] or temporal [14,15] post selection.

In these experiments, two types of optical or electrical
[15–17] excitations are used. The first, experimentally simpler
to perform, but more difficult to analyze, is to use a continuous
wave (CW) source [3,15]. The second, experimentally more
challenging, but rather straight forward to analyze [14,16–19]
is to use a periodic short-pulse source for the excitation.

To the best of our knowledge, a comprehensive model for
the first case has not been developed yet. Therefore, experi-
mental data analysis has so far relied on sometimes partially
justified assumptions.

In this work, we discuss and develop a theoretical model
for the CW excitation case. Though the mathematical formu-
lation is somewhat abstract, the developed model is rather
easy to encode and to compute. The model and code that
we developed is thoroughly discussed in this paper and
then compared with experimentally measured time-resolved
polarization-sensitive two-photon correlations.

The paper is organized as follows: In Sec. II we de-
scribe the experimental system, in Sec. III we discuss and
develop the theoretical model. When the model development
requires more detailed mathematical tools we send the reader
to the Appendixes. In Sec. IV we present model simulations
and accurately fit the developed model to the time-resolved
polarization-tomography measurements. Section V is a short
summary of the paper.

II. EXPERIMENTAL SETUP

The studied sample contained single InAsP quantum dots
embedded in InP nanowires. The sample fabrication method is
described in detail in previous publications [20–24]. In brief,
the growth was on a SiO2 patterned (111)B InP substrate
consisting of circular holes opened up in the oxide mask.
Gold was deposited in these holes using a self-aligned lift-
off process, which allows the nanowires to be positioned at
known locations on the substrate. The growth had two steps:
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FIG. 1. (a) Schematic description of the experimental setup. The
sample, held at ≈5 K in a cryostat. A short-pass (SP) filter trans-
mits the exciting HeNe laser beam (red solid line) and reflects the
collected PL (green solid line). A 0.85 NA objective, focuses the
exciting beam and collects the PL. A nonpolarizing beam splitter
(NPBS) divides the PL into two channels. In each channel a pair
of liquid-crystal variable retarders (LCVRs) is used for polarization
projection of the emitted PL onto one polarizing beam splitter (PBS).
The PL is then spectrally filtered by pairs of transmission grat-
ings (TGs) and detected by superconducting nanowire single-photon
detectors (SNSPDs). The detected events are recorded by a time-
correlated single-photon counting (TCSPC) module. (b) Rectilinear
polarization-sensitive photoluminescence spectra of the biexciton-
exciton radiative cascade under CW excitation intensity in which the
two spectral lines are nearly equal.

(i) growth of the nanowires’ cores containing the QDs, nomi-
nally 500 nm from the nanowires’ bases, and (ii) cladding of
the core to realize nanowire diameters of around 200 nm for
efficient light extraction. The QDs’ diameters are determined
by the size of their cores. The particular QD reported on here
has a diameter of about 20 nm.

The experimental setup is shown in Fig. 1(a). The sample
was maintained at ≈5 K inside a cryostat. CW excitation was
provided by a 632.8 nm HeNe laser, focused on a single
nanowire using an objective lens with a numerical aperture
of 0.85, which also collected the emitted photoluminescence
(PL). The emitted PL was split into two channels using a
nonpolarizing beam splitter (NPBS). A short-pass filter in
one channel separated the transmitted excitation light from
the reflected PL. Both channels then passed through pairs
of liquid-crystal variable retarders (LCVRs), projecting the
light’s polarization onto a polarizing beam splitter (PBS). This
combined horizontal polarization from one channel with verti-

cal polarization from the other. The PL was spectrally filtered
using a transmission grating, achieving spectral resolution
of 0.02 nm, and then detected by superconducting nanowire
single-photon detectors. The detectors provided temporal res-
olution of about 40 ps, with system overall light-harvesting
efficiency of about 1–2%. Finally, the detected events were
recorded using a time-tagging single-photon counter.

The rectilinear polarization-sensitive PL spectra from the
QD under CW excitation intensity in which the exciton (X 0 at
956.4 nm) and biexciton (XX 0 at 957.7 nm) spectral lines are
nearly equal are shown in Fig. 1(b).

III. THEORETICAL MODEL

A. The system

In the experiment, the biexciton and the exciton pho-
tons are collected, spectrally filtered, and their polarization
is projected before their (random) detection time is regis-
tered. We denote by P1 the polarization projection of the
biexciton photon and by P2 the polarization projection of
the exciton photon. We performed 36 different measurements
for 6×6 pairs of cascading photon polarization combinations
in which P1, P2 ∈ {H,V, D, B, R, L}, where H (V ) denotes
horizontal- (vertical-)rectilinear polarization, D(B) diagonal-
(antidiagonal-)linear polarization and R(L) right- (left-)hand
circular polarization.

In each measurement, the (random) detection times of the
biexciton and exciton photons are recorded. Then the (ran-
dom) time difference τ between temporally close biexciton
and exciton photon detection events is stored. We note that
τ can be negative when the exciton photon is detected prior
to the biexciton photon. The data is then presented as 36
histograms where in each histogram the number of measured
P1–P2 polarized biexciton-exciton correlation events in a given
temporal bin (τ − δτ/2, τ + δτ/2) are displayed. These nor-
malized histograms form the measured polarization-sensitive
intensity correlation function [25]

g(2)
XXP1 −XP2

(τ ) =
〈
NXXP1

(t ) · NXP2
(t + τ )

〉
t〈

NXXP1
(t )

〉
t
· 〈

NXP2
(t )

〉
t

, (1)

where NXXP1
(τ ) [NXP2

(τ )] is the number of detected P1

(P2) polarized biexciton (exciton) photons during the time
bin τ ± δτ , and the averaging is over the time t . Recall
that g(2)

XXP1 −XP2
(τ = ±∞) = 1 as distant detection events are

independent.
The biexciton-exciton cascade is shown schematically in

Fig. 2. As shown in Fig. 2, the system contains a biexciton
|XX 〉 state that during a radiative recombination of one of
its two e-h pairs emits a single photon. The photon detection
heralds a state in which a single exciton occupies the QD.
The biexciton-exciton optical selection rules are such that the
exciton polarization state is determined or heralded by the
polarization of the emitted biexciton-photon. For example, de-
tection of an H-polarized biexciton photon heralds the exciton
in the |XH 〉 eigenstate and detection of a V -polarized biexciton
photon heralds the exciton in the |XV 〉 eigenstate. Detection of
a biexciton photon in any other polarization base heralds the
exciton in a coherent superposition of both of its eigenstates.
The exciton (second e-h pair) can then recombine radia-
tively by emitting a photon whose polarization matches the
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|XX〉
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|XH〉 |XV 〉

H2 V2

V1H1

Δ

FIG. 2. Schematic description of the biexciton-exciton radiative
cascade. H (V ) denotes horizontal- (vertical-)rectilinear polarization
and the subscript (1 or 2) the temporal order of emission. |XX 〉
denotes the biexciton state and |XH 〉 / |XV 〉 are the 2 bright exciton
eigenstates. � (greatly exaggerated in the figure) is the fine-structure
energy splitting (FSS) between the exciton eigenstates. |0〉 denotes
empty QD state.

polarization state of the exciton at the recombination time,
leaving the QD empty (|0〉) and thereby completing the ra-
diative cascade.

The emitted two photons during the radiative cascade are
entangled in their energy and polarization degrees of freedom
[3].

In modeling the measured intensity correlation functions,
several approaches have been considered so far. The first
model as in Ref. [1], for example, describes the population
dynamics of the various exciton states using a set of first-order
rate equations. This rate-equation model is straightforward
and very efficient computationally. It was successfully used
for accurately fitting the measured data in Ref. [1], since due
to the lack of temporal resolution, the coherence between the
two exciton eigenstates could be ignored. However, for under-
standing the measured high-resolution temporal dependence
of the polarization tomography of the intensity correlation
function, this coherence must be accurately considered.

Another, more advanced model, as in Ref. [14], for ex-
ample, employs a Hamiltonian formalism, which is robust
for modeling closed quantum systems. This model has been
used successfully in Ref. [14] for describing the measured
polarization-sensitive intensity correlation functions in the
case of periodic pulsed excitation, which can be described as
a closed quantum system [25].

In contrast, under CW excitation the biexciton-exciton
cascade is better described as an open system due to its steady-
state interaction with the environment [25] which we describe
as a bath of electron and hole pairs and another bath which
absorbs the emitted photons, as schematically shown in Fig. 3.

radiation electron-holeQD

FIG. 3. QD as an open system interacting with a bath of electron-
hole pairs in the hosting crystal and a photon bath that absorbs the
infrared photons emitted by the QD.

To consider these baths in the model, we replaced the rate
equations in a set of Lindblad equations [26–30]. The model
that we constructed this way effectively accounts for both the
coherent evolution of the exciton in the QD and its interactions
with the environment, making it particularly well suited for
the steady-state conditions that the system reaches under the
CW excitation.

B. Lindbladian model

The solution to the Lindblad equation [26]

dρ

dt
= L(ρ),

L(ρ) = H(ρ) +
∑

i j

Di j (ρ), (2)

provides a description of the temporal evolution of the system.
In this equation the system is represented by a density matrix
ρ composed of all the system’s states, and the Lindbladian
operator L is composed of the Hamiltonian H which describes
the unitary evolution of the closed system and the operators
Di j which describe the transition from state j to i caused by
the interaction with the environment.

Explicitly,

H(ρ) = − i

h̄
[H, ρ],

Di j (ρ) = 1

2
[�i jρ,�†

i j] + 1

2
[�i j, ρ�†

i j], (3)

where H is the Hamiltonian of the system and �i j are Lindblad
jump operators [26].

We proceed by introducing the projection operator
�XX ,�0, and �X (θ,φ), which projects the density matrix on
the biexciton state, on the empty QD state and on the coherent
superposition of the exciton eigenstates

|X (θ, φ)〉 = cos

(
θ

2

)
|XH 〉 + eiφ sin

(
θ

2

)
|XV 〉 , (4)

respectively. Here θ, φ describe the exciton’s coherent super-
position and are readily identified as the angles describing
this two-level system position on its Bloch sphere [14]. Us-
ing these projection operators one can express the temporal
evolution of the intensity correlation function as

g(2)
XXP1 −XP2

(τ > 0) = Tr
(
�X (θ2,φ2 )eLτ�X (θ1,φ1 )

)
Tr

(
�X (θ2,φ2 )ρss

) , (5)

where ρss is the density matrix representing the system’s
steady state. Note that the long-time evolution always leads
to the steady state, therefore eLτ�X (θ1,φ1 ) → ρss and thus the
right-hand side is correctly normalized to 1 for τ = ∞.

Freely speaking, the equation above describes detection of
a biexciton photon with polarization ϕ(θ1, φ1), which heralds
the system in the corresponding coherent superposition of
exciton states, then the system evolves for time τ after which
an exciton photon with polarization ϕ(θ2, φ2), is detected
“reading” the exciton state at its annihilation time τ [31].

Since the Lindblad evolution stands for positive times only,
cases where the exciton photon is measured before the biex-
citon photon (“negative” τ ) are described by first projecting
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on an empty QD state |0〉, and second projecting on a biex-
citon |XX 〉. The intensity correlation function in this case is
therefore

g(2)
XXP1 −XP2

(τ < 0) = Tr
(
�XX eL|τ |�0

)
Tr(�XX ρss)

. (6)

Freely speaking here, for a negative τ correlation event, the
detection of the first photon heralds the state of the QD as
empty, and the detection of the second photon “reads” the state
of the QD as containing a biexciton.

From the discussion above it follows that there are 4 QD
states, which the measurements of the biexciton-exciton ra-
diative cascade directly probes: |XX 〉, |XH 〉, |XV 〉, and |0〉.
The system itself, however, may contain very many other
additional states such as the dark exciton (DE) [32,33],
multiexcitons [34], and/or negatively and positively charged
excitons and multiexcitons [1,35–37]. These states should be
included in the density matrix which describes the system and
the Lindbladian operator should likewise be specified for this
density matrix. The projection operators one needs to specify,
however, are only the above mentioned 4 projection operators.

Here, for simplicity, we consider only neutral multiexci-
tons (assuming that the optical excitation leads to QD loading
with electron-hole pairs only). In particular, we consider the
DE, which has equal probability to be photogenerated from
an empty QD, as that of the bright exciton (BE). The DE
radiative recombination rate is very slow [33], and can be
safely neglected for generation rates which are typically or-
ders of magnitude larger than the DE decay rate. Higher-order
metastable dark multiexciton states are also ignored, assuming
efficient spin-flip processes [38,39], which enable multiexci-
tons’ relaxations to their ground energy level. For an even
n-multiexciton the ground level is nondegenerate and contain
n
2 fully occupied electron and hole levels. Therefore the radia-
tive decay rate is uniquely defined. For an odd n-multiexciton
there are n − 1 electron hole pairs in n−1

2 fully occupied en-
ergy levels and the highest energy level contain an unpaired
electron and a hole. The ground level of odd n-multiexcitons
is, therefore, fourfold degenerate, with 2 darklike and 2 bright-
like states, formed by the unpaired electron-hole spins aligned
or antialigned. Since the occupation probability of all 4 states
is equal even in cryogenic temperature and since for n > 1
both dark- and brightlike excitons are optically active, the
radiative rate for these multiexcitons is defined as the average
decay rate of both types.

A schematic diagram of the multiexciton states and the
transition rates between these states is shown in Appendix A,
Fig. 6.

Generally speaking, if the system is described by n + 3
states, then the operators will be described by matrices of size
(n + 3)×(n + 3). The Hamiltonian of the system is specified
by the energies of the various states involved. The energies
associated with the excitons and multiexcitons states are in
fact about 4 orders of magnitude larger than the exciton fine-
structure splitting—�. Correspondingly, the relevant time

scales associated with the coherent evolution of these levels
(optical oscillation times of a few femtoseconds) are far from
being resolved in our measurements. Since we are interested
in the system evolution on the time scale given by � (about a
few hundred picoseconds), it is convenient to remove the fast
oscillations associated with the excitonic optical transitions by
unitary transformations to the rotating frames with the optical
coherent evolution periodicities. Under these transformations,
the Hamiltonian is indeed independent of the energies of the
various multiexciton states and it can be expressed by the
projections on the two excitonic eigenstates:

H = −�

2
�XH + �

2
�XV . (7)

It is straightforward also to show that the transformations to
the rotating frames do not affect the jump operators in the
Lindbladian.

The jump operators �i j must include, however, all the
transitions between the various system’s states, due to the
interactions with the environment (baths). We proceed here,
for example, following Ref. [34] by constructing the jump
operators assuming a ladder of n neutral multiexcitons, in
which the transition rates “up” the ladder are given by the
electron-hole pair-generation rate G and the transition rates
down the ladder are given by each multiexciton-radiative rate
1
τi

, where τi is the radiative lifetime of the multiexciton state i.
The constructed rate matrix is therefore

γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
τH

1
τV

0 0 0
G
4 0 0 0 1

τH
0

G
4 0 0 0 1

τV
0

G
2 0 0 0 0 0

0 G G G 0 1
τ3

0 0 0 0 G 0

... 1
τn−1

G 0 1
τn

G 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

The above mentioned jump operators are therefore con-
structed from the matrix elements of the rate matrix γ:

�i j = √
γi j |i〉 〈 j| . (9)

We note that the radiative decay times τi can be either
directly measured or estimated using simple models [3,34,40].

The solution of Eq. (2) for the general case of any
Hamiltonian and any rate matrix is analytically obtained in
Appendix A.

The solution can be decomposed into two components: the
noncoherent one and the one which describes the coherent
dynamics of the system. The noncoherent component results
from the interactions with the environment, while the coherent
component stems from the fine-structure splitting between the
two exciton’s eigenstates. For the problem constructed by the
Hamiltonian from Eq. (7) and the rate matrix from Eq. (8),
the noncoherent component can be viewed as a solution to the
rate-equation problem constructed by the diagonal elements
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of the density matrix, i.e.,

d

dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ00

ρXH XH

ρXV XV

ρXDE XDE

ρXX XX

ρ33

...

ρii

...

ρnn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−G 1
τH

1
τV

0 0 0
G
4 −G − 1

τH
0 0 1

τH
0

G
4 0 −G − 1

τV
0 1

τV
0

G
2 0 0 −G 0 0

0 G G G −G − 1
τH

− 1
τV

1
τ3

0 0 0 0 G −G − 1
τ3

... 1
τi

G −G − 1
τi

... 1
τn

G − 1
τn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ00

ρXH XH

ρXV XV

ρXDE XDE

ρXX XX

ρ33

...

ρii

...

ρnn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(10)

The solution to this system is a sum of eigenvectors of the
matrix, each evolving as an exponential term with equivalent
eigenvalue, as in Ref. [1]. Notably, these eigenvalues are real,
yielding a transient solution that lacks oscillatory behavior.

Oscillations in the full solution, however, stem from the
coherent part, which introduces imaginary contributions to the
eigenvalues associated with the excitonic states.

Explicitly, the Hamiltonian part influences the two exci-
ton’s off-diagonal terms in the density matrix, such that they
will evolve as

ρXH XV
(t ) = ρXH XV

(0)e
(

i�
h̄ − 1

τ1
−G

)
t
,

ρXV XH
(t ) = ρXV XH

(0)e
(
− i�

h̄ − 1
τ1

−G
)

t
. (11)

This aspect is detailed in Appendix A.
The ability to separate between the coherent and incoherent

components of the solution for the dynamics of the system
was used previously in analyzing experimental studies of the
biexciton-exciton radiative cascade [3]. Akopian et al., sub-
tracted the pure incoherent measurement (cross-rectilinearly
polarized biexciton-exciton photon pairs) from the experimen-
tal data which included also coherent dynamics. This yielded
a very good approximation for the coherent dynamics of the
cascading photons, which in turn permitted the first measure-
ment of the degree of entanglement between the two photons.

IV. RESULTS

With the approximations discussed above, the model is
fully defined by the set of parameters {�, τi, G}. The parame-
ters {�, τi} can be independently determined experimentally,
the first by the spectral measurement of the exciton FSS and
the rest using time-resolved PL measurements of identified
multiexciton spectral lines. Decay times of high-order multi-
exciton lines, which are not readily identified spectrally, can
be estimated by using models [3,34,40]. The electron-hole
generation rate G is in general proportional to the excitation
intensity, and thus can be quite accurately determined by
fitting the model to two or more sets of polarization-sensitive
correlation measurements under various excitation intensities
(not shown in this work). In the following, we left G as a
free-fitting parameter.

The use of two LCVRs for polarization projection is ex-
tremely convenient from the experimental point of view. Its
calibration, however, is not straight forward and it may intro-
duce systematic deviations in the angles θ and φ as defined
in Eqs. (4) and (5). Photonic nanostructures such as mi-
cropillars, nanowires, and/or circular Bragg reflectors may
also contribute to these systematic deviations. We define the
systematic deviations as �θ = �θ1 = �θ2 and �φ = �φ1 =
�φ2, and used them as parameters in the actual fitting pro-
cedure �X (θi+�θ,φi+�φ). Using these 3 fitting parameters we
quite successfully fitted all 36 polarization-sensitive time-
resolved biexciton-exciton correlation measurements.

In Fig. 4 we show two typical time-resolved measurements
from the whole set of 36 measurements. In one measurement
the two photons are corectilinearly H polarized [Fig. 4(a)]
and in the other [Fig. 4(b)] the two photons are cocircularly
R polarized. The blue dots stand for the measured data, the
error bars represent one standard deviation, and the black
solid line stands for the best-fitted Eqs. (5) and (6) to the
measured data. For the fitting we used the measured excitonic
FSS of � = 29 µeV which resulted in a precession period
of h̄

�
= 140 ± 10 ps. We found that the measured lifetimes of

the QD-confined exciton’s eigenstates [41] are not equal with
τH = 1180 ± 10 ps and τV = 990 ± 10 ps. The difference is
probably due to different coupling strengths to the nanowire
optical mode.

Radiative lifetimes on the order of 1 ns are quite typical
for these types of quantum dots. Though calculating these
lifetimes reliably requires exact knowledge of the QD and
nanowire dimensions, composition profiles, and the exact po-
sition of the QD within the nanowire, we suggest here a simple
microscopic model that seems to reproduce the measured
lifetime. For a spherical QD one gets [41]

1

τr
= 4e2k2

0 f

nmm0c
, (12)

where k0 = (nmEex )/(h̄c) is the minimal photon k-vector,
Eex = 1.283 eV is the exciton energy, nm = 3.12 is the
nanowire material index of refraction, e and m0 are the elec-
tronic charge and mass, h̄ is the reduced Planck constant, c
the speed of light, and f ≈ 1 is the unitless oscillator strength
given by the overlap between the electron and hole envelope
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FIG. 4. Polarization-sensitive time-resolved intensity correlation
measurements (blue data points and error bars), the best-fitted model
calculation (black solid line), and the model convolved with the
detector-response function (red dashed line). The green line shows
the detector’s response function used for convolution. (a) [(b)] shows
the case where both photons are colinearly [cocircularly] polarized
H [R]. The subpanel below the figure shows the difference between
the measured data and the fitted convolved model normalized by
the experimental uncertainty. (c) shows the measured and best-fitted
intensity correlation function [Eq. (1)] for the same case as (a) but
for long times, demonstrating the return to steady state [g(2)(τ →
±∞) = 1]. The measured two-photons coincidence rate was about
10 KHz.

wave functions [42,43]. Using Eq. (12) we get τr = 2.25 ns.
The measured lifetime of about a factor of 2 shorter can
be explained by the reduction of the mode volume enforced
by the nanowire of subwavelength diameter (dw = 200 nm).
The lifetime shortening should be given by the square of the
ratio between the wire diameter and the photon wavelength in
matter λm = 2π h̄c

Eexnm
≈ 310 nm:

τx = τr

(
dw

λm

)2

= 0.95 ns. (13)

For fitting the experimental measurements, we used the
measured lifetimes for the biexciton and exciton optical tran-
sitions as depicted in Fig. 2. For higher-order multiexcitons,
which become increasingly important as one raises the ex-
citation intensity (and therefore G), we follow Ref. [1] and
define the radiative rate of the n-order multiexciton as given
by the number of available radiative recombination channels
to the multiexciton of order n − 1. Each such channel involves
annihilation of an electron-hole pair with opposite spin projec-
tions on the direction of the light-optical direction. Thus, for
example, the radiative lifetime of the biexciton (multiexciton
of order n = 2) is approximately half the radiative lifetime of
the exciton (multiexciton of order n = 1), since there are 2
allowed radiative channels for its decay. Similarly, for higher
n-multiexcitons of even order, the number of allowed radia-
tive recombination channels is given by 2 from each fully
occupied level. Since the number of occupied levels is n

2 , the
number of allowed optical transitions is exactly n. Obviously,
this is also the case for brightlike odd n-multiexcitons, while
darklike odd n-multiexcitons, have only (n − 1) transitions.
Therefore, the average number of allowed recombination
channels for odd n multiexcitons is n − 1

2 .
In summary, we used

τi =
{
τX /

(
i − 1

2

)
i is Odd

τX /i i is Even
, i � 3 (14)

with 1
τX

= 1
2 ( 1

τH
+ 1

τV
) the mean exciton’s decay rate.

The inclusion of higher-order multiexcitons is required
when one considers the system under strong excitation. Obvi-
ously, the stronger the excitation is, the higher is the confined
level that carriers occupy (due to the Pauli exclusion prin-
ciple). The highest-order multiexciton that one chooses to
consider depends on the probability to find such a multiexci-
ton in the QD at steady state. This probability can be easily
calculated by our model. In practice, we increased n until
there was no longer increase in the quality of the fits that
we produced, and then checked the actual occupancy of the
nth-multiexciton level, for consistency.

The red dashed line in Fig. 4 represents the best-fitted
model, convoluted with the temporal-response function of the
experimental system as represented by the green dashed line.
In order to simplify the convolution procedure and make it
analytic, we approximated the response function by a Gaus-
sian function with full width at half maximum of 42 ps. For
the particular fitting in Fig. 4, we used 1

G = 8.0 ± 0.5 ns,
�θ = (0.10 ± 0.02)π , and �φ = (0.02 ± 0.02)π . The low
panels in Fig. 4 show the time-resolved differences between
the measured data and the best-fitted model, normalized by
the experimental uncertainty of the measurements. In Fig. 4(c)
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FIG. 5. 36 different polarization-sensitive time-resolved two-photon correlation measurements (solid blue lines) and best-fitted convolved
model (solid red line). The entry P1P2 in the table gives the probability of detecting a P2-polarized exciton photon at time τ > 0, conditioned
on the detection of a P1-polarized biexciton photon at time 0.

we present the data for an extended time scale, long after the
system reaches steady state.

Figure 4 demonstrates that our Lindblad model fits the data
quite well. For short times and low generation rates, the results
align closely with those of the Hamiltonian model used for
pulse excitation [14]. For long times, the coherent dynamics
loses significance, and the measured results are similar to
those described by the noncoherent rate-equation model [1].

We note that the best-fitted value of G, obtained from
the time-resolved measurements, is also in agreement with
the measured steady-state ratio between the intensities of the
biexciton and exciton spectral lines (about 0.65) as shown in
Fig. 1(b). Under these conditions, the steady-state occupation
probabilities were 0.597 for the empty QD, 0.298 for the DE,
0.039 for each of the BE states (XH and XV ), 0.025 for the
XX, and 3×10−4, 1×10−5, and 1×10−7 for the n = 3, n = 4,
and n = 5 multiexciton states, respectively. Higher-order mul-
tiexciton occupations were orders of magnitude smaller and
their inclusion did not improve the quality of the fits to the
experimental data.

Figure 5 shows 36 polarization-sensitive correlation mea-
surements. The measurements are in blue and the fitted
convolved models are in red.

V. SUMMARY

We studied experimentally and theoretically the
polarization-sensitive intensity cross-correlation functions
of the QD-confined biexciton-exciton cascade for a system
driven by a nonresonant CW excitation. The CW excitation is
modeled by an electron-hole pair bath that feeds the QD. The
system temporal evolution is described by a set of Lindbladian
equations. The time-resolved intensity cross-correlation
functions for 36 different polarization-sensitive measurements

have been fitted quite successfully by our model using a
minimal set of fitting parameters. The theoretical framework
that we outlined here can be readily extended to include
additional coherent multiexciton states while preserving the
simplicity and efficiency of the solution method.
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APPENDIX A: ANALYTIC SOLUTION TO THE
LINDBLAD EQUATIONS

This Appendix provides a full analytic solution for a gen-
eral case of the Lindblad equations shown in the main paper.

1. General form of the differential equations

As shown in Eq. (2), the Lindblad equation consists of two
terms. The first, H(ρ), describes the Hamiltonian evolution
and the second, D(ρ), describes the interactions with the
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environment. In this Appendix, we present the general form of
the Lindblad equation for the biexciton-exciton cascade, and
later on we will present its full analytic solution for a specific
case.

The Hamiltonian can be written in it’s diagonal form using
the energy Ei of each state, such that a general form of it
is

H =
∑

i

Ei |i〉 〈i| (A1)

and therefore the Hamiltonian term in the Lindblad equa-
tion takes the form

H(ρ) = − i

h̄
[H, ρ]

= i

h̄
(ρH − Hρ)

= i

h̄

∑
i

Ei(ρ |i〉 〈i| − |i〉 〈i| ρ), (A2)

which leads to a matrix element of

〈a|H(ρ) |b〉 = i

h̄

∑
i

Ei(〈a| ρ |i〉 〈i| |b〉 − 〈a| |i〉 〈i| ρ |b〉)

= i

h̄

∑
i

Ei(ρaiδib − δaiρib)

= i

h̄
(Eb − Ea)ρab. (A3)

The second part of the general Lindblad equation is a sum
of terms:

D(ρ) =
∑

i j

Di j (ρ), (A4)

where each term has the form of Eq. (3), and the general
form of the jump operators is defined by a rate matrix γ , such
that

�i j = √
γi j |i〉 〈 j| (A5)

as in Eq. (9). Using these general definitions, one can write
the second part of the Lindblad equation as

D(ρ) = 1

2

∑
i j

([�i jρ,�†
i j] + [�i j, ρ�†

i j])

=
∑

i j

(
�i jρ�†

i j − 1

2
�†

i j�i jρ − 1

2
ρ�†

i j�i j

)

=
∑

i j

γi j

(
|i〉 〈 j| ρ | j〉 〈i| − 1

2
| j〉 〈 j| ρ − 1

2
ρ | j〉 〈 j|

)
,

(A6)

which leads to a matrix element of

〈a|D(ρ) |b〉 =
∑

i j

γi j

(
〈a| |i〉 〈 j| ρ | j〉 〈i| |b〉

− 1

2
〈a| | j〉 〈 j| ρ |b〉 − 1

2
〈a| ρ | j〉 〈 j| |b〉

)

=
∑

i j

γi j

(
δaiρ j jδib − 1

2
δa jρ jb − 1

2
ρa jδ jb

)

=
∑

i

(
γaiδabρii − 1

2
(γia + γib)ρab

)
. (A7)

Finally, by combining the elements one gets the full general
differential equation for density-matrix element ρab:

d

dt
ρab = i

h̄
(Eb − Ea)ρab

+
∑

i

(
γaiδabρii − 1

2
(γia + γib)ρab

)
. (A8)

2. General solution

The equations have different forms for diagonal and non-
diagonal terms of the density matrix. For diagonal terms the
equations for ρab decouple and take the form

d

dt
ρaa =

∑
i

(γaiρii − γiaρaa), (A9)

which has exactly the same form of the well-known [1] rate
equation constructed by the diagonal terms of the density
matrix, and the rate matrix γ .

For nondiagonal terms the equation takes the form of

d

dt
ρab =

(
i

h̄
(Eb − Ea) − 1

2

∑
i

(γia + γib)

)
ρab, (A10)

|0〉

|DE〉
|XH〉 |XV 〉

|XX〉

|3X〉

|i〉

|n〉

G
2

G
4

G
4

GG
G

G

G

G

G

G
1

τn

1
τi+1

1
τi

1
τ4

1
τ3

1
τH

1
τH

1
τV

1
τV

Δ

...

...

FIG. 6. States Diagram. Black horizontal lines represent the var-
ious levels. Arrows between levels represent transitions between
them. Orange (green) arrows represent optical electron-hole pair
recombination (generation).
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which is a simple differential equation, and it’s closed solution
is

ρab(t ) = ρab(0)e( i
h̄ (Eb−Ea )− 1

2

∑
i (γia+γib))t . (A11)

3. Case-specific derivation

Using the general solution derived in the previous section,
specifically Eqs. (A9) and (A11), one can obtain the solution
for the specific scenario considered in this paper as follows:

By substituting the γ matrix defined in Eq. (8) into
Eq. (A9), the diagonal terms of the density matrix, cor-
responding to the noncoherent part of the solution are
determined. These terms reduce to the well-known rate equa-
tions for multiexciton systems [1]:

d

dt
ρii = Gρ(i−1)(i−1) + 1

τ(i+1)
ρ(i+1)(i+1) − Gρii − 1

τi
ρii.

(A12)
The nondiagonal terms, corresponding to the coherent part,

described by Eq. (A11), are expressed as simple exponential

functions. In the specific scenario discussed in this paper,
coherence is present only between the excitonic states. Con-
sequently, the only relevant nondiagonal terms are ρXH XV

and
ρXV XH

, which, using the γ matrix and the FSS �, evolve as

ρXH XV
(t ) = ρXH XV

(0)e
(

i�
h̄ − 1

τ1
−G

)
t
,

ρXV XH
(t ) = ρXV XH

(0)e
(
− i�

h̄ − 1
τ1

−G
)

t
. (A13)

This completes the derivation of the model used in the
paper.

APPENDIX B: SCHEMATIC DESCRIPTION OF THE
MULTIEXCITON STATES

In Fig. 6 we present a diagram which schematically de-
scribes the multiexciton-state ladder and the transition rates
between these states. These states and rates were considered
in the specific example discussed in this paper.
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