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Simulation of spin dynamics on kagomé and square lattices
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Abstract

The spin—spin correlation function {S(¢r}S(0)) of classical Heisenberg spins on the kagomé lattice is numerically
evaluated for varying concentrations of non-magnetic impurities. This function is also used to obtain the correlation time 7

as a function of temperature for the kagomé and square lattices.

It has been shown that the Heisenberg model with an
antiferromagnetic interaction between near neighbors on
the frustrated kagomé lattice has some very unusual ther-
modynamical properties [1-4]. This suggests that the dy-
namical properties of the kagomé lattice are equally com-
pelling, and we therefore simulate the time evolution of
spins in this system and evaluate the spin—spin correlation
function (SSCF). Since most of the experimental work on
the kagomé lattice has been done on systems with non-
magnetic impuritics, we cvaluate the SSCF for lattices
with varying degrees of vacancy concentration. Using the
SSCF, we also obtain the correlation time as a function of
temperature (7). As a test case we compute the correla-
tion time on the non-frustrated square lattice, as it is also
4-fold coordinated.

Our algorithm is designed to perform the following
three tasks: (i) to solve the equations of motion §; = —S§,
X L;;S,, where §; is a three-component unit vector and
the sum is taken over the nearest neighbors of the ith spin
(employing petiodic boundary conditions); (ii) to estimate
{S(0)8(8)) = Z;lexp(—E /T /ZY $(0)S(£))c, where the
sum is taken over initial conditions (IC), E is the total
energy of the system, T is the temperature, [ ] denotes the
sample average, and Z is the partition function; and (iii) to
obtain the correlation time v = [3{S(0)8{¢)} dt. This algo-
rithm is fully described in Ref. [5].

In Fig. 1 we show the SSCF for the kagomé lattice at
T = 0,01 for several values of the non-magnetic impurity
concentration ( x), It is clear that the initial relaxation rate
of the SSCF is nearly independent of the impurity concen-
tration, even for values of x larger than the percolation
threshold (1 — p_ = 0.3473} [3]. This result indicates that
the dynamic on the kagomé lattice is tostly governed by
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local excitations and does not involve a collective motion
of spins on the lattice.

We also see that the terminal value of the SSCF
({.5(4000)8(0))) increases as x increases. This behavior is
expected since as x increases, more and more spins be-
come isolated and stay correlated at all times, In the inset
of Fig. 1 we show the terminal value of the SSCF as a
function of x. This value is determined by fitting the SSCF
at preater time values to an exponentially relaxing func-
tion, as demonstrated by the broken line for the x = 40%
case. At an impurity concentration smaller than the perco-
lation threshold, the terminal value of the SSCF is consis-
tent with zero, but as we cross the threshold this value
goes up dramatically. It should also be pointed out that the
SSCF has a zero derivative at ¢=0, as predicted by
several authors [6].

In Fig. 2 we show 7 (normalized by 7(10)) as a
function of temperature for three different sizes of kagomé
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Fig. 1. Spin—spin correlation function for various values of the
non-magnetic impurity concentration x. The broken line demon-
strates a fit to an exponential at greater time values with which we

obtain the terminal value of this fqnctinn. The inset shows the
terminal value as a function of x.

N304-8853 /95 /$09.50 © 1995 Elsevier Science B.V. All rights reserved

SSDI 0304-8853(94)00634-2



1494 A. Keren / Journal of Magnetism and Magnetic Materials 140-144 (1995} 14931494

1G T | | | L]
¢}
: fod =k
10" b b . o -
E) A
W ¥
=
= 10k -
l._
o wguora LeSd
&  hagoens L=18
1Dn | O kogome =15 i
& hagame L=4
1 [ | 1
1~ 10~ el 10° 10’
TEMPERATURE

Fig. 2. Cortelation time 7, normalized by 7(10), plotted against
temperature, The normalization factors are: 1.12 in the square
with £ = 30 spins; 2.40 in the kagomé with L = 18 spins; 2,36 in
the kagomé with L = 15 spins; and 1.17 in the kagomé with L =6
spins. The solid lines and the inset are discussed in the fext.

lattice, as well as for one square lattice. The solid lines are,
in principle, guides for the eye. In the square lattice we see
a maximum in 7 at T=0.1, while in the kagomé lattice 7
is monotonically increasing with decreasing temperature.
In addition, we see a very weak lattice-size dependence in
the kagomé case.

The peak of 7 in the square case is not surprising, since
at T~ (.5 the correlation length reaches the lattice size
and the system is effectively ordered [7]. However, the
continuous increase in T in the kagomé case, even for a
small system, is not trivial. This is especially surprising in
light of the increase, below T = (.01, in the order parame-
ter corresponding to the ¥3 X v3 state (m \E) [4]. The

spin arrangement in the V3 X V3 configuration is shown
in the inset of Fig. 2 [4]. The order parameter m - also

increases with decreasing lattice size at T — 0 [4]. These

results, again, suggest that the difference between the
square and kagomé lattices is due to a local motion of
spins in the kagomé system.

The data shown in Fig. 2 are too noisy to be accurately
fitted to a specific model of critical dynamics. Neverthe-
less, the diagonal line in the kagomé case below T'=10.5 is
plotted using 7ot 7~ "%, where vz = 1. As can be seen, this
line is in agreement with the simulation results and also
with the critical exponents v=1/2 and z=2. These
exponents arise in several models of critical dynamics
where the correlation length diverges mear the critical
temperature {8). However, the simulation results indicate
that 7(T) in the case of the kagomé lattice should be more
appropriately described by a model which emphasizes the
local modes.
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