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Abstract

The obvious interest in superconductivity (SC) due to it extraordinary features, keeps
the field as relevant as ever and the search for better materials calls for better ways to
evaluate and investigate them. The new technique for measuring SC parameters and
their anisotropy was developed with significant advantages over traditional techniques. It
is demonstrated on a high temperature superconductor (HTSC) - Lag_,Sr,CuOy4
(LSCO), where the z in the chemical formula is the hole-doping of the sample.

The primary advantages of our technique are that the system is in thermodynamic
equilibrium during the measurement, there is no direct magnetic field on the sample and
hence, there is no vortexes dynamics or demagnetization factors, no leads on the sample,
and it is based on a commercial tabletop system.

The fist part of the work explains the technique in details and shows results for
x = 0.17 sample. This part starts with some verification and simulations, then shows
experimental results for LSCO ring with doping « = 0.17 and data analysis, and finishes
with the behavior of A and £ as function of temperature when approaching the critical
temperature (7).

The second part of the work demonstrates how the technique is used with extremely
high currents and at low temperatures. In this part, the theoretical derivation was first
tested on pure Nb rings with different physical parameters (inner radius, outer radius,
and height) and then applied on two rings from the same single crystal of LSOC with
x = 0.125. Each ring had a different crystalian orientation so that in one ring the SC
current is always parallel to the CuOs planes (c-ring) while on the other, the SC current
must cross to the CuOs planes (a-ring). This way, we where able to measure the critical
in-plane and out-of-plane critical current and extract from it the anisotropic coherence
length. The in-plane critical current was not reached, but we can still set an upper limit
on the in plane coherence length of &,;, < 2.3 nm. The out-of-plane critical current was
reached and the in plane coherence length was found to be £, = 1.3 + 0.1 nm. The
similarity of &,;, and £. shows small anisotropy at low temperatures.

The third part of the work deals with the puzzling observation of anisotropic critical

temperature and trying to find its origin. A finite size effect was the main suspect and



two LSCO (a- and c-) rings of the same crystal of doping z = 0.125 were measured
several times. Between each measurement one of the ring’s physical parameter was
changed. The height was reduced by fine polishing of the ring and the outer radius was
reduced by femtosecond laser with high precision. A Monte Carlo (MC) numerical
simulation for the 3DXY-model and an analytical derivation of a 1D Josephson array
was done to show that the apparent difference in T, is indeed the result of the finite size
effect and the finite detection limit. By fitting the analytical derivation to the

measurements, the stiffness anisotrophy near 7, was found to be a = 4.1 x 107°.
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Chapter 1

Introduction

Superconductivity (SC) is a special phase characterized by many unique phenomena such
as zero electrical resistance and perfect diamagnetism (Meissner effect). Classical SC
can be explained by the BCS-Theory (named after John Bardeen, Leon Cooper, and
John Robert Schrieffer) which considers attractive interaction between electrons through
electron-phonon coupling. It is common to think of the charge carriers in a SC as pairs of
electrons called Cooper-pairs rather than individual electrons. The critical temperature
(or transition temperature) T. refers to a temperature where the transition between the
SC phase and the normal phase happens. High-temperature superconductivity (HTSC)
was discovered in the mid-80’s and the mechanism allowing it cannot be explained by the
BCS theory. A major group of HT'SC is the cuprates family, characterized by their nearly
tetragonal unit cell structure that forms layers of CuO2 with different metals and oxygen
between the layers. Those materials show a plethora of phases (besides SC) and are highly
anisotropic. This anisotropy manifests in both the penetration length A and the coherence
length &.

The inter-layer zero temperature coherence length £, is especially important because
it rules the coupling between the layers, but it is also hard to measure. A standard way to
measure ¢ is by measuring the second critical field Hg, but if € ~ 1 nm then Heo ~ 200 T.
Another way to find £ is by measuring the vortex diameter, however, it is nearly impossible
to cut the sample smooth enough for scanning probes perpendicular to the layers to see
£1. The most common way to determine £ is by measuring H.o close to T, where it is
relatively small and then extrapolate to T' = 0 following one theory or another, but the

choice of theory can lead to very different results at T" = 0.



Another aspect of the strong anisotropy is manifested in measurements of 7.. Many
different observations show a temperature range where SC current can flow only perpendic-
ular to the layers as if it is a 2D SC. In 2D systems, there is no long-range order according
to the Mermin and Wagner (MV) theorem, but the Berezinskii-Kosterlitz-Thouless (BKT)
theory allows for short-range correlation and SC to exist in quasi-2D systems (with a fi-
nite copling between the layers) below a certain temperature Tprr. But Tprr must be
smaller than the thermodynamic 3D T.. It cannot explain the temperature range where
SC exist only in 2D (T "™ > T#~""9)_ In other words, there should be only 1 T, in a
3D system. This difference in the critical temperature AT, is a puzzling conundrum of
fundamental physics.

The following sections review the cuprate family and LSCO, which are the heart of this
work, and the anisotropy in its different forms. Chapter 2 describes the sample growth
and preparation, the experimental setup, and the data analysis. Chapter 3 gives a more
detailed account of the stiffness measurements and presents measurements of A and & close
to T.. Chapter 4 presents the measurements of the ground state £, and finally Chap. 5

explains our explanation to the AT, conundrum.

1.1 LSCO phase diagram'

The cuprates phase diagram is very rich with many motives that are typical to all members
of the family. One member of this family is Lag_SryCuOy4 (LSCO). Figure. 1.1 shows
LSCO’s unit cell. The crystalline vectors a, b, and ¢ are defined so that a and b are
inside the CuOs plane and ¢ is perpendicular to the plane. The parent compound (where
x = 0) LagCuOy4 has one electron per unit cell (half filling) and is antiferromagnetic
with Néel temperature Ty around room temperature. When lanthanum atoms (La) are
replaced by strontium atoms (Sr) (increasing x in the chemical formula) the number of
electrons per CuO; unit decreases (hole doping), the antiferromagnetic state diminishes
and Ty drops rapidly reaching Ty = 0 at x ~ 0.02. Superconductivity start at z ~ 0.07
and T, increases with doping until z ~ 0.15 (optimal doping). Then, it decreases with
doping until z ~ 0.26, forming the SC dome. Nevertheless, the story does not end with
SC. Above z ~ 0.26 at low enough temperatures, the system behaves as a Fermi-liquid

with T2 resistivity dependence. At higher temperatures, the system is in the strange-

n this section I rely mostly on (4),(5).
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Figure 1.1: LSCO unit cell (7).

metal phase and resistivity is linear in 7. This strange-metal phase exists also at lower
doping for T" > T.. Another interesting phase is the Pseudogap phase starting below T*
and above T, in the under doped regime. More phases are present in different doping
and temperatures, such as stripes phase, spin-glass phase, and spin-density-wave phase.
Further explanation of the different phases is given in the next subsections. Figure. 1.2

shows a cuprate phase diagram (not specific for LSCO).

1.1.1 Antiferromagnetism

In this phase, the spin % of the Cut? ions is parallel to the CuO, plane and points
towards one of its next nearest neighbor Cu®? ion, and in the opposite direction from all
of its nearest neighbors. Weak perpendicular (¢ direction) ferromagnetic moment in the
CuOg, planes is also formed. But, the ferromagnetic moment of neighboring planes is in
the opposite direction, making the system a 3D antiferromagnet (5). The Heisenberg
model with antisymmetric exchange interaction provide good microscopic explanation of
the antiferromagnetic state (8). At x ~ 0.02, long range magnetic order is replaced by

short range magnetic correlation which remain in the system up to z ~ 0.07.
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Figure 1.2: Cuprate phase diagram of hole doping x and temperature 7' (6).

1.1.2 Weak spin and charge order

At low temperature and doping of 0.02 < x < 0.15, short range spin order or spin-density-
wave forms in the system. Another type of short range order is a charge-density-wave,
which usually forms at higher temperatures and dopings then the spin-density-wave. When
charge-density-wave and spin-density-wave coexist, they are called strip order. Their
presence at relatively high temperature near z = 0.125 (the 1/8 anomaly) where T¢ is

suppressed, suggest that stripe mode competes with SC.

1.1.3 Superconductivity

The SC phase is characterized by zero resistance and perfect diamagnetism. When ap-
plying magnetic field to a SC it will reject it by creating supercurrents which screen the
external magnetic field. If we increase the external field, the supercurrents will also in-
crease. Although the field is expelled from the bulk, it penetrates along the edges, and
decaying exponentially with a characteristic length known as the penetration depth A.
Another important length scale that characterizes a SC is the coherence length £ and it

is common to think of £ as the size of a Cooper-pair. SC materials can be divided into



two types depending on the ratio of £ and A. Type-I SC has A < £ and type-II SC has
A > €. A type-1 SC will hold the magnetic field outside until a critical field H, is reached.
Above H., the material ”gives-up” and transforms back to the normal state letting all
the magnetic flux penetrate. Type-II SC will stay field-free up to some critical field H;.
For higher fields, it is capable of letting some of the magnetic flux penetrate as a vortex
accommodating one flux-quanta ®,. The core of the vortex will be in the normal state
phase, but outside of the vortex, the material will remain SC. When we increase the exter-
nal field, more vortices will penetrate until they cover the entire material and it becomes
normal throughout a second critical field H.o. Cuprates have relatively large A, which
is about two orders of magnitude bigger than £, making them a strong type-II SC. The
strong anisotropy dominates their SC properties. A and & have different properties in the
a and b directions (in plane) than in the ¢ direction (between planes). This anisotropy

will be discussed further in Sec. 1.2.

1.1.4 Fermi-liquid

In the overdoped regime (z > 0.26) at low enough temperature cuprates exhibit anisotropic
metallic properties where resistivity p has T2 dependence on temperature (but different
between intra-plane and inter-plane). This behavior can be explained by the anisotropic
Fermi-liquid theory. The elementary excitations of the Fermi-liquid phase are quasipar-
ticles and quasiholes, with energy close to the Fermi energy. These quasiparticles are
“dressed” by virtual excitations of particles and holes, but have the same charge and spin
as bare particles. The interactions between quasiparticles are weaker than the electrons
coulomb interaction. They can still scatter off each other, but have a relatively long life-
time 7. We can estimate their scattering rate near the Fermi momentum £y from Fermi’s
golden rule and find that 7 o (k — k¢)? = 6k* ,where k is the momenta of a thermal-
excitation. The significant collisions outlying 7 lies in a thermal neighborhood of the
Fermi surface and so the relative momenta of low-temperature-excitation is 0k ~ KpgT.
The relation between resistivity and 7 is: p ~ (m/ne?r)A (where A is a fractional Umk-
lapp scattering (9)), providing 72 dependence between resistivity and temperature. A
more careful calculation shows that electron-electron scattering alone is not enough to
explain the T2 dependence and another process of electron-phonon scattering (Umklapp

(10)) must be taken into account.
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Figure 1.3: (a) The resistivity T-dependence for different doping of underdoped LSCO.
The linear T-dependence last to lower temperatures for higher doping before it becomes
quadratic. At low enough temperatures one can see the transition to SC for higher dopings
or antiferromagnet for lower doping (Taken from: (12)). (b) Phase diagram of cuprates
showing the psudogap regime below T™ and the different resistivity T-dependence regimes
(Taken from: (11)). More regimes like, antiferromagnet below Ty (light brown), SC below
T. (purple), SC fluctuations between 77 and T, (red), and spin-glass regime (green), are
shown. T, corresponds to the loss of antinodal quasiparticle coherence.

1.1.5 Strange metal and the pseudogap

The strange-metal phase is characterizes by linear dependence of the resistivity in tempera-
ture, contrary to the Fermi-liquid phase. Within the strange-metal phase, another anomaly
occurs below a certain temperature - 7*. Angle resolved photo emission spectroscopy
shows that an energy gap opens (primarily) in the antinodal direction in momentum-
space, on the edges of the Brillouin-zone. When the temperature decreases, this so called
psseudogap starts spreading along the Fermi arc towards the nodal direction and when an-
other temperature 7T** is crossed, the linear-T dependence of p is replaced again with the
Fermi-liquid’s 72 relation (11),(12). When T, is crossed, the SC gap opens all around the
Fermi arcs apart from the nodal point. The relation between the SC gap A and the pseu-
dogap A* is a debateful subject. Figures 1.3 (a) and (b) shows the different T-dependence

of p and a phase diagram (including 7% and T™**) respectively.

1.2 Anisotropy

The c-vector of the unit-cell is about three times larger than the a- and b-vectors, making
the system highly anisotropic. This anisotropy is observed in many different experiments
such as in-plane/out-of-plane resistivity (13) (14), parallel/perpendicular susceptibility
(15), anisotropy of the upper critical fields (16), Stiffness measurements (1), and more. It

is reasonable to assume that this anisotropy plays a key role in the origin of AT.,.



1.2.1 Structural anisotropy

Except for the in-plane/out-of-plane anisotropy, the system can be anisotropic inside the
planes. When the a and b-vectors are equal, the unit cell is tetragonal, and when a,
and b are not equal the unit cell is orthorhombic. This symmetry depends on doping
and temperature (and also pressure). At high temperatures, the system is tetragonal.
But at low doping and below a certain temperature, the system becomes orthorhombic.
This doping-dependent temperature of the structural phase transition tetragonal — or-
thorhombic (often denoted by Tj) decreases with doping and reaches 0 at x ~ 0.22 (4).
This in-plane anisotropy can influence the coupling between layers and the in-plane/out-

of-plane anisotropy.

1.2.2 Anisotropy in resistivity measurements

The usual way to measure the in-plane/out-of-plane resistivity is by cutting two bars (or
plates) with different orientations from the same single crystal and use the four-contact
technique. The current flows from one end of the bar to the other while the voltage
difference is measured between the ends. In one bar the CuOy planes are perpendicular
to the current direction and the inter-plane resistivity p. is measured. In the second bar
the CuOq planes are parallel to the current direction and the intra-plane resistivity pgp
is measured. p. is always larger than py, and the ratio p./pa is usually about ~ 103,
In the work by S. Komiya et al. (13) on underdoped LSCO it was found that pg’s T-
dependence changes smoothly with doping for 0.02 < x < 0.17, while p.’s behavior changes
when crossing to the SC doping regime (0.07 > z). Another work by G.S. Boebinger et
al. (14) used high magnetic fields (~ 61 T) to suppress SC and measure the normal-state
resistivity inside the SC dome near optimally doping of LSCO. Metallic state is defined by
g—g > 0 and insulating state by 5—51 < 0. At low doping both p,; and p. are insulating and
slightly above optimal doping, they are both metallic, but the insulator-to-metal crossover
occurs at different doping/temperature as shown in Fig. 1.4. The different behavior of %
is another signature of the strong anisotropy. Other resistivity measurements (17) with
strong magnetic field perpendicular to the CuOq planes showed strong decoupling between

the planes while the in-plane coupling was unaffected.
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Figure 1.4: Normal state insulator-to-metal crossover of in-plane/out-of-plane resistivity,
pab and p. inside the SC dome (SC is suppressed by a magnetic field of ~ 61 T) (14).

1.2.3 Anisotropy in magnetization measurements

When cooling a SC sample below T, and applying a magnetic field, the sample generates
a magnetic moment to repel the external field (Meissner effect). Then, by heating the
system while measuring the magnetic moment, one can measure 7.. By cutting needle-
shaped samples from the same single crystal with the CuOg planes parallel/perpendicular
to the needle’s axis and measuring T¢, G. Drachuk et al. (15) found different 7, between

the two needles. Such difference in 7T, is another demonstration of cuprats anisotropy.

1.2.4 Anisotropy in stiffness measurements

Using a Stiffnessometer, I. Kapon measured (1) the difference in 7¢ for in-plane and out-
of-plane currents. The measurement is done in equilibrium, detects only macroscopically
phase coherent SC state, and avoids local SC fluctuations. A 0.64 K difference was found
in x = 0.125 LSCO, and in my Msc-thesis I measured more samples of different doping

with the same technique and again, observed AT..
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Chapter 2

Research Methods

Most of the technical details of the system and data analysis are embedded in the articles
themselves. In this section, the focus will be on crystal growth, sample preparation, and

coil making. I will also introduce the Stiffnessometer, our main tool in this research.

2.1 Making Lay Sr,CuO4 samples

All samples are made in our lab from scratch. The chemical elements are mixed, pressed
and molded into a single crystal. The crystalline orientation is determent by x-ray Laue
diffraction and two plates are cut from the same crystal, but with different orientation. A
diamond disc saw is used to cut the crystal into plates. Ring-shape samples are cut from
the plates using a femto-second laser. The different stages of the growth and cutting are

explained in this section.

2.1.1 Single crystal growth

The process starts by mixing CuO, LasOs, and SrCOj of the right amounts for the desired
doping. At least four cycles of mixing and sintering are done until we get a uniform
homogeneous powder, checked by x-ray powder-diffraction. The powder is pressed to a
rod with 55000 PSI and sintered again at 1050 c¢° for 24 hours. Then, we use a traveling
solvent floating zone (T'SFZ) furnace to transform the rods of pressed powder in to single
crystal. One rod (called feed) is hung over another shorter rod (called seed) and they
rotate in different directions at 15 tpm. The edges of the rods (bottom of the feed and

top of the seed) are melted with a set of four 300 W lamps and parabolic mirrors, inside
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Figure 2.1: (a) Photograph of the feed and seed rods, the lamps and mirrors, and the
quartz tube. (b) Schematic of the feed and seed rods, the lamps and mirrors, and the
quartz tube.

a sealed quartz tube filled with argon and a small amount of oxygen gas, at a pressure of
5.5 bar.

After the initial melting of the tips of the rods we get a zone of molten solvent of LSCO
and is mixed by the rods rotation. Then the stage with the lamps and mirrors is lifted
slowly along the feed rod to melt it. When the hot zone moves up, the lower part of it
solidifies, and if everything is right, it will also crystallized on the seed rod. The stage
movement starts at 5.0 mm/h in the beginning of the growth and the rate is lowered to
1.0 mm/h and stay so during the stable growth of the single crystal.

The TSFZ furnace is shown in figure. 2.1. After the growth is finished, the crystal is
annealed at a temperature of 850 C for 120 hours in an argon environment. The quality
and orientation of the crystal is determined using Laue x-ray diffraction. To grow a high

quality single crystal we optimized all parameters of the process (8).

2.1.2 Crystal orientation and rings cutting

The crystals are cut into two kinds of plates: plates with the copper-oxide layers parallel
to the plane and plates with the copper-oxide layers perpendicular to the plane. From
these plates we cut rings with tetragonal cross section using a femto-second-laser (at the
Tel Aviv University Center for Nanoscience and Nanotechnology). We refer to the rings
with the copper-oxide layers perpendicular/parallel to the symmetry axis of the ring as,
c-ring and a-ring respectively. The rings go through another annealing process before they
are measured. The LSCO rings have an inner diameter (ID) of 1.0 — 2.0 mm, an outer

diameter (OD) of 2.4 — 3.0 mm, and height of ~ 1.0 mm. In Chap. 5 the rings are cut

13



again to change their cross-section.

2.2 Stiffnessometer

The superconducting stiffness g, is defined by a local relation between the superconducting
current density j, to the vector potential (VP) A and the gradient of ¢ (the phase of the
complex order parameter 1) = |[)|e®¥ ). This relation is:

%)

Js :ﬁs(%Vgo—A). (2.1)

where @ is the magnetic flux quanta and g, is a diagonal tensor. This equation is gauge

invariant and when setting V¢ = 0, we recover the London equation:

j. = —F.A. (2.2)

If we use the curl of Maxwell’s equation: V x V x B = 1oV x J (where J is the
sum of normal, and super currents) and the definition of A: B = V x A, we get a
partial differential equation for the magnetic field B: V2B = pp,B. The solution (in one
dimension) is: B = Bpe™**. This exponential decay of the magnetic field inside the bulk
of a SC is called the Meissner effect and it gives us the relation between the SC stiffness
ps and the penetration depth \:

1

ps = o (2.3)

The ideal Stiffnessometer is made of an infinitely long inner excitation coil (EC) pierc-
ing a ring-shaped sample. When applying current I through this EC a magnetic field is
generated inside the coil with zero field outside. Nevertheless, outside of the coil there is
a vector potential A = ugn?lgé where n is the winding linear-density of the EC and r is
the distance from the coil’s symmetry axis.

If we cool the sample below T, without any magnetic field or current in the excitation
coil, there will be no VP. This cooling process is called: Zero-Gauge-Field-Cooling (ZGFC).
When a sample is cooled and becomes a SC, the phase ¢ is chosen to be such that minimizes

the free energy. So following the ZGFC protocol, Vo = 0, and j; = 0. But now, changes of

'From the Ginsburg-Landau (GL) point of view, the system is a macroscopic quantum state, defined
by a complex order parameter: 1 = |¢|e’?, where |1|? is the super-fluid density and ¢ is the phase.
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p is energetically costly for the SC, because it means breaking the coherence of the system
and overcoming some energy barrier. So when we turn on the current in the coil and
A # 0 we generate supercurrents j, inside the ring following London’s equation (Eq. 2.2):
Js = —psA. These supercurrents running around in a loop create a magnetic moment
m which can be measured using a pickup-loop connected to a superconducting quantum
interference device (SQUID)2.

The London equation introduces a linear relation between j, and A. Since A is propor-
tional to the current in the excitation coil I and j, is proportional to the sample’s magnetic
moment m, we get a linear relation between the applied current and the measured signal.
When this linearity breaks, the system is said to be out of the ”linear regime”, because the
critical current j. was crossed somewhere within the sample. This process is more compli-
cated and will depend on the geometry of the EC and the ring as explained in 2.2.4. There
are two types of measurements we can do: We can stay at a constant fix temperature and
increase the current I; this type of measurement determines the critical magnetic flux of
the ring ®. from which we can extract £. Alternatively, we can change the temperature
while the current is in the linear regime and constant; this type of measurement provides
the ps. When the signal of the ring disappears completely, it means there is no more
persistent currant in the ring and we find T,.. But, different phenomena can influence the
apparent T.v (Correlated disorder can blunt the transition and create a ”tail”, and the
finite size of the sample will also play a role in 7;). This is the main topic of chapter 5.

This technique is used to determine ps without any leads or magnetic field. Another
advantage of this technique is that it demands a global phase coherence. Therefore, phase
transitions are much sharper compared to other techniques such as electric transport or
magnetization measurements. Using the Stiffnessometer, we can measure T, with great
accuracy and study the stiffness close to the phase transition. Therefore, it’s an ideal tool
to measure AT,.

The critical flux measurements (to measure &) can be done close to T, where j. is
small, or well blow T, (at T' ~ 1.7 K), where we can use SC coils and apply high currents.
When [ is increased, the magnetic flux inside the coil increases and the ratio dependence
on the geometry of the EC. To maximize the magnetic flux-to-current ratio (®../I), we

use EC with many layers which require rings with a proper geometry: The ring’s inner

2Based on the Josephson junction effect, SQUIDs are commonly used to detect magnetic moment.
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radius should be big enough for the many-layered EC, but the outer radius must be small
(thin wall of about ~ 0.35 mm), making the ring very fragile and hard to manufacture.
The outer radius needs to be small, because j. o« 72, and will be explained in the data

analysis Sec. 2.2.4.

2.2.1 Principle of operation

During the measurements, the ring is fixed at the center of the excitation coil and together
they move along the z direction (the horizontal axis in Fig. 2.2), in and out of a gradiometer
(of second order) which is fixed at z = 0 (z-scan procedure). The gradiometer serves as
a pickup-loop that increase the signal and cancels noises. When they move, the magnetic
flux through the gradiometer changes and the SQUID measures the change. The output
signal from the SQUID is in voltage and proportinal to the magnetic flux through the
gradiometer at each z. Figure 2.2 presents such measurements of a LSCO ring above and
below T,. Since the coil is finite, its magnetic signal is detected by the gradiometer and a
combined signal of the coil and the ring is measured. The coil’s signal can be measured
above T, (or without the ring), and subtracted from the combined signal, revealing the
ring’s signal. The difference between the maximum and the minimum of the ring’s signal is
labeled AV, and the difference between the maximum and the minimum of the excitation
coil’s signal is labeled AV... The measurable parameters AVy. and AV,. are proportional
to the magnetic flux generated by the ring and coil respectively, and their ratio (AV,q0)

can be translated to the stiffness (as explained in Sec. 2.2.4).

2.2.2 Experimental setup

The Stiffnessometer was developed as an add-on to S600 SQUID SUSCEPTOMETER of
CRYOGENIC LTD and was adopted to the new Quantum Design MPMS3. Schematics of
the setup is shown in Fig. 2.3. The excitation coil used in chap 3 and 5 is 60 mm long, with
an external diameter is 0.8 mm. The coil is made of copper wire and has 2 layers of winding
(1940 winding turns in total). The excitation coil used in chap 4 is 60 mm long, with an
external diameter is 1.95 mm. The coil is made of a SC TiNNb wire and has 8 layers of
winding (4800 winding turns in total). The gradiometer is made of 8 (4 in the QD MPMS3)
pickup-loops to reduce noises with a long wavelength. A geometric factor G converts

the coil’s and ring’s VP ratio on a single pickup-look Agc(Rp)/Aecc(Rp) to the voltage
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Figure 2.2: Raw data. SQUID signal for a LSCO = = 0.17 c-ring at high temperature
(red), when the ring is not superconducting and at low temperature (blue) when the ring is
superconducting. The inset shows the difference between these measurements. Subtracting
the high temperature signal from the low temperature signal reviles the superconducting
ring’s signal. The difference between the maximum and the minimum of the ring’s signal

is labeled AVj. and the difference between the maximum and the minimum of the coil’s
signal is labeled AV,..
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Figure 2.3: Schematics of Stiffnessometer and gradiometer. Illustration of the long exci-
tation coil (inner-coil) with the SC ring on it, the gradiometer, and the external coil.

difference ratio measured by the gradiometer AVs.(Gradiometer)/AVe.(Gradiometer).
Where R, is the radius of the pickup-loop, A, Aec are the ring, and coil’s VP respectively.
G is calculated numerically (but can also be evaluated experimentally) and is ~ 3.62 and
~ 3.07 for Cryogenic and MPMS3 magnetometers, respectively. Another external coil is

used to cancel external magnetic fields stronger than 0.001 Oe.

2.2.3 Coil fabrication

The heart of the Stiffnessometer is the excitation coil. The process of coil winding is also
done in our lab to fit our needs. The coil winding must be neat to prevent leakage of
magnetic field outside of the coil. Figure 2.4 (a) shows different coils, and Fig. 2.4 (b)

depicts a zoom in on the winding. The coil’s core is made of thin Nitinol wire covered
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1

Figure 2.4: (a) Tree different coils made in our lab, a LSCO ring, and a penny for com-
parison. (b) Close look on a coil.

with polyamide coating. We use wires of different materials and thickness for different
experiments. SC wires are used to make SC-coils for measurements with high currents at
low temperatures, allowing us to measure the coherence length £ in the ground state of

the system.

2.2.4 Data analysis

When the temperature approaches T, A starts to grow (compared to the ring’s dimensions)
and we must take into account the ring’s self-inductance VP (assuming that |¢| is uniform).
When the total VP inside the ring is A; = Agsc + Aee, combining Faraday’s and London’s

equations, we obtain a partial differential equation (PDE) for As.:

\IICC
2rr

V2As = ps(=2p + Aye). (2.4)

Changing to unitless parameters (scaling lengths by R, (the pickup-loop’s radius) and
A,.(r) by Ace(Ry)) and working with cylindrical coordinates, Eq. 2.4 becomes:
O’A  9PA 19A A 1 1

a2 o T mm Aty (25)

The numerical solution of the PDE is presented in Fig. 2.5, and one can see that the
Stiffnessometer sensitivity is limited to the range where there is no saturation in (Rp/\)?
(sensitivity range of 1072 < A < 10! mm). At temperatures too close to 7., the critical
current j. is low and limits the validity range of the Stiffnessometer to a tighter range of
0.1 <A< 1.0mm.

To deal with the brake of linearity at the critical flux, we consider the spatial depen-
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Figure 2.5: A semi-log plot of the numerical solution of the PDE (Eq. 2.5), evaluated
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13 mm and 8.5 mm in the Cryogenics and the MPMS3 respectively. The solution depends
on the ring’s dimensions too: ID = 1.0 mm, OD = 2.5 mm, h = 1.0 mm.
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dence of the order parameter’s amplitude (|¢|(r)) by solving the two Ginzburg-Landau
equations simultaneously. This was done by N. Gavish, O. Kenneth and A. Keren (22)
for a hollow long cylinder. The solution of the two equations show that there is a critical

magnetic flux (inside the excitation coil) given by:

c (I)OTgu
e, < v@€;' (2.6)

Where 74, is the outer radius of the SC ring. Using this relation and A (from stiffness

measurement of other sources) we can extract the coherence length ¢ from measurements
of ®¢..

On Chap. 5 we focus on the measurements of the transition temperature. We define
it as the temperature where the extrapolation of the sharp part of the transition meets
zero when we measure the moment (or Ang) vs temperature. This temperature was
independent of the initial current in the EC. The reason we are not looking at the point
where the moment is indistinguishable from the noise is because inter layer disorder can

manifest in a tail above the bulk transition temperature which is what we are interested
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in.

2.3 Verification of the Stiffnessometer

As befitting a new technique, there are many tests needed to confirm it. We wanted to
confirm that our assumption of an infinite coil is valid in our detection limits. Next, we
wanted to validate the London equation Eq. 2.2 and the full equation of the super current
Eq. 2.1. The theoretical dependence of the critical flux to the OD, &, and A also needed
to be tested. Last, we needed to check the finite size effect on the transition temperature.
All those tests were done and are also explained in the body of the work: Chap 3, Chap 4,
and Chap 5.

2.3.1 Infinite coil validation

Simulations of a finite coil with our parameters shows the external field outside the coil is
about 0.3% of the field in its center and that the VP is similar to that of an infinite coil
Fig. 3.2. The most direct test was measuring an open ring and see if the current in the
EC influence the ring’s signal. The open ring had no detectable signal Fig. 3.4. Another
way to measure leakage of magnetic field was with a SQUID on chip that can scan the
surface of the ring when the EC is On and OFF. The vortex number was not increased

after turning on the EC (23).

2.3.2 Gauge field cooling process

The London equation states, that js is linear to the VP, so the measured moment should
also be linear with the current of the EC. This linear relation is observed in the experiments
Fig. 3.6. To demonstrate Eq. 2.1, we cooled the system below 7, while the excitation coil
is on (current flows in the excitation coil), meaning: A # 0. When we measured (z-scan®)
while the excitation coil is still on, only the coil’s signal was detected. This is because
Vo= ZA (up to a fraction of ®¢) resulting in j, = 0. When we turn-off the excitation
coil, A = 0, but Vy # 0, and j, = pﬂ;(%Vgp); when measuring again, only the ring’s
signal is present. This cooling process is called gauge field cooling (GFC) and the ring’s

signal and phase transition are identical to what we get when following the ZGFC process.

3Moving the coil with/without the ring through the gradiometer and read the SQUID’s output.
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Comparing Gauge Field Cooling and Zero Gauge Field Cooling with LSCO x=0.22 a-ring
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Figure 2.6: Raw signal of measurement after gauge field cooling (GFC) process, and
after zero gauge field cooling (ZGFC) process and subtraction of the coil’s signal. The
inset shows stiffness measurements (AV,440) of the two protocols. Both in the raw signal
and the stiffness measurements, the two different protocols give similar results. The red

markers and the blue markers are similar but not identical (each one belongs to a different
measurement and follow a different protocol).

This experiment is another verification that the field outside of the coil is insignificant

Figure 2.6 shows the measurements of both GFC and ZGFC protocols.
2.3.3 Critical magnetic flux verification

Equation 2.6 raises two size-relating issues: First, it is constructed for an infinite cylinder
and not for a ring (flat cylinder). Second, it suggests that ®. depends only on the outer
radius. Therefore, it was also important to check the size effect on ®.. This was done by

measuring Niobium (Nb) rings (with known &, and \) with different height or inner/outer

diameter. These experiments where part of Chap. 4 and the results confirm the theory.

2.3.4 Finite size effect verification
It was suggested that the apparent T, of the a-ring is reduced because close to T, the
inter-layer coupling is weak and the system behave as a 1D Josephson array and the inter-

layer stiffness p- have exponential dependence on temperature and the cross section of

the ring. To examine this interpretation, we measured the change of T,, as a function of
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the ring’s cross-section. This was done by polishing the ring (changing its height) and by
cutting the outer diameter of the ring (using again the femto-second-laser). This test was
a big part of the work and is the focus of Chap. 5. The cross section was found to have

significant influence over the inter-plane stiffness.
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ABSTRACT

We provide a detailed account for a method to measure superconducting stiffness ps,
critical current density j., and coherence length &, in one apparatus, without subjecting
the sample to magnetic field or attaching leads. The method is based on the London
equation j = —psA, where j is the current density and A is the vector potential. Using a
rotor free A and a measurement of j via the magnetic moment of a superconducting ring,

we determine p;. By increasing A until the London equation fails we determine j. and
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£. The method is sensitive to very small stiffness, which translates to penetration depth
A <1 mm. It is also sensitive to low critical current density j. ~ 102> Amm~2 or long
coherence length £ ~ 1 ym. Naturally the method does not suffer from demagnetization
factor complications, the presence of vortices, or out-of-equilibrium conditions. Therefore,
the absolute values of the different parameters can be determined. We demonstrate the

application of this method to Las_,Sr,CuO4 with z = 0.17.

3.1 Introduction

Superconducting stiffness ps is defined via the gauge invariant relation between the current
density j, the vector potential A, and the complex order parameter ¥ = ¢(r)ei¢(r) , with
Y (r) > 0, according to

%)
j= —Vo— A 3.1
i= s (ovo-a) (3.1)
where @ is the superconducting flux quanta,

_ 7,[126*2

m*

Ps , (3.2)

is known as the stiffness, and e* and m™* are the carriers charge and mass respectively
(1; 2; 3). 9?2 is often interpreted as a measure of the superconducting carrier density with

a maximum value 1/1%. When V¢ = 0 the London equation

= —peA. (3.3)

is obtained. ps can be expressed in units of length via

where X is known as the penetration depth.

The two most important pieces of information on a superconductor (SC) are embedded
in Eq. 3.1. First, ps provides an indication on the ratio between carrier density and
effective mass. For example, in high temperature superconductors (HTSC) the transition
temperature T, is found to be proportional to the stiffness at low temperatures. This

finding, known as the Uemura plot, must play a key role in any theory of HTSC (4).
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Second, the highest j for which the SC maintains V¢ = 0 and thus the linear relation
of Eq. 3.3 holds, sets the critical current j.. j. also has an interpretation in terms of
coherence length via the shortest distance £ on which ¢ can vary by 2.

However, there is no direct way to measure ps. The standard method is to apply
magnetic field, to measure the penetration depth of the magnetic induction B into a
material, and to use Eq. 3.4 to determine the stiffness (4; 5; 6; 7; 8; 9). However, the
magnetic field raises issues one must consider: first, it is essential to take into account
the sample shape via the concept of demagnetization factor. This factor is known exactly
only for ellipsoidal samples, which are nearly impossible to come by. Second, magnetic
fields introduce vortices, which can complicate the interpretation of the penetration depth
measurements. Third, all methods have an inherent length scale window. The longest
penetration depth that has been measured to the best of our knowledge is 10 pm (5; 6;
7; 8; 9). This is far shorter than a typical sample size. Therefore, there is a temperature
range below T, at which A > 10 pym where the behavior of p, is obscured. For highly
anisotropic samples, this range could extend to temperatures well below 7.

Similarly, there is no direct way to measure the critical current density j.. The standard
method is to connect leads, and to determine the current at which voltage develops across
the sample (10; 11; 12; 13). However, this method could lead to two transitions: First
when voltage develops and power, lower than the cooling power, is injected into the sample.
Second a thermal runaway when the entire sample becomes normal and the voltage grows
exponentially (11). Finally, stiffness and coherence length measurements require different
experimental setups.

Here we present in detail an instrument to measure stiffness and coherence length si-
multaneously, in zero magnetic field and with no leads, based on the London equation
(Eq. 3.3). This method determines ps directly without the use of the penetration depth
concept. When this equation breaks, and ps can no longer be determined, it means the
critical current has been reached. Consequently, we name the instrument stiffnessometer.
We convert the breaking point of Eq. 3.3 to & using a mathematical solution of the full
Ginzburg-Landau equations in the relevant setup (22). As we explain below, the stiff-
nessometer can measure very weak stiffness, which corresponds to A ranging from tens of
microns to millimeters. This allows measurements of stiffness closer to the critical temper-

ature 7T, than ever before, or measuring the stiffness of very anisotropic systems. Finally,
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vortices or demagnetization factor are not a problem for the Stiffnessometer since the
measurement is done in zero field. The stiffnessometer was previously used to measure the
anisotropy of the stiffness in LSCO z = 0.12 (15), but only a brief account of the details

of its operation was given.

3.2 Experimental setup

The method is based on the fact that outside an infinitely long coil (defining the Z direc-
tion), the magnetic field is zero while the vector potential is finite. This vector potential is
tangential and points in the ¢ direction. When such an inner-coil is placed in the center of
a SC ring, the vector potential leads to a current density in the ring according to Eq. 3.1.
This current flows around the ring and generates a magnetic moment, which is detected
by moving the ring and the inner-coil rigidly relative to a pickup-loop. The concept of
the measurement is depicted in Fig. 3.1(a). A typical inner-coil and two superconducting
rings of the cuprate SC Las_,Sr,CuO4 (LSCO) are shown in Fig. 3.1(b). In Fig. 3.1(c)
we present a zoom-in on three different coils with outer diameters of 2, 0.8, and 0.25 mm.
They have 2 to 16 layers of wires with thickness between 10 and 100 pm, and their length
is 60 mm. Our stiffnessometer is an add-on to a Cryogenic SQUID and to a quantum
design MPMS3 magnetometers.

Both magnetometers use a second order gradiometer, rather than a single pickup loop.
The gradiometer is made of three winding groups. The outer two are constructed from
two loops each, wound clockwise, and the inner group is made of four loops, wound
anticlockwise. This is also demonstrated in Fig 3.1(a). The gradiometer ensures that
a magnetic moment generates voltage only when it is in the vicinity of the gradiometer
center. Also, any field uniform in space gives zero signal even if it drifts in time. The
gradiometer is connected to a superconducting quantum interference device (SQUID). The
output voltage V of the device is proportional to the difference between flux threading the
different loops of the gradiometer.

The vector potential outside of an infinitely long coil is given by

Pic

A= L& 3.5
i = 5P (3.5)

where r is the distance from the center of the coil, and ®;. is the flux produced by the
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Figure 3.1: Experimental setup. (a) An illustration of the stiffnessometer: The super-
conducting ring is threaded by an inner coil, placed in the center of a gradiometer, and
surrounded by a main coil that serves as a shim coil. (b) A typical inner coil, 60 mm long
with 2 mm outer diameter. Also shown are two Las_,Sr,CuOy4 rings with a rectangular
cross section. (c) A zoom-in on other inner coils with outer diameters ranging from 2.0 mm
to 0.25 mm, and length of 60 mm.
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inner coil. To check the validity of this expression in our case we calculated numerically
the magnetic field B, and vector potential A, (in the Coulomb gauge) produced by the
inner coil as a function of r and z. This coil is 60 mm long, has an inner diameter (I.D.)
of 0.54 mm, an outer diameter (O.D.) of 0.8 mm, 2 layers, and 1940 turns in total. The
measured LSCO ring has an I.D. of 1.0 mm, an O.D. of 2.5 mm, and a height (h) of
1.0 mm. Fig. 3.2 shows the result of the calculations. The approximation of an infinite
coil, presented by the dashed-doted green line, is perfect for our ring size and even for
much larger rings. The calculation also shows that the strongest field just outside of the
inner coil is 10* times smaller than the field at its center.

The sample is grown using an optical floating zone furnace. It is oriented using x-
ray Laue camera and cut to plates and then into a ring shape using an ELAS master
femtosecond laser cutter. The ring’s plane is the CuQOs plane of the sample. After cutting,
the sample is annealed at 850 C° for 120 h in argon atmosphere.

The measurements are done in two different detection methods. (I) DC scan mode,
where we record the SQUID’s output voltage V' (z) while the relative distance between the
gradiometer and the ring changes when the ring and inner coil move. The DC mode allows
detection of the contribution from the inner coil as well, since the entire coil can be pulled
out of the gradiometer. Our gradiometer detects magnetic moments within a range of
15 mm on each side of its center. This sets the length of our inner coils. When measuring
over a wide temperature range, detection of the inner coil contribution is important in
order to determine the flux it generates at each temperature. (II) VSM mode, where
the ring vibrates around the center of the gradiometer. In this mode the coil does not
contribute to the signal. The VSM mode is fast and allows fine temperature scans without
the need to achieve temperature stability at each measuring point.

There is a risk that field generated in the inner coil leaks since no coil is infinitely
long or perfect. To overcome this leak, a main coil, also shown in Fig. 3.1(a), acts as a
shim to cancel the field on the ring when it is at the gradiometer center. In the Cryogenic
SQUID the main coil has a field resolution of 0.1 uT. The ultralow field (ULF) capability
of MPMS3 allows for field cancellation down to 0.3 uT. Therefore, we can keep the field
on the ring as low as 0.1 y'T' when needed.

The measurements can be done in two different procedures: One is zero gauge field

cooling (ZGFC) in which we cool the ring to a temperature below 7¢, turn on the current
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Figure 3.2: Vector potential and magnetic field profile. Numerical calculation of the
vector potential and magnetic field per current at z = 0 for the inner coil used in this study.
The coil parameters are: length [ = 60 mm, inner diameter = 0.54 mm, outer diameter
= 0.8 mm, 2 layers, and 1940 turns. The ring position relative to the inner coil center is
demonstrated by the double arrows. The vector potential is very well approximated by an
infinite coil over the range of the ring as the dashed-doted green line demonstrates. Inset:

Ag?cl and A7, /Afcl as a function of z, as explained in the main text.
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Figure 3.3: Raw data. SQUID signal for a LSCO z = 0.17 ring at high temperature, when

the ring is not superconducting, and at low temperature when the ring is superconducting.
The inset shows the difference between these measurements.

in the inner coil I when the ring is superconducting, and measure while warming. In this
procedure, the SC minimizes its free energy by setting V¢ = 0 in Eq. 3.1. This value of
V¢ does not change as A is turned on, as long as the current in the coil is below some
critical value (as explained later). In this case Eq. 3.3 holds throughout the measurements.
The other procedure is gauge field cooling (GFC) in which we turn on the current in the
inner-coil at a temperature above T, cool the inner coil and ring below T,, and turn the
current off. To minimize its free energy the SC sets V¢ in Eq. 3.1 such that j is as close
to zero as possible. When A is turned off, V¢ does not change and plays the role of A in
the ZGFC procedure.

To better appreciate why V¢ = 0, even when A is ramped, one can view ¢ as the
phase of an in-plane arrow. Cooling at A = 0 sets all the arrows pointing in the same
direction. Since the phase is quantized, to change ¢ means a twist of all arrows in a closed
loop, such that the phase between the first arrow and last one in the loop changes by 2.
This would lead to a discontinuity in the phase value, a procedure that costs energy, and

generates instantaneous voltage according to the Josephson equation eﬂ*%. A nice analog

is a ferromagnetic ring with the spins pointing in the same direction. Rotating the last
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Figure 3.4: Experimental tests. (a) The signal with a current of 0.3 mA in the inner
coil and 0.1 uT fields demonstrating the quality of the field canceling procedure. (b) The
SQUID signal for open and closed rings when the field is zero and the vector potential is
finite. (¢) The SQUID signal for open and closed rings when the vector potential is zero
but the field is finite. (d) Demonstrating that when A is much smaller than the sample
size the signal is material independent.

spin with respect to the first one by 27 requires us to break a bond. This procedure is not
energetically favorable for a ferromagnet (or the SC ring). Therefore, ramping A leaves
all arrows pointing in the same direction and V¢ = 0, until A exceeds a critical value. At
this point, the current is too high and it is worthwhile for the SC to “break a bond” and
reduce the current.

A typical DC mode measurement is demonstrated in Fig. 3.3. The red symbols rep-
resent the signal when the entire inner coil has moved through the pickup coil at T' > T..
Before the lower end of the inner coil has reached the gradiometer, the flux through it
is zero. During the time the lower end of the inner coil transverse the gradiometer its
contribution to the total flux changes from zero to positive to negative and back to zero.
The upper end of the inner coil has the opposite effect; its contribution to the flux goes
from zero to negative to positive and back to zero. But there is a time (or distance) delay
between the lower-end and upper-end contributions, leading to the observed signal. A
linear drift of the voltage can be easily evaluated as demonstrated by the dotted lines. We
define the inner-coil maximum voltage difference AV7"%* as demonstrated in Fig. 3.3.

At T < T, the ring adds its own signal, as shown in Fig. 3.3 by blue symbols. The ring
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produces current that generates opposite flux to the one in the inner coil. The ring signal
is concentrated on a narrower range on the z axis. By subtracting the high temperature
measurement from the low temperature one, it is possible to obtain the signal from the ring
alone V. as demonstrated in the inset of Fig. 3.3. We define the maximum ring voltage
difference AV'*" as shown in the inset. The ratio AV /AV%* stores the information

on the stiffness, as will be discussed in the Data Analysis Sec. 3.5.

3.3 Tests

To ensure that our signal is not due to leakage of magnetic field from the inner coil or any
other field source, we perform three tests. In the first one we apply current in the inner
coil, measure the field leakage at the ring position using an open ring, and cancel it using
the main coil. Then we increase the field by only 0.1 pT. The measurements before and
after the field increase are depicted in Fig. 3.4(a). They indicate that we can cancel the
field in the ring position to better than 0.1 uT. Clearly in zero field there is no signal. In
the second test we measure the stiffness (zero field and applied current in the inner coil)
of closed and open rings, which are otherwise identical in size. The results are shown in
Fig. 3.4(b). The signal from a closed ring is much bigger than the background from an
open one. In Fig. 3.4(c) we repeat this measurement with an applied field in the main coil
of 0.1 mT, and no current in the inner coil. In this case both open and closed rings give
strong and similar signals. The difference between the two signals is consistent with the
missing mass in the open ring. These tests confirm that the field leakage is not relevant to
our stiffness measurement. Our ability to determine small stiffness depends on how well
we can cancel the field at the ring position.

Another important test of the stiffnessometer comes from comparing the signal from
rings of exactly the same dimensions, but made from different materials. At temperatures
well below T, the stiffness is expected to be strong, namely, the penetration depth should
be much shorter than all the ring dimensions. In this case, as the current is turned on,
and flux in the inner-coil ®;. changes, an electric field is generated in the SC ring Fg.

according to
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Figure 3.5: Temperature dependence. The SQUID signal V. for a Lag_,Sr,CuOy
x = 0.17 ring with the CuO5 planes perpendicular to the ring symmetry axis, at different
temperatures. The inset shows AV /AV™% in the ZGFC and GFC procedures as a
function of temperature.

where A, is the vector potential of the ring. This leads to

Oy =2mr A = — D,

where &, is the flux generated by the SC ring at its center. In other words, when A is
short compared to the ring dimensions, the SC produces flux which exactly cancels the
applied flux through it, regardless of the material used. Therefore, all materials should
produce the same signal. This is demonstrated in Fig. 3.4(d) for niobium (Nb), lead (Pb),
and LSCO. They all have the same AVj..

3.4 Measurements

In this section we present mainly stiffnessometer raw data out of which we are able to

extract ps, &, and j. as a function of temperature in favorable conditions.

34



14 T T T T ! T ! T ! T ! T ! T T

|| Temperature (K) LSCO x=0.17
e 3450
121 . a460 st
° 3465
10} <« 3470 ...-'....
| L4 34.75 .o'.
< osl ° 34.80 ; ...-' Temperature (K)
?é" ' . 3485 Iy 344 345 346 347 348 349 |,
9 [| ¢ 3490 ° 114
110 2
0.4 ° s £
o 6 =
° 14
0.2} o 5
° -0
0.0

O 2 4 6 8 10 12 14 16 18 20
| (MA)

Figure 3.6: Critical currents. The SC ring signal AV/7** as a function of applied current

in the inner-coil I, for different temperatures approaching T.. The inset shows critical
current I., where the signal becomes current independent, as a function of temperature.

3.4.1 Stiffness and its temperature dependence

In Fig. 3.5 we present the stiffnessometer signal evolution with temperature for the LSCO
x = 0.17 ring as measured by the DC mode and ZGFC procedure with I = 0.8 mA.
At temperatures between 3.0 and 34.7 K there is no change in the signal. But, between
34.7 K and T, = 35.53 K the signal diminishes rapidly, as expected. The inset of Fig. 3.5
shows AV /AV™% from both ZGFC and GFC measurement protocols. There is no

difference between the two strategies.

3.4.2 Critical current and its temperature dependence

The stiffnessometer can also be used to measure critical currents. This is depicted in
Fig. 3.6 for the LSCO ring at various temperatures. The signal from the ring AV%*
grows linearly with I at each T', but abruptly becomes I independent at a critical current
I.(T), presented in the inset. It means that the SC can generate only a finite amount of
opposing flux. Therefore, we are detecting j. of the SC.

As I exceeds I., vortices start to flow into the center of the ring, so that j in the ring

never exceeds j.. In other words, once the critical current in the sample is crossed, V¢

35



is no longer zero and becomes V¢ = m/r with m # 0. The SC selects m such that j is

fixed. Therefore, for I > I., the current in the ring and AV are fixed.

3.5 Data analysis

Analyzing the stiffnessometer signal is done in steps: (A) we consider a single pickup loop
and then a gradiometer. (B) The order parameter magnitude |¥| is taken to be constant
in space and the stiffness is weak. Weak stiffness means that the vector potential on the
ring is only due to the applied current. The vector potential generated by the internal
current of the ring is ignored. This approximation is valid when the ring’s current density
is smaller than j. and the penetration length is longer than the sample dimensions. The
weak stiffness analysis is analytical, and valid close (but not too close) to T,. (C) The
order parameter is still assumed to be constant in space but now the stiffness is strong. In
this case, the self vector potential is taken into account. This leads to a partial differential
equation (PDE), which we solve numerically with relatively simple means. (D) A full
solution of the coupled Ginzburg-Landau equations allowing for both |¥| and A to be
space dependent. This level of analysis is required only when the SC is nearly destroyed
by the internal currents, and it is good for extracting j. and €. The case of a very tall
hollow cylinder, is covered in Ref. (22). Consequently, at present we can only place limits

on j. and &.

3.5.1 Single pickuploop and gradiometer

Had we used a single pickup loop, the voltage would have been proportional to the flux
threading it ® = 2n R, A(Ry;), where R, = 13 mm and R, = 8.5 mm for the Cryogenic
and MPMS3 pickup loop radii, respectively. Above T,., maximum voltage is achieved when
the pickup loop is at the center of the inner coil so that V' = k27w R, Aic(Rp, 2z = 0)
where k is a proportionality constant. Similarly, a ring at the center of and parallel with
a pickup loop would generate a maximum voltage proportional to its own flux, V' =
k2m Ry Age(Ryp, z = 0), where A, is the vector potential generated by the ring. Therefore,

vaer Age(Rpi, 2 =0)
vmaz A (Ry, 2z =0)

(3.6)

Next, we convert between the signal detected by a gradiometer to the signal that would
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have been detected by a single pickup loop. We find a conversion factor G from the vector
potential evaluated on a single pickup-loop AP to the differences in the vector potential
generated by the gradiometer AA9. This has to be done for both the ring and the inner
coil. The vector potential of a ring with magnetic moment m on the pickup loop depends
on the moment’s height z from the plane of the loop according to A = 27rmR§l/(R§l +z2)%.

Therefore, for a ring and our gradiometer

— p

AU(Ry,z=0) (R%+(z+Az0)%)3  (R%+2%)

Ale(Ry,z) —2R}) N 4R3)

3

N _2Rpl
3
(R?)l + (Z — Azpl)2)§

, (3.7)

where Az, = 7.0 mm and Az, = 8.0 mm is the separation between the different groups
of gradiometer windings for Cryogenic and MPMS3 magnetometers, respectively. The
difference between the maximum and minimum of this function is AAY, /A%l = 1.70 and
3.37, again respectively, are the conversion factor for the ring.

To convert from Afcl to AAY we plot by the green line in the inset of Fig. 3.2 the vector
potential generated by our coil at R, as a function of z, Afcl(z) The plot is specific for

Azp = 7.0 mm. The function

AL(2) 24P (2 + Azy) +4AP (2) — 24P (2 — Azy) 58)
A% APL(0) '

is also plotted in the inset by the blue line. The difference between the maximum and

minimum of this function is the conversion factor for the inner coil. We find numerically

that AAY /AP = 0.47. Thus
AVper AL
avm =

(3.9)

with G = 3.62 and 3.07 for Cryogenic and MPMS3 magnetometers, respectively. By
measuring AV /AV one can predict the expected vector potential ratio between
the coil and the ring at the pickup-loop position. As we show below, G could also be
calibrated experimentally.
As for the VSM method, the magnetic moment m of the ring and AP are related by
m AR,

—— =F 3.10
A‘/;rcnaa: A;fé ( )

where F' is a calibration factor. In the GFC procedure AV;** is measured before the
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coil current is turned off. F' is determined by measuring m, and calculating Als)é/ Afcl in

conditions that are not sensitive to the stiffness, as demonstrated in Sec. 3.3.

3.5.2 Weak stiffness, |¢(r)] = 1y

The current from each ring element is j(r)hdr where h is the ring height and dr is a ring

element width. Using the London equation, the magnetic moment generated by each ring

element is dm = %dr. Integrating from the inner to the outer radii yields the total
moment of the ring m = %(r%m —r2), and
m
Age = 3 (3.11)

Using Eq. 3.4, the penetration depth is given by

A=

2 _ 2 .
h(rout Tzn) le(Rpl) ) (312)

SRy se(Bpl)

Since all the dimensions of the ring and pickup loop are on the order of 1 mm, and we can

measure voltage ratios to better than 5%, we can measure X on the order of 1 mm.

3.5.3 Strong stiffness, [1(r)| = vy

In the strong stiffness case, the total vector potential experienced by the ring A; is the
sum of A;. and A,.. Using Faraday’s and London’s equations, with B =V x A, and the

transformation ¢ (r) /1y — 1(r), one finds that

2
2 w (I’) (I)ic -
\Y Asc = \2 (271’7“()0 + Asc> ) (3'13)

where ¢ (r) = 1 inside the SC and zero outside. The Coulomb gauge is built into Eq. 3.8
inside the ring since for any vector field F, V - V x F = 0. Outside of the ring this gauge
has to be imposed separately. In cylindrical coordinates As. = A(z,7)¢, and with the

coordinate transformation

I'/Rpl — T, A-SC/AiC(Rpl) — A, A/Rpl — A (3.14)

38



A\(raz)/Aic<Rpl)
4

1.5 2 2.5
r (mm)

Figure 3.7: A, distribution inside the ring. The total vector potential obtained from

the solution of Eq. 3.15 and the vector potential of the inner-coil A;., as a function of r
and z for \/Ry = 0.1/13, 4, = 1 mm, 76y = 2.5 mm, h =1 mm.

the equation in the ring becomes

0z2 or2  rOor r? A2

A+ - 3.15
- (3.15)

PAPA 104 A ¢2(r)< 1>
with 7, z, and A in units of Ry, and A is in units of A;.(R,;). The solution of this equation,
evaluated at Ry, is the quantity one would measure with a single pickup loop as indicated
in Eq. 3.6.

We solved Eq. 3.15 for different A values and our LSCO ring parameters with both
the COMSOL 5.2a and FREE-FEM (16) softwares. We used finite elements in a box
[-L.,L.] x [0,L,] where L, = L, = 8. Dirichlet boundary conditions are imposed at
z==2L,, r =0, and r = L,. Maximal mesh spacing is set to be h = 0.01 in the ring
and its immediate vicinity, and h = 0.25 elsewhere. The total vector potential A; for
ARy = 0.1/13, and for all values of r and z in the ring cross section is presented in
Fig. 3.7. Clearly the vector potential, hence the current, is strongest close to the inner
radius of the ring. They decay towards the center of the ring. The solutions at r = 1
and z = 0 and our ring parameters, for a range of A values, and different magnetometers,
are presented in Fig. 3.8 on a semi-log plot. The inset is a zoom-in on the long A region

emphasized by a yellow rectangle. The solid line represents Eq. 3.12 again with our LSCO

39



002 LA | oI | ":_1 T
I 2 0.00
0.00 - &
L < -0.01+
-0.02 | =
0.04} P
-0. - [ - - — — Approximation 7
"o - R T Aopp 60 80
% -0.06 i (R /M2
< -008f
€ -010+
< o012l MPMS3 Cryogenics
014}
-0.16 |
_018 ool ol ool ol ra el sl ra el
10° 100 10 102 10* 10° 10° 107

(Rp /A)?

Figure 3.8: Solution of the stiffnessometer PDE. A semi-log plot of the solution of
Eq. 3.15 evaluated at the pickup-coil radius, for different values of (R, /A)?. The inset
shows the behavior for large A. The solid line is given by Eq. 3.12.

ring parameters. There is a good agreement between the PDE solution at long A and the
weak-stiffness approximation.

In Fig. 3.8 we see that when the penetration depth is very short, A’;é/Afé = —0.16
for the MPMS3. Multiplying the absolute value of this number by the MPMS3 G = 3.07
we expect a saturation value of AV /AV = (0.49. The measured value, however,
is 0.516 as seen in the inset of Fig. 3.5. The calculated and experimental G factors are
somewhat different. The experimental “G factor” is determined by dividing the measured
saturation voltage ratios by the numerical saturation value. For the presented data of

LSCO « = 0.17 this yields G = 3.22.

3.5.4 Ginzburg-Landau

When the current j somewhere in the SC is strong enough to destroy superconductivity,
1) becomes space dependent even inside the SC. One has to solve two Ginzburg-Landau
equations simultaneously. Consider a hollow long cylinder. Using the transformation

21 Ry Ase/Po — Ase and normalizing all lengths by R, these equations are given by

40



0?Ase  10A,  Ase  V2(r) J
- — = A — 3.16
or? r or 72 A2 ( se + ) ’ (3.16)
and
o%p 18y J\ 2
2 (Y 1OV _ 3 2 v
§ <8r2 + C%) v |1-¢ (Asc + T) . (3.17)
The applied flux is now expressed explicitly in the equations by
J = ;. /Dy, (3.18)

and Ag.(0) = Agc(00) = 0. For r inside the SC, v (r) > 0, outside ¢(r) = 0. The other
boundary conditions are ¥’ (rin) = ¢’ (rout) = 0. The analysis of Eqs. 3.16 and 3.17 for the
case £ < A < 1 is described in Ref. (22).

The emerging picture is that when J is small, the analysis of Sec. 3.5.3 is valid. Only
for J > rfn /V/8EN, the order parameter’s magnitude ¢ begins to diminish in the inner
rim of the cylinder and the cylinder’s hole is effectively larger than r;,. Nevertheless, the
SC still expels the flux of the inner coil and no critical point appears in Ag.(Ry). The
effective hole size TZJ:f increases with increasing J, until 1) survives only on a boundary
layer of width A at ryyu. At even larger J, the SC is no longer able to expel the applied
flux, A,. does no longer grow with I, and vortices are expected to penetrate into the SC
hole. These vortices are manifested in an increase of V¢. This behavior occurs at a folding
point given by

2

TOU
Jtold S \/égtx (3.19)

The name “folding” means that increasing J past Jy,q does not change the solution. The

smaller { and A, the better the approximation of Jyyq is.
To evaluate the critical current j., we realize that when j is pushed to a boundary layer
of width A at r,y, it is still capable of expelling the inner-coil flux, but higher current will

destroy SC completely. Therefore, ®;. = pgje.Arr2,,. Using Eqs. 3.18 and 3.19 we find

00

e 2 3.20
j Jormonie (3.20)

where now A and £ are in units of length.

Although Eq. 3.19 is derived for a tall cylinder, we anticipate that it is valid for our
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Figure 3.9: Temperature dependence of normalized signals (a) AV /AVe®
obtained by DC measurements (see Eq. 3.9) as a function of temperature close to the
phase transition. The yellow shade is the region where the full Ginzburg-Landau analysis
is valid. The inset is a zoom-out on the entire temperature range. (b) The magnetic
moment normalized by the coil signal (see Eq. 3.10) obtained by VSM measurements.
Again, the inset is a zoom-out on a broader temperature range.
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ring. As long as A is smaller than all dimensions of the ring, currents will flow on the
boundaries of the “effective ring”, as in Fig. 3.7 and will be strongest at the inner rim of

the “effective ring”, but with a J dependent r;{ I A change in behavior of the signal will
eff

take place only when r,}”" ~ 75, — A as in the cylinder case.

3.6 Results

Figure 3.9(a) depicts AV,%* AV obtained by DC measurements. The signal is flat at
low T and drops close to T,. As the current decreases, the drop of the signal is postponed
to higher temperatures. At currents below I = 0.4 mA a knee develops in the middle of the
phase transition. Nevertheless, there is one T, = 35.53 K for all currents. Isolated islands
of SC with stronger stiffness cannot be the origin of these knees since only macroscopic
closed lopes of SC can contribute to the signal. We speculate that these knees are related
to SC surface states (17), with very small critical currents. In fact, knees were seen before
in magnetization measurement on needle shaped LSCO, at very low fields, but they were
not given much attention (9). The inset of Fig. 3.9(a) shows the full temperature range
demonstrating that the normalized signal is independent of the applied coil current. In
Fig. 3.9(b) we show the m/AV7** data collected using the VSM method. Quantitatively,
it looks the same as the DC measurement but less sharp and with few glitches of the
signal. The knees disappear or smear and the uprise of the signal when cooling from T, is
less abrupt. The inset again demonstrates that at low temperature the magnetic moment
is proportional to the applied current as is mirrored in AV;7***.

Using the measurements presented in Fig. 3.9(a), the experimentally determined con-
version factor GG, and the solution of Eq. 3.15 presented in Fig. 3.8, we extract the pene-
tration depth as if the solution is valid for all temperatures. The extracted \ versus tem-
perature with two applied currents I = 0.8 mA and I = 0.2 mA is depicted in Fig. 3.10
on a log scale. Ideally we would like to find the I — 0 limit of \. However, at low temper-
atures where the signal saturates, the determination of A is noise. Close to T, there is a
major behavior change at low current due to the knee. Moreover, a full Ginzburg-Landau
analysis requires A < R,. This leaves a small window where we can properly analyze
our data. This window is marked by a yellow circle in Fig. 3.9(a), and by yellow shade in

Fig. 3.10. We zoom-in on the shaded area in the inset of Fig. 3.10 and show with arrows
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Figure 3.10: Temperature dependence of the penetration depth. A extracted from
the data of Fig. 3.9(a), based on Eq. 3.15, over the full temperature range. The inset arrows
mark the \’s rang that meet all criteria required for full Ginzburg-Landau analysis.

the temperature range where our analysis is valid.

As for ¢ and j.; in Fig. 3.6 AV*(]) is measured at temperatures approaching T,
but before the knee. We identify I. in this figure with Jfq of Eq. 3.19. Calculating A at
currents much lower than I, the flux generated by the coil at I. based on Fig. 3.2, and
Jtoia from Eq. 3.19 we extract . The results for both A and £ are depicted in Fig. 3.11.
Since £ < X there is a small temperature region where the Ginzburg-Landau analysis is
self-consistent. Using Eq. 3.20, we find that the critical current density is on the order of
103> Amm~? at the relevant temperature range, in agreement with measurements done in

a field of 0.03 T on similar samples (18).

3.7 Conclusions

We demonstrated that the Stiffnessometer can measure penetration depth on a scale of
millimeters, two orders of magnitude longer than ever before. This allows us to perform
measurement closer to 7. and explore the nature of the superconducting phase transition,
or determine the stiffness at low T in cases where it is naturally very weak as in thin
films (19). The Stiffnessometer also allows measurements of very long coherence length &

on the order of micrometers, equivalent to small critical current density on the order of
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Figure 3.11: Temperature dependence of the penetration depth and coherence
length. A (T) and £ (T) extracted from the data using the full Ginzburg-Landau analysis
at a small temperature region where all approximations are valid and the stiffnessometer
is not saturated.

103 Amm ™2, properties which again are useful close to 7. The measurements are done in a
single apparatus, at zero magnetic field, and with no leads, thus avoiding demagnetization,

vortices, and out-of-equilibrium issues.
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Chapter 4
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ABSTRACT

A long excitation coil piercing a superconducting ring is used to generate an ever increasing
persistent current in the ring, until the current destroys the order parameter. Given that
the penetration depth A is known, this experiment measures, hypothetically, the coherence
length &. We examine various aspects of this theoretically driven hypothesis by testing
niobium rings with different dimensions, and by comparing the results to the known values
of £&. We then apply the method to two Laj g7551(.105CuQy4 rings at T — 0. In one, the
current flows in the CuOs planes, hence it is set by £,. In the other, the current must
cross planes and is determined by &.. We find that £, = 1.3 £ 0.1 nm, and &4 < 2.3 nm,

indicating that at low temperatures the Cooper pairs are three dimensional.
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4.1 Introduction

In the world of superconductivity there are two important length scales: the penetration
depth X, and the coherence length &. From an application point of view, A~2 is a measure
of superconducting carrier density and determines the current-carrying capabilities of a
superconductor, while £ sets the dimensions of Josephson junctions. There is an arsenal of
experimental methods to directly measure the superconducting stiffness ps and find A via
the relation ps = ”0—1)\2 in different crystal orientations. However, methods of measuring
¢ are limited. In the cuprates the coherence length in the ab plane ({,) was measured
by the electron—boson spectral density function (1) and the vortex diameter via scanning
tunneling microscopy (STM) (2). More commonly, one finds the second upper critical field
H_o near T, using one of various methods, such as resistivity (3), the vortex-Nernst effect
(4), specific heat (5), or thermal conductivity (6), extrapolating to 7" = 0 using theories
that are not necessarily accurate over the whole temperature range, and uses the relation
€ =+/®o/2mH. (3; 7). All methods find &, on the scale of 1.5 — 3 nm.

Measuring the coherence length in the ¢ direction (§.) in cuprates is more difficult
since it is smaller and because cleaving in a plane including the c axis is challenging,
making scanning techniques nearly impossible. &. is bound by 1.5 nm, the thickness of
a superconducting BisSroCaCuzOg4, (Bi2212) monolayer (8). Extrapolations from high
temperatures lead to & ~ 1 A (7; 3). The only measured value of £ = 0.86 nm at
T — 0, as far as we know, is from an H.o of 250 T obtained using the electromagnetic flux
compression method (9). This number has been questioned due to the transient nature
of the magnetic field. The exact determination of &. is becoming exceedingly important
due to Josephson junctions created by twisted Bi2212 crystals (10; 11; 12; 13; 14) showing
fractional Shapiro steps (15; 16), and as a challenge for cuprates theory.

A new approach for measuring & was suggested, and a very simple analysis formula
was given, in Ref. (17). We name this approach the “Xiometer”. Here, we briefly present
the approach, justify the formula intuitively, and test it on Nb. Then, we apply it to &
measurements in Laj g7551r0.125CuOy (LSCO-1/8). We find that the {, = 1.3 £ 0.1 nm
determined by the Xiometer at 7' — 0 is similar to the one obtained from H. = 250 T
of Ref. (9) and calculation in Ref. (7). The implication of this finding is that the Cooper

pairs are more spherical than previously thought.

49



(b)

coil

: SC ring
== =
gc—-)&_ Gradiometer
=
===
——
//;__ External
| coil

L

Figure 4.1: Experimental setup: (a) A niobium ring on a SC excitation coil (photo), an
illustration of the gradiometer, and the external coil that serves as a shim. (b) Niobium
rings with different inner radii (up), outer radii (middle), and different height (down).
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The Xiometer, as the Stiffnessometer (18), is based on a long, current-carrying exci-
tation coil (EC) piercing a superconducting (SC) ring and a measurement of the ring’s
magnetic moment. The measurement is done by moving both the ring and EC rigidly rel-
ative to gradiometer-type pickup loops as demonstrated in Fig. 4.1(a). The gradiometer is
connected to a superconducting quantum interference device (SQUID). The ring and EC
are cooled to T' < T, and only then the current in the EC is turned on, and the magnetic

moment of the ring is measured. The gauge invariant London equation states that

. dg
= —ps | Aot — —V , 4.1
J P < tot 5 90) ( )

where j is the superconducting current density, A is the total vector potential, ®q is
the flux quanta, and ¢ is the phase of the superconductor’s order parameter. Ay, is a
combination of the EC vector potential A.. = %@, and the SC ring self-induced vector
potential Ag..

To minimize the kinetic energy after cooling, the superconductor sets its own phase
gradient to zero. Since this phase is quantized, turning the EC current on, gently, conserves
the phase. Therefore, at the start of a measurement, the London equation j = —psA;y
is valid. In principle, this relation can be used to determine the stiffness and in this case
the apparatus works as a Stiffnessometer. However, for bulk crystals at low temperatures,
when A is mach smaller than all dimensions of the sample, the SC ring exactly expels
the applied flux, to keep A = 0 deep inside the ring, regardless of A. In this case, the
apparatus cannot be used to properly determine the stiffness, but only the break point of
the London equation, which is set by A as we explain below. For crystals at T' < T, we

use literature values of A and determine £. Hence, the name Xiometer.

4.2 Experimental details

The EC is homemade from a NbTi SC wire with 8 layers of 600 windings each (4800
in total), a wire diameter 0.106 mm, core diameter 0.35 mm, outer diameter 1.95 mm,
coil length 60 mm, and flux to current ratio of 1.21 - 10~7 T'm?/A. The apparatus is an
add-on to a Cryogenics S7T00X SQUID magnetometer. External magnetic fields can be
canceled by an external coil shown in Fig. 4.1(a), with a resolution of 5 x 10=7 T. The

gradiometer radius is R, = 13 mm, its total height is 14.0 mm, and it is made of two
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windings clockwise, four anticlockwise, and two clockwise, also depicted in Fig. 4.1(a).
The set of Nb rings with different dimensions used in the first part of this experiment is
shown in Fig. 4.1(b).

A typical data set of the SQUID output voltage V as a function of ring position z, is
depicted in Fig. 4.2 with and without a ring. In these measurements the EC was allowed
to transverse the gradiometer from one side to the next. The peaks and valleys away
from z = 0 are due to the ends of the coil moving through the different winding groups of
the gradiometer. Without the ring (red symbols) a moderately concave signal is observed
around z = 0. This occurs when the center of the gradiometer and the center of the
coil are at the same height. In this situation, flux through the gradiometer due to the
EC barely changes, therefore the measurement is sensitive mostly to As.. With the ring,
a new signal (blue symbols) appears around z = 0. The difference is the net SC ring’s
signal (inset) and its amplitude is proportional to the magnetic moment m (or Ag.) of
the ring. We note that a linear baseline was subtracted from both data sets due to the
EC asymmetry (wires enter and exit from one side only). Linear baseline subtraction is
irrelevant for the data analysis (see below).

As the EC current increases, the signal from the EC traversing the gradiometer over-
whelms the ring’s signal, as is clear from Fig. 4.3. Therefore, we limit the motion to a
small region around z = 0. Consequently, it is impossible to detect the bottom of the
signal and evaluate its amplitude. However, it is clear that the top of the peak at z =0

becomes sharper with increasing current. Therefore, we use the second derivative of the

SQUID’s output voltage V' = Cf;‘z/ (z = 0) as a measure of m. This method also eliminates
the undesired linear contribution of the coil’s asymmetry. The conversion from V' to m
is explained shortly.

Finally, to keep the leads, coil, and ring cooled, liquid helium is sprayed via a diffuser
from the bottom of the sample chamber on the EC and sample, and pumped along the
current leads all the way to the top of the cryostat just before thicker leads are connected
to the power supply. This way the EC remains cold even when currents of more than 10 A
are applied.

The measured samples are 99.9% pure Nb rings, and two LSCO-1/8 single-crystal

rings, grown using a traveling solvent floating-zone technique and cut with a laser cutter.

Laue x-ray diffraction is used to identify the orientation of the crystals and the two rings
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Figure 4.2: Raw data. Main: The SQUID output voltage V as a function of the relative
position z of a Nb ring and coil to the gradiometer center. The EC current is 10.0 mA,
T = 1.6 K, and the ring dimensions are r;, = 1.0 mm, 7, = 1.75 mm, and A = 1.0 mm.
Red spheres are the EC signal without the ring. Blue spheres are the combined signal
of the ring and coil. The dashed black line shows a numerical fit used to determine the
conversion factor between the output voltage of the SQUID and the magnetic moment of
a sample. Inset: The subtraction of the two measurements giving the ring’s signal. The
data presented are after subtraction of a linear component.
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Figure 4.3: Raw data in a limited scan length. SQUID output voltage as a function of
the ring’s position z for different applied EC currents. For low currents (0 — 4 A) it is
possible to measure the full signal of the coil and the ring (see Fig. 4.2). For higher
currents the coil’s signal exceeds the detector’s dynamic range and a measurement on a
shorter range is needed. Consequently, the edges of the coil are not observed and the
signal amplitude cannot be determined. Therefore, the second derivative of the signal V)’
is used to determine the moment as explained in the text.
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are cut in different orientations of the CuO, planes relative to the ring’s symmetry axis.
In one ring the CuO» planes are parallel to the symmetry axis. In the other ring the planes
are perpendicular to this axis. We address the two rings as a and c rings, respectively. In
the ¢ ring, current can flow around the ring on the CuO, planes without crossing planes.

In order to flow around the a ring current must cross the CuOs planes.

4.3 Analysis

A detailed derivation of the Xiometer analysis theory can be found in Ref. (17). Here, we
provide a back of the envelope calculation that gives the same answer up to a numerical
factor. Since, as mentioned before, deep in the superconductor there are no currents (and
no fields), A¢r = 0. Therefore, the magnetic flux of the EC, ®.., is perfectly matched
by the magnetic flux from the supercurrent ®,. in the ring, namely, ®;,. = —P¢.. For
low ®.. we assume that the supercurrent density j is uniform along a cylinder of width
A attached to the inner rim of the ring at r;, as in Fig. 4.4(a). The magnetic flux of
such a current is ¥, = ,uo)\jﬂrfn. When &, increases, 7 will also increases until it
reaches the critical current density j. of the SC. When this happens the order parameter
is destroyed next to the inner rim, and the current has to retreat from the inner rim to an
effective radius r.s¢ demonstrated in Fig. 4.4(b). This process continues until 7cf¢ = 7ous
as shown in Fig. 4.4(c). In this situation vortices start entering the sample, and the
applied flux is named the critical flux; it is given by ®. = pgAjemr2,,. Using the definition

. * . . .
J = e'nv = 7 where n, v, €*, and m* are the carrier’s density, velocity, charge, and
HoA“e

mass, respectively, and the relations of the critical momentum m*v, = f%g (19), and the
flux quanta &g = 27h/e*, one finds
(I)C Tgut
—¢ _ _out 4.2
Dy 2\/aXE (42)

where o = 3. In the exact derivation (17) o = 2.

It should be pointed out that the SC produces a field in the volume where the order
parameter is destroyed. One might wonder if this field penetrates as vortices into the
SC when it is of type II. It was found in Ref. (20; 21), using a scanning SQUID, that in
an ultrathin film that shows vortices due to a sporadic magnetic field, the current in the

coil does not add new vortices. This is not surprising since there is no pressure from the
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Figure 4.4: Schematic description of the superconductor screening currents evolution for
increasing flux in the EC. Each sketch shows cross sections of the EC and a cylindrical ring.
Yellow and gray regions represent the normal and SC states, respectively. The current
flows in the red region. The flux current relations are given at the top of each panel. (a)
Low flux in the EC resulting in screening current along the inner rim of the cylinder. (b)
Stronger flux in the EC forces the screening current to move outwards while the inner
region of the cylinder becomes normal. (c) The critical flux is reached once the screening
current reaches the outer radius of the cylinder and its bulk is no longer SC.

twisted field lines bypassing the sample to penetrate into the sample. In our case the field
lines are straight and in the center of the sample. They are in the most convenient place
to be and do not need to penetrate the sample as vortices.

The output voltage of the SQUID is related to the flux through the gradiometer by
V = K® where K is a conversion factor. When a sample with magnetic moment m is
located at height z from the center of a single pickup loop with radius R, its flux through

R2
the loop is @ = 5 BOZpL ™ To calibrate K we measured our coil for which we calculate

the magnetic moment as a bundle of current loops with moment m = %I each, where r

is the loop radius. The voltage output in this case is
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Figure 4.5: Critical current of different rings. Nb ring’s magnetic moment m obtained
using Eq. 4.4 as a function of current in the excitation coil. The measurements are arranged
in three sets. In each set only one parameter of the rings is changing. (a) Only the inner
radius of the rings varies, (b) only the outer radius of the rings differs, and (c) only the
height of the rings changes. The experiment was done more than once with each ring for
statistical purposes. The signal grows linearly with the EC current until it drops at some
critical current I.. The drop is due to a phase slip. The critical current varies between
runs of the same ring due to thermal instability.
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where z is the distance between the center of the coil and the center of the gradiometer, A,
is the difference between the gradiometer’s bundles, r; is the radius of the ith layer, and z;
the height of the ith loop. By fitting Eq. 4.3 to a measurement of the coil with a current of
10.0 mA, as shown in Fig. 4.2, we find the conversion factor to be K = 63.035 V/Tmm?.

This procedure gives

m=4.95%10710. v (4.4)

where V{ is in units of mV/mm?, and m in units of Am?.

4.4 Results

To test Eq. 4.2 we measure a set of Nb rings with different inner and outer radii, and
different heights. Figure. 4.5 presents m as a function of the applied EC current I. m(I)
is linear for low currents. At some high current I., a jump in m is observed indicating
that the critical flux in the coil ®. is reached, and that a phase slip has taken place. This
process was done more than once for each ring for better statistics.

The results of the experiment with the Nb rings are separated in Fig. 4.5 into three
sets. In each set only one parameter is changing: the inner radius r, [Fig. 4.5(a)], outer
radius 7y [Fig. 4.5(b)], and the ring’s height h [Fig. 4.5(c)]. The variation of r;, is limited
because of the EC. Nevertheless, it does not seem to impact the ®.. Variation of ry,; has a
noticeable and systematic influence on the critical flux as expected from Eq. 4.2. Finally,
between the smallest A = 0.5 mm and all other values of h a variation in ®,. is detected.
This is not expected from Eq. 4.2. We ascribe this exception to the fact that Eq. 4.2 is
derived in the limit of a tall, cylinderlike ring and the A = 0.5 mm is not in this limit.
A summary of I. as a function of L (L = 7, Tout, h) is depicted in the inset of Fig. 4.6
where it is clear that r,,; is the most important parameter. The error bars are statistical.

In Fig. 4.6 we present the 7, dependence of I. on a full scale including the origin.
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Figure 4.6: Critical current as function of different Nb ring sets. Main: The set with
changing outer radius. The black line follows Eq. 4.2 for A = 38 nm and £ = 39 nm (21).
The red line is a parabolic fit to the data points (through the origin). The fit parameter
amounts to A6 = 1267 & 32.5 nm?. Inset: Black squares-rings with different inner radius;
red circles-rings with varying outer radius; blue triangles-rings with changing height. The
dashed lines are a guide to the eye.

When taking A and £ of Nb as 38 and 39 nm, respectively, from Ref. (21) and applying
those in Eq. 4.2 (black line), we find reasonable agreement between the measurements and
theory. When fitting Eq. 4.2 to the data (red line), we find A\é = 1267 + 32.5 nm? while
the literature value is 1482 nm?.

Having established Eq. 4.2 we use it to measure the coherence length of the two LSCO-
1/8 rings shown in the insets of Fig. 4.7 with orientation and planes illustrated in the main
panel. Previously, it was found that the persistent current critical temperature for the ¢
ring is higher than for the a ring (22). Figure. 4.7 shows m at T'= 1.6 K as a function of
EC current for both the a and ¢ rings. At low currents, m([) is linear for both rings. But
at about 2.2 A, the a-ring moment m, has a break point where its behavior changes. The
c-ring moment m.(I) stays linear all the way up to our maximum current of 12.4 A. We

interpret this break point as the critical flux where vortices start entering the sample.
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Figure 4.7: Critical flux determination of LSCO-1/8. m(I) for two rings. The insets show
pictures of the rings, the orientation of the planes, and the directions of the current in the
ring jup and je. Their parameters are r§, = 1.05 mm, 74, = 1.42 mm, and h, = 1.02 mm,
and 7, = 1.05 mm, 7§, = 1.35 mm, and h® = 0.89 mm. I. of the a ring is 2.2 A and I.
of the ¢ ring is higher than the maximum available current of 12.4 A.
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4.5 Discussion

The fact that no break point is observed in the ¢ ring suggests that the flow inside the
CuOs plane is not disrupted by a coil current of a few amperes. Alternatively, for current
in the ¢ direction, the radial penetration depth A\, is more than ten times that of current
in the ab plane .. According to Eq. 4.2 (given an isotropic &) the smallest critical flux is
due to current in the ¢ direction. Therefore, the assumption here is that the bottleneck for
current in the a ring is the flow between planes (¢ direction), and that the order parameter
is destroyed first on the planes perpendicular to the flow.

At the experiment’s temperature, the penetration depths of LSCO with x = 0.125 are
Ae = 4500 nm (23), and Ay, = 350 nm (22). The outer radii of the a and ¢ rings are
row = 1.42 mm, and r§,, = 1.35 mm. Following Eq. 4.2 with A. we find { = 1.34+0.1 nm.
We can also place an upper bound on £, < 2.3 nm using Agp.

The Ginzburg-Landau & at T' = 0, which we measure with the Xiometer, is related to
the Cooper pair size &y by a factor of 0.74 (19). &, in turn, is set by hvp/A where vp is
the Fermi velocity and A is the superconducting gap. However, in the cuprates A varies
along the Fermi surface, vr in the ¢ direction is not known, and there is no theory that
can be used to extract more fundamental properties or be contrasted with our findings.

A derivation of such a theory could be useful.

4.5.1 Conclusions

To summarize, the relation between the dimensions of a superconducting ring, pierced
by a long coil, and the critical flux in the coil, is tested. It is demonstrated that if the
ring’s height is similar to or bigger than its radii, only the outer radius of the ring is
relevant, and the critical flux depends quadratically on this radius. Using this observation
we measure &, and & of LSCO-1/8 at T' = 1.6 K. Despite the cuprates being very
anisotropic systems, we find that &. is similar to the literature value of &4, indicating a

three-dimensional Cooper pair.

Acknowledgements

This research was funded by the Israeli Science Foundation Grant No. 3875/21.

61



Bibliography

1]
[2]

Hwang J., 2021, Scientific Reports 11:11668, doi.org/10.1038/s41598-021-91163-w

Pan, S.H., Hudson, E.W., Gupta, A.K., Ng, K.W., Eisaki, H., Uchida, S., & Davis,
J.C., 2000, Phys. Rev. Lett. 85, 1536, doi:10.1103 /PhysRevLett.85.1536

Oh, B., Char, K., Kent, A.D., Naito, M., Beasley, M.R., Geballe, T.H., Ham-
mond, R.H., Kapitulnik, A., & Graybeal, J.M., 1988, Phys. Rev. B 37, 7861,
doi:10.1103 /PhysRevB.37.7861

Oh, B., Char, K., Kent, A.D., Naito, M., Beasley, M.R., Geballe, T.H.,
Hammond, R.H., Kapitulnik, A., & Graybeal, J.M., 2003, Science 299, 86,
doi:10.1126/science.1078422

Wang, Y., & Wen, H.H., 2008, EPL 81 57007, doi:10.1209/0295-5075/81 /57007

Grissonnanche, G., Cyr-Choiniere, O., Laliberté, F., René de Cotret, S., Juneau-
Fecteau, A., Dufour-Beauséjour, S., Delage, M.E., LeBoeuf, D., Chang, J.,
Ramshaw, B.J., Bonn, D.A., Hardy, W.N., Liang, R., Adachi, S., Hussey,
N.E., Vignolle, B., Proust, C., Sutherland, M., Kramer, S., Park, J.H., Graf,
D., Doiron-Leyraud, N., & Taillefer, L., 2014, Nature Communications 5:3280,

d0i:10.1038 /ncomms4280

Petrenko, E.V., Omelchenko, L.V., Terekhov, A.V., Kolesnichenko, Yu.A., Ro-
gacki, K., Sergeyev, D.M., & Solovjov, A.L., 2022, Low Temp. Phys. 48, 755-762,
doi:10.1063/10.0014015

Yu, Y., Ma, L., Cai, P., Zhong, R., Ye, C., Shen, J., Gu, G.D., Chen, X.H., & Zhang
Y., 2019, Nature 575 156-163, doi:10.1038/s41586-019-1718-x

62



[9]

[10]

[11]

[12]

[14]

[15]

Sekitani, T., Miura, N., Ikeda, S., Matsuda, Y.H., & Shiohara, Y., 2004, Physica B
346-347, doi:10.1016/J.PHYSB.2004.01.098

Lee, Y., Martini, M., Confalone, T., Shokri, S., Saggau, C.N., Wolf, D., Gu, G.,
Watanabe, K., Taniguchi, T., Montemurro, D., Vinokur, V.M., Nielsch, K., & Poc-
cia, N., 2023, Adv. Mater. 35, 2209135, doi:10.1002/adma.202209135

Klemm, R.A., 2005, Adv. Philos. Mag. 85, 801, doi:10.1080/14786430412331314573

Song, X.Y., Zhang, Y.H., & Vishwanath, A., 2022, Adv. Phys. Rev. B 105, L201102,
doi:10.1103 /PhysRevB.105.1.201102

Lee, J., Lee, W., Kim, G.Y., Choi, Y.B., Park, J., Jang, S., Gu, G,
Choi, S.Y., Cho, G.Y., Lee, G.H., & Lee, H.J., 2021, Nano Lett. 21, 10469,
doi:10.1021 /acs.nanolett.1c03906

Takano, Y., Hatano, T., Fukuyo, A., Ishii, A., Ohmori, M., Arisawa, S., Togano, K.,
& Tachiki, M., 2002, Phys. Rev. B 65, 140513, doi:10.1103/PhysRevB.65.140513

Zhao, S.Y.F., Cui, X., Volkov, P.A., Yoo, H., Lee, S., Gardener, J.A., Akey,
A.J., Engelke, R., Ronen, Y., Zhong, R., Gu, G., Plugge, S., Tummuru, T., Kim,
M., Franz, M., Pixley, J.H., Poccia, N., & Kim, P., 2023, Science 382, 1422,
doi:10.1126/science.abl8371

Tummuru, T., Plugge, S., & Franz, M., 2022, Phys. Rev. B 105, 064501,
doi:10.1103/PhysRevB.105.064501

Gavish, N., Kenneth, O., & Keren, A., 2021, Physica D 415, 132767 1,
doi:10.1016/j.physd.2020.132767

Mangel, 1., Kapon, I., Blau, N., Golubkov, K., Gavish, N., & Keren, A., 2020, Phys.
Rev. B 102, 024502, doi:10.1103/PhysRevB.102.024502

Tinkham, M., 2004, Introduction to Superconductivity, Vol. 1,

Khanukov, A., Mangel, 1., Wissberg, S., Keren, A., & Kalisky, B., 2022, Phys. Rev.
B 106, 144510, doi:10.1103/PhysRevB.106.144510

Maxfield, B.W., & Mclean, W.L., 1965, Phys. Rev. 139, A1515,
doi:10.1103 /PhysRev.139.A1515

63



[22] Kapon, 1., Salman, Z., Mangel, 1., Prokscha, T., Gavish, N., & Keren, A., 2019, Nat.
Commun. 10, 2463, doi:10.1038/s41467-019-10480-x

[23] Panagopoulos, C., Cooper, J.R., Xiang, T., Wang, Y.S., & Chu, C.W., 2000, Phys.
Rev. B 61, R3808, doi:10.1103/PhysRevB.61.R3808

64



Chapter 5

The two critical temperatures

conundrum in Laj g3Sr) 7CuQOy

Abhisek Samanta!, Itay Mangel?, Amit Keren?, Daniel P. Arovas® and Assa Auerbach?

L Department of Physics, The Ohio State University, Columbus OH 43210, USA

2 Department of Physics, Technion-Israel Institute of Technology, Haifa, 3200008, Is-
rael

3 Department of Physics, University of California at San Diego, La Jolla, California
92093, USA

Published in SciPost Physics 16, 148 (2024)

ABSTRACT

The in-plane and out-of-plane superconducting stiffness of La, g3Sr, 1,CuO, rings appear
to vanish at different transition temperatures, which contradicts thermodynamical expec-
tation. In addition, we observe a surprisingly strong dependence of the out-of-plane stiff-
ness transition on sample width. With evidence from Monte Carlo simulations, this effect
is explained by very small ratio « of inter-plane over intra-plane Josephson couplings. For
three dimensional rings of millimeter dimensions, a crossover from layered three dimen-
sional to quasi one dimensional behavior occurs at temperatures near the thermodynamic
transition temperature T, and the out-of-plane stiffness appears to vanish below T by
a temperature shift of order aL,/¢ I where L, /€ I'is the sample’s width over coherence

length. Including the effects of layer-correlated disorder, the measured temperature shifts
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can be fit by a value of @ = 4.1 x 107°, near T., which is significantly lower than its

previously measured value near zero temperature.

5.1 Introduction

A homogeneous three-dimensional superconductor is expected to exhibit a single transition
temperature T, at which the order parameter, A(T"), and all the superconducting stiffness
components vanish (1; 2). In this regard, recent measurements of the ab-plane (pll) and c-
axis (pt) stiffnesses of Laj g755r0.1205CuQy crystals by Kapon et. al. (3) have been puzzling.
Counter to the expectation above, p- was seen to vanish at T,*, which is about 0.64 K
below the vanishing temperature T.I of pll.

Disorder — Short range uncorrelated disorder is not expected to affect the critical
behavior of a superconductor, by Harris’s criterion (4). On the other hand, the cuprates
are known to be highly anisotropic layered superconductors. Layer-correlated disorder,
(or a gradient in dopant concentration along the ¢ axis) (5; 6), yields a distribution of pl
and T, /l. Experimentally, such inhomogeneity is manifested by a high temperature tail of
the measured pl above the average T.!l, while p* vanishes at the lowest values of T, (see
Appendix 5.8). However, T.I'in Ref. (3) exhibited inhomogeneity broadening of ~ 0.1 K,
which is significantly below the apparent difference in 7¢’s.

Finite size effects — An alternative proposition is that finite sample dimensions play a
role. Previous Monte-Carlo simulations (7; 8) of the 3dXY model found strong effects of
sample dimensions on the temperature dependent stiffness coefficients. These effects are
expected to be enhanced by high anisotropy.

This paper explores finite size effects experimentally and theoretically. We report
systematic stiffness measurements near 7. for Laj g3Srg.17CuQy4 rings with widths L, L.
ranging between L = 0.1 to 1 millimeter. T, .l is found to be weakly dependent on L., L,. In
contrast, a significant reduction of T,* for decreasing width L, is observed. This behavior
is not expected for layer-correlated inhomogeneity. The relatively strong finite size effect
demands theoretical explanation.

Phenomenologically, the monotonous relation between T, and pll in cuprates (9), and
the observed jump in pll at T, in ultra-thin films (10), suggest that 7. is driven by su-

perconducting phase fluctuations (11), and vortex unbinding (12). Therefore we appeal
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Figure 5.1: A superconducting ring cut in two directions, on the excitation coil. The
red double arrow shows the moving direction of the schematic magnetization measuring
pickup-loop, relative to both coil and ring.

to the three dimensional classical XY (3dXY) model (rather than BCS theory) to explain
the stiffness temperature dependence toward T¢.

We applied a Monte-Carlo simulation with Wolff cluster updates on finite three dimen-
sional lattices. The in-plane and intra-plane superconducting stiffness coefficients of the
highly anisotropic 3dXY model appeared to vanish at different transition temperatures.
The numerical simulations showed a strong dependence of the apparent inter-plane stiff-
ness vanishing temperature T,* on the layers’ finite width. This dependence exceeded the
magnitude expected of critical fluctuations.

The numerical and experimental observations are understood as follows. Inter-layer
mean field theory (13), predicts a thermodynamic transition temperature slightly above
the two dimensional Berezinskii-Kosterlitz-Thouless (12) (BKT) transition at Tpxr < Te.
3dXY critical behavior (1) is expected to be observed only very close to T;. As temperature
approaches T, the finite sample width L, drives a crossover of p' to the stiffness of a
one dimensional XY (1dXY) chain (8). This crossover results in an exponentially flat
temperature dependence of p(T,L,) below T.. For finite experimental or numerical
resolution, such singular behavior always appears as vanishing of p* at TCJ‘(La) < T.

We compare our theoretical analysis to the experimental values TCL(La), and use the
fit to estimate of the anisotropy parameter of Laj g3Srg.17CuQy4 near its thermodynamic

7.

67



5.2 Experimental setup

Measurements were carried out with a ‘stiffnessometer’ apparatus (14) which comprises of
a long excitation coil piercing a superconducting ring. A bias current in the coil creates
an Aharonov-Bohm (AB) vector potential A which, by London’s equation, produces a
persistent current that is measured by the induced (dia-)magnetization m® along the coil
axis a. One then measures m® by moving a pickup loop relative to the ring and coil. The
apparatus is shown in Fig. 5.1.

Las_;Sr,CuQy4 is known to grow in large single crystals allowing significant size re-
ductions. Therefore, powder of different doping is prepared from stoichiometric ratios of
99.99% pure CuO, LasOs3, and SrCO3 to make feed and seed rods. This powder is turned
into a single crystal using an image furnace with four elliptic mirrors focusing 300 W
halogen lamps. The growth was stabilised over 100 hr without any change of the lamp
59% power. Growth rate of 1.0 mm/h, down-ward translation of 0.15 mm/h, and rotation
in opposite directions at 15 rmp were used. The emerging crystals looked like Fig. 1 of
Ref. (15). After the growth, the crystals were annealed in argon environment at 7' = 850 C
for 120 hr to release internal stress. Finally, the crystals were oriented with a Laue camera,
and cut into rings with a femtosecond laser cutter. For each doping two rings, labelled by
a and ¢, were prepared with their coil axes parallel (a) and perpendicular (¢) to the CuOq
planes. The width and height of the rings was varied by the laser, or polished down to
the geometries shown in Fig. 5.2a,b.

For the a-ring, we varied mostly the narrowest (bottleneck) widths of the a — b planes,
L,, whereas for the c-ring we varied both L. and L, (see Figs. 5.2a,b). Fig. 5.2(c) shows
the narrowest bottleneck geometry of the a-ring. The requirement to: cut, measure, cut,
measure, et cetera, the same pair of samples proved challenging. In most cases one of the
samples broke during some step of the process. Only one pair of Laj g35rp.17CuQOy4 rings
survived the reduction of L, by factor of 10 between the initial and final cutting stages.
The magnetization of this sample is depicted in Fig. 5.2.

When the transverse London penetration depth A. (A\;) is smaller than the sample
width L. (L,), the induced persistent current in the superconductor precisely cancels the
AB flux of the coil. This results in a temperature independent induced magnetization m®

(m€) at low temperatures.
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Figure 5.2 Experimental configuration and normalized magnetizations of

Laj g3Srg.17CuOy rings for a fixed 1 mA current in the coil. (a) The interior of
the a-ring. The CuOg planes are parallel to the ring’s symmetry axis. This ring is
sequentially polished and laser-cut, to reduce the layers’ width L, in the bottleneck
region. (b) The interior of the ¢-ring. The CuOg planes are perpendicular to the ring’s
symmetry axis. This ring is polished and laser-cut along two planes which varies both L,
and L. (c) Photograph of an a-ring with two cut planes. LS defines the effective aspect
ratio in the bottleneck region. (d) Magnetization m® of a-rings with variable L,. The
apparent stiffness vanishing temperatures are denoted by T:-(L,). (e) Magnetization m®
of c-rings. Except for the narrowest sample L, =0.09 (which is suspected of containing
a traversing cut), the magnetizations near their transition are insensitive to L,. The tail

of width (5T(l|)dis ~ (0.5 K is assumed to reflect some layer-correlated disorder, which is a

smaller effect than the finite size dependence of the a-rings’ JN“CL TCH is averaged in-plane
transition temperature (see Section 5.6 and Appendix 5.8).
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As T'— T,, the AB flux in the coil is under screened as Ay (7") > L. In this temper-
ature regime m®(T') decreases rapidly and becomes linearly proportional to the in-plane

stiffness components. As an example, for the geometry of a perfect ring

m®»(T) = h / drmr? (7 X §o(r)™°
Tin (51)
2 2 @

= (2 —r3) 5 HIT)
h, rin, and 7oyt are the ring’s height, and inner and outer radii, and ® is the flux produced
by the coil. For irregular rings extracting pt, pll from m®(T') requires a full solution
of Ginzburg-Landau and Biot-Savart equations (16). However, here we do not require
the magnitude of p, pll but only their vanishing temperatures T,* and T.I. These are
experimentally determined by the vanishing of the corresponding magnetizations.

Figs. 5.2(d,e) depict the temperature-dependent relative magnetizations m® (T, Lg)/ m$ .,

e

for @ = a,c. m§,

is the zero temperature magnetization of the largest ring. Fig. 5.2(d)
shows a strong dependence of the a-ring’s magnetization apparent vanishing temperature
T+ on the transverse width L,. In contrast, the c-rings’ magnetization in Fig. 5.2(e), ex-
hibit insensitivity to the sample widths in the ranges L, € [1.05,0.23] and L. € [0.67,0.19].
We note an exception of the (Lg, L:) = (0.09,019) mm sample, which we believe to be
damaged by a deep fracture during the cutting process.

We note that the c-ring magnetizations exhibit a high temperature tail of ~ 0.5 K above
the extrapolated transition at TC“. This is attributed to layer-correlated inhomogeneity as

discussed in the Introduction and Appendix 5.8. This inhomogeneous broadening will be

taken into account in fitting theory to the experimental data in Section 5.6.

5.3 Layered 3dXY model

As mentioned before, we model the phase fluctuations of Laj g3Srg.17CuQOy4 near T, by the

classical 3dXY Hamiltonian on a tetragonal lattice,

H3dXY:_ZZ<]’Y COS(SD'I"Z'_SO’I’/L'—&-G,—Y) ) (52)
vy

i
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Figure 5.3: The order parameter squared as a function of temperature for the layered
classical XY model, for anisotropy parameter o = 10~*. The graph patches the linear
spinwave theory of Hikami and Tsuneto (22), the crossover (dashed line) power law of
Bramwell and Holdsworth (19), and the three dimensional critical point which is obtained
by Inter-plane Mean Field Theory (IMFT) of Egs. (5.15), (5.4) and (5.5).

where v € {a,b,c} and where J, = J, = JI and J. = J+ are the effective intra- and
inter-plane Josephson couplings. The effective anisotropy parameter is defined as o =
J+/JI. a will later be determined to fit experimental data near 7. The two dimensional
limit o = 0 reduces to the two dimensional XY (2DXY) model, where by Mermin and
Wagner theorem the superconducting order parameter A = (¢), and p vanish at all
temperatures. Nevertheless, the in-plane stiffness is non-zero below Tgir =~ 0.893.J,.

For small but finite anisotropy 0 < a < 1, inter-layer mean field theory (IMFT) is
very useful (17; 18; 19; 20; 13). It predicts A(T") > 0 for T' < T¢, where T, is the three
dimensional critical temperature. IMFT uses the exponential divergence of the BKT
susceptibility above Txikr to obtain,

To(er) — Tiier b 2
Tskr - ( ln(0.14a)|> ' (5.3)

Here, the (non universal) constant is taken to be b = 2.725 (21).

In the regime [0, Tk, the order parameter magnitude A = [(¢'?)| decreases from
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unity as calculated by Hikami and Tsuneto (22),

T log(1/a)
2 ~Y e ——
A (T)TSTBKT = exp ( 47, : (5'4)
Over the crossover regime T € [Tpkr, T¢|, the order parameter squared initially crosses
over with an intermediate power law of |T —T%|%46 where T* = Tgxr + i(TC —Texr) (19),
above which it drops precipitously toward T as,

T.—-T
AX(T) = A2, % t=| 07— 5.5
( ) BKT ? TC _ TBKT ? ( )

where (8 crosses over from the mean field value % to the 3dXY exponent 0.349, within a
narrow three dimensional Ginzburg critical region of width T,/ log*(a) (13).

Fig. 5.3 depicts the smoothed “trapezoidal” temperature dependence of A? which
differs from the BCS theory for the gap squared. We note that the spectral gaps observed
by photoemission do not directly measure the thermodynamic order parameter. In the
underdoped pseudogap phase(23), parts of the Fermi surface gap survives above T; (24; 25).
A more direct measurement of A? near T, would be the superconducting stiffness (1; 13),

since

py(T) oc A2 (5.6)

where 1 and v are the critical correlation function power law and correlation length ex-
ponents respectively. For the 3dXY model nv = 0.0255 which is small and henceforth

neglected.

5.4 Monte Carlo simulations

The superfluid stiffness (i.e. helicity modulus) of Eq. 5.2 with a, = 1, is given by (26; 7)

J.
Py = 77 <ZCOS(('01’2‘ - Sorj) (T;y - T})2>
(i)
J? 2
—‘/,}_'<<ZSIH(SOTL_SO"’J) (,',.7’4‘{_74‘7)> > 7/7:a,b’c.
(i)

(5.7)

V = Ly,LyL.. The first contribution measures the short range correlations, which are pro-

portional to minus the energy along the bonds in the v direction. The second contribution
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T/J!
Figure 5.4: The intra-plane stiffness pll, plotted as a function of temperature T, for a =
0.01 and for different L, between 40 and 80, while L; and L. are kept fixed at 60. The error
bars are smaller than the point sizes. The black dashed line shows the critical behavior
near the thermodynamic transition temperature T¢, according to Eq. (5.6).

measures long range current fluctuations, which vanish at zero temperature, and reduce
the stiffness at finite temperatures.

We compute Eq. (5.7) by a Monte Carlo (MC) simulation of Hzgxy with the Wolff
cluster updates algorithm (27), see Appendix 5.11 for details. We choose L. = L; = 60,
and vary the width in the range L, € {40,50, ... ,80} using the anisotropy parameters in
the range o = 0.01 — 0.02. The minimal accessible anistropy parameter is determined by
the maximal lattice size.

In Fig. 5.4, we plot the intra-plane stiffness pl as a function of temperature T, and
width L,. The ansitropy parameter is fixed at « = 0.01. T, ~ 1.086. The expected
thermodynamic critical behavior, Eq. (5.6), is depicted by a dashed line in Fig. 5.4. For the
disorder-free model, the tail above T, indicates that the in-plane correlation length exceeds
L. Thus, a larger L, reduces the width of the tail. For millimeter scale superconducting
rings, this tail should be unobservably small.

In Fig. 5.5, the MC data for p*(7T') are shown as points. Given a numerical resolution

threshold e, p*(T) appears to vanish at transition temperatures TCL which depend on ¢
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Figure 5.5: MC evaluations of p* for the clean 3dXY model Eq. (5.2), a function of tem-
perature for a range of sample widths L, € {40, 50, ... ,80}, and anisotropy parameters .
The thermodynamic critical temperatures are evaluated as T, = 1.086J, and Ty = 1.13J,
for a = 0.01 and 0.02, respectively. Solid lines are best fits to Eq. (5.12). ¢ is arbitrarily
chosen as the numerical resolution which defines the apparent transition temperatures TCL
by Eq. (5.14). Inset: Verification of Eq. (5.15) by collapse of all the temperature shifts for
various Lg, &, @ obtained from the main graphs.
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and the width L,. The solid lines and the inset describe a fit of the MC data to analytic

formulas derived in the following Section.

5.5 Crossover to one dimensional Josephson array

The apparent premature vanishing of p* in a finite size sample of an approximately unit
aspect ratio, is due to its crossover to a quasi one-dimensional behavior as T' — T.. The
stiffness of a one dimensional (1d) classical XY chain with inter-site coupling J14, lattice

constant a and chain length L is,

p1a(T, L) = TLZy/ Zy

B 9] In(J /T) L/a . (58)
=3 (Rgam)

n=—oo

where I, are modified Bessel functions and p = 0, 1. Luttinger liquid (LL) theory (28; 8),
which applies at L > a, yields an analytic result where p,; depends on the dimensionless

variable x = LT/(J,4 a) as,

2 19//(0’6727r2/x)
pri(J1g, @) = Jiqa ( - ;W

1 (x <2)

~ Jq0 )
20 exp(—0.472x) (z > 10)

where 93(z,q) =1+2% 7, q"2 cos(2nz), and prime denotes differentiation with respect
to z. Comparison between Egs. (5.8) and (5.9) is shown in Appendix 5.9.
Now we return to the c-axis stiffness p of the layered model (5.2), which can be

described as a chain of Josephson junctions along the c-axis with inter-grain coupling,

Jeg(T) = (ngg x JEAX(T), (5.10)

Toward T., A%(T) vanishes as t2# by Eq. (5.5). Substituting Jiq = Jeg(T) we expect the

asymptotic behavior of Eq. (5.9) to be realized after replacing

LT 5.11
$—>W. ( )
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Thus for t < 1, z > 1 and

K _
PHT) ~ 20pL<TBKT>exp(—aLt 25) | (5.12)
0.472 7T, (€12
Ko s e (>:13)

For any experimental resolution ¢, an apparent vanishing temperature fj‘(&?) is defined

by the threshold condition,
Ll
p-(T5)
——— =E. 5.14
p*(Texr) ( )

By Eq. (5.12), the apparent width dependent transition temperature is,

~ K 1/28
1. = T; = (Te — Tpkr) <>
OéLa 10g(20/€) (515)

The most important consequence of the quasi one-dimensional behavior, is that the tem-
perature shifts are proportional to (aLy)~ /5. This is a much larger shift than expected
from critical fluctuations, which are of order (aL2)~!.

In the inset of Fig. 5.5 we verify the validity of Eq. (5.15) by collapsing of all the
temperature shifts onto a straight line. The slope of this line differs only by 20% from
unity, which we attribute to the choice of the (non-universal) constants in the asymptotic

expression of Eq. (5.9).

5.6 Comparison of Theory to Experiments

In comparing Eq. 5.15 to the MC results, we have used the 3dXY critical exponent § =
0.349.

For the experimental Laj g3Srg17CuQy4 crystals, the millimeter width corresponds to
~ 10° effective lattice constants, and the anistropy parameter will turn out to be v < 1074,
which yields an unobservable narrow Ginsburg critical region. Hence we shall fit the
Eq. 5.15 with the mean field exponent 5 = 0.5.

The a-ring is sequentially cut such that the induced current is governed by the bot-
tleneck region. There, the induced current flows along the c axis over an effective length

of Lgﬂ = 2 mm. The transverse dimension L = 0.46 mm yields » = 4.34. The width is
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Figure 5.6: Comparison of experimental results for Laj g35r9.17CuQO4 rings of Fig. 5.2 and
theoretical prediction of Eqgs. (5.15) and (5.19). Crosses: The apparent c-axis transition
temperature shifts - of the a-rings, as determined in Fig. 5.2(d). L, are the bottleneck
widths of the ab planes. Line: the least square fit using afi* = 4.1 x 107>, The offset of
the reduced temperature 0.015(4) agrees with the estimated layer-correlated disorder (see
text). We use the mean field exponent § = %, due to the narrow Ginzburg critical regime
near T¢.
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varied in the range L, € [0.1,1] mm. We estimate the experimental resolution at ¢ = 1072.
(High accuracy of ¢ is not essential, since fj‘ depends on it logarithmically).

At zero temperature the coherence lengths have been determined experimentally (24)
to be €(0) ~ 3nm and £1(0) ~ 1.3nm. The in-plane lattice constant for the effective
3dXY model is the coherence length estimated at Tgkr to be §”(TBKT) = 5”(0)/ABKT.
Due to the incoherent single-electron tunneling between the layers, we assume that the
Cooper pair size in the ¢ direction remains confined to a single plane &+ (Tgxr) =~ £+(0).

In Fig. 5.6, the apparent c-axis transition temperatures fj-(La) are plotted. The data
is somewhat noisy, presumably because of the introduction of deep cuts during the ring’s
cutting process, which are eliminated by subsequent cuts. The two-parameter fit function
is plotted,

T -7+ A
il ~ Ly[mm]

+ (5t)dis (5'16)

with A = 0.0079 and (6t)4is = 0.015(4). The dimensionless temperature shift (6t)qgis is
understood as the effect of layer-correlated inhomogeneity (see Appendix 5.8). We use
the high temperature tail of magnitude ((5T(U)dis ~ 0.5 K, which is depicted in Fig. 5.2(e).
Subtracting (5TJ|)dis from 7, = 36.5K yields a bound for T+ for wide samples,

lim T+ =TI — (6714 = 36 K. (5.17)

Lg—00
The estimated layer-correlated disorder shift is consistent with the fit in Fig. 5.6,

(5T<l| )dis
7!

(6t)ais = € 0.015(4). (5.18)

Using Egs. (5.15), (5.4), (5.13) and (5.15), and the parameters listed above we obtain

0.472 x 1075+ T, (&11)?

A= AT () = 0.0079 (5.19)
S a AL (a) € log(20/¢)
which can be fit by the anisotropy parameter,
o (T ~T.)=41x107° (5.20)
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5.7 Discussion and Summary

The experimental conundrum, which was first noted in Ref. (3), was that stiffness mea-
surements of a-rings and c-rings, cut out from same cuprate crystal, exhibited different
transition temperatures. In this paper, we have shown that this difference cannot be fully
explained by layer-correlated disorder, since it varies consistently with the layer’s width,
which is not coupled to the distribution of layer-correlated disorder.

With the help of Monte-Carlo simulations, inter-layer mean field theory, we have iden-
tified a narrow regime below the bulk transition temperature T, where the inter-layer
stiffness of finite size samples crosses over to an effective one dimensional Josephson array
behavior. As a result, we resolve the conundrum, and explain the Monte-Carlo data, as a
width-dependent, apparent reduction of the c-axis T.. The visibility of the effect depends
on the smallness of the anisotropy parameter .

We note that ot parametrizes the effective Hamiltonian near T.. We compare it to
the zero temperature anisotropy parameter reported for optimally doped Las_,Sr,CuQOy4

(fOI' Sl"o‘15) in Ref. (30),
-2
NT =0)= <> = 4.6 x 1073, (5.21)

The difference in anisotropy can be attributed to the reduction of inter-plane coherence
due to thermally excited nodal quasiparticles of the d-wave superconductor and the effects
of inter-planar vortex rings above the two dimensional Tgir.

Analog in *He — We have seen that o < 1 can be mapped onto an isotropic model
on samples with large aspect ratio. A similar “premature” vanishing of p* has been
observed on a quasi-one dimensional brick, i.e. L, < L. (7). This result was used to
explain the experimental disappearance of superfluid density of *He embedded in quasi
one-dimensional nanopores (31; 32). Here we explain the apparent reduction of Ty (L), not
as a true thermodynamic transition but rather as a consequence of an essential singularity
decay of p toward the thermodynamic 7.

In general, layered superconductors with very high anisotropy are expected to exhibit
such apparent differences between transition temperatures of in-plane and out of plane
persistent currents. For example, an emergent anisotropy of layered superconductors has

been an important consequence of certain pair density wave (PDW) ordering (33). We
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propose that the dependence of inter-layer stiffness transition temperatures on sample
width cold help characterize the emergent anisotropy parameter of that interesting PDW

phase.
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5.8 Planar correlated disorder

Refs. (5; 6) have considered the layered XY model where the ab planes exhibit a variable
z-dependent stiffness pll(z) for z € [0, L.]. We can see the effects of bounded correlated
disorder on superconductors with a variation of pH(z) along the c-axis. In each segment,

the stiffness temperature dependence has a different T,

28—
A P

= (5.22)

A(r) = ol 0)

where T (2)  pll(2,0) is the local transition temperature whose average is defined as 7!

and maximal variation is (5T(U)dis. The global ab-stiffness is given by the integral

L

pll = p”(O)/dLi
0

which smears the average critical temperature TCH by a high temperature tail at T €

28—
-1l ™

1.

[T T+ (67 s
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Figure 5.7: Effects of planar-correlated disordered, modelled by c-axis dependent in-plane

stiffness pll(z), with an average transition temperature TCU and a width of transition tem-

peratures (6Tcll)dis = O.ITC”. Orange line: The clean system with a three dimensional
critical behavior. Blue line: the global pll showing a disorder induced high temperature
dis

tail above TCH. Green line: the global p7**, which is dominated by the weakest interplane

stiffnesses, and vanishes below TC”.
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Figure 5.8: Stiffness as a function of scaled variable z = LT/(J14a) in the one dimensional
XY model for different lengths L as given by the exact result of Eq. (7), and asymptotically
at L — oo by Eq. (8) of the main text.

In contrast, the c-axis stiffness p*(z)/p*(0) is proportional to the local order parameter

squared A(z) o< |T' —T.(2)|?. The global c-axis stiffness is the harmonic average given by,

Le _ -1
dz (T8

€L s
o= [
) Le 1T -T2

(5.24)

The weakest segment, with the lowest p'(z), dominates the integral. The temperatures

where the order parameter of this segment vanishes is
T <T) = (0Tass (5.25)

above which the global p*(T') disappears. The effect of bounded layer-correlated disorder

is demonstrated in Fig. 5.7.

5.9 Asymptotic behavior of stiffness of a one dimensional

XY chain

In Fig. 5.8 we depict the exact result of the stiffness of the one dimensional XY chain

as given by Eq. (7) of the main text. At large L/a the graphs show convergence to the
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analytic Luttinger-Liquid form (28; 8), which at large x is given by Eq. (8) of the main

text.

5.10 Estimation of finite size shift in 7T,

Fine size scaling produce unobservably small finite size shifts of T, for millimeter size

samples, as shown by the following. The correlation lengths above Tkt diverge as

5“<t>:\/1&s§°>t—” ) ~ O (5.26)

where we use the Ginzburg-Landau definition of correlation lengths, £ ! o /Py, to obtain
the factor of /o between the divergent correlation length.
For Eq. (5.2) with sample dimensions L.,y =a,b, ¢ the stiffness components near T

vanish as (34),

Pc

e Torer) =t"®lxy] , xq==E&(t)/Lq. (5.27)

where ®(z) is differentiable function with a finite value at z = 0. We expand @ to linear

order in &, and set p — 0 to obtain,

t*l/é-((lo) 5
0= @0+, x | = | +0(a)) (5.28)

which is solved by a positive shift of T, by the amount

—-1/v
oy (+/aLe
=5 < o > . (5.29)

For the experimental Laj g3Srg.17CuOy4 rings, taking o = 1072, La/f,(lo) ~ 108, yields

|6t| < 10~*, which is much below experimental temperature resolution.

5.11 Details of the Monte-Carlo simulations using cluster

algorithm

The superfluid stiffness or the helicity modulus (with a, = 1) for the classical Hamiltonian
of Eq. (5.2) is given by Eq. (5.7) (26; 7; 35).

In the Wolff-cluster algorithm (27), we assume the XY spins S to be the unit vectors in
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Figure 5.9: Binder cumulant Uy plotted as a function of temperature T, for anisotropy
a = 0.005 and for different sizes with a fixed aspect ratio L,/L. = 16 and Ly = L.

R3. In every Monte-Carlo (MC) step, we first choose a random site » € Rz and a random
direction d € S5, and consider a reflection of the spin on that site about the hyperplane
orthogonal to d. Note that this is equivalent to the spin-flipping operation in Ising model.
We then travel to all neighboring sites (') of r, and check if the bond (r+’) is activated

with a probability
Py(r.v') =1—exp (min [0,27,8(d - S,)(d- S,,,)]), (5.30)

where f3 is the inverse temperature. If this satisfies, we mark 7’ and include it to a cluster
C of “flipped” spins. We iteratively continue this process for all unmarked neighboring
sites of 7’ and grow the cluster size until all the neighbors turn out to be marked. We use
such 10% number of MC steps for thermalization, followed by another 107 number of MC
steps for measurement of different observables, such as the helicity modulus and the binder
cumulant. We estimate the errors of different observables by using a standard Jackknife
analysis of the MC data.

In Fig. 3 of the main text, we have presented the inter-plane superfluid stiffness p* for

different system sizes of L, € [60 — 80|, L, = L. = 60, near the transition.
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Next we calculate the Binder cumulant, defined in terms of the higher powers of mag-

netization m as following (36)

3 1 (m?*
U2 = 5 (1 - g <<7712>>2> y (531)

and we use it to extract the value of critical temperatures accurately. As an example, in
Fig. 5.9, we present Us as a function of T, for an anisotropy parameter o = 0.005 and for
different system sizes with a fixed aspect ratio L, = L and L,/L. = 16. In the ordered
phase when all the spins are aligned it takes a value 1, while in the disordered phase it
vanishes and takes an intermediate value between 0 and 1 at the critical point. Therefore,
by tracking the crossing between different system sizes, we find a critical temperature
T, ~ 1.05 for these parameters. using a similar analysis, we obtain 7T, for other anisotropy

parameters also, discussed in the main text.
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Chapter 6

Summary and Discussion

This chapter will summarise the three parts of the work in order.

6.1 Discussing the Stiffnessometer

The fundamental principle that the stiffnessometer is based on is the London equation
Jj=ps (%V(]ﬁ — A) where A is the VP, j,. is the SC current density, and ps is the SC
stiffness. By changing the current in the EC we change A and the magnetic moment that
we measure is proportional to js, so we can get ps from the slope between the magnetisation
and the current. Then we can use the relation ps = ﬁ to get .

But A in the London equation is the total VP which is the sum of the EC-VP and the
SC-VP. Using Faraday’s and London’s equations, with B = V x A we get a PDE which
is solved numerically (after making it unite-less and assuming rotational symmetry). The
numerical simulation along a cross section of the ring shows that the VP is most significant
along the inner rim of the ring and nullifies in the middle of the cross Sec. 3.7. The VP
is calculated on the PL. We consider the dimensions of the ring and the gradiometer used
instead of a single PL and the parameters of the coil, to get a conversion between the
normalized signal (the magnetic moment) to the stiffness (or \), Fig. 3.8.

When the relation between A and j, brakes, we know that we have reached the critical

& — Tgut
o) V8o NE

into account A, the geometry of the ring and the relation between the critical current

flux of the ring and from the relation we determine £. This relation takes

density and £. A tentative explanation is in Chap. 4.3, and a full analytical derivation

and numerical calculation comes from (22).
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The experimental setup is an add-on to a CRYOGENICS susceptometer or a Quantum
Design MPMS3 and both where used in this project. These magnetometers consist of a
motor that can move a sample inside a temperature controlled chamber, and relative to
a gradiometer connected to a SQUID. This way it can detect the change of magnetic flux
through the gradiometer and determine the magnetic moment of the sample. An external
coil can be used to create magnetic fields or in our case, cancel external fields. The use of
a gradiometer instead of a single PL. minimizes the noise. The stiffnessometer consists of a
long and narrow excitation coil (EC) made in our lab. The EC diameter in this project is
60 mm long, with a 0.8 mm diameter, 2 layers and 1940 loops in total. The ring is placed
on the middle of the coil and both of them move together in and out (of the other side) of
the gradiometer and back the same way a number of times to have better statistics and
smaller errors.

A few tests where made to validate our claim that the field outside our EC (which is
not infinite) is negligible so that we can rightfully treat it as an infinite coil. The numerical
simulation in Fig. 3.2 show the low magnetic field outside of the coil and the experiments
with an open ring confirms that indeed the field out side of the coil is undetectable. It was
also verified with a scanning SQUID on chip by scanning the surface of a thin Mo0S% ring
(8 nm of MoSi grown on silicone wafer with 300 nm of silicone oxide). They found no
visible relation between the current in the EC and the number of vertices in the sample
(23).

Limitations: There are two main limitations for the technique in measuring ps. From
looking at the PDE solution, it is obvious that we are sensitive only when the dimensions
of X\ are close to the dimensions of the sample, because for smaller A a small error in
the moment leads to big error in the stiffness. When too close to T, the initial current
in the EC is bigger then the critical current of the ring in that temperature and the
measurement is invalid. So we can measure the stiffness only close to T, when A is close
to the dimensions of the sample. Other works with the stiffnessometer measured thin SC
layers on a ring-shaped Si-substrate to have wider effective measurement range (27).

The main limitation in measuring £ is that we need to know A, so unless we rely on
external measurements we will be limited to the same temperature range as A. Another
limitation of this method is that the numerical solution of the PDE is unit-less and we

need to "calibrate” it with A measurements at low temperature. In this work, we relayed
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on uSR measurements (1).

But in spite of the limitations, there are significant advantages to our techniques. It
requires no leads to be attached to the sample, forming SC/metal interface, and makes the
sample preparation stage more complicated. There are no demagnetization factors that
need to take into account and complicate the analysis. There is no direct magnetic field on
the sample and so, no vortex dynamics to consider. There are also no out-of-equilibrium
issues in these measurements. The same table top apparatus is used to measure A, &, and
T.. The phase transition is very sharp and less sensitive to small impurity islands in the
sample. And also, the measurements can be done very close to the critical temperature
where both A and £ are on the same scale as the sample, which is a limitation for other
techniques.

The main results of this part of the work is A and & of LSCO x = 0.17 for 34.5 <
T < 34.95, Fig. 3.11. X is in the scale of millimeters and £ in the scale of microns.
Direct measurements so close to T, with a single apparatus are a significant contribution

to science.

6.2 Discussing the £ Measurements at Low T,

The most common ways to find £ are by measuring vortex diameter by Scanning tunneling
microscope (STM) or by measuring H., and following the relation & = \/®o/27 Heo. But
STM demands cleaving which are impossible in some samples or orientations, and for a
very small £, huge magnetic fields are needed to reach H.s. In our technique, we change the
flux through the hole of the ring and the field in the bulk of the sample is small. Following

the derivation by Gvish, Keneth and Keren (22), we have an expression for the relation

& — Tgut
o) V8T AE

like €72 and resembles the expression of the critical field of a type I SC H, \/57?/\ : (by

between the critical flux of the ring ®. and &:

This relation does not grow

GL (26), eq 4.20).

In a nut shell, the theory assumes that the ring cancels completely the change in
magnetic flux by creating macroscopic persistent currents along a stripe of width A in the
inner rim of the ring. When the flux is increased, so does the current, until it reaches the
critical current density j.. Then, the order parameter (amplitude) starts to weaken and

vanish from the inside out as the applied flux keep increasing, until the vanishing of the
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OP reach the outer diameter of the ring. Now it is less costly (in terms of energy) for
vertices to form and enter the inner hole of the ring and the SC losses its rigidity. The
braking of the relation j = —psA means that we have reached the critical flux of the ring.
So, the critical flux depends on the critical current density, the outer diameter of the ring,
and A. This behavior of the OP was demonstrated numerically by simultaneous solution
of the two coupled GL equations, though, a verification of the final expression was still
needed.

The entering of the vertices can be explained when we look at the full expression for
the SC current density, j = ps (%V@S — A). When cooling the sample with A = 0, ¢ will
be zero to minimize the energy. Now when we increase A below T, ¢ is fixed and changing
it is equivalent to moving a vortex along the sample which can happen only when the SC
circle is braking at some week point and the rigidity is lost.

The experimental system was similar to that of the stiffnessometer but because we
needed to reach a very high magnetic flux, we did some adjustments to the system. Instead
of using Cu wire, the EC was made from a SC wire with a diameter of 0.106 mm to carry
more current and we reached maximal current of 12.4 A. The EC used had an external
diameter of 1.95 mm, 8 layers, and 4800 loops in total to have higher flux-to-current ratio.
The copper leads that connected the EC to the power source needed to be cooled during
the measurements and a new set of pump lines were installed. We used the CRYOGENICS
system for this experiment due to its superior cooling power compared to the QD MPMS3.
Also, the LSCO rings needed to have a relatively small outer diameter so that we would
reach the critical flux.

We also needed to change the way we measure because the signal from the coil exceeded
the detection limits, so instead of looking at the voltage difference of the signal along a
full rang scan of 80 mm, we looked at the second derivative over a very short range of
10 mm and extracted the magnetic moment from it.

The first objective in this project was to test the theory and it was done with pure Nb
rings. We measured three sets of rings, where in each set only one parameter of the ring
was changed and the others were fixed. In the first set we changed the inner diameter, in
the second we changed the outer diameter, and in the third we changed the height. We
found clear evidence that the critical flux was quadratic with the outer diameter of the

rings and the theory was verified.
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The second objective was measuring the anisotropic £ in the ground state of LSCO
with doping z = 0.125. For this purpose, a- and c-rings were cut from the same single
crystal and measured at temperature of 1.6 k°.

When measuring the a-ring, the critical current in the EC was 2 A and the correspond-
ing & is 1.3 £0.1 nm. The matching H.y is «~ 195 T. It is also comparable to the unit cell
length in the ¢ direction 1.318 nm. In the c-ring measurements, we reached the maximal
current that our SC EC could hold of 12.4 A, but the magnetization was linear all along.
This means that we only have an upper limit which is £;; < 2.3 nm. The fact that we

were able to measure a smaller £ in the a-rings is because of the much larger A\, compared

2
with Agy that play a role in the relation F& = &%”j\tg. Our finding of comparable &, and &,
suggest that the cooper-pair in LSCO is isotropic at the ground state, regardless of the

high anisotropy of the system.

6.3 Discussing the Two 7. Conundrum

The goal of the third part of the work was to find the origin of the evident difference in
critical temperature of the SC stiffness in the CuO5 planes and the SC stiffness between
them. Kapon et-al (1) measured the stiffness of two rings from the same single crystal
of LSCO with doping = = 0.125 and the a-ring’s stiffness vanished 0.64 k below the
c-ring’s stiffness vanish. This means that in this 0.64 k range, persistent supercurrent
can only flow parallel to the CuO- planes making the material a 2D SC. This is strange
because according to the MV theorem, there can be no long-range order in 2D and no
SC. Nonetheless, according to the BTK theory a power low decaying correlation length
can exist in 2D under some temperature named T5 75, But, the 575 must be smaller
than the thermodynamic T, (or TgD ) and here we observed the opposite situation, where
TgD < Té{TB. This was a strange finding.

One explanation could be Layer-correlated disorder, meaning, a gradient in the doping
parameter between the CuOj layers (along the ¢ vector). Such disorder is expected to
manifest as a "tail” or broadening of the transition of the c-ring, but the observed tail in
(1) or in this work - Fig. 5.2, are much smaller than the observed .. So another explanation
was considered; a finite size effect. Monte Carlo Simulations for the classical 3dXY model

predicts that the inter-plane stiffness close to T is exponential in temperature, sample size,
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and the coupling anisotropy. Combined with a finite detection limits the apparent end of
the transition (7;-) will look smaller than the thermodynamic T,. The correlation between
sample size and the vanishing of the stiffness was tested theoretically and experimentally
in this part of the work.

Near the thermodynamic (3D) T, the inter-plane stiffness p. experiences a 3dXY critical
behavior and crossover to a one-dimensional XY (1dXY) chain with an exponentially flat
temperature dependence. Since there is (always) an experimental detection limit, it can
be seen as if p. critical temperature is lower than the thermodynamic T,.

The experimental setup for this experiment is very similar to the one in the first part of
the work. We used the QD MPMS3 for this experiment, for its better temperature control.
The coil we used was 60 mm long, made of Cu wire of 0.06 mm diameter, with 2 layers,
and 1940 winding in total. Both a- and c-rings were cut from the same single crystal of
LSCO with doping = = 0.17. To change the height of the rings, a fine-lapping device was
used, and to change the radius we used the femtosecond laser. Instead of cutting all the
outer rim of the ring to change the radius, we only cut a straight line because the relevant
cross section is the narrowest one (the bottleneck).

The relevant lengths of the cross section depend on the crystalline structure. So when
we change the height of the c-ring we change L. and when we cut its radius we change
L, (or Ly but they are similar in our view). When we change the height of the a-ring
we change L, (or Ly) and we can cut its radius parallel to the CuO layers and change
L., or perpendicular and change L (or L,). Figure 5.2(a-b) shows the rings and their
cross-section.

The normalized magnetization as a function of temperature for different rings is pre-
sented in Fig. 5.2. The c-ring measurements (e) show a high-temperature tail of 0.5 k and
consistent T, except for the narrowest sample La = 0.09 suspected of containing a travers-
ing cut. The a-ring (d) shows a clear monotonic dependence of T in La. These findings
confirm our assumption that the inter-layer is the weak link in the current’s course. The
difference between TCJ- and TCJ- is 7 times bigger than the high-temperature tail, making
the Layer-correlated disorder explanation unlikely.

The Monte Carlo simulations for p* by the H3yxy model and for two different anisotropy
constants o = J / J)|, and several L, are presented as dots in Fig. 5.5. The detection limit

€ is marked by the red horizontal line and it can be seen how the apparent . increases with
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the reduction of L,. When anisotropy is stronger (« is smaller) the effect of L, over . is
bigger.

Near T, and for small cross section, the system crossover to a quasi one-dimensional
behavior and it can be described analytically by a classical 1dXY chain with inter-site
coupling. Luttinger liquid theory comes in handy when the system is much larger than the
lattice constant (L > a) and we get Eq. 5.12. The analytic p* is fitted to the simulations
in Fig. 5.5 (solid lines).

The difference in T, of the a-ring over L, is shown in Fig. 5.6 with a fit of the analytical
results to data. The parameters are o/* = 4.1 x 1075 and T~ = 36.5 k. There is an offset
to the fit which we denote to layer-correlated disorder, seen also in the high temperature
tail of the c-ring.

Reported o at T — 0 are of order 4.6 x 10~3 which is two orders bigger than the
fitted . A possible explanation for this difference is the formation of thermal excitation

of nodal quasiparticles of the d-wave superconductor and inter-planar vortex rings.
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