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Abstract
This paper describes the impact of dynamic spin fluctuations on the muon spin
relaxation signal in the longitudinal field set-up, namely, when a field is applied
along the initial muon spin direction. Our main objective is to show that the µSR
technique can do more than determine the correlation time of the spins in the
system under investigation. It can, in fact, determine if the concept of correlation
time is valid to begin with, and if not suggest alternatives. Consequently, the
paper shows what to expect from the muon signal over a range of situations
starting from a simple antiferromagnetic hopping model to more complicated
models involving power laws and other types of correlation functions. The
application of all models to experimental data is demonstrated. The possibility
that the muon, by itself, generates dynamic fluctuations is critically examined
by comparing muon and neutron scattering data.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

One of the biggest advantages of the muon spin relaxation technique (µSR) as a probe of See endnote 1
magnetism is the fact that muons are produced and injected into the sample 100% polarized.
As a consequence, no field is needed to achieve polarization and the technique can operate
even in zero field (ZF). If, and when, a field is applied in the direction parallel to the muon
polarization it is for completely different reasons. This field probes frequency dependent
properties of the magnetic system under investigation. Due to this ZF capability, the field, and
hence the frequency, can be varied over several orders of magnitude. The limitations come
only from the ability to zero the external field, or from internal undesired field sources such as
nuclear moments. This property of µSR leads to serious challenges for analysis since the data
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do not always agree with the very natural and intuitive concept of correlation time, or even
with a distribution of correlation times. Addressing this challenge is the main purpose of this
paper. It will be done in three steps:

(I) we demonstrate how the muons detect dynamic fluctuations,
(II) we show that they are an honest probe and do not alter these fluctuations, and

(III) we examine cases where the concept of correlation time must be relaxed and replace it
with other concepts.

The paper is therefore organized as follows: section 2 provides a simple model for muon
behaviour in a dynamic magnetic environment, which could be solved analytically with no
approximations. The model teaches us how to extract dynamic information in all cases where
the static polarization is known either theoretically or experimentally, and will serve as a
test case for more complicated models, which could only be solved approximately. We also
demonstrate the experimental application of this model. In section 3 we derive an approximate,
yet analytical, relation between the field dependent muon spin relaxation [T −1

1 (H )] and the
correlation time. This will also be demonstrated experimentally. In section 4 we show that the
muon does not change the dynamics it detects by comparing the measured T −1

1 in MnF2 with
the spectral density determined from inelastic neutron scattering on the same system. Finally,
in section 5 we show experimental situations where the concept of correlation time breaks
down, and exotic correlation functions must be invoked. The µSR signal in this situation will
be discussed and once again demonstrated experimentally. Concluding remarks will be given
in section 6.

2. A solvable model of dynamic fluctuations

Our solvable model considers a field at the muon site B exactly perpendicular to the ẑ direction,
which flips with time between the up and down directions but maintains its absolute value.
The ẑ direction is taken to be the initial muon spin direction and also the direction in which
the polarization is measured. As a result the muon spin rotates with frequency ±ω. The
polarization resulting from three such field flips is demonstrated in figure 1.

This can happen if a sample is an antiferromagnet (AFM) and the muon hops between
different sites of opposite fields. We assume that the field fluctuation could be described by a
flip rate probability per unit time ν. We further define νt as the total hop rate. If each time the
muon hops it has the same chance of experiencing a field change as not experiencing a field
change then

ν = νt/2. (1)

This assumption is called the strong collision approximation, and will only apply if the muon
hops over long distances compared to the unit cell. For a discussion of the relaxation rate
in this situation without the strong collision approximation (and arbitrary field distribution)
see [1]. In our situation the field correlation function after the short interval dτ is given by

〈B(dτ )B(0)〉 = B2
(

1 − νt

2
dτ

)
− B2 νt

2
dτ = B2(1 − νt dτ )

where 〈 〉 stands for the average. As can be proven by induction, after time τ

〈B(τ )B(0)〉 = B2 exp(−νtτ ). (2)

Thus the field correlation function decays exponentially with a correlation time of 1/νt .
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Figure 1. A demonstration of the muon polarization in the ẑ (initial) direction in the
antiferromagnetic model in which the field flips but maintains its magnitude. In this figure three
field flips are taking place.

For n hops between sites of opposing fields, at times t1 < · · · < tn < t , the polarization
function gn is given by

g(t1, . . . , tn, t) = Re exp

(
i

n+1∑
j=1

[−1] j+1ω[t j − t j−1]

)
(3)

where tn+1 = t . In this form it is clear that

g(t1, . . . , tn, t) = Re
n+1∏
j=1

g j(t j − t j−1) (4)

where

g j(t j − t j−1) = exp([−1] j+1iω[t j − t j−1]).

Next we calculate the probability that a field flip will occur at a time ti+1, given that a previous
change occurred at time ti . For this we divide the time segment ti+1 − ti into m steps each dt
long and take m → ∞. This gives the probability

lim
m→∞

[
1 − ν

ti+1 − ti
m

]m

ν dt = e−ν(ti+1−ti )ν dt .

Therefore, the probability for n field flips in the time segments [t1, t1 + dt1], . . . , [tn, tn + dtn]
is

n∏
i=1

exp[−ν(ti − ti−1)]ν dti = νn exp(−νt)
n∏

i=1

dti .

The averaged polarization is obtained by taking the sum over all possible numbers of
field flips, weighted by their probability, and integrating over the times in which they can take
place [2]. This leads to

PAFM
z (t) = e−νt g(t) + νe−νt

∫ t

0
dt1g(t1, t) + ν2e−νt

∫ t

0
dt2

∫ t2

0
dt1 g(t1, t2, t) + · · · (5)
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Figure 2. The expected muon spin polarization in the antiferromagnetic model for various ratios
of flip rates to oscillation frequency.

where gn(t1, . . . , tn, t) is given by (3). In the simple case presented here the series could be
summed [3] and it leads to

PAFM
z (t) = c+ez+t + c−ez−t (6)

where

c± = 1

2
± ν(ν2 − ω2)− 1

2

2
and

z± = −ν ± (ν2 − ω2)
1
2 .

Note that this result is correct regardless of the strong collision approximation of equation (1).
The polarization PAFM

z for selected values of ν/ω is shown in figure 2. Clearly, as the
field flip rate increases the oscillations at frequency ω disappear. When ν/ω → ∞ the muon
behaves as if it experiences zero field, which is the average field. Another important aspect of
this model, which we will refer to later, is that when ν � ω and the strong collision assumption
(equation (1)) is adopted, the polarization could be approximated by

PAFM
z (t) = exp

(
−γ 2

µ B2

νt
t

)
(7)

giving a simple relation between the relaxation rate and the correlation function.
In figure 3 we present the application of this model to a powder sample of the

antiferromagnetic compound Ca0.86Sr0.14CuO2 [3]. This compound has a Néel temperature of
540 K, and at a temperature of 360 K the electronic moments reach 90% of their full frozen
size [4]. Yet the muon spin precession is not seen until a temperature of 245 K, as depicted in
figure 3. This is associated with muon diffusion at high temperatures [3]. The data in figure 3
are fitted to

Pz(t) = A1 exp(−t/T1) + A2 exp(−t/T2)PAFM
z (ω, ν, t). (8)

The parameters A1 and A2 are introduced since the field in the powder is not perpendicular to ẑ.
The relaxation times T1 and T2 account for field distribution and relaxation mechanisms other
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Figure 3. Asymmetry in the antiferromagnet Ca0.86Sr0.14CuO2 at two temperatures well below
TN. The fit at T = 245 K, demonstrated by the solid curve, is to equation (8) with ν = 0. The
solid curve at T = 360 K is obtained using the same equation and parameters as for T = 245 K,
but with ν = 25 µs−1.

than hopping. The fit at 240 K is done with ν = 0 to determine all other parameters. If gives
ω/2π = 16.8 MHz. The fit at the temperature of 360 K is obtained simply by substituting
ν = 25 MHz in equation (8) (using the 245 K values for all other parameters).

When in the presence of a longitudinal field or more complicated field distributions,
numerical methods must be applied. For this purpose it is useful to write the infinite series of
equation (5) in a compact form

Pz(ν, t) = e−νt g(t) + ν

∫ t

0
dt ′ Pz(ν, t − t ′)e−νt ′

g(t ′). (9)

This is known as the Volterra equation of the second kind and it can be solved numerically [5].
To verify the equivalence between equations (9) and (5), we first note that the first term on the
rhs of equation (9) is the same as the first term equation (5). Next we generate a sister equation
to (9) by substituting t ′ → t ′′ followed by t → t − t ′ in this equation. Finally, we replace
Pz(ν, t − t ′) under the integral in equation (9) by the sister equation. This leads to

Pz(ν, t) = e−νt g(t) + νe−νt
∫ t

0
dt ′g(t − t ′)g(t ′) + · · ·

if g(t1, t) = g(t − t1)g(t1 − 0) (strong collisions), so that now both the first and the second
terms on the rhs of equations (9) and (5) agree. Repeating this operation on equation (9) will
regenerate equation (5).
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Figure 4. Static (T = 0.37 K) and dynamic (T = 3.8 K) asymmetries in a compound with
coexisting superconductivity and magnetism (symbols) [8]. The solid curve is the expected
asymmetry taking the measured static asymmetry as g(t), a fluctuation rate ν = 43 µs−1, and
the Volterra equation (9).

The Volterra equation gives a good description of the dynamics only when the strong See endnote 2
collision approximation, manifested in equation (4), is valid. All it needs to be solved is the
input g(t), which is the static function. Therefore, there are three ways of using equation (9) to
obtain dynamic information. The first one is in simple cases where g(t) is known analytically
as was done by Brewer et al [6] for the F–µ–F bond. The second one is when g(t) must
be obtained numerically as in the cases of Gaussian [2] or Lorenzian [7] field distribution
with external longitudinal field. The third way is to measure g(t) by cooling the system to
low enough temperatures that no dynamic fluctuations are present any longer, and to use the
measured g(t) in the Volterra equation. In figure 4 we present an attempt to do so. The data are
taken from zero-field measurements in a compound where superconductivity and magnetism
coexist [8]. At a temperature of 0.37 K the muon relaxation is completely static. This can
be inferred from the fact that the relaxation is to a third of the initial asymmetry (on average
a third of the muons experience a static field parallel to their initial polarization). However,
this static relaxation function is unusual; the relaxation is overdamped whereas theories predict
damped relaxation (with a dip before the constant part of Pz(t)). Despite the lack of theoretical
explanation for the static relaxation, one can estimate the fluctuation rate at a temperature of
3.8 K using equation (9). The solid curve shows the result of this equation where ν = 43 µs−1

and with the input g(t) taken from the T = 0.37 K data. This fit is not very good, but there is
a lot to be learned from the discrepancy as well [8].

3. Perturbation approach

Extracting dynamic information using the Volterra equation fails when the system cannot be
described by a correlation time or when the strong collision approximation fails. Therefore,
in this section we use a perturbation approach to extract dynamic information without making
any assumptions about the field’s time evolution. We follow the full quantum derivation
given in [9]. A semi-classical treatment can be found in [10]. The Hamiltonian of the muon
spin I = 1/2 experiencing both an external static longitudinal field (LF) H , and an internal
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dynamically fluctuating field Bd(t) can be decomposed into

H = H0 + H′(t) (10)

where

H0 = −γµh̄ Iz H (11)

is the secular (time independent) part, and the interaction part is

H′ = −γµh̄I · Bd(t). (12)

In this notation the spin operators have no dimensions. When the fluctuating fields are smaller
than the external field we can use time dependent perturbation theory and write the time
propagator as

U(t) = exp

(
− i

h̄
H0t

)[
1 − i

h̄

∫ t

0
dt ′ HI(t ′) − 1

h̄2

∫ t

0
dt ′

∫ t ′

0
dt ′′ HI(t ′)HI(t ′′) + · · ·

]
(13)

where the perturbation Hamiltonian in the interaction picture is given by

HI(t) = exp(iH0t/h̄)H′(t) exp(−iH0t/h̄). (14)

This Hamiltonian simplifies to

HI(t) = −γµh̄Bd(t)II(t) (15)

where

I I
x (t) = Ix cos(ωt) + Iy sin(ωt)

I I
y(t) = Iy cos(ωt) − Ix sin(ωt)

I I
z (t) = Iz

(16)

and

ω = γµ H.

Note that II(t) is the time-dependent spin operator in the interaction picture, namely, of a muon
that rotates around the external field as if there were no internal fields. Mathematically this
leads to oscillations in the LF data at the frequency of the external field as we shall see shortly.

The polarization of a muon at a given site as a function of time Pz(t) is given by

Pz(t) = Tr[ρU †(t)IzU(t)] (17)

where ρ = 1 + 2P0 Iz and P0 is the initial polarization. If we now write

Pz(t) = P0 exp(−�(t)t), (18)

expand this equation in powers of �, and compare it with equation (17), we find [9]

�(t)t = γ 2
µ

4

∫ t

0
dτ (t − τ )[eiωτ�+−(τ ) + e−iωτ �−+(τ )] (19)

where

�i j(t
′ − t ′′) = 〈Bi (t

′)B j(t
′′) + B j(t

′′)Bi(t
′)〉,

B± = Bx ±iBy , Bi(t) denotes the i th spatial component of the time dependent fluctuating field,
and 〈 〉 stands for thermal and sample averages. When the fields are taken as classical objects
and correlations between orthogonal directions are ignored, then equation (19) simplifies to

�(t)t = γ 2
µ

∫ t

0
dτ (t − τ )�(τ) cos(ωτ) (20)
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where

�(t ′ − t ′′) = 〈Bd
x (t

′)Bd
x (t

′′) + Bd
y(t

′)Bd
y(t

′′)〉. (21)

However, in order to connect �(t)t to electronic spin fluctuation, rather than field fluctuation,
the full quantum treatment must be retained. At late times, such that �(τ) is negligible, one
finds that

lim
t→∞ �(H, t) = 1

T1(H )
= γ 2

µ

∫ ∞

0
�(τ) cos(ωτ) dτ. (22)

Therefore T −1
1 is approximately the cosine transform of the field correlation function.

Next we examine the same correlation function as in

�(τ) = 2(	2/γ 2
µ) exp(−ν |τ |) (23)

where 	/γµ is the RMS of the instantaneous field distribution, and ν is the inverse correlation
time. After the integration of equations (20) with (23) we find [11]

�(H, t)t = 2	2

(ω2 + ν2)2

{
[ω2 + ν2]νt + [ω2 − ν2][1 − e−νt cos(ωt)] − 2νωe−νt sin(ωt)

}
.

(24)

We can see from this formula that, in general, the polarization relaxes; however, some
oscillations of frequency ω exist near νt → 0. Since equation (13) is an expansion in products
of the internal magnetic field, which is on the scale of 	, and time, which is on the scale
of 1/ν, it is an expansion in 	/ν and equation (24) is expected to be a good approximation
for 	/ν < 1. We also expect equation (19) to give an accurate account of the relaxation at
νt < 1 since the nth term in equation (13) involves n integrations in time, and its contribution
is proportional to the volume of integration (νt)n . The requirements on the parameter ν prevent
us from taking the limits ν → 0 and t → ∞ simultaneously. Therefore, in the perturbation
theory we cannot discuss the static limit at long times. In the fast fluctuation limit ν � ω we
find

�(H, t) = 1

T1
= 2	2ν

ω2 + ν2
. (25)

In zero external field (ω = 0) this result agrees with the equation (7) of the AFM model up to a
factor of two, provided that here ν is interpreted as a total fluctuation rate. The factor of two is
due to the fact that here both x and y direction fluctuations contribute whereas in equation (7)
only one direction is active.

A successful application of equation (24) to a real experimental data set was performed by
Carreta et al in [12] with the frustrated two-dimensional S = 1/2 Heisenberg antiferromagnet
Li2VOSiO4. This compound has both a fast fluctuating component and a slow one.
Accordingly they fit their data by multiplying equation (18) (with equation (24)) by exp(−λt).
The muon polarization and their fit are depicted in figure 5. The fit is impressively good
over more than two orders of magnitude of the applied field, yielding γµ	 = 0.65 µs−1 and
ν = 3.774 µs−1.

4. From field to spin fluctuations

While equation (22) is well known and often used to interpret µSR experiments, one would
still like to make sure that the muon does not change the correlation function �. In this section
we show that the muon 1/T1 in the ordered state (T < TN) of the antiferromagnet MnF2 can
be accounted for by the sum of host spin fluctuations measured by neutron scattering. For
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Figure 5. Demonstration of the application of equation (18) with equation (24) to the frustrated
magnet Li2VOSiO4 [12].

this discussion we first adopt Moriya’s [13] ideas originally developed for nuclear magnetic
resonance (NMR) and apply them in our case. The starting point is the breaking of the electronic
spins into two parts: static and dynamic, namely,

S j = 〈S j 〉 + δS j (26)

where 〈S j 〉 is the time average of the j th spin, and δS j is its fluctuating part. The static part
of the field Bs emerges from 〈S j 〉 and serves as H in the above derivation. The dynamic part
Bd stems from δS j . In MnF2, Bs coincides with the easy ĉ axis and both can be aligned with
the initial polarization [14].

The muon-spin to electronic-spin interacting Hamiltonian could be written as

Hint = γµh̄
∑

j

I · A j · S j (27)

which means that the dynamic field experienced by the muons is

Bd = −
∑

j

A j · δS j . (28)

It is customary to introduce the Fourier transform in the space of the spin variable. In MnF2

there is only one magnetic ion per unit cell, and we can define

Sk = N−1/2
∑

j

S j exp(ik · R j ). (29)

Combining equations (19), (28), and (29) gives

1/T1 = (1/2N)
∑

k

∑
κκ ′

Dκκ ′(k)

∫ ∞

−∞
dτ cos(ωsτ )〈{δSk

κ (τ ), δS−k
κ ′ (0)}〉 (30)

where { } stands for the anti-commutator. Dκκ ′(k) (given in [15]) is a form factor determined
by the Fourier transform of the coupling A j . We do not provide an explicit expression for
this factor since we will shortly make a simplifying assumption. Most of the contribution
to the sum in equation (30) is from k near the staggered magnetization wavevector k0 of the
antiferromagnetic order. We therefore define q = k − k0. Since A j is very short range, as
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a function of j , and since the correlation function peaks at q = 0 [16], we can approximate
Dνν′ (q) as independent of q for small q . Similar approximations were used by De Renzi
et al [16] in their work on µSR line width in MnF2 at T > TN. In the most general case,
both longitudinal and transverse spin fluctuations contribute to 1/T1. But the longitudinal
fluctuations in MnF2 do not contribute to 1/T1, as we shall demonstrate experimentally, and
only Sx and Sy should be considered. Using the definition of the neutron scattering function

S⊥(q, ω) =
∫ ∞

−∞
dt cos(ωt)〈{δSq

+ (t), δS−q
− (0)}〉 (31)

we arrive at
1

T1
(T ) = D

∫
ST

⊥ (q, ωs(T )) d3q (32)

where D is a constant independent of temperature, ωs = γµBs, and the sum over q is replaced
by an integral.

The temperature dependence of the rhs of equation (32) enters in two places: one is the
temperature dependence of the scattering function ST

⊥(q, ω), and the other is the temperature
dependence of the static local field ωs(T ), which is given formally by −γµ

∑
j A j · 〈S j 〉 but

in reality could be measured.
µSR measurements in MnF2 were performed by Uemura et al [14]. They used two

experimental configurations in zero external field: (a) the transverse configuration (TC) in
which the initial muon polarization was perpendicular to the ĉ axis and (b) the longitudinal
configuration (LC) in which the initial polarization was parallel to ĉ. In TC they measured the
precession frequency of the muon moment in the static local field at T < TN, and thus obtained
ωs(T ). Two frequencies were found in the µSR spectra and assigned to two different muon
sites. In LC they measured the relaxation rate of the muon polarization at temperatures both
above and below TN. Here again two relaxation timescales were observed. The fast relaxation
was attributed to muons at the high field site. We are concerned here only with the spin–lattice
relaxation of muons in the site with the higher field since the data are less scarce. In figure 6
we show the fast 1/T1 as a function of temperature [14]. It is obvious from the figure that
at temperatures higher than the Néel temperature 1/T1 is independent of T . This is clear
evidence that 1/T1 is independent of the longitudinal spin fluctuation, since these fluctuations
are known to undergo critical slowing down as discussed in [14, 17, 16].

Schulhof et al [17] measured the scattering function S⊥(q, ω) in MnF2 by neutron
scattering. They showed that near TN S⊥(q, ω) could be approximated by

S⊥(q, ω) ∝ 1

κ2
⊥ + q∗2

(
�⊥

�2
⊥ + (ω − ω0)2

+
�⊥

�2
⊥ + (ω + ω0)2

)
(33)

where ω0 and �⊥ are functions of the temperature and are given by

ω0(T, q) = a0(T ) + b0(T )(q∗)2,

�⊥(T, q) = a⊥(T ) + b⊥(T )(q∗)2,

q∗2 = q2
x + q2

y + (c/a)2q2
z ,

(34)

where a and c are the lattice constants. The parameters κ⊥ = 0.054 Å−1, a0(T ) =
1.36(1 − T/TN)0.37 meV, a−1

⊥ (T ) = 7.52 + 164.3(1 − T/TN)0.72 meV−1, b0(T ) = 15.6 +
23.8(1 − T/TN)0.57 meV, and b−1

⊥ (T ) = 0.08 + 5 × 10−4(1 − T/TN)2.54 (10−2 meV)−1 can
be found in [15]. This form of S⊥(q, ω) and ωs(T ) is then used to numerically integrate the
right-hand side of equation (32) at various temperatures. The integral was performed in a
cube, and the range of integration was limited by the available neutron data (q < 0.3 Å−1).
The temperature dependence of this integral was then scaled by a factor D so that both sides
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Figure 6. Temperature dependence of the muon T −1
1 at the high field site in MnF2. The solid line

is a theoretical prediction of T −1
1 using the measured neutron scattering function S(q, ω) in the

same compound [17] and equations (33) and (34).

of equation (32) agree at TN. The result of the computed 1/T1 is shown in figure 6 by the
solid line. In this figure we can see that the calculated line agrees very well with the measured
data. Indeed, the muon relaxation rate in the ordered state of MnF2 results from host spin
fluctuations according to equation (32) without any noticeable addition from the presence of
the muon.

5. Exotic spin correlation

The need to postulate new types of correlation functions emerges from many experimental
situations in which T1(H ) is not a linear function of H 2, as required by equation (25), despite
the fact that the muon relaxes exponentially and T1 is well defined. One example is the frustrated
magnet Tb2Ti2O7 [18]. Raw muon relaxation data at a temperature of 100 mK in this system
are presented in the inset of figure 7 on a semi-log scale. Clear field dependence is observed.
The solid line is a fit to exponential decay plus a small field independent background. The
extracted T1 versus H (taken from [18]) is presented in figure 7. Clearly T1 is a linear function
of H and not of H 2.

Since Tb2Ti2O7 shows many properties similar to those of a spin glass, the first strategy
to try and explain these data is by postulating randomness as in a spin glass. In a standard
spin glass, the muon could stop in a variety of environments and can experience different
instantaneous fields or correlation times. If we allow for a distribution of 	 and/or ν we can
obtain an average polarization P by

P(H, t) =
∫ ∫

ρ(	, ν)P

(
2	2νt

ν2 + (γµH )2

)
d	 dν.

Nevertheless, in the high field limit, namely, γµ H � νmax, where νmax is the highest fluctuation
rate in the distribution, we still expect

P(H, t) = P(t/H 2).
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Figure 7. The muon relaxation time T1 as a function of the longitudinal field H in the cooperative
paramagnet Tb2Ti2O7 showing linear field dependence. The inset shows the raw asymmetry as a
function of time for various fields on a log scale demonstrating that the muon polarization decay is
exponential.

Thus, even with randomness, the timescale of relaxation T1, at high fields, must depend on H 2

even when a distribution of 	 and/or ν are taken into account. In other words, a distribution of
correlation times or field strengths, as suggested for spin glasses in [19] and [7] respectively,
could not explain the data in figure 7.

Therefore, we examine the possibility of other correlation functions. Interesting
candidates are a power law (PL)

�(τ) ∼ cτ−x , (35)

a stretched exponential (SE)

�(τ) ∼ c exp[−(λτ)y], (36)

or the cut-off power law (CPL), which is often approximated in computational physics by the
Ogielski form (OF) [20]

�(τ) ∼ cτ−x exp[−(λτ)y]. (37)

Mathematical justification for these functions can be found in [21]. They are also applied for
the analysis of neutron spin echo (NSE) experiments [22]. Using asymptotic expansion in
terms of ω of equation (22) for the difference correlation functions we can predict the interplay
between the field and time. It is possible to write for all three cases and high enough fields

P(H, t) = P(t/H γ ) (38)

where [23]

γ =
{ 1 − x PL

1 − x OF
1 + y SE

∣∣∣∣∣ . (39)

This is a good approximation for all values of x . It is also a good approximation for y not
much smaller than unity but gets worse as y approaches zero. The new and exotic correlation
functions open the way to understand the unusual T1(H ).
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Figure 8. The muon spin polarization obtained numerically for different correlation functions and
various longitudinal fields using equations (18) and (20).

However, for real data analysis one must normalize the PL and CPL so that they do not
diverge at τ = 0. One possibility for doing this normalization is to introduce a cut-off time τc

so that in the most general case

q(τ ) = 2	2 τ x
c

(τ + τc)x
exp[−(ντ )y]. (40)

However, since τc is expected to be on the scale of 10−13 to 10−11 s, while the first point in
time where the muon polarization is measured is typically at t � 10−8 s, the PL, SE, and CPL
can be reconstructed from equation (40) with

c = 2	2τ x
c .

To regain confidence in equations (38) and (39), we integrate equation (20) with the
three correlation functions of equations (35)–(37) as an input using the ‘improper integration’
method described in [5]. The result is presented in figure 8 panels (a)–(d) where we show the
expected muon polarization for �(τ) = exp(−τ ), exp(−τ 0.5), 0.3τ−0.5 exp(−τ ), and 0.3τ−0.5

respectively, and various fields. The pre-factor in the correlation function c was chosen so that
all relaxation rates are nearly identical at zero field. This allows us to compare the effectiveness
of the field in decoupling the muon polarization. Clearly, the decoupling is harder in cases
which involve a power law.

In figure 9 we demonstrate the scaling relations given by equation (38) for the different
correlation functions given in figure 8. We find that they hold for high enough fields and late
enough time. Thus, our numerical results demonstrate that the asymptotic expansion leading
to equation (39) is indeed valid.
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Figure 9. The same data as in figure 8 but plotted as a function of scaled time according to
equations (38) and (39).

These scaling relations were demonstrated experimentally in the Ising spin glass
Fe0.05TiS2 [24], and are reproduced here in figure 10. This compound has a Tg of 7.5 K.
In this case the correlation function changes its nature from a CPL to an SE upon cooling as
can be seen in the figure. At 20 K the polarization is a function of t/H 0.3 but at 8 K the scaling
t/H 1.3 is more appropriate.

Other examples of scaling in non-spin-glass materials can be found in the paper of
MacLaughlin et al [25], and a linear field dependent relaxation timescale was observed by
Pratt et al [26]. Of course figure 7 is yet another demonstration of the scaling relation in which
γ = 1. This could emerge from x → 0 or y → 0. However, since the asymptotic expansion
breaks down for y → 0, γ = 1 emerges as being most likely from x → 0. This situation
could be further analysed. Assuming that the correlation function is a PL, equation (22) gives

1

T1
= 2	2(γµ H τe)

x

γµ H
�(1 − x) sin

(
πx

2

)
. (41)

Using the fact that for small x�(1 − x) sin(xπ/2) = xπ/2 + O(x2) we obtain

T1(H ) � 2γµH

x	2
(42)

resulting in a linear dependence between T1 and H . To increase confidence in this equation
we check if reasonable values for the theoretical parameters can produce the observed T1. For
example if τe ∼ 10−13 s, B⊥ and H on the order of 100 G (γµH ∼ 	 ∼ 10 MHz) and x = 0.02
obtained by NSE [18], we have (γµ H τe)

x ∼ 1 and T1 ∼ 1 µs, on the order of the measured
value. We thus believe that equation (42) describes the data in figure 7 appropriately.
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Figure 10. The asymmetry plotted in the Ising spin glass system Fe0.03TiS2 as a function of t/H γ

for a geometrical series of fields higher than 60 G. At T = 20 K all data sets collapse into one
function for γ = 0.6. The same happens in T = 8 K provided that γ = 1.3.

6. Conclusions

We demonstrated that µSR in the longitudinal field configuration can be used to characterize the
time dependent part of the spin dynamic auto-correlation function,and that the muon itself does
not modify this function. The technique is capable of distinguishing between different types
of behaviours, ranging from power law to stretched exponential decays, a property which until
recently was associated only with NSE [27]. In some cases the two techniques agree [22, 25]
on the nature of the correlation, in others they do not [25]. NSE is a more direct probe of the
correlation function but requires high concentration of spins; µSR works in low concentration
of magnetic spins and enjoys a relatively high counting rate. Thus correlation functions could
be characterized within a few hours.
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