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Generalization of the Abragam relaxation function to a longitudinal field
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We obtain an analytical form for the muon relaxation function in a dynamical magnetic envi-
ronment and an external longitudinal magnetic field using perturbation theory. The new relaxation
function is compared with the semiclassical Kubo-Toyabe function and the result of Monte Carlo
simulation. We also demonstrate the application of our result to the case of dilute spin glasses.

The muon spin relaxation (uSR) technique® has proven
to be a very powerful tool for the investigation of mag-
netic phenomena. In this technique, polarized muons are
implanted into a sample where their spin evolves in the
local magnetic field until they decay. The decay positron
is emitted preferentially along the final muon spin direc-
tion; by collecting several million positrons, we can recon-
struct the time dependence of the muon spin polarization
[P(t)] which, in turn, reflects the magnetic field at the in-
terstitial muon site. In general this local field combines
two contributions: the internal field and the externally
applied field. When the internal field is random, for ex-
ample, in the case of randomly oriented magnetic dipoles,
measuring P(¢) in the longitudinal field (LF) configura-
tion reveals information on the internal field distribution
and its dynamics. In the LF configuration the external
field is applied parallel to the initial muon spin direc-
tion which is taken to be %, and the polarization P,(t)
is measured by collecting positrons emitted parallel and
antiparallel to 2.

Due to a combination of static fields and dynamic fluc-
tuations, P,(t) is expected to relax. In the case of purely
static field distribution, relaxation occurs due to dephas-
ing since different muons experience different magnetic
fields and therefore precess with different frequencies. In
this case not all the muons precess since some of them
(1/3 of the ensemble) reside in sites where the local field
points either parallel or antiparallel to their initial spin
direction. These muons do not depolarize and in the ab-
sence of an external LF P,(t) recover to 1/3 at t — oco.
The application of a LF only increases the relative num-
ber of muons experiencing a field parallel to their polar-
ization and, as a result, the terminal value of the polar-
ization increases. In the case of purely dynamic fluctua-
tions, relaxation occurs due to the absorption of energy
quanta by the muon spin Zeeman levels resulting in a spin
flip. In this case the relaxation depends on the system’s
spectral density at the muon Larmor frequency. In real
systems, the dominant source of relaxation often varies
with temperature between the dynamic and the static
mechanism. It is therefore important to find a model
which incorporates sources of both dynamic and static
relaxation as well as an external longitudinal field.

The semiclassical dynamical Kubo-Toyabe (DKT)
model incorporates all of the above mentioned features
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and provides a practical relaxation function.?® This func-
tion is obtained phenomenologically in two steps. First,
the muon polarization function is evaluated according to
an assumed static field distribution, typically Gaussian
or Lorentzian. Next, the effect of dynamics is introduced
via the strong collision model. In this model the polariza-
tion propagates in time according to the static relaxation
process until a collision takes place. After the collision
the relaxation resumes but with the initial polarization
for the new interval taken as final polarization of the pre-
vious interval. This type of dynamical process (Marko-
vian) leads to an exponential decay of the time-dependent
field-field correlation function (B;(t)B;(0)). The Kubo-
Toyabe formalism can be applied to any field distribu-
tion or collision rate and it yields the expected recovery
at very slow dynamics. However, the DKT result is not
analytical. Therefore, data analysis with the DKT model
is somewhat difficult; it involves the storage of large mul-
tidimensional tables of relaxation functions. The lack of
an analytical expression also limits our understanding of
the polarization function.

In order to obtain an analytical expression for the re-
laxation function we apply the perturbation treatment
developed by McMullen and Zaremba (MZ) in Ref. 4
to the same dynamical input of the DKT model. Our
expression is therefore valid only in a limited range of
parameters, as expected from a perturbation expansion.
In order to illustrate the power of this approach we also
discuss the polarization function in a spin glass.

MZ wrote the polarization P,(t) as a perturbation se-
ries

P,(t) = {o:(t))
= (0. () ) + (o)) + (=N @y +--+» (1)
where
(02(£)} 0y = P=(0),

(Ul(t)>(1) = 0’
e [
(ox(O)w = PO [ are=m
X[, (1) + TRy (7))

and where
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o;5(t' — t") = (Bi(t) B;(t") + B;(t") Bi(t'))o-

In these equations B;(¢) denotes the ith spatial compo-
nent of the time-dependent fluctuating field; By = B, =+
tBy; v, is the muon gyromagnetic ratio; wy = v, By, is
the Larmor precession frequency in the LF Bj; and (},
is the thermal average with respect to the states of the
system in the absence of the muon.* This expansion is de-
rived from basic principles (a magnetic Hamiltonian) and
no assumptions are made regarding the field distribution.
The only assumption needed to complete the calculation
concerns the field-field correlation function ®;;(r). We
assume the same time dependence of ®;;(7) as in the
DKT model, namely,

B;5(7) = 4(A?/4%) exp(—v7), (2)

where A /%, is the second moment of the instantaneous

w} + 12wt + [wi — v2)[1 — e cos(wyt)] — 2vwre i sin(wit) }
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field distribution, and v is the inverse correlation time.
Equation (1) is an expansion in products of the internal
magnetic field, which is on the scale of A, and time, which
is on the scale of 1/v. Therefore it is an expansion in A /v
and is expected to be a good approximation for A/v <
1. We also expect Eq. (1) to give an accurate account
for the relaxation at v¢ < 1 since the nth term in Eq.
(1) involves n integrations in time, and its contribution
is proportional to the volume of integration (v¢)™. The
requirements on the parameter v prevent us from taking
the limits ¥ — 0 and ¢ = oo simultaneously. Therefore
we cannot discuss the static fluctuation case at ¢ — oo
and we do not expect to find the 1/3 recovery in this
theory. If we now write the polarization as

P.() = P.(0) exp[-T(8)4], (3)

expand it in powers of I, and compare it with Eq. (1)
after the integration, we find that

L(t)t = 242 {

which is our desired analytic result (AR). We can see
from this formulation that, in general, the polarization
relaxes; however, some oscillations of frequency wy, exist
near vt = 0.

We now examine the behavior of Eq. (4) in three lim-
its: (I} zero field (wr, — 0), (II) the fast fluctuation
regime (vt — oo and ¥ > A), and (III) early times
(vt = 0 and wrt — 0).

(I) In the zero field limit we find that Eq. (4) simplifies
to

2A2
——2—~(e_”“‘ -1+ Vt).

L)t =
This relaxation form is equivalent to the well known
Abragam relaxation function for the transverse field
configuration,® apart from an overall factor of 2. This
factor of 2 is expected since in the longitudinal configu-
ration both £ and § fluctuations contribute to the relax-
ation, whereas in the transverse configuration only fluc-
tuations in the 2 direction cause relaxation.

(IT) In the fast fluctuation limit we find

2A2%y

't = ———
O w? + v?

(5)

and the relaxation has an exponential shape. The relax-
ation rate I' is simply given by the Fourier transform of
Eq. (2) evaluated at wy. This demonstrates how the re-
laxation rate, in the fast fluctuation limit, depends on the
spectral density at the Larmor frequency. The same re-
sult is obtained by the DKT theory in this limit.3 Since
the muon lifetime (2.2 usec) restricts the value of ¢ to
less than 10 usec, this limit is valid only for fluctuations
v > 0.1 psec™t.

WF + o7 ’

(ITI) In the early time limit we find
L(t)t = A% + O(t3), (6)

producing a Gaussian relaxation. We see that the relax-
ation at the early time is independent of both the external
longitudinal field and the fluctuation rate; it depends on
the second moment of the field distribution. In this case
the DKT theory and the AR also agree.® A typical ex-
periment limits the time range to ¢ > 10 nsec; therefore
the early time limit materializes only if # < 0.1 nsec™!
and wy, € 1 T (independent of A ).

When v ~ A we expect some differences between the
AR and the DKT model. To distinguish the two func-
tions we provide Figs. 1(a) and 1(b) in which P,(t) is
obtained with the AR and the DKT model, respectively,
for v = A and several longitudinal fields. The DKT
model in this figure is obtained from the tables currently
used at the pSR facility in TRIUMF for data analysis
when a Gaussian field distribution is assumed. In Fig.
1(c) we also show the polarization function obtained by
directly integrating the equation

%ﬁ” = 4m [P(£) X (B(t) + Br3)],

where
P(0) =z.

The field B(t) is determined by Monte Carlo (MC) simu-
lation in a cyclic order with two steps. In the first step a
field B is selected randomly with a Gaussian distribution
of width A%/+2; in the second step a time ¢ is selected
randomly with probability distribution » exp(—»t). The
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FIG. 1. Muon relaxation function in the longitudinal field
configuration obtained in three different models: (a) the per-
turbation expansion (analytical result), (b) the dynamical
Kubo-Toyabe model with a Gaussian field distribution, and
(c) Monte Carlo simulations described in the text. The lon-
gitudinal field is given by Hy, = wr/vm.

field is kept constant during the time ¢ after which we
return to the first step. The final polarization function
is obtained by averaging over an ensemble of separate
muons. The simulations shown in Fig. 1(c) were made
using 10 000 fictitious muons and v = A. Comparing the
three theories in Fig. 2 we observe that the DKT model
resembles the simulation more closely in a low LF, while
the analytical result better describes the simulation in a
high LF. We also observe that the AR relaxes somewhat
faster then the DKT function and is harder to decouple
with a longitudinal magnetic field. Otherwise, the three
methods yield very similar results even for such a large
value of the expansion parameter A/v; in fact, they are
probably experimentally indistinguishable when we con-
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FIG. 2. The analytic result (AR) obtained by the pertur-
bation expansion compared with the dynamical Kubo-Toyabe
(DKT) relaxation function with a Gaussian field distribution,
and Monte Carlo (MC) simulation for several longitudinal

fields.
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sider the typical resolution of the uSR technique. We
note that oscillations near vt — 0 are present in all three
methods, and that the early time behavior is universally
independent of wy.

In order to demonstrate the application of the AR to
a real system, we use the data obtained by Luck et al. in
a LF-uSR experiment on copper (Cu).® In Cu, the local
field originates from random nuclear moments, and dy-
namical fluctuations occur due to muon diffusion, which
mainly take place in two temperature regions: At high

" temperatures (T' > 100 K) the diffusion is generated by
“thermal excitation; at very low temperatures (T < 1 K)

the diffusion is dominated by quantum tunneling.” In the
intermediate range, the muon, and therefore the local
field, is static. In Figs. 3(a) and 3(b) we show the uSR -
data in Cu at 45 K (static region) and 150 K (dynamic
region), respectively. The solid lines represent a fit of
the AR. At 45 K we find a clear recovery of the polar-
ization at ¢ = oo, and, as expected, the terminal value
of the polarization increases with increasing LF. At this
temperature the condition A/v < 1 is not valid, and we
can apply the AR only to the polarization at the early
time (¢ < 1 psec). On the other end, when the condi-
tion A/v < 1 is valid, as in the case shown in Fig. 3(b),
no recovery is observed and the AR fits the data in the
entire time range. In the fits shown in Fig. 3(b), wr
is determined by the external field (within experimental
certainty), and A and v are global parameters. As is evi-
dent in the figure the agreement in this instance between
theory and experiment is satisfactory.

Having discovered the analytical form for the relax-
ation function, Eq. (4), we can now apply it to spin
glasses. In a spin glass, such as CuMn or AuFe, the mag-
netic impurities are located randomly in the sample.® The
random distance between the muon and the impurities
results in a distribution of second moments. Therefore
we treat the parameter A as a statistical variable. As an
example, let us consider the case of a dilute spin glass at
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FIG. 3. Longitudinal field uSR in copper at T = 45 K (a)
where the muon is slowly diffusing (v < A) and Eq. (4) is
applicable only at early time, and at T = 150 K (b) where
the muon diffuses quickly (v > A) and Eq. (4) fits the data
well.
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temperatures above the freezing temperature Ty. In this
case, Uemura et al.® demonstrated that the distribution
of A can be approximated by

p(A) = \/ﬁ% exp (__222_2) : (7

The spin glass relaxation function is obtained by averag-
ing Eq. (3) with respect to A. In order to maintain the
condition A < v, the parameter a must satisfy a < v.
The resulting Uemura function is

P90 = [ eml-T(Belo(a)aA
0

= exp (—— 2a2fy(t)t)i, - (8)
where

7(t) = T(t)/ A%

Using I'(t) from Eq. (5) we see that, in the fast limit,
the relaxation has a root-exponential shape. I'(t) given
by Eq. (8) leads to an exponential relaxation in the early
time limit. In Fig. 4 we show the polarization function
obtaired with Eq. (8) for v = a. From the figure we
observe that, in the spin glass case, the LF is less effective
in recovering the polarization than in the case of a field
distribution with a unique width. This slow recovery
is a consequence of the high field tail resulting from the
convolution of the field distribution and Eq. (7). We also
note, in Fig. 4, the exponential relaxation at the early
times and the presence of oscillations with frequency wy,
near vt = 0.
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FIG. 4. Muon relaxation function in a spin glass in the
longitudinal field configuration as given by Eq. (8). The lon-
gitudinal field as given by Hr = wy/ym.

In conclusion, we have found a new analytical relax-
ation function which incorporates static and dynamic
field fluctuations in the longitudinal field configuration.
‘We made no assumptions regarding the instantaneous
field distribution. The validity of this function is limited
to either v > A or the early time.
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