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Motivation

Iron-based superconductors, in particular FeSe0.5Te0.5, show:
Strong correlations.
Complex multiband electronic structure.
Nontrivial topology and unconventional pairing.

Peri et al. (2023)
Bulk single crystal.
Stiffness (ρs) vs. T showed a knee.
M vs H did not show the same knee.
Disagreement with Hc1 measurements.
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Peri et al. (2023) "knee" effect

Proposed explanations:
1 Electronic nematic phase transition.
2 Surface superconductivity (different Tc for bulk vs surface).
3 Multiple Fermi surfaces (multigap superconductivity).
4 Sample geometry.
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Leading questions

Is the knee feature:
intrinsic to FeSe0.5Te0.5?
related to Ring geometry?
related to Stoichiometric inhomogeneity?
related to Experimental limitations?

Strategy:
Use thin film FeSe0.5Te0.5 grown by PLD.
Measure both M vs. H and using Stiffnessometer.
Control: different material with similar geometry.
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Superconductivity basics

Superconducting phase:
Meissner effect (expulsion of magnetic field).
Zero resistance.

Two main theories:
BCS (microscopic).
Ginzburg–Landau (phenomenological).

Type I vs Type II:
Type I: single critical field Hc.
Type II: mixed state between Hc1 and Hc2 with vortices.
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Superconducting length scales and GL relations

London penetration depth λL:
Characteristic decay length of magnetic field inside a superconductor.

Coherence length ξ:
Scale over which the order parameter varies significantly.

µ0Hc1 ≈
Φ0

4πλ2
ln

(
λ

ξ

)
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Order parameter and stiffness

GL order parameter:
Ψ(r⃗) = |Ψ(r⃗)|eiϕ(r⃗)

London equation:

J⃗s = −ρs
(
A⃗tot −

Φ0

2π
∇ϕ

)
Measuring ρs(T ) gives direct access to the superfluid density:

ρs =
|Ψ|2e∗2

m∗ =
1

µ0λ2L
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BCS gap and two-gap model

Below Tc an energy gap ∆(T ) opens at the Fermi surface.
For s-wave:

λ−2(T )

λ−2(0)
= 1 + 2

∫ ∞

∆(T )
∂Ef

E dE√
E2 −∆2(T )

along with a closed approximate form.
Two-gap s-wave model:

ρT (T ) = w ρ∆1(T ) + (1− w) ρ∆2(T )

A knee in stiffness can naturally arise from multigap behavior.
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Thin films and Pearl length

For thin films with d≪ λL:

Λ =
2λ2L
d

known as the Pearl length.
Field screening is not longer exponential - vortices may have long range correlations.
Stiffnessometer directly probes the 2D stiffness through Λ.
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FeSe0.5Te0.5: structure

Fe

Se / Te

Figure 1: Crystal structure of FeSe0.5Te0.5.

Fe-based chalcogenide, tetragonal (PbO-type).
Te substitution:

Enhances Tc.
Modifies SOC and band structure.
Enables nontrivial topological surface states.
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FeSe0.5Te0.5: topology & pairing

DFT: multiple electron and hole pockets, band inversion.
ARPES: confirms band inversion and surface states.
Experiments (STM, µSR, Andreev spectroscopy) indicate:

Two superconducting gaps.
Possible unconventional pairing (e.g. s+ id).
Candidate for topological superconductivity and Majorana modes.
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Stiffnessometer concept

Superconducting annulus threaded by a long excitation coil.
DC current in the coil:

A⃗ =
µ0nI

r
φ̂

while H is confined inside the solenoid.
The annulus sees a pure vector potential A⃗:

Induces supercurrents (Meissner effect).
Generates a magnetic moment measured by SQUID.

From m(I) we extract the stiffness and ξ.
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Measurement protocols: ZGFC

Zero-Gauge-Field Cooling (ZGFC):

Step Action
1 Reach desired base temperature.
2 Drive desired current in excitation coil.
3 Measure magnetic moment.

Sets ∇ϕ = 0 in London equation (fixed gauge).
Probes response to pure vector potential at fixed T .
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System setup: MPMS3 Stiffnessometer configuration

Inner-coil

Superconducting

 ring

Gradiometer 

External coil

Figure 2: MPMS3 in Stiffnessometer configuration.
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Sample holder: Stiffnessometer

 

Figure 3: Stiffnessometer sample holder: excitation
coil + LAO ring with film.

Copper excitation coil threading the
superconducting ring.
LaAlO3 substrate with FeySexTe1−x film
patterned as a ring.
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Sample holder: DC-field measurements

+
3 

-3
 

6
6

m
m

 

Figure 4: Sample holder for external field
measurements.

Straw-bead assembly holding the ring.
Bare LAO substrate background measured
and subtracted.
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SQUID magnetometer and modes

Measurement modes:
DC mode: scan sample along z, fit dipole profile ⇒ m.
VSM mode: oscillate sample, measure oscillating signal ⇒ m.

Both modes give consistent magnetization measurements.
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ZFC and FC DC-field protocols

Zero-Field Cool (ZFC):
Heat to 15K, null field.
Cool to base T .
Apply field, then measure m(t).

Field Cool (FC):
Heat to 15K.
Apply field, cool to base T .
Measure m(t).

ZFC: minimizes trapped flux and history effects.
FC: retains flux history, sensitive to pinning and trapping.
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Measurement protocols: GFC

Gauge-Field Cooling (GFC):

Step Action
1 Drive desired current in excitation coil.
2 Cool to base temperature.
3 Set excitation-coil current to zero.
4 Measure magnetic moment.

Enforces gauge-invariant combination:

A⃗tot −
Φ0

2π
∇ϕ = 0

Probes trapped phase winding and persistent currents.
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Extracting ξ from critical flux

Start from GL free energy in thin-ring approximation.
Assume separable order parameter Ψ = ψ(r)Θ(θ).
Minimize free energy ⇒ critical flux condition:

Φc

Φ0
≈ rout

ξ

Break in the linear m(I) response gives Φc and thus ξ(T ).
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Extracting λ and stiffness

Use London equation in 2D:

∇2A⃗SC = µ0ρs(A⃗SC + A⃗EC)

Solve PDE for an annulus using FreeFEM++ with cylindrical symmetry.
At pickup loop radius Rpl:

A(Rpl) = C
m

I

From m
I and geometry:

Extract A(Rpl).
Obtain Λ and then λL via Λ = 2λ2L/d.
Get ρs(T ) ∝ λ−2(T ).
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Magnetic response vs temperature
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Figure 5: Inset M vs T H = 1(T), background-subtracted.
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Magnetic response vs temperature: key points

Measure film + LAO at H = 1T; subtract LAO.
Maximum signal ∼ 0.1µA ·m2.
Inverse magnetization vs T :

Deviates strongly from Curie–Weiss behavior.
Fit to high-T region gives effective Tc < 0 (antiferromagnetic-like), but global behavior not
Curie–Weiss.

Conclusion: dominant response cannot be ascribed simply to excess Fe; this contribution is
neglected in further analysis.
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Stiffnessometer m(I)
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Figure 6: Excitation-coil current dependence of m for different T.
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Critical current and low excitation current slope vs. T
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Figure 7: dm
dI and Ic vs. T.

dm
dI :

Monotonically decreases with T .
Exhibits a knee near ∼ 7K.
Drops sharply near Tc.

Ic(T ):
Smoothly decreases as T → Tc.
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Inverse Pearl length and inverse coherence length
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Figure 8: Λ−1
p (T ), ξ−1(T ).

Λ−1
p (T ):

Monotonic with T .
Pronounced knee around 7K.

ξ−1(T ):
Smooth evolution without a clear knee.
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Normalized stiffness vs two-gap model
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Figure 9: Normalized stiffness vs two-gap model.

Normalized stiffness fits well to two-gap s-wave
model:

Two gaps with Tc,1 = 7(K),
Tc,2 = 13.4(K).
Supports multiband origin of the knee.
fails to capture behavior close to Tc
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Gap values vs literature
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Figure 10: Gap magnitudes vs Tc with present data
overlaid on XXX.

Our extracted gaps roughly follow
literature trends for ∆L and ∆S , but with
deviations.
Possible reasons:

Thin film vs bulk crystals.
Degraded or different Tc.
Simplifying assumption of negligible
interband coupling in model.

Bornovski Matan (Technion) Time-dependent magnetization in thin rings December 7, 2025 29 / 44



Hc1(T ) from λ(T ) and ξ(T )
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Figure 11: Hc1(T ) obtained from λ(T ) and ξ(T ).

Hc1 decreases monotonically with T , as
expected with observed "knee".
Hc1 values in the mT range.
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Time dependence: ZFC vs FC vs GFC
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Figure 12: Relative magnetization vs time for ZFC, FC, and GC protocols.
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Unexpected time dependence

ZFC and FC:
Clear positive, nonlinear change in magnetization over time.
Strongly non-linear in ln t.
Sometimes exhibit sign changes in the moment.

GC:
Only a small positive change.

This type of time-dependent behavior was not reported previously for FeySexTe1−x.
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ZFC protocol: short-time behavior
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Figure 13: ZFC: m(t), H(t) and T (t) at T = 1.8K.
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Figure 14: ZFC: m(t) at T = 1.8, 6, 12 K for
various fields.
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ZFC: time dependence summary

For all T and H:
Nonlinear evolution of m(t).
Recurring pattern of short and long saturation times vs H.

Increasing T :
Initial moment moves toward zero.
Saturation time becomes shorter.

In some cases (specific T and H):
m(t) switches sign.
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ZFC: long-time behavior
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Figure 15: ZFC: extended m(t) over ∆t = 7.2 ksec.
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Figure 16: ZFC: superconducting moment vs ln t
for three fields.
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FC protocol: short-time behavior

0

2

4

6

0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
4
8

1 2

m 
- m

bg
 (µ

A∗
m2 )

( a )

( b )

( c )

H(
T)

T (
K)

t ( k s e c )

S h o r t  F i e l d  C o o l

- 0 . 0 3
0 . 0 0
0 . 0 3

Figure 17: FC: m(t), H(t) and T (t) at T = 1.8K.
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Figure 18: FC: m(t) at T = 1.8, 6, 12 K, various
fields.
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FC: long-time behavior
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Figure 19: FC: extended m(t) over ∆t = 7.2 ksec.
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Figure 20: FC: superconducting moment vs ln t for
three fields.
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Vector potential modulation
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Figure 21: FC: response to modulated excitation
coil current at T = 1.8 K, H = 0.09 T.

Magnetic moment changes sign over long
times.
When vector potential is modulated:

Response is persistent.
Proportional to applied vector potential.

Confirms superconducting origin of the
observed signal.
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Comparison sample: NbTiN ring
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Figure 22: Nb0.61Ti0.27N0.11 ring: FC and ZFC
time dependence.

NbTiN ring with similar geometry shows:
Clear time-dependent magnetization in
both FC and ZFC.
Different detailed behavior from FeSeTe,
but with:

Positive responses tending toward
saturation.
Sign changes and non-linear m(ln t).
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Conclusions: stiffness and "knee"

Stiffnessometer on thin FeSe0.5Te0.5 rings:
Reproduces the knee in stiffness vs T , around ∼ 7K.
ξ−1(T ) evolves smoothly without a pronounced "knee".

Two-gap s-wave BCS model:
Captures main features of normalized stiffness.
Suggests multiband origin of the knee.
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Conclusions: Geometric origin of time dependence

NbTiN ring with similar geometry shows:
Clear time-dependent magnetization in both FC and ZFC.
Different detailed behavior from FeSeTe, but with:

Positive responses tending toward saturation.
Sign changes and non-linear m(ln t).

Indicates that:
Time-dependence is not unique to FeSeTe.
Likely has a strong geometric component.
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Conclusions: time-dependent magnetization

Both ZFC and FC protocols show:
Strong, non-linear m(ln t) behavior.
Positive time evolution, sometimes including sign changes.

GC protocol shows only small changes.
Vector-potential modulation confirms superconducting origin of the signal.
Comparison with NbTiN ring:

Time-dependence is seen in a different superconductor with similar geometry.
Points to a geometric effect of the annular ring on flux dynamics.

Bornovski Matan (Technion) Time-dependent magnetization in thin rings December 7, 2025 42 / 44



Outlook

Improve modeling:
Include interband coupling and realistic band structure.
Quantitative modeling of vortex dynamics in annular geometry and edge effects.

Experimental directions:
Systematic geometry variations (width, thickness, inner radius).
Compare different materials (s-wave, d-wave, topological).
perform scanning/MFM measurements along edges and in radial direction to determine the
role of vortex dynamics in the time dependence.
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Thank you!

Questions?
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