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Abstract

The obvious interest in superconductivity (SC) due to it extraordinary features, keeps

the field as relevant as ever and the search for better materials calls for better ways to

evaluate and investigate them. The new technique for measuring SC parameters and

their anisotropy was developed with significant advantages over traditional techniques. It

is demonstrated on a high temperature superconductor (HTSC) - La2−xSrxCuO4

(LSCO), where the x in the chemical formula is the hole-doping of the sample.

The primary advantages of our technique are that the system is in thermodynamic

equilibrium during the measurement, there is no direct magnetic field on the sample and

hence, there is no vortexes dynamics or demagnetization factors, no leads on the sample,

and it is based on a commercial tabletop system.

The fist part of the work explains the technique in details and shows results for

x = 0.17 sample. This part starts with some verification� and simulations, then shows

experimental results for LSCO ring with doping x = 0.17 and data analysis, and finishes

with the behavior of λ and ξ as function of temperature when approaching the critical

temperature (Tc).

The second part of the work demonstrates how the technique is used with extremely

high currents and at low temperatures. In this part, the theoretical derivation was first

tested on pure Nb rings with different physical parameters (inner radius, outer radius,

and height) and then applied on two rings from the same single crystal of LSOC with

x = 0.125. Each ring had a different crystalian orientation so that in one ring the SC

current is always parallel to the CuO2 planes (c-ring) while on the other, the SC current

must cross to the CuO2 planes (a-ring). This way, we where able to measure the critical

in-plane and out-of-plane critical current and extract from it the anisotropic coherence

length. The in-plane critical current was not reached, but we can still set an upper limit

on the in plane coherence length of ξab < 2.3 nm. The out-of-plane critical current was

reached and the in plane coherence length was found to be ξc = 1.3± 0.1 nm. The

similarity of ξab and ξc shows small anisotropy at low temperatures.

The third part of the work deals with the puzzling observation of anisotropic critical

temperature and trying to find its origin. A finite size effect was the main suspect and

1



two LSCO (a- and c-) rings of the same crystal of doping x = 0.125 were measured

several times. Between each measurement one of the ring’s physical parameter was

changed. The height was reduced by fine polishing of the ring and the outer radius was

reduced by femtosecond laser with high precision. A Monte Carlo (MC) numerical

simulation for the 3DXY-model and an analytical derivation of a 1D Josephson array

was done to show that the apparent difference in Tc is indeed the result of the finite size

effect and the finite detection limit. By fitting the analytical derivation to the

measurements, the stiffness anisotrophy near Tc was found to be α = 4.1× 10−5.
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Abbreviations and Notations

SC : Superconductor/Superconductivity

BCS : Bardeen Cooper Schrieffer

HTSC : High temperature super conductors

MV : Mermin Wagner

BKT : Berezinskii Kosterlitz Thouless

LSCO : La2−xSrxCuO4

ID : Inner diameter

OD : Outer diameter

VP : Vector potential

EC : Excitation coil

ZGFC : Zero gauge field cooling

GFC : Gauge field cooling

SQUID : Superconducting quantum interference device

GL : Ginsburg Landau

TSFZ : Traveling solvent floating zone

a-ring : LSCO ring. a-axis is aligned to rings axis

c-ring : LSCO ring. c-axis is aligned to rings axis

MC : Monte Carlo

PDE : Partial differential equation

Tc : Critical temperature

ρs : Superconducting Stiffness

λ : Superconducting penetration length

ξ : Superconducting coherence length

Hc2 : Second critical field of

Φ0 : Magnetic flux quanta

Φc : Critical magnetic flux
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Chapter 1

Introduction

Superconductivity (SC) is a special phase characterized by many unique phenomena such

as zero electrical resistance and perfect diamagnetism (Meissner effect). Classical SC

can be explained by the BCS-Theory (named after John Bardeen, Leon Cooper, and

John Robert Schrieffer) which considers attractive interaction between electrons through

electron-phonon coupling. It is common to think of the charge carriers in a SC as pairs of

electrons called Cooper-pairs rather than individual electrons. The critical temperature

(or transition temperature) Tc refers to a temperature where the transition between the

SC phase and the normal phase happens. High-temperature superconductivity (HTSC)

was discovered in the mid-80’s and the mechanism allowing it cannot be explained by the

BCS theory. A major group of HTSC is the cuprates family, characterized by their nearly

tetragonal unit cell structure that forms layers of CuO2 with different metals and oxygen

between the layers. Those materials show a plethora of phases (besides SC) and are highly

anisotropic. This anisotropy manifests in both the penetration length λ and the coherence

length ξ.

The inter-layer zero temperature coherence length ξ⊥ is especially important because

it rules the coupling between the layers, but it is also hard to measure. A standard way to

measure ξ is by measuring the second critical field Hc2, but if ξ ∼ 1 nm then Hc2 ∼ 200 T.

Another way to find ξ is by measuring the vortex diameter, however, it is nearly impossible

to cut the sample smooth enough for scanning probes perpendicular to the layers to see

ξ⊥. The most common way to determine ξ is by measuring Hc2 close to Tc where it is

relatively small and then extrapolate to T = 0 following one theory or another, but the

choice of theory can lead to very different results at T = 0.
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Another aspect of the strong anisotropy is manifested in measurements of Tc. Many

different observations show a temperature range where SC current can flow only perpendic-

ular to the layers as if it is a 2D SC. In 2D systems, there is no long-range order according

to the Mermin and Wagner (MV) theorem, but the Berezinskii-Kosterlitz-Thouless (BKT)

theory allows for short-range correlation and SC to exist in quasi-2D systems (with a fi-

nite copling between the layers) below a certain temperature TBKT . But TBKT must be

smaller than the thermodynamic 3D Tc. It cannot explain the temperature range where

SC exist only in 2D (T c−ring
c > T a−ring

c ). In other words, there should be only 1 Tc in a

3D system. This difference in the critical temperature ∆Tc is a puzzling conundrum of

fundamental physics.

The following sections review the cuprate family and LSCO, which are the heart of this

work, and the anisotropy in its different forms. Chapter 2 describes the sample growth

and preparation, the experimental setup, and the data analysis. Chapter 3 gives a more

detailed account of the stiffness measurements and presents measurements of λ and ξ close

to Tc. Chapter 4 presents the measurements of the ground state ξ⊥ and finally Chap. 5

explains our explanation to the ∆Tc conundrum.

1.1 LSCO phase diagram1

The cuprates phase diagram is very rich with many motives that are typical to all members

of the family. One member of this family is La2−xSrxCuO4 (LSCO). Figure. 1.1 shows

LSCO’s unit cell. The crystalline vectors a, b, and c are defined so that a and b are

inside the CuO2 plane and c is perpendicular to the plane. The parent compound (where

x = 0) La2CuO4 has one electron per unit cell (half filling) and is antiferromagnetic

with Néel temperature TN around room temperature. When lanthanum atoms (La) are

replaced by strontium atoms (Sr) (increasing x in the chemical formula) the number of

electrons per CuO2 unit decreases (hole doping), the antiferromagnetic state diminishes

and TN drops rapidly reaching TN = 0 at x ∼ 0.02. Superconductivity start at x ∼ 0.07

and Tc increases with doping until x ∼ 0.15 (optimal doping). Then, it decreases with

doping until x ∼ 0.26, forming the SC dome. Nevertheless, the story does not end with

SC. Above x ∼ 0.26 at low enough temperatures, the system behaves as a Fermi-liquid

with T 2 resistivity dependence. At higher temperatures, the system is in the strange-
1In this section I rely mostly on (4),(5).
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Figure 1.1: LSCO unit cell (7).

metal phase and resistivity is linear in T . This strange-metal phase exists also at lower

doping for T > Tc. Another interesting phase is the Pseudogap phase starting below T ∗

and above Tc in the under doped regime. More phases are present in different doping

and temperatures, such as stripes phase, spin-glass phase, and spin-density-wave phase.

Further explanation of the different phases is given in the next subsections. Figure. 1.2

shows a cuprate phase diagram (not specific for LSCO).

1.1.1 Antiferromagnetism

In this phase, the spin 1
2 of the Cu+2 ions is parallel to the CuO2 plane and points

towards one of its next nearest neighbor Cu+2 ion, and in the opposite direction from all

of its nearest neighbors. Weak perpendicular (c direction) ferromagnetic moment in the

CuO2 planes is also formed. But, the ferromagnetic moment of neighboring planes is in

the opposite direction, making the system a 3D antiferromagnet (5). The Heisenberg

model with antisymmetric exchange interaction provide good microscopic explanation of

the antiferromagnetic state (8). At x ∼ 0.02, long range magnetic order is replaced by

short range magnetic correlation which remain in the system up to x ∼ 0.07.
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Figure 1.2: Cuprate phase diagram of hole doping x and temperature T (6).

1.1.2 Weak spin and charge order

At low temperature and doping of 0.02 < x < 0.15, short range spin order or spin-density-

wave forms in the system. Another type of short range order is a charge-density-wave,

which usually forms at higher temperatures and dopings then the spin-density-wave. When

charge-density-wave and spin-density-wave coexist, they are called strip order. Their

presence at relatively high temperature near x = 0.125 (the 1/8 anomaly) where Tc is

suppressed, suggest that stripe mode competes with SC.

1.1.3 Superconductivity

The SC phase is characterized by zero resistance and perfect diamagnetism. When ap-

plying magnetic field to a SC it will reject it by creating supercurrents which screen the

external magnetic field. If we increase the external field, the supercurrents will also in-

crease. Although the field is expelled from the bulk, it penetrates along the edges, and

decaying exponentially with a characteristic length known as the penetration depth λ.

Another important length scale that characterizes a SC is the coherence length ξ and it

is common to think of ξ as the size of a Cooper-pair. SC materials can be divided into
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two types depending on the ratio of ξ and λ. Type-I SC has λ ≪ ξ and type-II SC has

λ≫ ξ. A type-I SC will hold the magnetic field outside until a critical field Hc is reached.

Above Hc, the material ”gives-up” and transforms back to the normal state letting all

the magnetic flux penetrate. Type-II SC will stay field-free up to some critical field Hc1.

For higher fields, it is capable of letting some of the magnetic flux penetrate as a vortex

accommodating one flux-quanta Φ0. The core of the vortex will be in the normal state

phase, but outside of the vortex, the material will remain SC. When we increase the exter-

nal field, more vortices will penetrate until they cover the entire material and it becomes

normal throughout a second critical field Hc2. Cuprates have relatively large λ, which

is about two orders of magnitude bigger than ξ, making them a strong type-II SC. The

strong anisotropy dominates their SC properties. λ and ξ have different properties in the

a and b directions (in plane) than in the c direction (between planes). This anisotropy

will be discussed further in Sec. 1.2.

1.1.4 Fermi-liquid

In the overdoped regime (x > 0.26) at low enough temperature cuprates exhibit anisotropic

metallic properties where resistivity ρ has T 2 dependence on temperature (but different

between intra-plane and inter-plane). This behavior can be explained by the anisotropic

Fermi-liquid theory. The elementary excitations of the Fermi-liquid phase are quasipar-

ticles and quasiholes, with energy close to the Fermi energy. These quasiparticles are

”dressed” by virtual excitations of particles and holes, but have the same charge and spin

as bare particles. The interactions between quasiparticles are weaker than the electrons

coulomb interaction. They can still scatter off each other, but have a relatively long life-

time τ . We can estimate their scattering rate near the Fermi momentum kf from Fermi’s

golden rule and find that τ ∝ (k̄ − kf )
2 ≡ δk2 ,where k̄ is the momenta of a thermal-

excitation. The significant collisions outlying τ lies in a thermal neighborhood of the

Fermi surface and so the relative momenta of low-temperature-excitation is δk ∼ KBT .

The relation between resistivity and τ is: ρ ∼ (m/ne2τ)∆ (where ∆ is a fractional Umk-

lapp scattering (9)), providing T 2 dependence between resistivity and temperature. A

more careful calculation shows that electron-electron scattering alone is not enough to

explain the T 2 dependence and another process of electron-phonon scattering (Umklapp

(10)) must be taken into account.
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Figure 1.3: (a) The resistivity T-dependence for different doping of underdoped LSCO.
The linear T-dependence last to lower temperatures for higher doping before it becomes
quadratic. At low enough temperatures one can see the transition to SC for higher dopings
or antiferromagnet for lower doping (Taken from: (12)). (b) Phase diagram of cuprates
showing the psudogap regime below T ∗ and the different resistivity T-dependence regimes
(Taken from: (11)). More regimes like, antiferromagnet below TN (light brown), SC below
Tc (purple), SC fluctuations between T ′ and Tc (red), and spin-glass regime (green), are
shown. Tcoh corresponds to the loss of antinodal quasiparticle coherence.

1.1.5 Strange metal and the pseudogap

The strange-metal phase is characterizes by linear dependence of the resistivity in tempera-

ture, contrary to the Fermi-liquid phase. Within the strange-metal phase, another anomaly

occurs below a certain temperature - T ∗. Angle resolved photo emission spectroscopy

shows that an energy gap opens (primarily) in the antinodal direction in momentum-

space, on the edges of the Brillouin-zone. When the temperature decreases, this so called

psseudogap starts spreading along the Fermi arc towards the nodal direction and when an-

other temperature T ∗∗ is crossed, the linear-T dependence of ρ is replaced again with the

Fermi-liquid’s T 2 relation (11),(12). When Tc is crossed, the SC gap opens all around the

Fermi arcs apart from the nodal point. The relation between the SC gap ∆ and the pseu-

dogap ∆∗ is a debateful subject. Figures 1.3 (a) and (b) shows the different T-dependence

of ρ and a phase diagram (including T ∗ and T ∗∗) respectively.

1.2 Anisotropy

The c-vector of the unit-cell is about three times larger than the a- and b-vectors, making

the system highly anisotropic. This anisotropy is observed in many different experiments

such as in-plane/out-of-plane resistivity (13) (14), parallel/perpendicular susceptibility

(15), anisotropy of the upper critical fields (16), Stiffness measurements (1), and more. It

is reasonable to assume that this anisotropy plays a key role in the origin of ∆Tc.
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1.2.1 Structural anisotropy

Except for the in-plane/out-of-plane anisotropy, the system can be anisotropic inside the

planes. When the a and b-vectors are equal, the unit cell is tetragonal, and when a,

and b are not equal the unit cell is orthorhombic. This symmetry depends on doping

and temperature (and also pressure). At high temperatures, the system is tetragonal.

But at low doping and below a certain temperature, the system becomes orthorhombic.

This doping-dependent temperature of the structural phase transition tetragonal → or-

thorhombic (often denoted by T0) decreases with doping and reaches 0 at x ∼ 0.22 (4).

This in-plane anisotropy can influence the coupling between layers and the in-plane/out-

of-plane anisotropy.

1.2.2 Anisotropy in resistivity measurements

The usual way to measure the in-plane/out-of-plane resistivity is by cutting two bars (or

plates) with different orientations from the same single crystal and use the four-contact

technique. The current flows from one end of the bar to the other while the voltage

difference is measured between the ends. In one bar the CuO2 planes are perpendicular

to the current direction and the inter-plane resistivity ρc is measured. In the second bar

the CuO2 planes are parallel to the current direction and the intra-plane resistivity ρab

is measured. ρc is always larger than ρab and the ratio ρc/ρab is usually about ∼ 103.

In the work by S. Komiya et al. (13) on underdoped LSCO it was found that ρab’s T-

dependence changes smoothly with doping for 0.02 < x < 0.17, while ρc’s behavior changes

when crossing to the SC doping regime (0.07 > x). Another work by G.S. Boebinger et

al. (14) used high magnetic fields (∼ 61 T) to suppress SC and measure the normal-state

resistivity inside the SC dome near optimally doping of LSCO. Metallic state is defined by
dρ
dT > 0 and insulating state by dρ

dT < 0. At low doping both ρab and ρc are insulating and

slightly above optimal doping, they are both metallic, but the insulator-to-metal crossover

occurs at different doping/temperature as shown in Fig. 1.4. The different behavior of dρ
dT

is another signature of the strong anisotropy. Other resistivity measurements (17) with

strong magnetic field perpendicular to the CuO2 planes showed strong decoupling between

the planes while the in-plane coupling was unaffected.
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Figure 1.4: Normal state insulator-to-metal crossover of in-plane/out-of-plane resistivity,
ρab and ρc inside the SC dome (SC is suppressed by a magnetic field of ∼ 61 T) (14).

1.2.3 Anisotropy in magnetization measurements

When cooling a SC sample below Tc and applying a magnetic field, the sample generates

a magnetic moment to repel the external field (Meissner effect). Then, by heating the

system while measuring the magnetic moment, one can measure Tc. By cutting needle-

shaped samples from the same single crystal with the CuO2 planes parallel/perpendicular

to the needle’s axis and measuring Tc, G. Drachuk et al. (15) found different Tc between

the two needles. Such difference in Tc is another demonstration of cuprats anisotropy.

1.2.4 Anisotropy in stiffness measurements

Using a Stiffnessometer, I. Kapon measured (1) the difference in Tc for in-plane and out-

of-plane currents. The measurement is done in equilibrium, detects only macroscopically

phase coherent SC state, and avoids local SC fluctuations. A 0.64 K difference was found

in x = 0.125 LSCO, and in my Msc-thesis I measured more samples of different doping

with the same technique and again, observed ∆Tc.
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Chapter 2

Research Methods

Most of the technical details of the system and data analysis are embedded in the articles

themselves. In this section, the focus will be on crystal growth, sample preparation, and

coil making. I will also introduce the Stiffnessometer, our main tool in this research.

2.1 Making La2−xSrxCuO4 samples

All samples are made in our lab from scratch. The chemical elements are mixed, pressed

and molded into a single crystal. The crystalline orientation is determent by x-ray Laue

diffraction and two plates are cut from the same crystal, but with different orientation. A

diamond disc saw is used to cut the crystal into plates. Ring-shape samples are cut from

the plates using a femto-second laser. The different stages of the growth and cutting are

explained in this section.

2.1.1 Single crystal growth

The process starts by mixing CuO, La2O3, and SrCO3 of the right amounts for the desired

doping. At least four cycles of mixing and sintering are done until we get a uniform

homogeneous powder, checked by x-ray powder-diffraction. The powder is pressed to a

rod with 55000 PSI and sintered again at 1050 c◦ for 24 hours. Then, we use a traveling

solvent floating zone (TSFZ) furnace to transform the rods of pressed powder in to single

crystal. One rod (called feed) is hung over another shorter rod (called seed) and they

rotate in different directions at 15 tpm. The edges of the rods (bottom of the feed and

top of the seed) are melted with a set of four 300 W lamps and parabolic mirrors, inside
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Figure 2.1: (a) Photograph of the feed and seed rods, the lamps and mirrors, and the
quartz tube. (b) Schematic of the feed and seed rods, the lamps and mirrors, and the
quartz tube.

a sealed quartz tube filled with argon and a small amount of oxygen gas, at a pressure of

5.5 bar.

After the initial melting of the tips of the rods we get a zone of molten solvent of LSCO

and is mixed by the rods rotation. Then the stage with the lamps and mirrors is lifted

slowly along the feed rod to melt it. When the hot zone moves up, the lower part of it

solidifies, and if everything is right, it will also crystallized on the seed rod. The stage

movement starts at 5.0 mm/h in the beginning of the growth and the rate is lowered to

1.0 mm/h and stay so during the stable growth of the single crystal.

The TSFZ furnace is shown in figure. 2.1. After the growth is finished, the crystal is

annealed at a temperature of 850 C for 120 hours in an argon environment. The quality

and orientation of the crystal is determined using Laue x-ray diffraction. To grow a high

quality single crystal we optimized all parameters of the process (8).

2.1.2 Crystal orientation and rings cutting

The crystals are cut into two kinds of plates: plates with the copper-oxide layers parallel

to the plane and plates with the copper-oxide layers perpendicular to the plane. From

these plates we cut rings with tetragonal cross section using a femto-second-laser (at the

Tel Aviv University Center for Nanoscience and Nanotechnology). We refer to the rings

with the copper-oxide layers perpendicular/parallel to the symmetry axis of the ring as,

c-ring and a-ring respectively. The rings go through another annealing process before they

are measured. The LSCO rings have an inner diameter (ID) of 1.0 − 2.0 mm, an outer

diameter (OD) of 2.4 − 3.0 mm, and height of ∼ 1.0 mm. In Chap. 5 the rings are cut
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again to change their cross-section.

2.2 Stiffnessometer

The superconducting stiffness ρ̂s is defined by a local relation between the superconducting

current density js to the vector potential (VP) A and the gradient of φ (the phase of the

complex order parameter ψ = |ψ|eiφ 1). This relation is:

js = ρ̂s(
Φ0

2π
∇φ− A). (2.1)

where Φ0 is the magnetic flux quanta and ρ̂s is a diagonal tensor. This equation is gauge

invariant and when setting ∇φ = 0, we recover the London equation:

js = −ρ̂sA. (2.2)

If we use the curl of Maxwell’s equation: ∇ × ∇ × B = µ0∇ × J (where J is the

sum of normal, and super currents) and the definition of A: B = ∇ × A, we get a

partial differential equation for the magnetic field B: ∇2B = µ0ρ̂sB. The solution (in one

dimension) is: B = B0e
−xλ. This exponential decay of the magnetic field inside the bulk

of a SC is called the Meissner effect and it gives us the relation between the SC stiffness

ρ̂s and the penetration depth λ:

ρ̂s =
1

µ0λ2
. (2.3)

The ideal Stiffnessometer is made of an infinitely long inner excitation coil (EC) pierc-

ing a ring-shaped sample. When applying current I through this EC a magnetic field is

generated inside the coil with zero field outside. Nevertheless, outside of the coil there is

a vector potential A = µ0
nI

r
φ̂ where n is the winding linear-density of the EC and r is

the distance from the coil’s symmetry axis.

If we cool the sample below Tc without any magnetic field or current in the excitation

coil, there will be no VP. This cooling process is called: Zero-Gauge-Field-Cooling (ZGFC).

When a sample is cooled and becomes a SC, the phase φ is chosen to be such that minimizes

the free energy. So following the ZGFC protocol, ∇φ = 0, and js = 0. But now, changes of
1From the Ginsburg-Landau (GL) point of view, the system is a macroscopic quantum state, defined

by a complex order parameter: ψ = |ψ|eiϕ, where |ψ|2 is the super-fluid density and φ is the phase.
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φ is energetically costly for the SC, because it means breaking the coherence of the system

and overcoming some energy barrier. So when we turn on the current in the coil and

A ̸= 0 we generate supercurrents js inside the ring following London’s equation (Eq. 2.2):

js = −ρsA. These supercurrents running around in a loop create a magnetic moment

m which can be measured using a pickup-loop connected to a superconducting quantum

interference device (SQUID)2.

The London equation introduces a linear relation between js and A. Since A is propor-

tional to the current in the excitation coil I and js is proportional to the sample’s magnetic

moment m, we get a linear relation between the applied current and the measured signal.

When this linearity breaks, the system is said to be out of the ”linear regime”, because the

critical current jc was crossed somewhere within the sample. This process is more compli-

cated and will depend on the geometry of the EC and the ring as explained in 2.2.4. There

are two types of measurements we can do: We can stay at a constant fix temperature and

increase the current I; this type of measurement determines the critical magnetic flux of

the ring Φc from which we can extract ξ. Alternatively, we can change the temperature

while the current is in the linear regime and constant; this type of measurement provides

the ρs. When the signal of the ring disappears completely, it means there is no more

persistent currant in the ring and we find Tc. But, different phenomena can influence the

apparent Tcv (Correlated disorder can blunt the transition and create a ”tail”, and the

finite size of the sample will also play a role in Tc). This is the main topic of chapter 5.

This technique is used to determine ρs without any leads or magnetic field. Another

advantage of this technique is that it demands a global phase coherence. Therefore, phase

transitions are much sharper compared to other techniques such as electric transport or

magnetization measurements. Using the Stiffnessometer, we can measure Tc with great

accuracy and study the stiffness close to the phase transition. Therefore, it’s an ideal tool

to measure ∆Tc.

The critical flux measurements (to measure ξ) can be done close to Tc where jc is

small, or well blow Tc (at T ∼ 1.7 K), where we can use SC coils and apply high currents.

When I is increased, the magnetic flux inside the coil increases and the ratio dependence

on the geometry of the EC. To maximize the magnetic flux-to-current ratio (Φec/I), we

use EC with many layers which require rings with a proper geometry: The ring’s inner
2Based on the Josephson junction effect, SQUIDs are commonly used to detect magnetic moment.
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radius should be big enough for the many-layered EC, but the outer radius must be small

(thin wall of about ∼ 0.35 mm), making the ring very fragile and hard to manufacture.

The outer radius needs to be small, because jc ∝ r2out and will be explained in the data

analysis Sec. 2.2.4.

2.2.1 Principle of operation

During the measurements, the ring is fixed at the center of the excitation coil and together

they move along the z direction (the horizontal axis in Fig. 2.2), in and out of a gradiometer

(of second order) which is fixed at z = 0 (z-scan procedure). The gradiometer serves as

a pickup-loop that increase the signal and cancels noises. When they move, the magnetic

flux through the gradiometer changes and the SQUID measures the change. The output

signal from the SQUID is in voltage and proportinal to the magnetic flux through the

gradiometer at each z. Figure 2.2 presents such measurements of a LSCO ring above and

below Tc. Since the coil is finite, its magnetic signal is detected by the gradiometer and a

combined signal of the coil and the ring is measured. The coil’s signal can be measured

above Tc (or without the ring), and subtracted from the combined signal, revealing the

ring’s signal. The difference between the maximum and the minimum of the ring’s signal is

labeled ∆Vsc and the difference between the maximum and the minimum of the excitation

coil’s signal is labeled ∆Vec. The measurable parameters ∆Vsc and ∆Vec are proportional

to the magnetic flux generated by the ring and coil respectively, and their ratio (∆Vratio)

can be translated to the stiffness (as explained in Sec. 2.2.4).

2.2.2 Experimental setup

The Stiffnessometer was developed as an add-on to S600 SQUID SUSCEPTOMETER of

CRYOGENIC LTD and was adopted to the new Quantum Design MPMS3. Schematics of

the setup is shown in Fig. 2.3. The excitation coil used in chap 3 and 5 is 60 mm long, with

an external diameter is 0.8 mm. The coil is made of copper wire and has 2 layers of winding

(1940 winding turns in total). The excitation coil used in chap 4 is 60 mm long, with an

external diameter is 1.95 mm. The coil is made of a SC TiNb wire and has 8 layers of

winding (4800 winding turns in total). The gradiometer is made of 8 (4 in the QD MPMS3)

pickup-loops to reduce noises with a long wavelength. A geometric factor G converts

the coil’s and ring’s VP ratio on a single pickup-look Asc(Rpl)/Aec(Rpl) to the voltage
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Figure 2.2: Raw data. SQUID signal for a LSCO x = 0.17 c-ring at high temperature
(red), when the ring is not superconducting and at low temperature (blue) when the ring is
superconducting. The inset shows the difference between these measurements. Subtracting
the high temperature signal from the low temperature signal reviles the superconducting
ring’s signal. The difference between the maximum and the minimum of the ring’s signal
is labeled ∆Vsc and the difference between the maximum and the minimum of the coil’s
signal is labeled ∆Vec.

17



Figure 2.3: Schematics of Stiffnessometer and gradiometer. Illustration of the long exci-
tation coil (inner-coil) with the SC ring on it, the gradiometer, and the external coil.

difference ratio measured by the gradiometer ∆Vsc(Gradiometer)/∆Vec(Gradiometer).

Where Rpl is the radius of the pickup-loop, Asc, Aec are the ring, and coil’s VP respectively.

G is calculated numerically (but can also be evaluated experimentally) and is ∼ 3.62 and

∼ 3.07 for Cryogenic and MPMS3 magnetometers, respectively. Another external coil is

used to cancel external magnetic fields stronger than 0.001 Oe.

2.2.3 Coil fabrication

The heart of the Stiffnessometer is the excitation coil. The process of coil winding is also

done in our lab to fit our needs. The coil winding must be neat to prevent leakage of

magnetic field outside of the coil. Figure 2.4 (a) shows different coils, and Fig. 2.4 (b)

depicts a zoom in on the winding. The coil’s core is made of thin Nitinol wire covered
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Figure 2.4: (a) Tree different coils made in our lab, a LSCO ring, and a penny for com-
parison. (b) Close look on a coil.

with polyamide coating. We use wires of different materials and thickness for different

experiments. SC wires are used to make SC-coils for measurements with high currents at

low temperatures, allowing us to measure the coherence length ξ in the ground state of

the system.

2.2.4 Data analysis

When the temperature approaches Tc, λ starts to grow (compared to the ring’s dimensions)

and we must take into account the ring’s self-inductance VP (assuming that |ψ| is uniform).

When the total VP inside the ring is At = Asc + Aec, combining Faraday’s and London’s

equations, we obtain a partial differential equation (PDE) for Asc:

∇2Asc = ρ̂s(
Ψec

2πr
φ̂+ Asc). (2.4)

Changing to unitless parameters (scaling lengths by Rpl (the pickup-loop’s radius) and

Asc(r) by Aec(Rpl)) and working with cylindrical coordinates, Eq. 2.4 becomes:

∂2A

∂z2
+
∂2A

∂r2
+

1

r

∂A

∂r
− A

r2
=

1

λ2
(A+

1

r
) (2.5)

The numerical solution of the PDE is presented in Fig. 2.5, and one can see that the

Stiffnessometer sensitivity is limited to the range where there is no saturation in (Rpl/λ)
2

(sensitivity range of 10−2 < λ < 101 mm). At temperatures too close to Tc, the critical

current jc is low and limits the validity range of the Stiffnessometer to a tighter range of

0.1 < λ < 1.0 mm.

To deal with the brake of linearity at the critical flux, we consider the spatial depen-
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Figure 2.5: A semi-log plot of the numerical solution of the PDE (Eq. 2.5), evaluated
at the pickup-loop radius, for different values of (Rpl/λ)

2. The pickup-loop radius Rpl is
13 mm and 8.5 mm in the Cryogenics and the MPMS3 respectively. The solution depends
on the ring’s dimensions too: ID = 1.0 mm, OD = 2.5 mm, h = 1.0 mm.

dence of the order parameter’s amplitude (|ψ|(r)) by solving the two Ginzburg-Landau

equations simultaneously. This was done by N. Gavish, O. Kenneth and A. Keren (22)

for a hollow long cylinder. The solution of the two equations show that there is a critical

magnetic flux (inside the excitation coil) given by:

Φc
ec ≲

Φ0r
2
out√

8ξλ
. (2.6)

Where rout is the outer radius of the SC ring. Using this relation and λ (from stiffness

measurement of other sources) we can extract the coherence length ξ from measurements

of Φc
ec.

On Chap. 5 we focus on the measurements of the transition temperature. We define

it as the temperature where the extrapolation of the sharp part of the transition meets

zero when we measure the moment (or ∆Vring) vs temperature. This temperature was

independent of the initial current in the EC. The reason we are not looking at the point

where the moment is indistinguishable from the noise is because inter layer disorder can

manifest in a tail above the bulk transition temperature which is what we are interested

20



in.

2.3 Verification of the Stiffnessometer

As befitting a new technique, there are many tests needed to confirm it. We wanted to

confirm that our assumption of an infinite coil is valid in our detection limits. Next, we

wanted to validate the London equation Eq. 2.2 and the full equation of the super current

Eq. 2.1. The theoretical dependence of the critical flux to the OD, ξ, and λ also needed

to be tested. Last, we needed to check the finite size effect on the transition temperature.

All those tests were done and are also explained in the body of the work: Chap 3, Chap 4,

and Chap 5.

2.3.1 Infinite coil validation

Simulations of a finite coil with our parameters shows the external field outside the coil is

about 0.3% of the field in its center and that the VP is similar to that of an infinite coil

Fig. 3.2. The most direct test was measuring an open ring and see if the current in the

EC influence the ring’s signal. The open ring had no detectable signal Fig. 3.4. Another

way to measure leakage of magnetic field was with a SQUID on chip that can scan the

surface of the ring when the EC is On and OFF. The vortex number was not increased

after turning on the EC (23).

2.3.2 Gauge field cooling process

The London equation states, that js is linear to the VP, so the measured moment should

also be linear with the current of the EC. This linear relation is observed in the experiments

Fig. 3.6. To demonstrate Eq. 2.1, we cooled the system below Tc while the excitation coil

is on (current flows in the excitation coil), meaning: A ̸= 0. When we measured (z-scan3)

while the excitation coil is still on, only the coil’s signal was detected. This is because

∇φ =
2π

Φ0
A (up to a fraction of Φ0) resulting in js = 0. When we turn-off the excitation

coil, A = 0, but ∇φ ̸= 0, and js = ρ̂s(
Φ0

2π
∇φ); when measuring again, only the ring’s

signal is present. This cooling process is called gauge field cooling (GFC) and the ring’s

signal and phase transition are identical to what we get when following the ZGFC process.
3Moving the coil with/without the ring through the gradiometer and read the SQUID’s output.
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Figure 2.6: Raw signal of measurement after gauge field cooling (GFC) process, and
after zero gauge field cooling (ZGFC) process and subtraction of the coil’s signal. The
inset shows stiffness measurements (∆Vratio) of the two protocols. Both in the raw signal
and the stiffness measurements, the two different protocols give similar results. The red
markers and the blue markers are similar but not identical (each one belongs to a different
measurement and follow a different protocol).

This experiment is another verification that the field outside of the coil is insignificant.

Figure 2.6 shows the measurements of both GFC and ZGFC protocols.

2.3.3 Critical magnetic flux verification

Equation 2.6 raises two size-relating issues: First, it is constructed for an infinite cylinder

and not for a ring (flat cylinder). Second, it suggests that Φc depends only on the outer

radius. Therefore, it was also important to check the size effect on Φc. This was done by

measuring Niobium (Nb) rings (with known ξ, and λ) with different height or inner/outer

diameter. These experiments where part of Chap. 4 and the results confirm the theory.

2.3.4 Finite size effect verification

It was suggested that the apparent Tc of the a-ring is reduced because close to Tc the

inter-layer coupling is weak and the system behave as a 1D Josephson array and the inter-

layer stiffness ρ⊥ have exponential dependence on temperature and the cross section of

the ring. To examine this interpretation, we measured the change of Tc, as a function of
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the ring’s cross-section. This was done by polishing the ring (changing its height) and by

cutting the outer diameter of the ring (using again the femto-second-laser). This test was

a big part of the work and is the focus of Chap. 5. The cross section was found to have

significant influence over the inter-plane stiffness.
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ABSTRACT

We provide a detailed account for a method to measure superconducting stiffness ρs,

critical current density jc, and coherence length ξ, in one apparatus, without subjecting

the sample to magnetic field or attaching leads. The method is based on the London

equation j = −ρsA, where j is the current density and A is the vector potential. Using a

rotor free A and a measurement of j via the magnetic moment of a superconducting ring,

we determine ρs. By increasing A until the London equation fails we determine jc and
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ξ. The method is sensitive to very small stiffness, which translates to penetration depth

λ ≲ 1 mm. It is also sensitive to low critical current density jc ∼ 103 Amm−2 or long

coherence length ξ ∼ 1 µm. Naturally the method does not suffer from demagnetization

factor complications, the presence of vortices, or out-of-equilibrium conditions. Therefore,

the absolute values of the different parameters can be determined. We demonstrate the

application of this method to La2−xSrxCuO4 with x = 0.17.

3.1 Introduction

Superconducting stiffness ρs is defined via the gauge invariant relation between the current

density j, the vector potential A, and the complex order parameter Ψ = ψ(r)eiϕ(r) , with

ψ(r) ≥ 0, according to

j = ρs

(
Φ0

2π
∇ϕ−A

)
(3.1)

where Φ0 is the superconducting flux quanta,

ρs =
ψ2e∗2

m∗ , (3.2)

is known as the stiffness, and e∗ and m∗ are the carriers charge and mass respectively

(1; 2; 3). ψ2 is often interpreted as a measure of the superconducting carrier density with

a maximum value ψ2
0. When ∇ϕ = 0 the London equation

j = −ρsA. (3.3)

is obtained. ρs can be expressed in units of length via

ρs =
1

µ0λ2
, (3.4)

where λ is known as the penetration depth.

The two most important pieces of information on a superconductor (SC) are embedded

in Eq. 3.1. First, ρs provides an indication on the ratio between carrier density and

effective mass. For example, in high temperature superconductors (HTSC) the transition

temperature Tc is found to be proportional to the stiffness at low temperatures. This

finding, known as the Uemura plot, must play a key role in any theory of HTSC (4).
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Second, the highest j for which the SC maintains ∇ϕ = 0 and thus the linear relation

of Eq. 3.3 holds, sets the critical current jc. jc also has an interpretation in terms of

coherence length via the shortest distance ξ on which ϕ can vary by 2π.

However, there is no direct way to measure ρs. The standard method is to apply

magnetic field, to measure the penetration depth of the magnetic induction B into a

material, and to use Eq. 3.4 to determine the stiffness (4; 5; 6; 7; 8; 9). However, the

magnetic field raises issues one must consider: first, it is essential to take into account

the sample shape via the concept of demagnetization factor. This factor is known exactly

only for ellipsoidal samples, which are nearly impossible to come by. Second, magnetic

fields introduce vortices, which can complicate the interpretation of the penetration depth

measurements. Third, all methods have an inherent length scale window. The longest

penetration depth that has been measured to the best of our knowledge is 10 µm (5; 6;

7; 8; 9). This is far shorter than a typical sample size. Therefore, there is a temperature

range below Tc at which λ > 10 µm where the behavior of ρs is obscured. For highly

anisotropic samples, this range could extend to temperatures well below Tc.

Similarly, there is no direct way to measure the critical current density jc. The standard

method is to connect leads, and to determine the current at which voltage develops across

the sample (10; 11; 12; 13). However, this method could lead to two transitions: First

when voltage develops and power, lower than the cooling power, is injected into the sample.

Second a thermal runaway when the entire sample becomes normal and the voltage grows

exponentially (11). Finally, stiffness and coherence length measurements require different

experimental setups.

Here we present in detail an instrument to measure stiffness and coherence length si-

multaneously, in zero magnetic field and with no leads, based on the London equation

(Eq. 3.3). This method determines ρs directly without the use of the penetration depth

concept. When this equation breaks, and ρs can no longer be determined, it means the

critical current has been reached. Consequently, we name the instrument stiffnessometer.

We convert the breaking point of Eq. 3.3 to ξ using a mathematical solution of the full

Ginzburg-Landau equations in the relevant setup (22). As we explain below, the stiff-

nessometer can measure very weak stiffness, which corresponds to λ ranging from tens of

microns to millimeters. This allows measurements of stiffness closer to the critical temper-

ature Tc than ever before, or measuring the stiffness of very anisotropic systems. Finally,
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vortices or demagnetization factor are not a problem for the Stiffnessometer since the

measurement is done in zero field. The stiffnessometer was previously used to measure the

anisotropy of the stiffness in LSCO x = 0.12 (15), but only a brief account of the details

of its operation was given.

3.2 Experimental setup

The method is based on the fact that outside an infinitely long coil (defining the ẑ direc-

tion), the magnetic field is zero while the vector potential is finite. This vector potential is

tangential and points in the φ̂ direction. When such an inner-coil is placed in the center of

a SC ring, the vector potential leads to a current density in the ring according to Eq. 3.1.

This current flows around the ring and generates a magnetic moment, which is detected

by moving the ring and the inner-coil rigidly relative to a pickup-loop. The concept of

the measurement is depicted in Fig. 3.1(a). A typical inner-coil and two superconducting

rings of the cuprate SC La2−xSrxCuO4 (LSCO) are shown in Fig. 3.1(b). In Fig. 3.1(c)

we present a zoom-in on three different coils with outer diameters of 2, 0.8, and 0.25 mm.

They have 2 to 16 layers of wires with thickness between 10 and 100 µm, and their length

is 60 mm. Our stiffnessometer is an add-on to a Cryogenic SQUID and to a quantum

design MPMS3 magnetometers.

Both magnetometers use a second order gradiometer, rather than a single pickup loop.

The gradiometer is made of three winding groups. The outer two are constructed from

two loops each, wound clockwise, and the inner group is made of four loops, wound

anticlockwise. This is also demonstrated in Fig 3.1(a). The gradiometer ensures that

a magnetic moment generates voltage only when it is in the vicinity of the gradiometer

center. Also, any field uniform in space gives zero signal even if it drifts in time. The

gradiometer is connected to a superconducting quantum interference device (SQUID). The

output voltage V of the device is proportional to the difference between flux threading the

different loops of the gradiometer.

The vector potential outside of an infinitely long coil is given by

Aic =
Φic

2πr
φ̂, (3.5)

where r is the distance from the center of the coil, and Φic is the flux produced by the
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Figure 3.1: Experimental setup. (a) An illustration of the stiffnessometer: The super-
conducting ring is threaded by an inner coil, placed in the center of a gradiometer, and
surrounded by a main coil that serves as a shim coil. (b) A typical inner coil, 60 mm long
with 2 mm outer diameter. Also shown are two La2−xSrxCuO4 rings with a rectangular
cross section. (c) A zoom-in on other inner coils with outer diameters ranging from 2.0 mm
to 0.25 mm, and length of 60 mm.
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inner coil. To check the validity of this expression in our case we calculated numerically

the magnetic field Bz and vector potential Aφ (in the Coulomb gauge) produced by the

inner coil as a function of r and z. This coil is 60 mm long, has an inner diameter (I.D.)

of 0.54 mm, an outer diameter (O.D.) of 0.8 mm, 2 layers, and 1940 turns in total. The

measured LSCO ring has an I.D. of 1.0 mm, an O.D. of 2.5 mm, and a height (h) of

1.0 mm. Fig. 3.2 shows the result of the calculations. The approximation of an infinite

coil, presented by the dashed-doted green line, is perfect for our ring size and even for

much larger rings. The calculation also shows that the strongest field just outside of the

inner coil is 104 times smaller than the field at its center.

The sample is grown using an optical floating zone furnace. It is oriented using x-

ray Laue camera and cut to plates and then into a ring shape using an ELAS master

femtosecond laser cutter. The ring’s plane is the CuO2 plane of the sample. After cutting,

the sample is annealed at 850 C◦ for 120 h in argon atmosphere.

The measurements are done in two different detection methods. (I) DC scan mode,

where we record the SQUID’s output voltage V (z) while the relative distance between the

gradiometer and the ring changes when the ring and inner coil move. The DC mode allows

detection of the contribution from the inner coil as well, since the entire coil can be pulled

out of the gradiometer. Our gradiometer detects magnetic moments within a range of

15 mm on each side of its center. This sets the length of our inner coils. When measuring

over a wide temperature range, detection of the inner coil contribution is important in

order to determine the flux it generates at each temperature. (II) VSM mode, where

the ring vibrates around the center of the gradiometer. In this mode the coil does not

contribute to the signal. The VSM mode is fast and allows fine temperature scans without

the need to achieve temperature stability at each measuring point.

There is a risk that field generated in the inner coil leaks since no coil is infinitely

long or perfect. To overcome this leak, a main coil, also shown in Fig. 3.1(a), acts as a

shim to cancel the field on the ring when it is at the gradiometer center. In the Cryogenic

SQUID the main coil has a field resolution of 0.1 µT. The ultralow field (ULF) capability

of MPMS3 allows for field cancellation down to 0.3 µT. Therefore, we can keep the field

on the ring as low as 0.1 µT when needed.

The measurements can be done in two different procedures: One is zero gauge field

cooling (ZGFC) in which we cool the ring to a temperature below Tc, turn on the current
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Figure 3.2: Vector potential and magnetic field profile. Numerical calculation of the
vector potential and magnetic field per current at z = 0 for the inner coil used in this study.
The coil parameters are: length l = 60 mm, inner diameter = 0.54 mm, outer diameter
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Figure 3.3: Raw data. SQUID signal for a LSCO x = 0.17 ring at high temperature, when
the ring is not superconducting, and at low temperature when the ring is superconducting.
The inset shows the difference between these measurements.

in the inner coil I when the ring is superconducting, and measure while warming. In this

procedure, the SC minimizes its free energy by setting ∇ϕ = 0 in Eq. 3.1. This value of

∇ϕ does not change as A is turned on, as long as the current in the coil is below some

critical value (as explained later). In this case Eq. 3.3 holds throughout the measurements.

The other procedure is gauge field cooling (GFC) in which we turn on the current in the

inner-coil at a temperature above Tc, cool the inner coil and ring below Tc, and turn the

current off. To minimize its free energy the SC sets ∇ϕ in Eq. 3.1 such that j is as close

to zero as possible. When A is turned off, ∇ϕ does not change and plays the role of A in

the ZGFC procedure.

To better appreciate why ∇ϕ = 0, even when A is ramped, one can view ϕ as the

phase of an in-plane arrow. Cooling at A = 0 sets all the arrows pointing in the same

direction. Since the phase is quantized, to change ϕ means a twist of all arrows in a closed

loop, such that the phase between the first arrow and last one in the loop changes by 2π.

This would lead to a discontinuity in the phase value, a procedure that costs energy, and

generates instantaneous voltage according to the Josephson equation ℏ
e∗

∂ϕ
∂t . A nice analog

is a ferromagnetic ring with the spins pointing in the same direction. Rotating the last

31



- 0 . 5

0 . 0

0 . 5

1 . 0

- 2 . 0 - 1 . 5 - 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0 1 . 5- 4 0
- 2 0

0
2 0
4 0
6 0

- 0 . 0 1
0 . 0 0
0 . 0 1
0 . 0 2
0 . 0 3

- 2 . 0 - 1 . 5 - 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 - 0 . 4
- 0 . 2
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8

 

 

1 m A
0 µT

( b )
0 m A
0 . 1 m T

 

 

∆V
sc (

Vo
lt)

z  ( c m )
( c )

 0 . 1 µT  0 . 3 m A
 0 . 0 µT  0 . 3 m A

( a )

∆V
sc (

Vo
lt)

    1 0 m A  
 N b
 P b
 L S C O

( d )

Figure 3.4: Experimental tests. (a) The signal with a current of 0.3 mA in the inner
coil and 0.1 µT fields demonstrating the quality of the field canceling procedure. (b) The
SQUID signal for open and closed rings when the field is zero and the vector potential is
finite. (c) The SQUID signal for open and closed rings when the vector potential is zero
but the field is finite. (d) Demonstrating that when λ is much smaller than the sample
size the signal is material independent.

spin with respect to the first one by 2π requires us to break a bond. This procedure is not

energetically favorable for a ferromagnet (or the SC ring). Therefore, ramping A leaves

all arrows pointing in the same direction and ∇ϕ = 0, until A exceeds a critical value. At

this point, the current is too high and it is worthwhile for the SC to “break a bond” and

reduce the current.

A typical DC mode measurement is demonstrated in Fig. 3.3. The red symbols rep-

resent the signal when the entire inner coil has moved through the pickup coil at T > Tc.

Before the lower end of the inner coil has reached the gradiometer, the flux through it

is zero. During the time the lower end of the inner coil transverse the gradiometer its

contribution to the total flux changes from zero to positive to negative and back to zero.

The upper end of the inner coil has the opposite effect; its contribution to the flux goes

from zero to negative to positive and back to zero. But there is a time (or distance) delay

between the lower-end and upper-end contributions, leading to the observed signal. A

linear drift of the voltage can be easily evaluated as demonstrated by the dotted lines. We

define the inner-coil maximum voltage difference ∆V max
ic as demonstrated in Fig. 3.3.

At T < Tc the ring adds its own signal, as shown in Fig. 3.3 by blue symbols. The ring

32



produces current that generates opposite flux to the one in the inner coil. The ring signal

is concentrated on a narrower range on the z axis. By subtracting the high temperature

measurement from the low temperature one, it is possible to obtain the signal from the ring

alone Vsc as demonstrated in the inset of Fig. 3.3. We define the maximum ring voltage

difference ∆V max
sc as shown in the inset. The ratio ∆V max

sc /∆V max
ic stores the information

on the stiffness, as will be discussed in the Data Analysis Sec. 3.5.

3.3 Tests

To ensure that our signal is not due to leakage of magnetic field from the inner coil or any

other field source, we perform three tests. In the first one we apply current in the inner

coil, measure the field leakage at the ring position using an open ring, and cancel it using

the main coil. Then we increase the field by only 0.1 µT. The measurements before and

after the field increase are depicted in Fig. 3.4(a). They indicate that we can cancel the

field in the ring position to better than 0.1 µT. Clearly in zero field there is no signal. In

the second test we measure the stiffness (zero field and applied current in the inner coil)

of closed and open rings, which are otherwise identical in size. The results are shown in

Fig. 3.4(b). The signal from a closed ring is much bigger than the background from an

open one. In Fig. 3.4(c) we repeat this measurement with an applied field in the main coil

of 0.1 mT, and no current in the inner coil. In this case both open and closed rings give

strong and similar signals. The difference between the two signals is consistent with the

missing mass in the open ring. These tests confirm that the field leakage is not relevant to

our stiffness measurement. Our ability to determine small stiffness depends on how well

we can cancel the field at the ring position.

Another important test of the stiffnessometer comes from comparing the signal from

rings of exactly the same dimensions, but made from different materials. At temperatures

well below Tc the stiffness is expected to be strong, namely, the penetration depth should

be much shorter than all the ring dimensions. In this case, as the current is turned on,

and flux in the inner-coil Φic changes, an electric field is generated in the SC ring Esc

according to

Esc =
1

2πr

∂Φic

∂t
= −∂Asc

∂t
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Figure 3.5: Temperature dependence. The SQUID signal Vsc for a La2−xSrxCuO4

x = 0.17 ring with the CuO2 planes perpendicular to the ring symmetry axis, at different
temperatures. The inset shows ∆V max

sc /∆V max
ic in the ZGFC and GFC procedures as a

function of temperature.

where Asc is the vector potential of the ring. This leads to

Φsc = 2πrAsc = −Φic,

where Φsc is the flux generated by the SC ring at its center. In other words, when λ is

short compared to the ring dimensions, the SC produces flux which exactly cancels the

applied flux through it, regardless of the material used. Therefore, all materials should

produce the same signal. This is demonstrated in Fig. 3.4(d) for niobium (Nb), lead (Pb),

and LSCO. They all have the same ∆Vsc.

3.4 Measurements

In this section we present mainly stiffnessometer raw data out of which we are able to

extract ρs, ξ, and jc as a function of temperature in favorable conditions.
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Figure 3.6: Critical currents. The SC ring signal ∆V max
sc as a function of applied current

in the inner-coil I, for different temperatures approaching Tc. The inset shows critical
current Ic, where the signal becomes current independent, as a function of temperature.

3.4.1 Stiffness and its temperature dependence

In Fig. 3.5 we present the stiffnessometer signal evolution with temperature for the LSCO

x = 0.17 ring as measured by the DC mode and ZGFC procedure with I = 0.8 mA.

At temperatures between 3.0 and 34.7 K there is no change in the signal. But, between

34.7 K and Tc = 35.53 K the signal diminishes rapidly, as expected. The inset of Fig. 3.5

shows ∆V max
sc /∆V max

ic from both ZGFC and GFC measurement protocols. There is no

difference between the two strategies.

3.4.2 Critical current and its temperature dependence

The stiffnessometer can also be used to measure critical currents. This is depicted in

Fig. 3.6 for the LSCO ring at various temperatures. The signal from the ring ∆V max
sc

grows linearly with I at each T , but abruptly becomes I independent at a critical current

Ic(T ), presented in the inset. It means that the SC can generate only a finite amount of

opposing flux. Therefore, we are detecting jc of the SC.

As I exceeds Ic, vortices start to flow into the center of the ring, so that j in the ring

never exceeds jc. In other words, once the critical current in the sample is crossed, ∇ϕ
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is no longer zero and becomes ∇ϕ = m/r with m ̸= 0. The SC selects m such that j is

fixed. Therefore, for I > Ic, the current in the ring and ∆V max
sc are fixed.

3.5 Data analysis

Analyzing the stiffnessometer signal is done in steps: (A) we consider a single pickup loop

and then a gradiometer. (B) The order parameter magnitude |Ψ| is taken to be constant

in space and the stiffness is weak. Weak stiffness means that the vector potential on the

ring is only due to the applied current. The vector potential generated by the internal

current of the ring is ignored. This approximation is valid when the ring’s current density

is smaller than jc and the penetration length is longer than the sample dimensions. The

weak stiffness analysis is analytical, and valid close (but not too close) to Tc. (C) The

order parameter is still assumed to be constant in space but now the stiffness is strong. In

this case, the self vector potential is taken into account. This leads to a partial differential

equation (PDE), which we solve numerically with relatively simple means. (D) A full

solution of the coupled Ginzburg-Landau equations allowing for both |Ψ| and A to be

space dependent. This level of analysis is required only when the SC is nearly destroyed

by the internal currents, and it is good for extracting jc and ξ. The case of a very tall

hollow cylinder, is covered in Ref. (22). Consequently, at present we can only place limits

on jc and ξ.

3.5.1 Single pickuploop and gradiometer

Had we used a single pickup loop, the voltage would have been proportional to the flux

threading it Φ = 2πRplA(Rpl), where Rpl = 13 mm and Rpl = 8.5 mm for the Cryogenic

and MPMS3 pickup loop radii, respectively. Above Tc, maximum voltage is achieved when

the pickup loop is at the center of the inner coil so that V max
ic = k2πRplAic(Rpl, z = 0)

where k is a proportionality constant. Similarly, a ring at the center of and parallel with

a pickup loop would generate a maximum voltage proportional to its own flux, V max
sc =

k2πRplAsc(Rpl, z = 0), where Asc is the vector potential generated by the ring. Therefore,

V max
sc

V max
ic

=
Asc(Rpl, z = 0)

Aic(Rpl, z = 0)
. (3.6)

Next, we convert between the signal detected by a gradiometer to the signal that would
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have been detected by a single pickup loop. We find a conversion factor G from the vector

potential evaluated on a single pickup-loop Apl to the differences in the vector potential

generated by the gradiometer ∆Ag. This has to be done for both the ring and the inner

coil. The vector potential of a ring with magnetic moment m on the pickup loop depends

on the moment’s height z from the plane of the loop according to A = 2πmR2
pl/(R

2
pl+z

2)
3
2 .

Therefore, for a ring and our gradiometer

Ag
sc(Rpl, z)

Apl
sc(Rpl, z = 0)

=
−2R3

pl

(R2
pl + (z +∆zpl)2)

3
2

+
4R3

pl

(R2
pl + z2)

3
2

+

+
−2R3

pl

(R2
pl + (z −∆zpl)2)

3
2

, (3.7)

where ∆zpl = 7.0 mm and ∆zpl = 8.0 mm is the separation between the different groups

of gradiometer windings for Cryogenic and MPMS3 magnetometers, respectively. The

difference between the maximum and minimum of this function is ∆Ag
sc/A

pl
R = 1.70 and

3.37, again respectively, are the conversion factor for the ring.

To convert from Apl
ic to ∆Ag

ic we plot by the green line in the inset of Fig. 3.2 the vector

potential generated by our coil at Rpl as a function of z, Apl
ic(z). The plot is specific for

∆zpl = 7.0 mm. The function

Ag
ic(z)

Apl
ic

=
−2Apl

ic(z +∆zpl) + 4Apl
ic(z)− 2Apl

ic(z −∆zpl)

Apl
ic(0)

(3.8)

is also plotted in the inset by the blue line. The difference between the maximum and

minimum of this function is the conversion factor for the inner coil. We find numerically

that ∆Ag
ic/A

pl
ic = 0.47. Thus

∆V max
sc

∆V max
ic

= G
Apl

sc

Apl
ic

(3.9)

with G = 3.62 and 3.07 for Cryogenic and MPMS3 magnetometers, respectively. By

measuring ∆V max
sc /∆V max

ic one can predict the expected vector potential ratio between

the coil and the ring at the pickup-loop position. As we show below, G could also be

calibrated experimentally.

As for the VSM method, the magnetic moment m of the ring and Apl
sc are related by

m

∆V max
ic

= F
Apl

sc

Apl
ic

(3.10)

where F is a calibration factor. In the GFC procedure ∆V max
ic is measured before the
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coil current is turned off. F is determined by measuring m, and calculating Apl
sc/A

pl
ic in

conditions that are not sensitive to the stiffness, as demonstrated in Sec. 3.3.

3.5.2 Weak stiffness, |ψ(r)| = ψ0

The current from each ring element is j(r)hdr where h is the ring height and dr is a ring

element width. Using the London equation, the magnetic moment generated by each ring

element is dm = rρsΦich
2c dr. Integrating from the inner to the outer radii yields the total

moment of the ring m = ρsΦich
4c (r2out − r2in), and

Asc =
m

r2
(3.11)

Using Eq. 3.4, the penetration depth is given by

λ2 =
h(r2out − r2in)

8Rpl

Aic(Rpl)

Asc(Rpl)
. (3.12)

Since all the dimensions of the ring and pickup loop are on the order of 1 mm, and we can

measure voltage ratios to better than 5%, we can measure λ on the order of 1 mm.

3.5.3 Strong stiffness, |ψ(r)| = ψ0

In the strong stiffness case, the total vector potential experienced by the ring At is the

sum of Aic and Asc. Using Faraday’s and London’s equations, with B = ∇×A, and the

transformation ψ(r)/ψ0 → ψ(r), one finds that

∇2Asc =
ψ2(r)

λ2

(
Φic

2πr
φ̂+Asc

)
, (3.13)

where ψ(r) = 1 inside the SC and zero outside. The Coulomb gauge is built into Eq. 3.8

inside the ring since for any vector field F, ∇ · ∇ × F = 0. Outside of the ring this gauge

has to be imposed separately. In cylindrical coordinates Asc = A(z, r)φ̂, and with the

coordinate transformation

r/Rpl → r,Asc/Aic(Rpl) → A, λ/Rpl → λ (3.14)
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Figure 3.7: At distribution inside the ring. The total vector potential obtained from
the solution of Eq. 3.15 and the vector potential of the inner-coil Aic, as a function of r
and z for λ/Rpl = 0.1/13, rin = 1 mm, rout = 2.5 mm, h = 1 mm.

the equation in the ring becomes

∂2A

∂z2
+
∂2A

∂r2
+

1

r

∂A

∂r
− A

r2
=
ψ2(r)

λ2

(
A+

1

r

)
(3.15)

with r, z, and λ in units of Rpl, and A is in units of Aic(Rpl). The solution of this equation,

evaluated at Rpl, is the quantity one would measure with a single pickup loop as indicated

in Eq. 3.6.

We solved Eq. 3.15 for different λ values and our LSCO ring parameters with both

the COMSOL 5.2a and FREE-FEM (16) softwares. We used finite elements in a box

[−Lz, Lz] × [0, Lr] where Lz = Lr = 8. Dirichlet boundary conditions are imposed at

z = ±Lz, r = 0, and r = Lr. Maximal mesh spacing is set to be h = 0.01 in the ring

and its immediate vicinity, and h = 0.25 elsewhere. The total vector potential At for

λ/Rpl = 0.1/13, and for all values of r and z in the ring cross section is presented in

Fig. 3.7. Clearly the vector potential, hence the current, is strongest close to the inner

radius of the ring. They decay towards the center of the ring. The solutions at r = 1

and z = 0 and our ring parameters, for a range of λ values, and different magnetometers,

are presented in Fig. 3.8 on a semi-log plot. The inset is a zoom-in on the long λ region

emphasized by a yellow rectangle. The solid line represents Eq. 3.12 again with our LSCO
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Figure 3.8: Solution of the stiffnessometer PDE. A semi-log plot of the solution of
Eq. 3.15 evaluated at the pickup-coil radius, for different values of (Rpl/λ)

2. The inset
shows the behavior for large λ. The solid line is given by Eq. 3.12.

ring parameters. There is a good agreement between the PDE solution at long λ and the

weak-stiffness approximation.

In Fig. 3.8 we see that when the penetration depth is very short, Apl
sc/A

pl
ic = −0.16

for the MPMS3. Multiplying the absolute value of this number by the MPMS3 G = 3.07

we expect a saturation value of ∆V max
sc /∆V max

ic = 0.49. The measured value, however,

is 0.516 as seen in the inset of Fig. 3.5. The calculated and experimental G factors are

somewhat different. The experimental “G factor” is determined by dividing the measured

saturation voltage ratios by the numerical saturation value. For the presented data of

LSCO x = 0.17 this yields G = 3.22.

3.5.4 Ginzburg-Landau

When the current j somewhere in the SC is strong enough to destroy superconductivity,

ψ becomes space dependent even inside the SC. One has to solve two Ginzburg-Landau

equations simultaneously. Consider a hollow long cylinder. Using the transformation

2πRplAsc/Φ0 → Asc and normalizing all lengths by Rpl these equations are given by
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∂2Asc

∂r2
+

1

r

∂Asc

∂r
− Asc

r2
=
ψ2(r)

λ2

(
Asc +

J

r

)
, (3.16)

and

ξ2
(
∂2ψ

∂r2
+

1

r

∂ψ

∂r

)
= ψ3 −

(
1− ξ2

(
Asc +

J

r

)2
)
ψ. (3.17)

The applied flux is now expressed explicitly in the equations by

J = Φic/Φ0, (3.18)

and Asc(0) = Asc(∞) = 0. For r inside the SC, ψ(r) ≥ 0, outside ψ(r) = 0. The other

boundary conditions are ψ′(rin) = ψ′(rout) = 0. The analysis of Eqs. 3.16 and 3.17 for the

case ξ ≪ λ≪ 1 is described in Ref. (22).

The emerging picture is that when J is small, the analysis of Sec. 3.5.3 is valid. Only

for J > r2in/
√
8ξλ, the order parameter’s magnitude ψ begins to diminish in the inner

rim of the cylinder and the cylinder’s hole is effectively larger than rin. Nevertheless, the

SC still expels the flux of the inner coil and no critical point appears in Asc(Rpl). The

effective hole size reffin increases with increasing J , until ψ survives only on a boundary

layer of width λ at rout. At even larger J , the SC is no longer able to expel the applied

flux, Asc does no longer grow with I, and vortices are expected to penetrate into the SC

hole. These vortices are manifested in an increase of ∇ϕ. This behavior occurs at a folding

point given by

Jfold ≲ r2out√
8ξλ

. (3.19)

The name “folding” means that increasing J past Jfold does not change the solution. The

smaller ξ and λ, the better the approximation of Jfold is.

To evaluate the critical current jc, we realize that when j is pushed to a boundary layer

of width λ at rout, it is still capable of expelling the inner-coil flux, but higher current will

destroy SC completely. Therefore, Φic = µ0jcλπr
2
out. Using Eqs. 3.18 and 3.19 we find

jc ≳
Φ0√

8πµ0λ2ξ
(3.20)

where now λ and ξ are in units of length.

Although Eq. 3.19 is derived for a tall cylinder, we anticipate that it is valid for our
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Figure 3.9: Temperature dependence of normalized signals (a) ∆V max
sc /∆V max

ic

obtained by DC measurements (see Eq. 3.9) as a function of temperature close to the
phase transition. The yellow shade is the region where the full Ginzburg-Landau analysis
is valid. The inset is a zoom-out on the entire temperature range. (b) The magnetic
moment normalized by the coil signal (see Eq. 3.10) obtained by VSM measurements.
Again, the inset is a zoom-out on a broader temperature range.
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ring. As long as λ is smaller than all dimensions of the ring, currents will flow on the

boundaries of the “effective ring”, as in Fig. 3.7 and will be strongest at the inner rim of

the “effective ring”, but with a J dependent reffin . A change in behavior of the signal will

take place only when reffin ≃ rout − λ as in the cylinder case.

3.6 Results

Figure 3.9(a) depicts ∆V max
sc /∆V max

ic obtained by DC measurements. The signal is flat at

low T and drops close to Tc. As the current decreases, the drop of the signal is postponed

to higher temperatures. At currents below I = 0.4 mA a knee develops in the middle of the

phase transition. Nevertheless, there is one Tc = 35.53 K for all currents. Isolated islands

of SC with stronger stiffness cannot be the origin of these knees since only macroscopic

closed lopes of SC can contribute to the signal. We speculate that these knees are related

to SC surface states (17), with very small critical currents. In fact, knees were seen before

in magnetization measurement on needle shaped LSCO, at very low fields, but they were

not given much attention (9). The inset of Fig. 3.9(a) shows the full temperature range

demonstrating that the normalized signal is independent of the applied coil current. In

Fig. 3.9(b) we show the m/∆V max
ic data collected using the VSM method. Quantitatively,

it looks the same as the DC measurement but less sharp and with few glitches of the

signal. The knees disappear or smear and the uprise of the signal when cooling from Tc is

less abrupt. The inset again demonstrates that at low temperature the magnetic moment

is proportional to the applied current as is mirrored in ∆V max
ic .

Using the measurements presented in Fig. 3.9(a), the experimentally determined con-

version factor G, and the solution of Eq. 3.15 presented in Fig. 3.8, we extract the pene-

tration depth as if the solution is valid for all temperatures. The extracted λ versus tem-

perature with two applied currents I = 0.8 mA and I = 0.2 mA is depicted in Fig. 3.10

on a log scale. Ideally we would like to find the I → 0 limit of λ. However, at low temper-

atures where the signal saturates, the determination of λ is noise. Close to Tc there is a

major behavior change at low current due to the knee. Moreover, a full Ginzburg-Landau

analysis requires λ ≪ Rpl. This leaves a small window where we can properly analyze

our data. This window is marked by a yellow circle in Fig. 3.9(a), and by yellow shade in

Fig. 3.10. We zoom-in on the shaded area in the inset of Fig. 3.10 and show with arrows
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Figure 3.10: Temperature dependence of the penetration depth. λ extracted from
the data of Fig. 3.9(a), based on Eq. 3.15, over the full temperature range. The inset arrows
mark the λ’s rang that meet all criteria required for full Ginzburg-Landau analysis.

the temperature range where our analysis is valid.

As for ξ and jc; in Fig. 3.6 ∆V max
sc (I) is measured at temperatures approaching Tc

but before the knee. We identify Ic in this figure with Jfold of Eq. 3.19. Calculating λ at

currents much lower than Ic, the flux generated by the coil at Ic based on Fig. 3.2, and

Jfold from Eq. 3.19 we extract ξ. The results for both λ and ξ are depicted in Fig. 3.11.

Since ξ ≪ λ there is a small temperature region where the Ginzburg-Landau analysis is

self-consistent. Using Eq. 3.20, we find that the critical current density is on the order of

103 Amm−2 at the relevant temperature range, in agreement with measurements done in

a field of 0.03 T on similar samples (18).

3.7 Conclusions

We demonstrated that the Stiffnessometer can measure penetration depth on a scale of

millimeters, two orders of magnitude longer than ever before. This allows us to perform

measurement closer to Tc and explore the nature of the superconducting phase transition,

or determine the stiffness at low T in cases where it is naturally very weak as in thin

films (19). The Stiffnessometer also allows measurements of very long coherence length ξ

on the order of micrometers, equivalent to small critical current density on the order of
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Figure 3.11: Temperature dependence of the penetration depth and coherence
length. λ (T) and ξ (T) extracted from the data using the full Ginzburg-Landau analysis
at a small temperature region where all approximations are valid and the stiffnessometer
is not saturated.

103 Amm−2, properties which again are useful close to Tc. The measurements are done in a

single apparatus, at zero magnetic field, and with no leads, thus avoiding demagnetization,

vortices, and out-of-equilibrium issues.
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ABSTRACT

A long excitation coil piercing a superconducting ring is used to generate an ever increasing

persistent current in the ring, until the current destroys the order parameter. Given that

the penetration depth λ is known, this experiment measures, hypothetically, the coherence

length ξ. We examine various aspects of this theoretically driven hypothesis by testing

niobium rings with different dimensions, and by comparing the results to the known values

of ξ. We then apply the method to two La1.875Sr0.125CuO4 rings at T → 0. In one, the

current flows in the CuO2 planes, hence it is set by ξab. In the other, the current must

cross planes and is determined by ξc. We find that ξc = 1.3 ± 0.1 nm, and ξab < 2.3 nm,

indicating that at low temperatures the Cooper pairs are three dimensional.
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4.1 Introduction

In the world of superconductivity there are two important length scales: the penetration

depth λ, and the coherence length ξ. From an application point of view, λ−2 is a measure

of superconducting carrier density and determines the current-carrying capabilities of a

superconductor, while ξ sets the dimensions of Josephson junctions. There is an arsenal of

experimental methods to directly measure the superconducting stiffness ρs and find λ via

the relation ρs = 1
µ0λ2 in different crystal orientations. However, methods of measuring

ξ are limited. In the cuprates the coherence length in the ab plane (ξab) was measured

by the electron–boson spectral density function (1) and the vortex diameter via scanning

tunneling microscopy (STM) (2). More commonly, one finds the second upper critical field

Hc2 near Tc using one of various methods, such as resistivity (3), the vortex-Nernst effect

(4), specific heat (5), or thermal conductivity (6), extrapolating to T = 0 using theories

that are not necessarily accurate over the whole temperature range, and uses the relation

ξ =
√

Φ0/2πHc2 (3; 7). All methods find ξab on the scale of 1.5− 3 nm.

Measuring the coherence length in the c direction (ξc) in cuprates is more difficult

since it is smaller and because cleaving in a plane including the c axis is challenging,

making scanning techniques nearly impossible. ξc is bound by 1.5 nm, the thickness of

a superconducting Bi2Sr2CaCu2O8+x (Bi2212) monolayer (8). Extrapolations from high

temperatures lead to ξ ∼ 1 Å (7; 3). The only measured value of ξc = 0.86 nm at

T → 0, as far as we know, is from an Hc2 of 250 T obtained using the electromagnetic flux

compression method (9). This number has been questioned due to the transient nature

of the magnetic field. The exact determination of ξc is becoming exceedingly important

due to Josephson junctions created by twisted Bi2212 crystals (10; 11; 12; 13; 14) showing

fractional Shapiro steps (15; 16), and as a challenge for cuprates theory.

A new approach for measuring ξ was suggested, and a very simple analysis formula

was given, in Ref. (17). We name this approach the “Xiometer”. Here, we briefly present

the approach, justify the formula intuitively, and test it on Nb. Then, we apply it to ξ

measurements in La1.875Sr0.125CuO4 (LSCO-1/8). We find that the ξc = 1.3 ± 0.1 nm

determined by the Xiometer at T → 0 is similar to the one obtained from Hc2 = 250 T

of Ref. (9) and calculation in Ref. (7). The implication of this finding is that the Cooper

pairs are more spherical than previously thought.
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Figure 4.1: Experimental setup: (a) A niobium ring on a SC excitation coil (photo), an
illustration of the gradiometer, and the external coil that serves as a shim. (b) Niobium
rings with different inner radii (up), outer radii (middle), and different height (down).
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The Xiometer, as the Stiffnessometer (18), is based on a long, current-carrying exci-

tation coil (EC) piercing a superconducting (SC) ring and a measurement of the ring’s

magnetic moment. The measurement is done by moving both the ring and EC rigidly rel-

ative to gradiometer-type pickup loops as demonstrated in Fig. 4.1(a). The gradiometer is

connected to a superconducting quantum interference device (SQUID). The ring and EC

are cooled to T < Tc, and only then the current in the EC is turned on, and the magnetic

moment of the ring is measured. The gauge invariant London equation states that

j = −ρs
(
Atot −

Φ0

2π
∇φ

)
, (4.1)

where j is the superconducting current density, Atot is the total vector potential, Φ0 is

the flux quanta, and φ is the phase of the superconductor’s order parameter. Atot is a

combination of the EC vector potential Aec =
Φec
2πr φ̂, and the SC ring self-induced vector

potential Asc.

To minimize the kinetic energy after cooling, the superconductor sets its own phase

gradient to zero. Since this phase is quantized, turning the EC current on, gently, conserves

the phase. Therefore, at the start of a measurement, the London equation j = −ρsAtot

is valid. In principle, this relation can be used to determine the stiffness and in this case

the apparatus works as a Stiffnessometer. However, for bulk crystals at low temperatures,

when λ is mach smaller than all dimensions of the sample, the SC ring exactly expels

the applied flux, to keep Atot = 0 deep inside the ring, regardless of λ. In this case, the

apparatus cannot be used to properly determine the stiffness, but only the break point of

the London equation, which is set by λξ as we explain below. For crystals at T ≪ Tc we

use literature values of λ and determine ξ. Hence, the name Xiometer.

4.2 Experimental details

The EC is homemade from a NbTi SC wire with 8 layers of 600 windings each (4800

in total), a wire diameter 0.106 mm, core diameter 0.35 mm, outer diameter 1.95 mm,

coil length 60 mm, and flux to current ratio of 1.21 · 10−7 Tm2/A. The apparatus is an

add-on to a Cryogenics S700X SQUID magnetometer. External magnetic fields can be

canceled by an external coil shown in Fig. 4.1(a), with a resolution of 5 × 10−7 T. The

gradiometer radius is Rpl = 13 mm, its total height is 14.0 mm, and it is made of two
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windings clockwise, four anticlockwise, and two clockwise, also depicted in Fig. 4.1(a).

The set of Nb rings with different dimensions used in the first part of this experiment is

shown in Fig. 4.1(b).

A typical data set of the SQUID output voltage V as a function of ring position z, is

depicted in Fig. 4.2 with and without a ring. In these measurements the EC was allowed

to transverse the gradiometer from one side to the next. The peaks and valleys away

from z = 0 are due to the ends of the coil moving through the different winding groups of

the gradiometer. Without the ring (red symbols) a moderately concave signal is observed

around z = 0. This occurs when the center of the gradiometer and the center of the

coil are at the same height. In this situation, flux through the gradiometer due to the

EC barely changes, therefore the measurement is sensitive mostly to Asc. With the ring,

a new signal (blue symbols) appears around z = 0. The difference is the net SC ring’s

signal (inset) and its amplitude is proportional to the magnetic moment m (or Asc) of

the ring. We note that a linear baseline was subtracted from both data sets due to the

EC asymmetry (wires enter and exit from one side only). Linear baseline subtraction is

irrelevant for the data analysis (see below).

As the EC current increases, the signal from the EC traversing the gradiometer over-

whelms the ring’s signal, as is clear from Fig. 4.3. Therefore, we limit the motion to a

small region around z = 0. Consequently, it is impossible to detect the bottom of the

signal and evaluate its amplitude. However, it is clear that the top of the peak at z = 0

becomes sharper with increasing current. Therefore, we use the second derivative of the

SQUID’s output voltage V ′′
0 = d2V

d2z
(z = 0) as a measure of m. This method also eliminates

the undesired linear contribution of the coil’s asymmetry. The conversion from V ′′
0 to m

is explained shortly.

Finally, to keep the leads, coil, and ring cooled, liquid helium is sprayed via a diffuser

from the bottom of the sample chamber on the EC and sample, and pumped along the

current leads all the way to the top of the cryostat just before thicker leads are connected

to the power supply. This way the EC remains cold even when currents of more than 10 A

are applied.

The measured samples are 99.9% pure Nb rings, and two LSCO-1/8 single-crystal

rings, grown using a traveling solvent floating-zone technique and cut with a laser cutter.

Laue x-ray diffraction is used to identify the orientation of the crystals and the two rings
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Figure 4.2: Raw data. Main: The SQUID output voltage V as a function of the relative
position z of a Nb ring and coil to the gradiometer center. The EC current is 10.0 mA,
T = 1.6 K, and the ring dimensions are rin = 1.0 mm, rout = 1.75 mm, and h = 1.0 mm.
Red spheres are the EC signal without the ring. Blue spheres are the combined signal
of the ring and coil. The dashed black line shows a numerical fit used to determine the
conversion factor between the output voltage of the SQUID and the magnetic moment of
a sample. Inset: The subtraction of the two measurements giving the ring’s signal. The
data presented are after subtraction of a linear component.
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Figure 4.3: Raw data in a limited scan length. SQUID output voltage as a function of
the ring’s position z for different applied EC currents. For low currents (0 − 4 A) it is
possible to measure the full signal of the coil and the ring (see Fig. 4.2). For higher
currents the coil’s signal exceeds the detector’s dynamic range and a measurement on a
shorter range is needed. Consequently, the edges of the coil are not observed and the
signal amplitude cannot be determined. Therefore, the second derivative of the signal V ′′

0

is used to determine the moment as explained in the text.
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are cut in different orientations of the CuO2 planes relative to the ring’s symmetry axis.

In one ring the CuO2 planes are parallel to the symmetry axis. In the other ring the planes

are perpendicular to this axis. We address the two rings as a and c rings, respectively. In

the c ring, current can flow around the ring on the CuO2 planes without crossing planes.

In order to flow around the a ring current must cross the CuO2 planes.

4.3 Analysis

A detailed derivation of the Xiometer analysis theory can be found in Ref. (17). Here, we

provide a back of the envelope calculation that gives the same answer up to a numerical

factor. Since, as mentioned before, deep in the superconductor there are no currents (and

no fields), Atot = 0. Therefore, the magnetic flux of the EC, Φec, is perfectly matched

by the magnetic flux from the supercurrent Φsc in the ring, namely, Φsc = −Φec. For

low Φec we assume that the supercurrent density j is uniform along a cylinder of width

λ attached to the inner rim of the ring at rin as in Fig. 4.4(a). The magnetic flux of

such a current is Φsc = µ0λjπr
2
in. When Φec increases, j will also increases until it

reaches the critical current density jc of the SC. When this happens the order parameter

is destroyed next to the inner rim, and the current has to retreat from the inner rim to an

effective radius reff demonstrated in Fig. 4.4(b). This process continues until reff = rout

as shown in Fig. 4.4(c). In this situation vortices start entering the sample, and the

applied flux is named the critical flux; it is given by Φc = µ0λjcπr
2
out. Using the definition

j = e∗nv = m∗v
µ0λ2e∗ where n, v, e∗, and m∗ are the carrier’s density, velocity, charge, and

mass, respectively, and the relations of the critical momentum m∗vc =
ℏ√
3ξ

(19), and the

flux quanta Φ0 = 2πℏ/e∗, one finds

Φc

Φ0
=

r2out
2
√
αλξ

(4.2)

where α = 3. In the exact derivation (17) α = 2.

It should be pointed out that the SC produces a field in the volume where the order

parameter is destroyed. One might wonder if this field penetrates as vortices into the

SC when it is of type II. It was found in Ref. (20; 21), using a scanning SQUID, that in

an ultrathin film that shows vortices due to a sporadic magnetic field, the current in the

coil does not add new vortices. This is not surprising since there is no pressure from the
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Figure 4.4: Schematic description of the superconductor screening currents evolution for
increasing flux in the EC. Each sketch shows cross sections of the EC and a cylindrical ring.
Yellow and gray regions represent the normal and SC states, respectively. The current
flows in the red region. The flux current relations are given at the top of each panel. (a)
Low flux in the EC resulting in screening current along the inner rim of the cylinder. (b)
Stronger flux in the EC forces the screening current to move outwards while the inner
region of the cylinder becomes normal. (c) The critical flux is reached once the screening
current reaches the outer radius of the cylinder and its bulk is no longer SC.

twisted field lines bypassing the sample to penetrate into the sample. In our case the field

lines are straight and in the center of the sample. They are in the most convenient place

to be and do not need to penetrate the sample as vortices.

The output voltage of the SQUID is related to the flux through the gradiometer by

V = KΦ where K is a conversion factor. When a sample with magnetic moment m is

located at height z from the center of a single pickup loop with radius Rpl, its flux through

the loop is Φ =
µ0R2

plm

2(R2
pl+z2)3/2

. To calibrate K we measured our coil for which we calculate

the magnetic moment as a bundle of current loops with moment m = πr2I each, where r

is the loop radius. The voltage output in this case is
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Figure 4.5: Critical current of different rings. Nb ring’s magnetic moment m obtained
using Eq. 4.4 as a function of current in the excitation coil. The measurements are arranged
in three sets. In each set only one parameter of the rings is changing. (a) Only the inner
radius of the rings varies, (b) only the outer radius of the rings differs, and (c) only the
height of the rings changes. The experiment was done more than once with each ring for
statistical purposes. The signal grows linearly with the EC current until it drops at some
critical current Ic. The drop is due to a phase slip. The critical current varies between
runs of the same ring due to thermal instability.
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V (z) =
µ0R

2
plπIK

2

∑
i

r2i

[
2

(R2
pl + (z + zi −∆pl)2)3/2

+

2

(R2
pl + (z + zi +∆pl)2)3/2

− 4

(R2
pl + (z + zi)2)3/2

]
,

(4.3)

where z is the distance between the center of the coil and the center of the gradiometer, ∆pl

is the difference between the gradiometer’s bundles, ri is the radius of the ith layer, and zi

the height of the ith loop. By fitting Eq. 4.3 to a measurement of the coil with a current of

10.0 mA, as shown in Fig. 4.2, we find the conversion factor to be K = 63.035 V/Tmm2.

This procedure gives

m = 4.95 ∗ 10−10 · V ′′
0 (4.4)

where V ′′
0 is in units of mV/mm2, and m in units of Am2.

4.4 Results

To test Eq. 4.2 we measure a set of Nb rings with different inner and outer radii, and

different heights. Figure. 4.5 presents m as a function of the applied EC current I. m(I)

is linear for low currents. At some high current Ic, a jump in m is observed indicating

that the critical flux in the coil Φc is reached, and that a phase slip has taken place. This

process was done more than once for each ring for better statistics.

The results of the experiment with the Nb rings are separated in Fig. 4.5 into three

sets. In each set only one parameter is changing: the inner radius rin [Fig. 4.5(a)], outer

radius rout [Fig. 4.5(b)], and the ring’s height h [Fig. 4.5(c)]. The variation of rin is limited

because of the EC. Nevertheless, it does not seem to impact the Φc. Variation of rout has a

noticeable and systematic influence on the critical flux as expected from Eq. 4.2. Finally,

between the smallest h = 0.5 mm and all other values of h a variation in Φc is detected.

This is not expected from Eq. 4.2. We ascribe this exception to the fact that Eq. 4.2 is

derived in the limit of a tall, cylinderlike ring and the h = 0.5 mm is not in this limit.

A summary of Ic as a function of L (L = rin, rout, h) is depicted in the inset of Fig. 4.6

where it is clear that rout is the most important parameter. The error bars are statistical.

In Fig. 4.6 we present the rout dependence of Ic on a full scale including the origin.
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Figure 4.6: Critical current as function of different Nb ring sets. Main: The set with
changing outer radius. The black line follows Eq. 4.2 for λ = 38 nm and ξ = 39 nm (21).
The red line is a parabolic fit to the data points (through the origin). The fit parameter
amounts to λξ = 1267± 32.5 nm2. Inset: Black squares-rings with different inner radius;
red circles-rings with varying outer radius; blue triangles-rings with changing height. The
dashed lines are a guide to the eye.

When taking λ and ξ of Nb as 38 and 39 nm, respectively, from Ref. (21) and applying

those in Eq. 4.2 (black line), we find reasonable agreement between the measurements and

theory. When fitting Eq. 4.2 to the data (red line), we find λξ = 1267 ± 32.5 nm2 while

the literature value is 1482 nm2.

Having established Eq. 4.2 we use it to measure the coherence length of the two LSCO-

1/8 rings shown in the insets of Fig. 4.7 with orientation and planes illustrated in the main

panel. Previously, it was found that the persistent current critical temperature for the c

ring is higher than for the a ring (22). Figure. 4.7 shows m at T = 1.6 K as a function of

EC current for both the a and c rings. At low currents, m(I) is linear for both rings. But

at about 2.2 A, the a-ring moment ma has a break point where its behavior changes. The

c-ring moment mc(I) stays linear all the way up to our maximum current of 12.4 A. We

interpret this break point as the critical flux where vortices start entering the sample.
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Figure 4.7: Critical flux determination of LSCO-1/8. m(I) for two rings. The insets show
pictures of the rings, the orientation of the planes, and the directions of the current in the
ring jab and jc. Their parameters are rain = 1.05 mm, raout = 1.42 mm, and ha = 1.02 mm,
and rcin = 1.05 mm, rcout = 1.35 mm, and hc = 0.89 mm. Ic of the a ring is 2.2 A and Ic
of the c ring is higher than the maximum available current of 12.4 A.
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4.5 Discussion

The fact that no break point is observed in the c ring suggests that the flow inside the

CuO2 plane is not disrupted by a coil current of a few amperes. Alternatively, for current

in the c direction, the radial penetration depth λab is more than ten times that of current

in the ab plane λc. According to Eq. 4.2 (given an isotropic ξ) the smallest critical flux is

due to current in the c direction. Therefore, the assumption here is that the bottleneck for

current in the a ring is the flow between planes (c direction), and that the order parameter

is destroyed first on the planes perpendicular to the flow.

At the experiment’s temperature, the penetration depths of LSCO with x = 0.125 are

λc = 4500 nm (23), and λab = 350 nm (22). The outer radii of the a and c rings are

raout = 1.42 mm, and rcout = 1.35 mm. Following Eq. 4.2 with λc we find ξc = 1.3±0.1 nm.

We can also place an upper bound on ξab < 2.3 nm using λab.

The Ginzburg–Landau ξ at T = 0, which we measure with the Xiometer, is related to

the Cooper pair size ξ0 by a factor of 0.74 (19). ξ0, in turn, is set by ℏvF /∆ where vF is

the Fermi velocity and ∆ is the superconducting gap. However, in the cuprates ∆ varies

along the Fermi surface, vF in the c direction is not known, and there is no theory that

can be used to extract more fundamental properties or be contrasted with our findings.

A derivation of such a theory could be useful.

4.5.1 Conclusions

To summarize, the relation between the dimensions of a superconducting ring, pierced

by a long coil, and the critical flux in the coil, is tested. It is demonstrated that if the

ring’s height is similar to or bigger than its radii, only the outer radius of the ring is

relevant, and the critical flux depends quadratically on this radius. Using this observation

we measure ξab and ξc of LSCO-1/8 at T = 1.6 K. Despite the cuprates being very

anisotropic systems, we find that ξc is similar to the literature value of ξab, indicating a

three-dimensional Cooper pair.
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ABSTRACT

The in-plane and out-of-plane superconducting stiffness of La1.83Sr0.17CuO4 rings appear

to vanish at different transition temperatures, which contradicts thermodynamical expec-

tation. In addition, we observe a surprisingly strong dependence of the out-of-plane stiff-

ness transition on sample width. With evidence from Monte Carlo simulations, this effect

is explained by very small ratio α of inter-plane over intra-plane Josephson couplings. For

three dimensional rings of millimeter dimensions, a crossover from layered three dimen-

sional to quasi one dimensional behavior occurs at temperatures near the thermodynamic

transition temperature Tc, and the out-of-plane stiffness appears to vanish below Tc by

a temperature shift of order αLa/ξ
∥, where La/ξ

∥ is the sample’s width over coherence

length. Including the effects of layer-correlated disorder, the measured temperature shifts
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can be fit by a value of α = 4.1 × 10−5, near Tc, which is significantly lower than its

previously measured value near zero temperature.

5.1 Introduction

A homogeneous three-dimensional superconductor is expected to exhibit a single transition

temperature Tc at which the order parameter, ∆(T ), and all the superconducting stiffness

components vanish (1; 2). In this regard, recent measurements of the ab-plane (ρ∥) and c-

axis (ρ⊥) stiffnesses of La1.875Sr0.125CuO4 crystals by Kapon et. al. (3) have been puzzling.

Counter to the expectation above, ρ⊥ was seen to vanish at Tc⊥, which is about 0.64K

below the vanishing temperature Tc∥ of ρ∥.

Disorder – Short range uncorrelated disorder is not expected to affect the critical

behavior of a superconductor, by Harris’s criterion (4). On the other hand, the cuprates

are known to be highly anisotropic layered superconductors. Layer-correlated disorder,

(or a gradient in dopant concentration along the c axis) (5; 6), yields a distribution of ρ∥

and Tc
∥. Experimentally, such inhomogeneity is manifested by a high temperature tail of

the measured ρ∥ above the average Tc∥, while ρ⊥ vanishes at the lowest values of Tc∥ (see

Appendix 5.8). However, Tc∥ in Ref. (3) exhibited inhomogeneity broadening of ∼ 0.1K,

which is significantly below the apparent difference in Tc’s.

Finite size effects – An alternative proposition is that finite sample dimensions play a

role. Previous Monte-Carlo simulations (7; 8) of the 3dXY model found strong effects of

sample dimensions on the temperature dependent stiffness coefficients. These effects are

expected to be enhanced by high anisotropy.

This paper explores finite size effects experimentally and theoretically. We report

systematic stiffness measurements near Tc for La1.83Sr0.17CuO4 rings with widths La, Lc

ranging between L = 0.1 to 1 millimeter. Tc∥ is found to be weakly dependent on Lc, La. In

contrast, a significant reduction of Tc⊥ for decreasing width La is observed. This behavior

is not expected for layer-correlated inhomogeneity. The relatively strong finite size effect

demands theoretical explanation.

Phenomenologically, the monotonous relation between Tc and ρ∥ in cuprates (9), and

the observed jump in ρ∥ at Tc in ultra-thin films (10), suggest that Tc is driven by su-

perconducting phase fluctuations (11), and vortex unbinding (12). Therefore we appeal
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Figure 5.1: A superconducting ring cut in two directions, on the excitation coil. The
red double arrow shows the moving direction of the schematic magnetization measuring
pickup-loop, relative to both coil and ring.

to the three dimensional classical XY (3dXY) model (rather than BCS theory) to explain

the stiffness temperature dependence toward Tc.

We applied a Monte-Carlo simulation with Wolff cluster updates on finite three dimen-

sional lattices. The in-plane and intra-plane superconducting stiffness coefficients of the

highly anisotropic 3dXY model appeared to vanish at different transition temperatures.

The numerical simulations showed a strong dependence of the apparent inter-plane stiff-

ness vanishing temperature Tc⊥ on the layers’ finite width. This dependence exceeded the

magnitude expected of critical fluctuations.

The numerical and experimental observations are understood as follows. Inter-layer

mean field theory (13), predicts a thermodynamic transition temperature slightly above

the two dimensional Berezinskii-Kosterlitz-Thouless (12) (BKT) transition at TBKT < Tc.

3dXY critical behavior (1) is expected to be observed only very close to Tc. As temperature

approaches Tc, the finite sample width La drives a crossover of ρ⊥ to the stiffness of a

one dimensional XY (1dXY) chain (8). This crossover results in an exponentially flat

temperature dependence of ρ⊥(T,La) below Tc. For finite experimental or numerical

resolution, such singular behavior always appears as vanishing of ρ⊥ at Tc⊥(La) < Tc.

We compare our theoretical analysis to the experimental values Tc⊥(La), and use the

fit to estimate of the anisotropy parameter of La1.83Sr0.17CuO4 near its thermodynamic

Tc.
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5.2 Experimental setup

Measurements were carried out with a ‘stiffnessometer’ apparatus (14) which comprises of

a long excitation coil piercing a superconducting ring. A bias current in the coil creates

an Aharonov-Bohm (AB) vector potential A which, by London’s equation, produces a

persistent current that is measured by the induced (dia-)magnetization mα along the coil

axis α. One then measures mα by moving a pickup loop relative to the ring and coil. The

apparatus is shown in Fig. 5.1.

La2−xSrxCuO4 is known to grow in large single crystals allowing significant size re-

ductions. Therefore, powder of different doping is prepared from stoichiometric ratios of

99.99% pure CuO, La2O3, and SrCO3 to make feed and seed rods. This powder is turned

into a single crystal using an image furnace with four elliptic mirrors focusing 300 W

halogen lamps. The growth was stabilised over 100 hr without any change of the lamp

59% power. Growth rate of 1.0 mm/h, down-ward translation of 0.15 mm/h, and rotation

in opposite directions at 15 rmp were used. The emerging crystals looked like Fig. 1 of

Ref. (15). After the growth, the crystals were annealed in argon environment at T = 850 C

for 120 hr to release internal stress. Finally, the crystals were oriented with a Laue camera,

and cut into rings with a femtosecond laser cutter. For each doping two rings, labelled by

a and c, were prepared with their coil axes parallel (a) and perpendicular (c) to the CuO2

planes. The width and height of the rings was varied by the laser, or polished down to

the geometries shown in Fig. 5.2a,b.

For the a-ring, we varied mostly the narrowest (bottleneck) widths of the a− b planes,

La, whereas for the c-ring we varied both Lc and La (see Figs. 5.2a,b). Fig. 5.2(c) shows

the narrowest bottleneck geometry of the a-ring. The requirement to: cut, measure, cut,

measure, et cetera, the same pair of samples proved challenging. In most cases one of the

samples broke during some step of the process. Only one pair of La1.83Sr0.17CuO4 rings

survived the reduction of La by factor of 10 between the initial and final cutting stages.

The magnetization of this sample is depicted in Fig. 5.2.

When the transverse London penetration depth λc (λa) is smaller than the sample

width Lc (La), the induced persistent current in the superconductor precisely cancels the

AB flux of the coil. This results in a temperature independent induced magnetization ma

(mc) at low temperatures.
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Figure 5.2: Experimental configuration and normalized magnetizations of
La1.83Sr0.17CuO4 rings for a fixed 1 mA current in the coil. (a) The interior of
the a-ring. The CuO2 planes are parallel to the ring’s symmetry axis. This ring is
sequentially polished and laser-cut, to reduce the layers’ width La in the bottleneck
region. (b) The interior of the c-ring. The CuO2 planes are perpendicular to the ring’s
symmetry axis. This ring is polished and laser-cut along two planes which varies both La

and Lc. (c) Photograph of an a-ring with two cut planes. Leff
c defines the effective aspect

ratio in the bottleneck region. (d) Magnetization ma of a-rings with variable La. The
apparent stiffness vanishing temperatures are denoted by T̃⊥

c (La). (e) Magnetization mc

of c-rings. Except for the narrowest sample La = 0.09 (which is suspected of containing
a traversing cut), the magnetizations near their transition are insensitive to La. The tail
of width (δT

∥
c )dis ≃ 0.5K is assumed to reflect some layer-correlated disorder, which is a

smaller effect than the finite size dependence of the a-rings’ T̃⊥
c . T̄ ∥

c is averaged in-plane
transition temperature (see Section 5.6 and Appendix 5.8).
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As T → Tc, the AB flux in the coil is under screened as λα(T ) ≥ Lα. In this temper-

ature regime mα(T ) decreases rapidly and becomes linearly proportional to the in-plane

stiffness components. As an example, for the geometry of a perfect ring

ma,c(T ) = h

rout∫
rin

dr πr2 (r̂ × jsc(r))
a,c

= −h(r2out − r2in)
Φ

4
ρ⊥,∥(T ) .

(5.1)

h, rin, and rout are the ring’s height, and inner and outer radii, and Φ is the flux produced

by the coil. For irregular rings extracting ρ⊥, ρ∥ from mα(T ) requires a full solution

of Ginzburg-Landau and Biot-Savart equations (16). However, here we do not require

the magnitude of ρ⊥, ρ∥ but only their vanishing temperatures Tc⊥ and Tc
∥. These are

experimentally determined by the vanishing of the corresponding magnetizations.

Figs. 5.2(d,e) depict the temperature-dependent relative magnetizationsmα(T, La)/m
α
max,

for α = a, c. mα
max is the zero temperature magnetization of the largest ring. Fig. 5.2(d)

shows a strong dependence of the a-ring’s magnetization apparent vanishing temperature

T̃⊥
c on the transverse width La. In contrast, the c-rings’ magnetization in Fig. 5.2(e), ex-

hibit insensitivity to the sample widths in the ranges La ∈ [1.05, 0.23] and Lc ∈ [0.67, 0.19].

We note an exception of the (La, Lc) = (0.09, 019) mm sample, which we believe to be

damaged by a deep fracture during the cutting process.

We note that the c-ring magnetizations exhibit a high temperature tail of ≃ 0.5K above

the extrapolated transition at T̄ ∥
c . This is attributed to layer-correlated inhomogeneity as

discussed in the Introduction and Appendix 5.8. This inhomogeneous broadening will be

taken into account in fitting theory to the experimental data in Section 5.6.

5.3 Layered 3dXY model

As mentioned before, we model the phase fluctuations of La1.83Sr0.17CuO4 near Tc by the

classical 3dXY Hamiltonian on a tetragonal lattice,

H3dXY =−
∑
i

∑
γ

Jγ cos(φri
−φri+aγ

) , (5.2)
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TBKT

Bramwell & Holdsworth

Figure 5.3: The order parameter squared as a function of temperature for the layered
classical XY model, for anisotropy parameter α = 10−4. The graph patches the linear
spinwave theory of Hikami and Tsuneto (22), the crossover (dashed line) power law of
Bramwell and Holdsworth (19), and the three dimensional critical point which is obtained
by Inter-plane Mean Field Theory (IMFT) of Eqs. (5.15), (5.4) and (5.5).

where γ ∈ {a, b, c} and where Ja = Jb = J∥ and Jc = J⊥ are the effective intra- and

inter-plane Josephson couplings. The effective anisotropy parameter is defined as α =

J⊥/J∥. α will later be determined to fit experimental data near Tc. The two dimensional

limit α = 0 reduces to the two dimensional XY (2DXY) model, where by Mermin and

Wagner theorem the superconducting order parameter ∆ = ⟨eiφ⟩, and ρ⊥ vanish at all

temperatures. Nevertheless, the in-plane stiffness is non-zero below TBKT ≃ 0.893Ja.

For small but finite anisotropy 0 < α ≪ 1, inter-layer mean field theory (IMFT) is

very useful (17; 18; 19; 20; 13). It predicts ∆(T ) > 0 for T < Tc, where Tc is the three

dimensional critical temperature. IMFT uses the exponential divergence of the BKT

susceptibility above TBKT to obtain,

Tc(α)− TBKT

TBKT

=

(
b

| ln(0.14α)|

)2
. (5.3)

Here, the (non universal) constant is taken to be b = 2.725 (21).

In the regime [0, TBKT], the order parameter magnitude ∆ = |⟨eiφ⟩| decreases from
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unity as calculated by Hikami and Tsuneto (22),

∆2(T )T≤TBKT
≃ exp

(
−T log(1/α)

4πJa

)
. (5.4)

Over the crossover regime T ∈ [TBKT, Tc], the order parameter squared initially crosses

over with an intermediate power law of |T −T ∗|0.46, where T ∗ = TBKT+
1
4(Tc−TBKT) (19),

above which it drops precipitously toward Tc as,

∆2(T ) = ∆2
BKT t

2β , t ≡
(

Tc − T

Tc − TBKT

)
, (5.5)

where β crosses over from the mean field value 1
2 to the 3dXY exponent 0.349, within a

narrow three dimensional Ginzburg critical region of width Tc/ log
4(α) (13).

Fig. 5.3 depicts the smoothed “trapezoidal” temperature dependence of ∆2 which

differs from the BCS theory for the gap squared. We note that the spectral gaps observed

by photoemission do not directly measure the thermodynamic order parameter. In the

underdoped pseudogap phase(23), parts of the Fermi surface gap survives above Tc (24; 25).

A more direct measurement of ∆2 near Tc would be the superconducting stiffness (1; 13),

since

ργ(T ) ∝ ∆2−ηνβ−1 (5.6)

where η and ν are the critical correlation function power law and correlation length ex-

ponents respectively. For the 3dXY model ην = 0.0255 which is small and henceforth

neglected.

5.4 Monte Carlo simulations

The superfluid stiffness (i.e. helicity modulus) of Eq. 5.2 with aγ = 1, is given by (26; 7)

ργ =
Jγ
V

〈∑
⟨ij⟩

cos
(
φri

− φrj

)
(rγi − rγj )

2

〉

−
J2
γ

V T

〈(∑
⟨ij⟩

sin
(
φri

− φrj

)
(rγi − rγj )

)2〉
, γ = a, b, c.

(5.7)

V = LaLbLc. The first contribution measures the short range correlations, which are pro-

portional to minus the energy along the bonds in the γ direction. The second contribution
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Figure 5.4: The intra-plane stiffness ρ∥, plotted as a function of temperature T , for α =
0.01 and for different La between 40 and 80, while Lb and Lc are kept fixed at 60. The error
bars are smaller than the point sizes. The black dashed line shows the critical behavior
near the thermodynamic transition temperature Tc, according to Eq. (5.6).

measures long range current fluctuations, which vanish at zero temperature, and reduce

the stiffness at finite temperatures.

We compute Eq. (5.7) by a Monte Carlo (MC) simulation of H3dXY with the Wolff

cluster updates algorithm (27), see Appendix 5.11 for details. We choose Lc = Lb = 60,

and vary the width in the range La ∈ {40, 50, . . . , 80} using the anisotropy parameters in

the range α = 0.01− 0.02. The minimal accessible anistropy parameter is determined by

the maximal lattice size.

In Fig. 5.4, we plot the intra-plane stiffness ρ∥ as a function of temperature T , and

width La. The ansitropy parameter is fixed at α = 0.01. Tc ≃ 1.086. The expected

thermodynamic critical behavior, Eq. (5.6), is depicted by a dashed line in Fig. 5.4. For the

disorder-free model, the tail above Tc indicates that the in-plane correlation length exceeds

La. Thus, a larger La reduces the width of the tail. For millimeter scale superconducting

rings, this tail should be unobservably small.

In Fig. 5.5, the MC data for ρ⊥(T ) are shown as points. Given a numerical resolution

threshold ε, ρ⊥(T ) appears to vanish at transition temperatures T̃⊥
c which depend on ε
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Figure 5.5: MC evaluations of ρ⊥ for the clean 3dXY model Eq. (5.2), a function of tem-
perature for a range of sample widths La ∈ {40, 50, . . . , 80}, and anisotropy parameters α.
The thermodynamic critical temperatures are evaluated as Tc1 = 1.086Ja and Tc2 = 1.13Ja
for α = 0.01 and 0.02, respectively. Solid lines are best fits to Eq. (5.12). ε is arbitrarily
chosen as the numerical resolution which defines the apparent transition temperatures T̃⊥

c

by Eq. (5.14). Inset: Verification of Eq. (5.15) by collapse of all the temperature shifts for
various La, ε, α obtained from the main graphs.
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and the width La. The solid lines and the inset describe a fit of the MC data to analytic

formulas derived in the following Section.

5.5 Crossover to one dimensional Josephson array

The apparent premature vanishing of ρ⊥ in a finite size sample of an approximately unit

aspect ratio, is due to its crossover to a quasi one-dimensional behavior as T → Tc. The

stiffness of a one dimensional (1d) classical XY chain with inter-site coupling J1d, lattice

constant a and chain length L is,

ρ1d(T, L) = TLZ2/Z0

Z2p =

∞∑
n=−∞

(
In(J1d/T )

I0(J1d/T )

)L/a
n2p,

(5.8)

where In are modified Bessel functions and p = 0, 1. Luttinger liquid (LL) theory (28; 8),

which applies at L≫ a, yields an analytic result where ρ1d depends on the dimensionless

variable x ≡ LT/(J1d a) as,

ρLL(J1d, x) = J1d a

(
1− π2

x

ϑ′′3(0, e
−2π2/x)

ϑ3(0, e−2π2/x)

)

≃ J1d a


1 (x ≤ 2)

20 exp(−0.472x) (x ≥ 10)

,

(5.9)

where ϑ3(z, q) = 1 + 2
∑∞

n=1 q
n2
cos(2nz), and prime denotes differentiation with respect

to z. Comparison between Eqs. (5.8) and (5.9) is shown in Appendix 5.9.

Now we return to the c-axis stiffness ρ⊥ of the layered model (5.2), which can be

described as a chain of Josephson junctions along the c-axis with inter-grain coupling,

Jeff(T ) =
LaLb

(ξ∥)2
× J⊥∆2(T ), (5.10)

Toward Tc, ∆2(T ) vanishes as t2β by Eq. (5.5). Substituting J1d = Jeff(T ) we expect the

asymptotic behavior of Eq. (5.9) to be realized after replacing

x→ LcT

Jeff(T ) ξ⊥
. (5.11)
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Thus for t≪ 1, x≫ 1 and

ρ⊥(T ) ≈ 20 ρ⊥(TBKT) exp

(
− K

αLa
t−2β

)
, (5.12)

K ≃ 0.472 rTc (ξ
∥)2

Ja∆2
BKT ξ

⊥ . (5.13)

For any experimental resolution ε, an apparent vanishing temperature T̃⊥
c (ε) is defined

by the threshold condition,
ρ⊥(T̃⊥

c )

ρ⊥(TBKT)
= ε. (5.14)

By Eq. (5.12), the apparent width dependent transition temperature is,

Tc − T̃⊥
c = (Tc − TBKT)

(
K

αLa log(20/ε)

)1/2β
(5.15)

The most important consequence of the quasi one-dimensional behavior, is that the tem-

perature shifts are proportional to (αLa)
−1/2β. This is a much larger shift than expected

from critical fluctuations, which are of order (αL2
a)

−1.

In the inset of Fig. 5.5 we verify the validity of Eq. (5.15) by collapsing of all the

temperature shifts onto a straight line. The slope of this line differs only by 20% from

unity, which we attribute to the choice of the (non-universal) constants in the asymptotic

expression of Eq. (5.9).

5.6 Comparison of Theory to Experiments

In comparing Eq. 5.15 to the MC results, we have used the 3dXY critical exponent β =

0.349.

For the experimental La1.83Sr0.17CuO4 crystals, the millimeter width corresponds to

∼ 105 effective lattice constants, and the anistropy parameter will turn out to be α < 10−4,

which yields an unobservable narrow Ginsburg critical region. Hence we shall fit the

Eq. 5.15 with the mean field exponent β = 0.5.

The a-ring is sequentially cut such that the induced current is governed by the bot-

tleneck region. There, the induced current flows along the c axis over an effective length

of Leff
c = 2 mm. The transverse dimension Lb = 0.46 mm yields r = 4.34. The width is
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Figure 5.6: Comparison of experimental results for La1.83Sr0.17CuO4 rings of Fig. 5.2 and
theoretical prediction of Eqs. (5.15) and (5.19). Crosses: The apparent c-axis transition
temperature shifts T̃⊥

c of the a-rings, as determined in Fig. 5.2(d). La are the bottleneck
widths of the ab planes. Line: the least square fit using αfit = 4.1 × 10−5. The offset of
the reduced temperature 0.015(4) agrees with the estimated layer-correlated disorder (see
text). We use the mean field exponent β = 1

2 , due to the narrow Ginzburg critical regime
near Tc.
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varied in the range La ∈ [0.1, 1] mm. We estimate the experimental resolution at ε = 10−2.

(High accuracy of ε is not essential, since T̃⊥
c depends on it logarithmically).

At zero temperature the coherence lengths have been determined experimentally (24)

to be ξ∥(0) ≃ 3 nm and ξ⊥(0) ≃ 1.3 nm. The in-plane lattice constant for the effective

3dXY model is the coherence length estimated at TBKT to be ξ∥(TBKT) = ξ∥(0)/∆BKT.

Due to the incoherent single-electron tunneling between the layers, we assume that the

Cooper pair size in the c direction remains confined to a single plane ξ⊥(TBKT) ≃ ξ⊥(0).

In Fig. 5.6, the apparent c-axis transition temperatures T̃⊥
c (La) are plotted. The data

is somewhat noisy, presumably because of the introduction of deep cuts during the ring’s

cutting process, which are eliminated by subsequent cuts. The two-parameter fit function

is plotted,
T̄
∥
c − T̃⊥

c

T̄
∥
c

=
A

La[mm]
+ (δt)dis (5.16)

with A = 0.0079 and (δt)dis = 0.015(4). The dimensionless temperature shift (δt)dis is

understood as the effect of layer-correlated inhomogeneity (see Appendix 5.8). We use

the high temperature tail of magnitude (δT
∥
c )dis ≃ 0.5K, which is depicted in Fig. 5.2(e).

Subtracting (δT
∥
c )dis from T̄

∥
c = 36.5K yields a bound for T̃⊥

c for wide samples,

lim
La→∞

T̃⊥
c = T̄ ∥

c − (δT ∥
c )dis = 36K. (5.17)

The estimated layer-correlated disorder shift is consistent with the fit in Fig. 5.6,

(δt)dis ≡
(δT

∥
c )dis

T
∥
c

∈ 0.015(4). (5.18)

Using Eqs. (5.15), (5.4), (5.13) and (5.15), and the parameters listed above we obtain

A = ∆Tc(α)
0.472× 10−6 r Tc (ξ

∥)2

α∆4
BKT(α) ξ

⊥ log(20/ε)
= 0.0079 (5.19)

which can be fit by the anisotropy parameter,

αfit(T ≃ Tc) = 4.1× 10−5 (5.20)
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5.7 Discussion and Summary

The experimental conundrum, which was first noted in Ref. (3), was that stiffness mea-

surements of a-rings and c-rings, cut out from same cuprate crystal, exhibited different

transition temperatures. In this paper, we have shown that this difference cannot be fully

explained by layer-correlated disorder, since it varies consistently with the layer’s width,

which is not coupled to the distribution of layer-correlated disorder.

With the help of Monte-Carlo simulations, inter-layer mean field theory, we have iden-

tified a narrow regime below the bulk transition temperature Tc where the inter-layer

stiffness of finite size samples crosses over to an effective one dimensional Josephson array

behavior. As a result, we resolve the conundrum, and explain the Monte-Carlo data, as a

width-dependent, apparent reduction of the c-axis Tc. The visibility of the effect depends

on the smallness of the anisotropy parameter α.

We note that αfit parametrizes the effective Hamiltonian near Tc. We compare it to

the zero temperature anisotropy parameter reported for optimally doped La2−xSrxCuO4

(for Sr0.15) in Ref. (30),

αλ(T = 0) =

(
λc
λa

)−2

= 4.6× 10−3. (5.21)

The difference in anisotropy can be attributed to the reduction of inter-plane coherence

due to thermally excited nodal quasiparticles of the d-wave superconductor and the effects

of inter-planar vortex rings above the two dimensional TBKT.

Analog in 4He – We have seen that α ≪ 1 can be mapped onto an isotropic model

on samples with large aspect ratio. A similar “premature” vanishing of ρ⊥ has been

observed on a quasi-one dimensional brick, i.e. La ≪ Lc (7). This result was used to

explain the experimental disappearance of superfluid density of 4He embedded in quasi

one-dimensional nanopores (31; 32). Here we explain the apparent reduction of T̃c(La), not

as a true thermodynamic transition but rather as a consequence of an essential singularity

decay of ρ⊥ toward the thermodynamic Tc.

In general, layered superconductors with very high anisotropy are expected to exhibit

such apparent differences between transition temperatures of in-plane and out of plane

persistent currents. For example, an emergent anisotropy of layered superconductors has

been an important consequence of certain pair density wave (PDW) ordering (33). We
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propose that the dependence of inter-layer stiffness transition temperatures on sample

width cold help characterize the emergent anisotropy parameter of that interesting PDW

phase.
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5.8 Planar correlated disorder

Refs. (5; 6) have considered the layered XY model where the ab planes exhibit a variable

z-dependent stiffness ρ∥(z) for z ∈ [0, Lc]. We can see the effects of bounded correlated

disorder on superconductors with a variation of ρ∥(z) along the c-axis. In each segment,

the stiffness temperature dependence has a different Tc,

ρ∥(T ) = ρ∥(0)

∣∣∣∣∣T − T
∥
c (z)

T̄
∥
c

∣∣∣∣∣
2β−ην

(5.22)

where T ∥
c (z) ∝ ρ∥(z, 0) is the local transition temperature whose average is defined as T ∥

c

and maximal variation is (δT
∥
c )dis. The global ab-stiffness is given by the integral

ρ∥ = ρ∥(0)

Lc∫
0

dz

Lc

∣∣∣∣∣T − T
∥
c (z)

T̄
∥
c

∣∣∣∣∣
2β−ηµ

, (5.23)

which smears the average critical temperature T̄
∥
c by a high temperature tail at T ∈[

T̄
∥
c , T̄

∥
c + (δT

∥
c )dis

]
.
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c

Figure 5.7: Effects of planar-correlated disordered, modelled by c-axis dependent in-plane
stiffness ρ∥(z), with an average transition temperature T̄ ∥

c and a width of transition tem-
peratures (δT

∥
c )dis = 0.1T̄

∥
c . Orange line: The clean system with a three dimensional

critical behavior. Blue line: the global ρ∥ showing a disorder induced high temperature
tail above T̄ ∥

c . Green line: the global ρdis⊥ , which is dominated by the weakest interplane
stiffnesses, and vanishes below T

∥
c .
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Figure 5.8: Stiffness as a function of scaled variable x = LT/(J1da) in the one dimensional
XY model for different lengths L as given by the exact result of Eq. (7), and asymptotically
at L→ ∞ by Eq. (8) of the main text.

In contrast, the c-axis stiffness ρ⊥(z)/ρ⊥(0) is proportional to the local order parameter

squared ∆(z) ∝ |T − Tc(z)|β. The global c-axis stiffness is the harmonic average given by,

ρ⊥ = ρ⊥(0)

 Lc∫
0

dz

Lc

(T̄
∥
c )2β

|T − T
∥
c (z)|2β

−1

. (5.24)

The weakest segment, with the lowest ρ⊥(z), dominates the integral. The temperatures

where the order parameter of this segment vanishes is

T̃⊥
c ≤ T̄ ∥

c − (δT ∥
c )dis , (5.25)

above which the global ρ⊥(T ) disappears. The effect of bounded layer-correlated disorder

is demonstrated in Fig. 5.7.

5.9 Asymptotic behavior of stiffness of a one dimensional

XY chain

In Fig. 5.8 we depict the exact result of the stiffness of the one dimensional XY chain

as given by Eq. (7) of the main text. At large L/a the graphs show convergence to the
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analytic Luttinger-Liquid form (28; 8), which at large x is given by Eq. (8) of the main

text.

5.10 Estimation of finite size shift in Tc

Fine size scaling produce unobservably small finite size shifts of Tc for millimeter size

samples, as shown by the following. The correlation lengths above TBKT diverge as

ξ∥(t) ≃ 1√
α
ξ(0)a t−ν , ξ⊥(t) ≃ ξ(0)c t−ν (5.26)

where we use the Ginzburg-Landau definition of correlation lengths, ξ−1
γ ∝ √

ργ , to obtain

the factor of
√
α between the divergent correlation length.

For Eq. (5.2) with sample dimensions Lγ , γ = a, b, c the stiffness components near Tc

vanish as (34),
ρc

ρc(TBKT)
= tv Φ[xa] , xa = ξa(t)/La. (5.27)

where Φ(x) is differentiable function with a finite value at x = 0. We expand Φ to linear

order in ξa and set ρ⊥ → 0 to obtain,

0 = Φ0 + ∂xaΦ×

(
t−νξ

(0)
a√

αLa

)
+O(x2a) (5.28)

which is solved by a positive shift of Tc by the amount

δt ≃ − Φ0

∂aΦγ

(√
αLa

ξ
(0)
a

)−1/ν

. (5.29)

For the experimental La1.83Sr0.17CuO4 rings, taking α = 10−5, La/ξ
(0)
a ∼ 106, yields

|δt| ≤ 10−4, which is much below experimental temperature resolution.

5.11 Details of the Monte-Carlo simulations using cluster

algorithm

The superfluid stiffness or the helicity modulus (with aγ = 1) for the classical Hamiltonian

of Eq. (5.2) is given by Eq. (5.7) (26; 7; 35).

In the Wolff-cluster algorithm (27), we assume the XY spins S to be the unit vectors in
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Figure 5.9: Binder cumulant U2 plotted as a function of temperature T , for anisotropy
α = 0.005 and for different sizes with a fixed aspect ratio La/Lc = 16 and Lb = La.

R3. In every Monte-Carlo (MC) step, we first choose a random site r ∈ R3 and a random

direction d ∈ S2, and consider a reflection of the spin on that site about the hyperplane

orthogonal to d. Note that this is equivalent to the spin-flipping operation in Ising model.

We then travel to all neighboring sites (r′) of r, and check if the bond ⟨rr′⟩ is activated

with a probability

Pγ(r, r
′) = 1− exp

(
min

[
0, 2Jγβ(d · Sr)(d · Sr′)

])
, (5.30)

where β is the inverse temperature. If this satisfies, we mark r′ and include it to a cluster

C of “flipped” spins. We iteratively continue this process for all unmarked neighboring

sites of r′ and grow the cluster size until all the neighbors turn out to be marked. We use

such 106 number of MC steps for thermalization, followed by another 107 number of MC

steps for measurement of different observables, such as the helicity modulus and the binder

cumulant. We estimate the errors of different observables by using a standard Jackknife

analysis of the MC data.

In Fig. 3 of the main text, we have presented the inter-plane superfluid stiffness ρ⊥ for

different system sizes of La ∈ [60− 80], Lb = Lc = 60, near the transition.
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Next we calculate the Binder cumulant, defined in terms of the higher powers of mag-

netization m as following (36)

U2 =
3

2

(
1− 1

3

⟨m4⟩
⟨m2⟩2

)
, (5.31)

and we use it to extract the value of critical temperatures accurately. As an example, in

Fig. 5.9, we present U2 as a function of T , for an anisotropy parameter α = 0.005 and for

different system sizes with a fixed aspect ratio La = Lb and La/Lc = 16. In the ordered

phase when all the spins are aligned it takes a value 1, while in the disordered phase it

vanishes and takes an intermediate value between 0 and 1 at the critical point. Therefore,

by tracking the crossing between different system sizes, we find a critical temperature

Tc ∼ 1.05 for these parameters. using a similar analysis, we obtain Tc for other anisotropy

parameters also, discussed in the main text.
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Chapter 6

Summary and Discussion

This chapter will summarise the three parts of the work in order.

6.1 Discussing the Stiffnessometer

The fundamental principle that the stiffnessometer is based on is the London equation

j = ρs
(
Φ0
2π∇ϕ−A

)
where A is the VP, jsc is the SC current density, and ρs is the SC

stiffness. By changing the current in the EC� we change A and the magnetic moment that

we measure is proportional to js, so we can get ρs from the slope between the magnetisation

and the current. Then� we can use the relation ρs =
1

µ0λ2 to get λ.

But A in the London equation is the total VP which is the sum of the EC-VP and the

SC-VP. Using Faraday’s and London’s equations, with B = ∇×A we get a PDE which

is solved numerically (after making it unite-less and assuming rotational symmetry). The

numerical simulation along a cross section of the ring shows that the VP is most significant

along the inner rim of the ring and nullifies in the middle of the cross Sec. 3.7. The VP

is calculated on the PL. We consider the dimensions of the ring and the gradiometer used

instead of a single PL and the parameters of the coil, to get a conversion between the

normalized signal (the magnetic moment) to the stiffness (or λ), Fig. 3.8.

When the relation between A and js brakes, we know that we have reached the critical

flux of the ring and from the relation Φc
Φ0

=
r2out√
8πµ0λξ

we determine ξ. This relation takes

into account λ, the geometry of the ring and the relation between the critical current

density and ξ. A tentative explanation is in Chap. 4.3, and a full analytical derivation

and numerical calculation comes from (22).
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The experimental setup is an add-on to a CRYOGENICS susceptometer or a Quantum

Design MPMS3 and both where used in this project. These magnetometers consist of a

motor that can move a sample inside a temperature controlled chamber, and relative to

a gradiometer connected to a SQUID. This way it can detect the change of magnetic flux

through the gradiometer and determine the magnetic moment of the sample. An external

coil can be used to create magnetic fields or in our case, cancel external fields. The use of

a gradiometer instead of a single PL minimizes the noise. The stiffnessometer consists of a

long and narrow excitation coil (EC) made in our lab. The EC diameter in this project is

60 mm long, with a 0.8 mm diameter, 2 layers and 1940 loops in total. The ring is placed

on the middle of the coil and both of them move together in and out (of the other side) of

the gradiometer and back the same way a number of times to have better statistics and

smaller errors.

A few tests where made to validate our claim that the field outside our EC (which is

not infinite) is negligible so that we can rightfully treat it as an infinite coil. The numerical

simulation in Fig. 3.2 show the low magnetic field outside of the coil and the experiments

with an open ring confirms that indeed the field out side of the coil is undetectable. It was

also verified with a scanning SQUID on chip by scanning the surface of a thin MoSi ring

(8 nm of MoSi grown on silicone wafer with 300 nm of silicone oxide). They found no

visible relation between the current in the EC and the number of vertices in the sample

(23).

Limitations: There are two main limitations for the technique in measuring ρs. From

looking at the PDE solution, it is obvious that we are sensitive only when the dimensions

of λ are close to the dimensions of the sample, because for smaller λ a small error in

the moment leads to big error in the stiffness. When too close to Tc the initial current

in the EC is bigger then the critical current of the ring in that temperature and the

measurement is invalid. So we can measure the stiffness only close to Tc when λ is close

to the dimensions of the sample. Other works with the stiffnessometer measured thin SC

layers on a ring-shaped Si-substrate to have wider effective measurement range (27).

The main limitation in measuring ξ is that we need to know λ, so unless we rely on

external measurements we will be limited to the same temperature range as λ. Another

limitation of this method is that the numerical solution of the PDE is unit-less and we

need to ”calibrate” it with λ measurements at low temperature. In this work, we relayed
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on µSR measurements (1).

But in spite of the limitations, there are significant advantages to our techniques. It

requires no leads to be attached to the sample, forming SC/metal interface, and makes the

sample preparation stage more complicated. There are no demagnetization factors that

need to take into account and complicate the analysis. There is no direct magnetic field on

the sample and so, no vortex dynamics to consider. There are also no out-of-equilibrium

issues in these measurements. The same table top apparatus is used to measure λ, ξ, and

Tc. The phase transition is very sharp and less sensitive to small impurity islands in the

sample. And also, the measurements can be done very close to the critical temperature

where both λ and ξ are on the same scale as the sample, which is a limitation for other

techniques.

The main results of this part of the work is λ and ξ of LSCO x = 0.17 for 34.5 <

T < 34.95, Fig. 3.11. λ is in the scale of millimeters and ξ in the scale of microns.

Direct measurements so close to Tc with a single apparatus are a significant contribution

to science.

6.2 Discussing the ξ Measurements at Low Tc

The most common ways to find ξ are by measuring vortex diameter by Scanning tunneling

microscope (STM) or by measuring Hc2 and following the relation ξ =
√

Φ0/2πHc2. But

STM demands cleaving which are impossible in some samples or orientations, and for a

very small ξ, huge magnetic fields are needed to reach Hc2. In our technique, we change the

flux through the hole of the ring and the field in the bulk of the sample is small. Following

the derivation by Gvish, Keneth and Keren (22), we have an expression for the relation

between the critical flux of the ring Φc and ξ: Φc
Φ0

=
r2out√
8πµ0λξ

. This relation does not grow

like ξ−2 and resembles the expression of the critical field of a type I SC Hc ∝ Φ0√
8πλξ

(by

GL (26), eq 4.20).

In a nut shell, the theory assumes that the ring cancels completely the change in

magnetic flux by creating macroscopic persistent currents along a stripe of width λ in the

inner rim of the ring. When the flux is increased, so does the current, until it reaches the

critical current density jc. Then, the order parameter (amplitude) starts to weaken and

vanish from the inside out as the applied flux keep increasing, until the vanishing of the

92



OP reach the outer diameter of the ring. Now it is less costly (in terms of energy) for

vertices to form and enter the inner hole of the ring and the SC losses its rigidity. The

braking of the relation j = −ρsA means that we have reached the critical flux of the ring.

So, the critical flux depends on the critical current density, the outer diameter of the ring,

and λ. This behavior of the OP was demonstrated numerically by simultaneous solution

of the two coupled GL equations, though, a verification of the final expression was still

needed.

The entering of the vertices can be explained when we look at the full expression for

the SC current density, j = ρs
(
Φ0
2π∇ϕ−A

)
. When cooling the sample with A = 0, φ will

be zero to minimize the energy. Now when we increase A below Tc, ϕ is fixed and changing

it is equivalent to moving a vortex along the sample which can happen only when the SC

circle is braking at some week point and the rigidity is lost.

The experimental system was similar to that of the stiffnessometer but because we

needed to reach a very high magnetic flux, we did some adjustments to the system. Instead

of using Cu wire, the EC was made from a SC wire with a diameter of 0.106 mm to carry

more current and we reached maximal current of 12.4 A. The EC used had an external

diameter of 1.95 mm, 8 layers, and 4800 loops in total to have higher flux-to-current ratio.

The copper leads that connected the EC to the power source needed to be cooled during

the measurements and a new set of pump lines were installed. We used the CRYOGENICS

system for this experiment due to its superior cooling power compared to the QD MPMS3.

Also, the LSCO rings needed to have a relatively small outer diameter so that we would

reach the critical flux.

We also needed to change the way we measure because the signal from the coil exceeded

the detection limits, so instead of looking at the voltage difference of the signal along a

full rang scan of 80 mm, we looked at the second derivative over a very short range of

10 mm and extracted the magnetic moment from it.

The first objective in this project was to test the theory and it was done with pure Nb

rings. We measured three sets of rings, where in each set only one parameter of the ring

was changed and the others were fixed. In the first set we changed the inner diameter, in

the second we changed the outer diameter, and in the third we changed the height. We

found clear evidence that the critical flux was quadratic with the outer diameter of the

rings and the theory was verified.
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The second objective was measuring the anisotropic ξ in the ground state of LSCO

with doping x = 0.125. For this purpose, a- and c-rings were cut from the same single

crystal and measured at temperature of 1.6 k◦.

When measuring the a-ring, the critical current in the EC was 2 A and the correspond-

ing ξc is 1.3± 0.1 nm. The matching Hc2 is ∽ 195 T. It is also comparable to the unit cell

length in the c direction 1.318 nm. In the c-ring measurements, we reached the maximal

current that our SC EC could hold of 12.4 A, but the magnetization was linear all along.

This means that we only have an upper limit which is ξab < 2.3 nm. The fact that we

were able to measure a smaller ξ in the a-rings is because of the much larger λc compared

with λab that play a role in the relation Φc
Φ0

=
r2out√
8λξ

. Our finding of comparable ξc and ξab

suggest that the cooper-pair in LSCO is isotropic at the ground state, regardless of the

high anisotropy of the system.

6.3 Discussing the Two Tc Conundrum

The goal of the third part of the work was to find the origin of the evident difference in

critical temperature of the SC stiffness in the CuO2 planes and the SC stiffness between

them. Kapon et-al (1) measured the stiffness of two rings from the same single crystal

of LSCO with doping x = 0.125 and the a-ring’s stiffness vanished 0.64 k below the

c-ring’s stiffness vanish. This means that in this 0.64 k range, persistent supercurrent

can only flow parallel to the CuO2 planes making the material a 2D SC. This is strange

because according to the MV theorem, there can be no long-range order in 2D and no

SC. Nonetheless, according to the BTK theory a power low decaying correlation length

can exist in 2D under some temperature named TKTB
C . But, the TKTB

c must be smaller

than the thermodynamic Tc (or T 3D
C ) and here we observed the opposite situation, where

T 3D
C < TKTB

C . This was a strange finding.

One explanation could be Layer-correlated disorder, meaning, a gradient in the doping

parameter between the CuO2 layers (along the c vector). Such disorder is expected to

manifest as a ”tail” or broadening of the transition of the c-ring, but the observed tail in

(1) or in this work - Fig. 5.2, are much smaller than the observed c. So another explanation

was considered; a finite size effect. Monte Carlo Simulations for the classical 3dXY model

predicts that the inter-plane stiffness close to Tc is exponential in temperature, sample size,
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and the coupling anisotropy. Combined with a finite detection limits the apparent end of

the transition (T̃⊥
c ) will look smaller than the thermodynamic Tc. The correlation between

sample size and the vanishing of the stiffness was tested theoretically and experimentally

in this part of the work.

Near the thermodynamic (3D) Tc the inter-plane stiffness ρc experiences a 3dXY critical

behavior and crossover to a one-dimensional XY (1dXY) chain with an exponentially flat

temperature dependence. Since there is (always) an experimental detection limit, it can

be seen as if ρc critical temperature is lower than the thermodynamic Tc.

The experimental setup for this experiment is very similar to the one in the first part of

the work. We used the QD MPMS3 for this experiment, for its better temperature control.

The coil we used was 60 mm long, made of Cu wire of 0.06 mm diameter, with 2 layers,

and 1940 winding in total. Both a- and c-rings were cut from the same single crystal of

LSCO with doping x = 0.17. To change the height of the rings, a fine-lapping device was

used, and to change the radius we used the femtosecond laser. Instead of cutting all the

outer rim of the ring to change the radius, we only cut a straight line because the relevant

cross section is the narrowest one (the bottleneck).

The relevant lengths of the cross section depend on the crystalline structure. So when

we change the height of the c-ring we change Lc and when we cut its radius we change

La (or Lb but they are similar in our view). When we change the height of the a-ring

we change La (or Lb) and we can cut its radius parallel to the CuO2 layers and change

Lc, or perpendicular and change Lb (or La). Figure 5.2(a-b) shows the rings and their

cross-section.

The normalized magnetization as a function of temperature for different rings is pre-

sented in Fig. 5.2. The c-ring measurements (e) show a high-temperature tail of 0.5 k and

consistent Tc except for the narrowest sample La = 0.09 suspected of containing a travers-

ing cut. The a-ring (d) shows a clear monotonic dependence of T̃⊥
c in La. These findings

confirm our assumption that the inter-layer is the weak link in the current’s course. The

difference between T̃⊥
c and T̃⊥

c is 7 times bigger than the high-temperature tail, making

the Layer-correlated disorder explanation unlikely.

The Monte Carlo simulations for ρ⊥ by theH3dXY model and for two different anisotropy

constants α = J⊥/J∥, and several La are presented as dots in Fig. 5.5. The detection limit

ϵ is marked by the red horizontal line and it can be seen how the apparent c increases with
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the reduction of La. When anisotropy is stronger (α is smaller) the effect of La over c is

bigger.

Near Tc and for small cross section, the system crossover to a quasi one-dimensional

behavior and it can be described analytically by a classical 1dXY chain with inter-site

coupling. Luttinger liquid theory comes in handy when the system is much larger than the

lattice constant (L≫ a) and we get Eq. 5.12. The analytic ρ⊥ is fitted to the simulations

in Fig. 5.5 (solid lines).

The difference in Tc of the a-ring over La is shown in Fig. 5.6 with a fit of the analytical

results to data. The parameters are αfit = 4.1× 10−5 and T̃⊥
c = 36.5 k. There is an offset

to the fit which we denote to layer-correlated disorder, seen also in the high temperature

tail of the c-ring.

Reported α at T → 0 are of order 4.6 × 10−3 which is two orders bigger than the

fitted α. A possible explanation for this difference is the formation of thermal excitation

of nodal quasiparticles of the d-wave superconductor and inter-planar vortex rings.
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תקציר

לעמוד ממשיך בתחום המחקר שלהם, האפשריים והשימושים מוליכי-על של היחודיות לתכונות הודות
לעבודה מוגבל בהם השימוש אך תחומים במגוון בשימוש נמצאים מוליכי-על המדע. בחזית

טכנולוגית. למהפכה תוביל התגלית החדר בטמפרטורת על מוליך וימצא ובמידה נמוכותת בטמפרטורות
חדשניות. מדידה שיטות בפיתוח הצורך עולה חדשים, על מוליכי אחר המתמיד החיפוש במסגרת

המערכת כי העובדה היתרונות, בין משמעותיים. יתרונות בעלת חדשה, שיטה פיתחה שלנו הקבוצה
מערבולות בה להזניח ניתן מגעים, דורשת אינה היא המדידה, במהלך טרמודינמי משקל בשיווי נמצאת

ונפוץ. מסחרי מכשיר על מבוססת השיטה וכן הדגם, על ישיר מגנטי שדה שאין כיוון
הזרם ואת מוליכת-על בטבעת זרם להשרות ניתן באמצעותו וארוך דק סליל על מבוססת השיטה

וישומה השיטה פיתוח על עבדתי בדוקטורט הטבעת. של המגנטי המומנט מדידת באמצעות לחשב ננתן
הקופרטים הקופרטים. ממשפחת גבוהה בטמפרטורה מוליך-על שהינו (לסקו) La2−xSrxCuO4 למדידת

משפחת ליתר בדומה לסקו, מאוד. גבוהה קריטית טמפרטורה שלחלקם משום במיוחד אטרקטיבים
באנאיזוטרופיה ומאופיין השכבות, בין כבדים ואלמנטים נחושת-חמצן של משכבות מורכב הקופרטים,

.(holedoping) המערכת של החורים סימום רמת את מראה הכימית בנוסחה x ה משמעותית.
של מדידות ומציג בפירוט, הטכניקה את מסביר הראשון המאמר מאמרים. משלושה מורכבת העבודה
.x = 0.17 סימום עם לסקו דגם עבור הקריטית הטמפרטורה בקרבת הקוהרנטיות ואורך החדירה עומק

נבחנת תחילה, היסוד. במצב האנאיזוטרופי הקוהרנטיות אורך של במדידה עוסק השני המאמר
מכן, לאחר ידועים. הקוהרנטיות ואורך החדירה עומק של הפרמטרים עבורו ניוביום באמצעות השיטה

גביש מאותו שנחתכו טבעות שתי נמדדו זה בניסוי .x = 0.125 סימום עם לסקו עבור התוצאות מוצגות
הטבעת של הסימטריה לציר מקבילים הגביש מישורי אחת בטבעת שונות. אוריאנטציות עם אבל יחידני
של הסימטריה לציר ניצבים המישורים השניה בטבעת ,(a (טבעת מישורים בין לעבור חייב הזרם ולכן
מתוך החומר של הקוהרנטיות אורך את להעריך ניתן .(c (טבעת למישורים במקביל נע והזרם הטבעת
למישורים בניצב שלו הערך את נקבל a מטבעת בטבעת. להשרות שניתן המקסימלי הזרם של מדידה

של האנאיזוטרופי הקוהרנטיות אורך את נמדוד וכך למישורים המקביל הערך את נקבל c ומטבעת
הכיוון עבור אבל ,ξc = 1.3± 0.1 nm הניצב בכיוון הקוהרנטיות אורך את למדוד הצלחנו החומר.

למדידות מקבילים פשוטים באמצעים שקיבלנו הערכים .ξab < 2.3 nm עליון חסם רק קיבלנו המקביל
טסלה. מאות כמה של קריטי מגנטי שדה

של האנאיזוטרופיה למרות הקריטית. הטמפרטורה של האנאיזוטרופיה בחקר עוסק השלישי המאמר
זאת, עם בלבד. אחת קריטית טמפרטורה להיות עמורה שונות, בתכונות ביטוי לידי באה אשר החומר

נמוכה הקריטית הטמפרטורה המישורים את חוצה הזרם בו דגם עבור כי שהראו תצפיות מספר קיימות
הטמפרטורה על השפעה יש הדגם שלגודל החשד עלה למישורים. מקביל תמיד הזרם בו בדגם מאשר
לסקו של יחידני גביש מאותו c ו a טבעות זוג הוכנו זו השערה לבדוק וכדי ידעך המושרה הזרם בה

את שינינו למדידה מדידה ובין טבעת כל עבור פעמים מספר נמדדה הקריטית הטמפרטורה .x = 0.125
הניסויים הקריטית. הטמפרטורה על ההשפעה את למדוד כדי שלה החיצוני הרדיוס את או הטבעת גובה
של התאורטי החלק הקריטית. הטמפרטורה לבין a טבעת של החתך שטח גודל בין קשר שקיים הראו
המערכת הקריטית לטמפרטורה שקרוב המראים 3Dxy מודל עבור מספריים חישובים מציג המאמר

הזרם בו החתך שטח שגודל מראות הסימולציות ג'וזפסון. צמתי של חד-ממדית שרשרת כמו מתנהגת
רזולוצית עבור שונה תראה הקריטית ושהטמפרטורה הפאזה מעבר צורת על משפיע למישורים ניצב
שערך וקיבלנו הניסוי לתוצאות התאמנו אותו אנליטי ביטוי מספק החד-ממדי המודל סופית. מדידה

.4.1× 10−5 הינו הקריטית הטמפרטורה בקרבת בחומר האנאיזוטרופיה
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לפיזיקה. בפקולטה קרן, עמית פרופסור של בהנחייתו בוצע המחקר
במהלך ובכתבי-עת בכנסים למחקר ושותפיו המחבר מאת כמאמרים פורסמו זה בחיבור מהתוצאות חלק

הינן: ביותר העדכניות גרסאותיהם אשר המחבר, של הדוקטורט מחקר תקופת
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אתיקה הצהרת

בוצע וכו', קודם, למחקר השוואה המידע, והצגת עיבוד איסוף, כולל שהמחקר, מצהיר אני התזה ככותבת
בנוסף, האקדמיה. בעולם האתי לסטנדרט בהתאם שמבוצע מדעי ממחקר כמצופה לחלוטין ישר באופן

הסטנדרנט. לאותו בהתאם ומקיף, ישר באופן נעשה זו בתזה ותוצאותיו המחקר הצגת

תודות

בהשתלמותי. הנדיבה הכספית התמיכה על למדע הלאומית לקרן מודה אני





של האנאיזוטרופיה וחקר הבין-שכבתי הקוהרנטיות אורך מדידת
LSCO של הקריטית הטמפרטורה

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם
לפילוסופיה דוקטור

מנגל איתי

לישראל טכנולוגי מכון הטכניון- לסנט הוגש
2024 אוגוסט חיפה התשפ"ד אב





של האנאיזוטרופיה וחקר הבין-שכבתי הקוהרנטיות אורך מדידת
LSCO של הקריטית הטמפרטורה

מנגל איתי


