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Muon polarization in the presence of exotic spin correlations
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Abstract

We investigate the signatures of the correlation functions q(t)"2ct~xexp[!(lt)y] on the muon polarization P(H, t), in
a longitudinal "eld [H] experiment. We "nd three major features: (I) PQ (H, 0)"0 as for a Gaussian, (II) the smaller the
x the easier the decoupling, and (III) there is always time t long enough, and H high enough that scaling relations of the
form P(H, t)"P(t/Hc) hold; if c(1 then c"1!x; however if c'1 then c"1#y. The required range for t and
H where scaling should exist is discussed. ( 2000 Elsevier Science B.V. All rights reserved.
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Recently [1], a longitudinal "eld lSR (LF-lSR)
experiment in the Heisenberg spin glass AgMn (0.5
at%) demonstrated a magnetic "eld-time scaling
relation, for high "elds, of the form

P(H, t)"P(t/Hc). (1)

Here P is the muon-spin polarization, H is a mag-
netic "eld applied in the initial muon-spin direc-
tion, t is the time from the moment the muon enters
the sample, and c is an exponent to be determined
by the experiment. At ¹P¹`

'
, an unusual value of

c(1 was found and interpreted as a sign of a
non-exponential [exotic] "eld}"eld dynamical
auto correlation function q(t),c2

l
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(o is perpendicular to H). This conclusion was
based on the assumption that in the most simpli"ed
approach (SA), the muon-spin relaxation rate is
determined by the Fourier transform (FT) of q(t),
evaluated at u"c

l
H, where c

l
is the muon

gyromagnetic ratio. The FT of an exponent is
a Lorenzian which asymptoticaly falls o! as u~2,
therefore, the exponential case should give c"2.
However, this is in contrast with experimental "nd-
ing in AgMn (0.5 at%) and hence the conclusion of
exotic correlations.

However, the SA is sometimes over simpli"ed.
Moreover, the scaling relation in Eq. (1) could not
hold at HP0. The purpose of this paper is there-
fore to put the scaling relation on "rm grounds as
well as to extend the analysis of `exotica correlation
functions to "elds which approach zero.

The starting point for our more complete ap-
proach (CA) is the following expression [2,3],

P(H, t)"P
0

exp[!C(t)t]

where C(t)t"P
t

0

(t!q)q(q) cos(uq) dq. (2)

It is instructive to examine this expression in the
exponential case where q(t)"2D2 exp (!lt), l is
the #uctuation rate, and D/c

l
is the RMS of the

instantaneous "eld distribution experienced by the
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Fig. 1 . Muon-spin polarization obtained numerically (lines) for di!erent correlation functions and various longitudinal "elds. In (a) the
polarization obtained analytically (symbols) using Eq. (3) is shown.

muon. This leads to

C(t)t"2D2([u2#l2]lt#[u2!l2]

]e~lt cos(ut)]2lue~lt sin(ut))/(u2#l2)2
(3)

an expression which was shown to agree very well
with Monte Carlo simulation, as well as the dy-
namical Kubo}Toyabe formalism [3].

Several important conclusions could be immedi-
ately derived from Eq. (3): (1) from the experimental
point of view, l could be estimated as inverse of the
time that wiggles are observed in the data [t

8
], (2)

at later times (t't
8
) C(t)tKCt"2D2lt/(u2#l2)

and the relaxation rate C (also know as 1/¹
1
) is

indeed a Fourier transform of q(t), (3) at late time
and high "eld determined by H<(c

l
t
8
)~1 one

expects a magnetic "eld time scaling relation
P(H, t)"P(t/H2) as previously discussed. Thus the
CA leads to the same conclusions as the SA at least
for the exponential case.

With these results in mind we now examine
P(H, t) for a cut o! power law type correlation

function q(t)"2D2[qx
#
/(t#q

#
)x] exp[!(lt)y]. We

introduced the time q
#

so that q(t) is properly nor-
malized at t"0. However, for lSR this expression
could be replaced with

q(t)"2ct~x exp[!(lt)y], (4)

where c"D2qx
#

since q
#

is expected to be on the
scale of 10~13}10~11 s, while the "rst point in time
where the muon polarization is measured is at
tK10~7 s. To demonstrate the validity of this
replacement let us consider the case where y"0
and zero "eld. In this case we can write
C(t)t":10q#

0
(t!q)q(q) dq#:t

10q# (t!q)q(q) dq. The
"rst term is smaller than 20D2tq

#
. The second term

is 2D2qx
#
t2~x/(2!x)(1!x) [using q(q)"2D2qx

#
/tx].

The ratio between the "rst and second terms is
smaller than 10(2!x)(1!x)(q

#
/t)1~x, which for

x'0.5 is less than 0.1. Thus, we can safely replace
the properly normalized q(t) with Eq. (4) knowing
that the contribution to C(t)t from the singularity at
t"0 is negligible. We note, however, that x and
q
#

could be temperature dependent and therefore
c is a function of ¹.
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Fig. 2 . The muon polarization P(H, t) as a function of t/uc where u"c
l
H and c is indicated on the time scale.

Eq. (2) with Eq. (4) as an input is not integrable
analytically, and so numerical methods must be
applied. We use the `improper integrationamethod
described in Ref. [4]. As a test of this approach we
compare in Fig. 1a the numerical results (lines) for
the case x"0 and y"1 (the pure exponential),
with the analytical result given by Eq. (3) (symbols),
at various "elds. The agreement between the two
methods demonstrates the accuracy of the com-
puter program.

In Fig. 1b}d we show the expected muon polar-
ization for q(t)": exp(!t0.5), 0.3t~0.5 exp(!t),
and 0.3t~0.5, respectively, and various "elds. The
prefactor in the correlation function c was chosen
so that all relaxation rates are nearly identical at
zero "eld. This allows us to compare the e!ec-
tiveness of the "eld in decoupling the muon polar-
ization. Clearly, the decoupling is harder in cases
which involve a power law. More important is the
fact that wiggles are observed in the data. These
wiggles are not obtainable with the SA.

The early time behavior of the numerical data
indicates that in all cases PQ (H, 0)"0. This, in fact,
could be understood using term by term integra-

tion of Eq. (2) with (4) which leads to C(t)t"
2ct2~x/(2!x)(1!x)#O(t3~x). Thus, the deriva-
tive of P is zero at t"0, and the smaller is x, the
closer is the wave form to a Gaussian at early times.
This conclusion is a special property of the CA.

In Fig. 2 we demonstrate that the scaling relation
given by Eq. (1) holds for high enough "elds and
late enough time for the di!erent correlation func-
tions given in Fig. 1. In the cases involving a power
law we "nd c"1!x. Therefore, as xP0 the
decoupling becomes easier. In the stretched expo-
nents cases (x"0) we obtain c"1#b. The
relations between c and the parameters of the cor-
relation function were derived previously, using the
SA [1]. Thus, our numerical results demonstrate
that the scaling relations holds even when the CA
is used.

Finally, we discuss the critical value above which
H and t are considered large. Our numerical results
show that as in the pure exponential case this value
is determined by the length of time wiggles are
observed in the data t

8
. Late times are t't

8
, and

high "elds are H'(c
l
t
8
)~1. It is therefore very

important to observe wiggles in the data before
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scaling could be applied in a meaningful way. With-
out the wiggles one is never sure if the applied "elds
are large enough. The application of these results to
real data is demonstrated in Ref. [5].
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