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Phase retrieval of vortices in Bose-Einstein condensates
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We propose and demonstrate numerically a measurement scheme for complete reconstruction of the 2D quan-
tum wave function of a Bose-Einstein condensate, amplitude and phase, from a time-of-flight measurement. We
identify a fundamental ambiguity present in the measurement of phase structures of high-symmetry excitations
(e.g., vortices) and show how to overcome it by allowing for different expansion durations in different directions.
We demonstrate this approach with the reconstruction of matter-wave vortices and arrays of vortices.
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I. INTRODUCTION

Bose-Einstein condensation (BEC) is a quantum state of
matter where bosonic particles form a macroscopic population
in a single eigenstate. The theory [1] predicting this state
waited 70 years to be explored in the lab [2,3], a milestone
achievement which launched almost three decades of fruitful
research in the field of ultracold atoms and quantum sim-
ulators [4]. Yet, despite the progress, the commonly used
measurement techniques of BECs are incomplete in the in-
formation they provide.

Imaging is at the core of measurement techniques for
BECs. By shining a light through the atomic cloud and record-
ing the shadow it casts, one can extract the density of atoms
in a given state. Two imaging modes are usually available:
in situ, imaging the cloud while still inside the trap, or time of
flight (TOF). The latter is performed by opening the trap and
recording the density of atoms after expansion of the cloud
[5]; it is the analog of measuring the intensity of the “far
field” in optics. If the particles do not interact with one another
during the expansion and the initial size of the cloud is negli-
gible relative to the final expanded size, then the TOF image
provides the momentum distribution of the cloud, which is
the magnitude of the spatial Fourier transform of the wave
function. If interactions are present but the final density is low
enough such that they become negligible, the kinetic energy
of the measured momentum distribution reflects the initial
kinetic plus interaction energy.

These imaging modalities capture only part of the in-
formation of the state, as they measure density alone at a
single point in time and in a single plane, in situ or TOF.
Yet, BECs are quantum objects, and as such they are matter
waves [6], characterized by both amplitude and phase. Thus,
to characterize a BEC, it is essential to obtain a complete map
of their amplitude and phase everywhere in space, as they
evolve. Accordingly, relying on these two modalities, inno-
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vative methods were developed to characterize these states,
such as Bragg spectroscopy for momentum measurements
[7,8], real-time probing [9,10], Josephson effects, and Raman
superradiance [11,12]. For measuring the phase of the con-
densate wave function, interference can be exploited—-either
between different parts of the same BEC [13] or between
different BECs [14]. However, interference measurements
of cold atoms present significant experimental challenges
[15], as they require coherently splitting and recombining a
BEC. In addition, such measurements are destructive; hence,
each measurement captures a single realization of the ex-
periment. This raises a natural question: Can the phase and
amplitude of a BEC wave function be recovered without
atomic interference of two clouds [16]? This question is
related to the well-known phase-retrieval problem from op-
tics but with some important differences which we highlight
below.

Traditionally, the phase-retrieval problem is defined as
the recovery of an object, amplitude and phase, from the
magnitude of its Fourier transform [17]. This problem arises
naturally in coherent optical imaging as the far field of an
object (or the field at the focal plane of a lens) is proportional
to the Fourier transform of the object that one wishes to image.
As most detectors, such as digital cameras, only measure the
field’s intensity, the information measured is the magnitude
(squared) of the Fourier transform, losing the phase informa-
tion. Since the phase structure of a coherent light beam is also
embedded in the far-field diffraction pattern, one can try and
recover it computationally from the intensity measurement
in the far field. Under suitable conditions and up to certain
ambiguities, one can often recover a suitable phase function
in an iterative fashion by utilizing prior knowledge about the
state to be reconstructed (e.g., a finite “support”—-the region
within which the image is contained). A well-known exam-
ple is Fienup’s algorithm [18] from the late seventies, which
is commonly used in optics for phase retrieval. Moreover,
under sufficient conditions on the image, a unique solution
can sometimes be guaranteed [19]. Additional prior knowl-
edge, such as sparsity, can result in improvements in terms
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of the number of sample points (resolution of the detector),
noise robustness, and convergence rate of the algorithm, even
of 1D objects, as was explored in many works [20–24]. In
recent years, the phase-retrieval problem has been studied
extensively, and several measurement schemes and recovery
algorithms have been proposed and demonstrated, facilitat-
ing recovery of the phase from various forms of generalized
Fourier measurements [25–28].

The setting of phase retrieval in optical imaging is very
similar to TOF in BEC measurements, as the information of
the initial state is embedded in some far-field plane. By the
same logic, if the initial quantum state of the BEC includes
a phase structure, it affects the evolution to the plane where
TOF measurements are carried out; hence, one can try and
extract it from the TOF measurements. However, unlike the
traditional phase-retrieval problem from optics, where the re-
lation between the electromagnetic field in the image plane
and the field in the far field is a simple Fourier transform; in
the expansion dynamics of a BEC the relation is more compli-
cated. Specifically, the particles constituting the BEC interact
with one another; hence, the propagation from the BEC to the
measurement plane is no longer ballistic: it does not follow a
simple linear relation (such as a Fourier transform) but instead
is governed by a nonlinear evolution equation. Also unlike
in optics, as noted earlier, BEC measurements are typically
destructive, and if nondestructive techniques [5] are employed
they come at the expense of the signal-to-noise ratio. Addi-
tionally, BECs have a limited time within which they still
act as a coherent entity when the trap is removed, which
sets a limit on the path and phase difference in interference
measurements [29].

The concept of phase retrieval has been proposed for
atomic BEC TOF measurements before [30,31], and even for
light emission from a plasmonic BEC [32]. However, these
methods do not handle well complex phase structures such
as vortices, which naturally create ambiguities in a phase-
retrieval process based on density TOF measurements, due
to symmetries in propagation. Pointedly, these ambiguities
cannot be resolved by a phase-retrieval algorithm. For ex-
ample, employing the Fienup phase-retrieval methodology
or a more modern technique [17] cannot reveal the rota-
tion direction of a vortex such as in Ref. [33], or an array
of vortices, as has often been studied in BEC experiments
[34,35]. The issue of unraveling the directionality and phase
of vortices in a BEC is extremely important for multiple
reasons, for example—-to determine the vortex quantum num-
ber (i.e., its topological charge). Being able to measure the
topological charge of all the vortices is crucial in the study of
many physical phenomena, such as the Berezinskii-Kosterlitz-
Thouless phase transition [35], where pairs of counter-rotating
vortices appear spontaneously. Understanding the superfluid
dynamics of the BEC [10] also requires mapping the quantum
numbers of vortices. In addition, vortices can be used to carry
quantum information [36], which may be encoded by the
topological charge. In a similar vein, vortices play a major
role in the formation of matter-wave vortex solitons [37–39],
where the spatial dependence of the phase is a key feature
[40,41]. Therefore, the recovery of vortex structures in a BEC
is crucial and has many far-reaching implications for basic and
applied science.

Over the years, various experimental methods for studying
vortices in atomic gases were developed. For instance, Seo
et al. [42] employed Bragg spectroscopy with counterpropa-
gating beams for sign detection of vortices from TOF images.
Likewise, Haljan et al. [43] were the first to distinguish
between a vortex and antivortex by tilting the condensate
and inducing spin precession. Other closely related methods
followed [44,45]. Serafini et al. [46] studied dynamics of
single vortex and two vortices in a 3D BEC by periodically
outcoupling and imaging a fraction of the condensate atoms,
and the authors in Refs. [39,47] studied the case of a single
solitonic vortex in an elongated BEC, by triaxial TOF den-
sity imaging, relating the twisting to the vortex sign while
also employing Bragg interferometry for detection of vortex
fork dislocations. However, all of these novel methods cannot
fully recover the spatial phase structure of the condensate’s
wave function. Therefore, extending phase-retrieval methods
to BECs, specifically in the case of vortex structures, can
bring the benefits of algorithmic approaches, characterizing
the density and phase of a condensate with a single simple
measurement, into the realm of BECs.

Here, we propose and demonstrate in numerical simula-
tions a scheme for the complete characterization of the 2D
quantum wave function imprinted on a Bose-Einstein conden-
sate from TOF measurements alone, including wave functions
containing vortices. Our proposed measurement scheme is
based on a simple variation to TOF measurements and does
not require interference with another condensate. The varia-
tion breaks the radial symmetry in propagation, which is the
source of ambiguities in the measurement of vortices, and
otherwise cannot be lifted by any algorithm based on TOF
imaging. Our measurement scheme resolves these ambigu-
ities and facilitates the recovery of single vortices and of
vortex arrays, including their directionality, without atomic
interference or multiple measurement planes. Moreover, the
scheme is general and does not assume any prior information
on the wave function, trap, or any other physical parameter; it
only assumes TOF propagation based on the Gross-Pitaevskii
equation (GPE). Accordingly, since the evolution of BECs
is nonlinear, described by the GPE, our algorithm is based
on nonlinear dynamical evolution rather than on the simple
Fourier transform used in linear phase-retrieval problems.

II. BACKGROUND

A. Mean-field description

The object we wish to reconstruct is the 2D wave func-
tion imprinted on a Bose-Einstein condensate. The dynamics
of the state of N particles are given by the many-body
Hamiltonian. Under appropriate conditions, a mean-field
approximation is valid, and the many-body Hamiltonian
describing the ensemble of particles is reduced to the Gross-
Pitaevskii equation [48], which is functionally equal to the
nonlinear Schrödinger-type equation:(

− h̄2

2m
∇2 + V (r) + U0|ψ (r, t )|2

)
ψ (r, t ) = ih̄∂tψ (r, t ),

(1)
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where V (r) is the confining potential of the trap as a func-
tion of coordinate r, V typically being a real function, and
U0 > 0 is the nonlinear coefficient that represents repulsion
between particles due to interactions. Usually, it is reasonable
to assume that the wave function is initially localized by the
confining potential; hence, knowledge of the region within
which the wave-function density is nonzero (the support of
the function) is tight.

An alternative mathematical description of the state above
highlights the relation between the phase of the wave
function and the flow of quantum gas. Through a hydro-
dynamics description [49], one can show that the following
holds:

ψ (r, θ ) = f (r, θ )eiφ(r,θ )

v = h̄

m
∇φ, (2)

where ψ (r, θ ) is the wave function describing the condensate
in terms of its amplitude and phase, and v is the expectation
value of the velocity operator using the condensate wave
function. One special type of flow is that of a vortex, that
is, a field that circulates around a point. Because the phase
(modulus 2π) must be continuous, a vortex flow corresponds
to a phase function of the functional form φ(r, θ ) = nθ , where
n is an integer. As a result, the rotation speed of vortices
is always quantized in a quantum gas. Due to this quanti-
zation, one can assign a topological quantity to the vortex,
commonly referred to as the topological charge (n, in our
case). In a similar fashion, optical vortex beams are electro-
magnetic waves that carry orbital angular momentum (OAM),
where n is the order of the OAM and its sign gives its
direction.

B. Time-of-flight measurement

A time-of-flight measurement is performed by opening
the trap confining the condensate and allowing the atomic
cloud to expand freely. After some waiting time, collimated
light is launched through the cloud. The light is partially
absorbed by the atoms and rescattered to all directions, which
cast a shadow of the atomic cloud onto the beam front.
At light intensities below the saturation intensity, the ab-
sorption coefficient is linearly proportional to the density of
atoms. Mathematically, this procedure translates to measuring
|ψ (r, T )|2 at some time T after the trap is removed and the
atomic cloud is allowed to evolve freely, i.e., with no potential
present, setting V (r) to zero in Eq. (1).

An important observation is that when the trap is
turned off, the potential-free Hamiltonian conserves or-
bital angular momentum and hence also conserves the
total OAM of the state, even for the nonlinear evolution
of the GPE. In the context of BECs containing vortices,
this implies that the condensate conserves OAM in the
free propagation of the TOF measurement. As the phase
of a vortex is singular at its core, it results in a zero
density there.

Due to the symmetries in Eq. (1), this zero-density core
persists throughout the propagation and hence is also present
in the TOF measurement. This implies that the presence of
a vortex can be detected by locating the zero-density point.

Alas, as the OAM is manifested in the phase of the state,
it means that a state with opposite vortex direction results
in identical density measurement; this means one cannot
distinguish the directionality of the vortex flow from this mea-
surement, as can be seen in Fig. 1. Likewise, in a BEC with
multiple vortices, locating the zero-density points does not
reveal the rotation directions of the individual vortices. This
fact presents a problem for the phase-retrieval algorithm. For
any reconstruction algorithm, when one measurement corre-
sponds to two (or more) different inputs—-the reconstruction
problem is ill-posed and contains an ambiguity preventing
recovery of the original input. While some ambiguities are
trivial and not important, such as global phase, this type of
ambiguity has a physical meaning, and hence lifting it is
crucial for successful operation.

C. Phase retrieval

Phase retrieval is the mathematical problem of recon-
structing a function from the magnitude of its Fourier
transform. Without the phase of the Fourier components—-
information is lost [50], and the transform is not bijective.
Hence, recovering the initial object amounts to retriev-
ing the phase in the Fourier plane. The phase-retrieval
problem has been studied extensively in the past and
in recent years as well, bringing forth theoretical results
guaranteeing uniqueness and stability under various con-
straints (such as prior information) on the input and new
classes of measurements [19] along with new algorithms for
reconstruction [21,22].

The most common phase-retrieval algorithms are iterative
[51], and are derived either by solving an underlying opti-
mization problem, or by using alternating projections based
on the following working principle: As we have two relevant
planes, the object plane and the Fourier plane, one can impose
the information one has at each plane and iterate between
the two planes. For instance, one starts by drawing a ran-
dom initial wave-function guess and propagate it by Fourier
transform to the far field. Here, the magnitude is replaced
with the measured Fourier magnitude. The field is then prop-
agated back (inverse Fourier transform) to the object plane,
where constraints are imposed, such as support, sparsity,
and more.

Traditional phase-retrieval methods, as noted above, were
developed and used based on Fourier propagation. How-
ever, TOF measurements of BECs follow Eq. (1), which
is nonlinear, and the measurements are not of the Fourier-
transform squared. Rather, the measurements are taken over
the atom density |ψ (r, t )|2 some time T after the trap is
removed. Nevertheless, the underlying principle of these al-
gorithms can still be applied to different mechanisms of
evolution, linear or even nonlinear, as we show below.
This idea has been proposed in nonlinear optics [52] and
also for BECs [30], but has thus far never been demon-
strated experimentally with cold atoms. However, while these
methods can work well, for measurements with ambigui-
ties associated with the inherent symmetries of the evolution
according to the GPE, Eq. (1)—-they fail. In what fol-
lows, we describe our methodology of phase retrieval of
BECs, focusing on changing the measurement scheme for the
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FIG. 1. (a) Amplitude distribution of single m = ±1 vortex state in arbitrary unit. (b) Phase structure of vortex state m = 1. (c) Phase
structure of vortex state m = −1. (d)–(i) Top row: TOF measurement of state (b) with linear (d), "weak”(e), and “strong” nonlinear
(f) propogation. Bottom row: TOF measurement for state (c) with linear (g), weak (h), and strong nonlinear (i) propogation. See Appendix B
for simulation and propagation regimes details.

challenging task of phase retrieval of wave functions contain-
ing vortices.

III. METHOD

A. Augmented TOF

The reason an ambiguity arises in the measurement of the
TOF images from vortices is radial symmetry of the GPE,
which results in the same amplitude for a right-handed vortex
and a left-handed one. In order to alleviate this ambiguity,
we propose to break this symmetry in the TOF propagation.
We achieve this by a simple and feasible adaption to the TOF
measurement. Instead of opening the BEC trap in the x-y axes
simultaneously, we open the trap in succession: one axis first
and after sufficient evolution, the second axis. That is, there
are two times relevant for propagation: T1, the propagation
time under a partial potential active in one axis only, followed
by free propagation for a time T2, and then performing the
measurement which yields the density of atoms. This pro-
cedure removes the radial symmetry between positive and
negative singly charged vortices. However, as we see in our
simulations described in Sec. III D, this procedure can re-
move the ambiguities also for intricate states containing many
vortices. In this TOF, T2 should be long enough such that the
dynamics create enough mixing of phase information within
this time interval. This is in analogy to the regular Fourier
propagation, where one wants sufficient propagation to ap-
proximate the Fourier transform. Henceforth we refer to this
methodology as augmented TOF. Our augmented TOF phase-
retrieval methodology is conceptually similar to breaking the
propagation symmetry in linear optics by an intermediate
cylindrical lens [53].

Figure 2 shows the same states from Fig. 1 after augmented
TOF measurements, instead of the standard TOF measure-
ments shown in Fig. 1. As shown in Fig. 2, unlike the regular
TOF measurement that yields the same result for vortex of or-
der 1 and −1 (Fig. 1), the augmented TOF produces different
patterns regardless of the interaction strength.

B. GPE phase-retrieval algorithm

We first address the phase-retrieval problem for the non-
linear propagation represented by the GPE. The problem is
similar to the common phase retrieval. Thus, the algorithm
for this nonlinear evolution is almost identical to common
phase-retrieval algorithms, with appropriate modification. As
the propagation is no longer linear, we modify existing algo-
rithms by replacing the Fourier propagation with GPE-based
propagation, where we include in this propagation the differ-
ent times under the partial trapping and free expansion. This is
done by numerically solving the GPE for each iteration back-
ward and forward. In principle, for methods requiring gradient
computations, we would need to adapt the gradient as well.
Instead, we focus on Fienup-type methods which rely on pro-
jections between planes so that we only modify the forward
model while the rest of the algorithm steps remain unchanged.

Our numerical solver is the split-step method or
beam propagation model [54]. As in situ atom-density

FIG. 2. Top row: Augmented TOF measurement for vortex states
of m = 1 with linear (a), weak (b), and strong nonlinear (c) propaga-
tion. Bottom row: Augmented TOF measurement for vortex states of
m = −1 with the same propagation parameters for “linear” (d), weak
(e), and strong nonlinear (f) propagation.
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FIG. 3. Graphical depiction of the iterative phase-retrieval
algorithm for the augmented TOF measurements of BEC.

measurements are available for the BEC (sometimes at low
resolution), we impose a magnitude constraint instead of sup-
port constraint in the in situ plane. This scheme is sketched
in Fig 3, where ψi is the wave function estimated at the
trap plane in iteration i and ψ̃i is the wave-function esti-
mate at the measurement plane, while wave functions without
iteration index correspond to the measured images at each
plane. Reconstruction results for this algorithm are presented
in Sec. III D. The algorithm in Fig 3 is the same for the
case of the BEC with our proposed augmented TOF mea-
surement. The only difference is that the GPE propagation
(and its inverse) is done in two steps: numerical propagation
under the partial potential for a time T1 followed by numer-
ical free propagation with no potential for a time T2. The
measurement constraint is changed into the augmented TOF
instead of TOF.

C. T1 propagation time

As the augmented TOF scheme introduces an extra param-
eter, the time under the partial trap, an immediate question
arises: what is the optimal propagation time under the partial
trap? To select a possible T1, we choose to optimize the max-
imal norm difference between a vortex state of order 1 and
order −1. That is,

max
T1

‖|ψ1(x, y, T1 + T2)|2 − |ψ−1(x, y, T1 + T2)|2‖, (3)

where ψ±1 (x, y, T1 + T2) is a vortex state with an order of
±1, as a function of propagation time under the partial trap
T1, followed by free propagation of time T2. The intuition
behind this selection is maximizing the difference between the
measured images in the augmented TOF for the ambiguous
condensates.

We relax the above problem by solving for the linear
regime of the GPE and taking T2 such that a far-field approx-
imation is valid. Under these conditions, we show (Appendix
A) that the norm difference is approximately proportional to:

‖|ψ1(x, y, T1 + T2)|2 − |ψ−1(x, y, T1 + T2)|2‖

∝
∣∣sin

(
�ET1

h̄

)∣∣
√

T2(T1 + T2)
, (4)

FIG. 4. Norm difference between augmented TOF measure-
ments of vortex states m = 1 and m = −1 as a function of
propagation time T1. Time axis is scaled by the energy difference
between the second and first modes of the trap.

where �E is the energy difference between the first and sec-
ond modes of the trap. Note that this result is independent of
the norm choice and as such the notation was left general.
By setting �ET1

h̄ = π
2 we can expect a maximal difference

between the two states. We validate this result numerically,
as shown in Fig. 4. We note that this result can be computed
directly from the parameters of the system, with no additional
measurement required for the calculation.

In general, these results can be further developed to deal
with high-order vortices and more intricate phase structures,
such as lattice of vortices, and to optimize over the recon-
struction error of the algorithm rather than the measurement
difference. We leave these improvements for future work.

D. Reconstruction

To test the proposed method, we simulate a more complex
class of wave functions and show their respective reconstruc-
tions. As an example, we consider a 3 × 3 lattice of order-one
vortices, each vortex having a random order sign and rela-
tive phase to the others. Each vortex by itself is a stationary
order-one vortex state of the GPE equation with a single-site
potential well. We test the performance of our method on an
ensemble of 150 such lattices. We measure the augmented
time of flight and in situ measurements for 150 wave functions
and different interaction strengths, and reconstruct the wave
function based on the algorithm described in Sec. III B. Unlike
the case of the single-vortex state, where we analytically show
there is ambiguity in the TOF measurement, for the lattice
case this is not that simple because only the total topological
charge is conserved. For example, single-charge vortices can
merge and/or multicharged vortices can split during propaga-
tion; hence, local charge is not conserved. As expected, our
numerical study reveals ambiguity also in attempting to recon-
struct the vortex lattice based on TOF measurements. This can
be seen in Fig. 5, where we attempt to reconstruct an initial
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FIG. 5. (a) Amplitude of wave function for reconstruction and (b) its phase; (c) is the augmented TOF and (d) is the original TOF. In (e), we
present the phase reconstructed with the augmented TOF scheme and its corresponding phase-retrieval algorithm. The far-field result is shown
in (f). In (g), an erroneous phase reconstruction is shown using the original TOF scheme, producing the “measured” far-field measurement
(h) but with a wrong object phase.

wave function based on TOF measurement and on augmented
TOF measurement. As shown there, for the TOF case, the
algorithm converges into an erroneous phase signal, yet as
shown in the figure, the augmented TOF yields the correct re-
constructed wave function. These numerical experiments lead
us to conjecture that some vortex lattices contain ambiguities
in TOF measurements of BECs, which can be overcome by
the methodology of augmented TOF measurements and the
accompanying algorithm.

To test the reconstruction further, we simulate measure-
ments in the presence of white Gaussian noise of a varying
degree of signal-to-noise ratio (SNR) in the range [60−0 dB],
for an ensemble of ten random vortex lattices, similar to our
previous test. While more tests are required to validate noise
robustness, we numerically observe that we are able to recon-
struct vortex lattices even in the presence of relatively high
noise, as can be seen in Fig 6. Note that while some noise
is still present in the final phase reconstruction, it is centered
in regions of low magnitude (i.e., low signal strength). Im-
portantly, the direction of each vortex and its relative phase
with respect to others can be easily distinguished. Remark-
ably, the final reconstructed augmented TOF measurement
shows considerable noise reduction, thereby indicating good
performance.

Last, to illustrate that the augmented TOF is not limited
to vortex lattices and can recover complete spatial phase in-
formation, as is the case with traditional phase retrieval, we
consider the case of random phase imprinted on a ground
state of BEC inside a harmonic trap. We recover an ensem-
ble of ten random phase patterns. An example of a specific
reconstruction is shown in Fig 7 showcasing virtually perfect
recovery of the random phase based on the augmented TOF
measurements.

IV. DISCUSSION AND OUTLOOK

Our results show that the problem of reconstructing the
2D phase structure of a BEC from TOF measurements is
analogous to the phase-retrieval problem in optics, with the
distinction that the evolution of a BEC is nonlinear. We have
shown that vortices and periodic arrays of vortices pose a
problem that phase-retrieval (linear and nonlinear) from TOF
(or far-field) measurements cannot resolve due to ambiguities.
We proposed a method to resolve this ambiguity problem
through a simple augmentation of the measurement proto-
col of a BEC by a two-stage procedure: the trap is opened
first in one direction and only after some time in the other
direction. This procedure was shown to empirically remove
the ambiguities and, together with the proper phase-retrieval
algorithm for nonlinear evolution, facilitates recovery of com-
plex quantum wave functions containing vortices and lattices
of vortices. As vortices are a ubiquitous phenomenon with
important implications for quantum technology and basic
science, their reconstruction—-including their helicity (topo-
logical charge)—- is crucial.

Experimentally, having distinct control over the two di-
rections necessitates building the trap using two separate
components, each influencing one direction. One method to
achieve this involves intersecting two far-off-resonance laser
beams propagating in orthogonal directions and switching
them off at different times during the modified TOF mea-
surement. Another experimental aspect, relating to the noisy
reconstructions presented, is the imaging resolution and its
effects on the reconstruction capabilities. Intuitively, the res-
olution should be such that all relevant density features are
captured in the measurement. As the cloud expands, this cre-
ates a trade-off between imaging resolution, propagation time,
and noise level. While not pursued in this work, a study of the
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FIG. 6. (a), (b) Amplitude and phase of the reconstructed wave function, respectively. (c, d) Calculated atom density corresponding to
augmented TOF measurement of (a), (b), without appreciable noise and with added Gaussian white noise, respectively. The noise in (d) is very
strong, corresponding to SNR 0 dB, yet the measurement scheme and the algorithm facilitate correct reconstruction, amplitude, and phase, as
shown in (e) and (f), respectively.

interplay between the above is an interesting and important
direction of research.

As the algorithm outlined uses in situ and augmented TOF
density images, this might present a challenge in cases where
nondestructive imaging is not available, as these measure-
ments cannot be obtained in a single shot. In practice, this
can be resolved by several approaches. If the initial state
production is highly reliable, one can combine measurements
from different shots. Otherwise, like with other phase-retrieval
algorithmic variants, an alternative can be to exchange the

FIG. 7. (a), (b) Amplitude and random phase pattern of the wave
function, respectively. (c) Reconstructed phase based on (d)—-which
is the calculated augmented TOF measurement of (a), (b). (e) Aug-
mented TOF of reconstructed wave function. Note the asymmetric
aspect ratio in the augmented TOF images.

in situ magnitude constraint, which requires a measurement,
with a support constraint defined by the trap support.

We analytically found the optimal propagation time under
the partial trap for maximizing the measurement difference in
the case of linear propagation and a single vortex and related it
to the energy difference between the modes of the trap. In the
context of measurement design, one possible future direction
can be potential engineering: that is, instead of turning off the
trap in stages in separate axes, engineering a time-dependent
potential that will optimize signal recovery for specific classes
of wave functions.

On the algorithmic side, the proof of concept we proposed
utilized a basic iterative Fienup-type algorithm and shows
there is sufficient information in the measurement for recon-
struction in the cases we examined. While not pursued in this
work, more advanced and novel algorithms can be adapted
to the case of the BEC (especially the nonlinear propagation)
to allow more robust recovery in the presence of noise and
analysis of the conditions for uniqueness and correctness.

We would like to emphasize that the only assumption of
our method is that the propagation of the state follows the
GPE, i.e., the mean-field approximation, in 2D. This means
that the cloud is effectively in 2D configuration in space and
evolution under the full trap does not strictly need to follow
the GPE model; only the propagation of the measurement
must follow the GPE. This point also hints at future directions
of incorporating more complex and advanced models into
the retrieval problem, such as the Bogoliubov approximation
[55] and other model of BEC in the presence of a thermal
cloud [56]. Another potential avenue is exploring the effects
of 3D cloud configurations on the 2D recovery and regimes
of validity outside the assumption of effective 2D dynamics.
This also hints at the feasibility of 3D reconstruction, similar
to tomographic reconstruction.
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Last but not least, we note that thus far, algorithmic phase
retrieval of the quantum wave functions of cold atoms has not
been demonstrated in experiments. We are now pursuing this
concept with an experimental group [57]. Clearly, succeeding
in recovering the quantum wave function from TOF measure-
ments will introduce a new powerful tool for experiments with
cold atoms and will also apply to cold molecules [58], remov-
ing the excessively hard requirement for atom interference for
unraveling the phase.
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APPENDIX A: OPTIMAL PROPAGATION TIME
UNDER PARTIAL TRAP

We wish to solve the following problem and find the op-
timal T1 parameter maximizing the difference between the
magnitude of the ±1 vortex states after propagation in our
measurement scheme:

max
T1

‖|ψ1(x, y, T1 + T2)|2 − |ψ−1(x, y, T1 + T2)|2‖.

We consider three Hamiltonians relating to the three stages of
the augmented TOF measurement in the linear regime. H0 the
Hamiltonian during complete trapping of the condensate, H1

after opening one axis of the trap, and H2 the Hamiltonian of

free propagation:

H0 = P2

2m
+ V (x, y), H1 = P2

2m
+ V (x), H2 = P2

2m
.

Let us take a symmetric separable potential. Since the
potential is separable the solution is separable as well [59]
and the eigenbasis for the x and y dimensions is the same due
to the symmetry of the Hamiltonian. A vortex mode is then
given by

ψ±1 = u0(x)u1(y) ± iu1(x)u0(y),

where ui(·) is the ith eigenfunction of the one-dimensional
Hamiltonian and (·) indicates the dependence on the dimen-
sion coordinate (x/y in our case). If we lift the potential barrier
in one direction, the eigenfunction basis in that direction
changes to that of a plane wave. We have

ui(·) =
∫ ∞

−∞
〈k, ui〉|k〉dk =

∫ ∞

−∞
eik(·)dk

∫ ∞

−∞
ui(·)e−ik(·)d (·),

which is the Fourier basis. Propagation in time is given by (for
brevity h̄ is omitted and we implicitly divide and rescale our
Hamiltonians by h̄):

ψ (x, y, t0 + T ) = e−iHiT ψ (x, y, t0).

If the wave function is an eigenfunction with eigenvalue (en-
ergy), we have

ψ (x, y, t0 + T ) = e−iHiT ψ (x, y, t0) = e−iEiT ψ (x, y, t0).

Therefore,

e−iH1T1ψ±1 = e−iH1T1 (u0(x)u1(y) ± iu1(x)u0(y))

=
(

e−iE0T1 u0(x)
∫ ∞

−∞
e−i(k2/.2m)T1〈k, u1〉|k〉dk ± ie−iE1T1 u1(x)

∫ ∞

−∞
e−i(k2/.2m)T1〈k, u0〉|k〉dk

)
=

(
e−iE0T1 u0(x)

∫ ∞

−∞
uF

1 (k)e−i(k2/.2m)T1 eikydk ± ie−iE1T1 u1(x)
∫ ∞

−∞
uF

0 (k)e−i(k2/.2m)T1 eikydk

)
.

Here, uF
i (k) represents the Fourier coefficient of the ith eigenfunction.

After propagation, a time T1 under potential in one direction, we remove the second potential and get

e−iH2T2ψ±1 =
⎛⎝e−iE0T1

∫ ∞
−∞ uF

0 (k)e−i(k2/.2m)T2 eikxdk
∫ ∞
−∞ uF

1 (k)e−i(k2/.2m)(T1+T2 )eikydk

±ie−iE1T1
∫ ∞
−∞ uF

1 (k)e−i(k2/.2m)T2 eikxdk
∫ ∞
−∞ uF

0 (k)e−i(k2/.2m)(T1+T2 )eikydk

⎞⎠.

Substituting in for the norm difference we wish to evaluate,

|||ψ1|2 − |ψ−1|2||.
Now,

|||ψ1|2 − |ψ−1|2|| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣
e−iE0T1

∫ ∞
−∞ uF

0 (k)e−i(k2/2m)T2 eikxdk
∫ ∞
−∞ uF

1 (k)e−i(k2/2m)(T1+T2 )eikydk

+ie−iE1T1
∫ ∞
−∞ uF

1 (k)e−i(k2/2m)T2 eikxdk
∫ ∞
−∞ uF

0 (k)e−i(k2/2m)(T1+T2 )eikydk

∣∣∣∣∣∣
2

−
∣∣∣∣∣∣
e−iE0T1

∫ ∞
−∞ uF

0 (k)e−i(k2/2m)T2 eikxdk
∫ ∞
−∞ uF

1 (k)e−i(k2/2m)(T1+T2 )eikydk

−ie−iE1T1
∫ ∞
−∞ uF

1 (k)e−i(k2/2m)T2 eikxdk
∫ ∞
−∞ uF

0 (k)e−i(k2/2m)(T1+T2 )eikydk

∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

In order to evaluate the integral, we approximate its value using the stationary phase approximation [60]:∫ ∞

−∞
uF

i (k)e−i(k2/2m)T2 eik(·)dk ≈ uF
i

(
m(·)
T2

)
ei[m(·)2

/
2T2]

∫ ∞

−∞
e−i(T2/2m)[(k−m(·)/T2 )2]dk = uF

i

(
m(·)
T2

)
ei[m(·)2

/
2T2]

√
−2πmi

T2
.
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Substituting this into the previous equation,

|||ψ1|2 − |ψ−1|2|| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
e−iE0T1 uF

0

(
mx
T2

)
ei(mx2/2T2 )

√
− 2πmi

T2
uF

1

(
my

(T1+T2 )

)
ei[(my2 )/2(T1+T2 )]

√
− 2πmi

(T1+T2 )

+ie−iE1T1 uF
1

(
mx
T2

)
ei(mx2/2T2 )

√
− 2πmi

T2
uF

0

(
my

(T1+T2 )

)
ei[(my2 )/2(T1+T2 )]

√
− 2πmi

(T1+T2 )

∣∣∣∣∣∣∣
2

−

∣∣∣∣∣∣∣
e−iE0T1 uF

0

(
mx
T2

)
ei(mx2/2T2 )

√
− 2πmi

T2
uF

1

(
my

(T1+T2 )

)
ei[(my2 )/2(T1+T2 )]

√
− 2πmi

(T1+T2 )

−ie−iE1T1 uF
1

(
mx
T2

)
ei(mx2/2T2 )

√
− 2πmi

T2
uF

0

(
my

(T1+T2 )

)
ei[(my2 )/2(T1+T2 )]

√
− 2πmi

(T1+T2 )

∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Removing the common-phase term and taking the common factor outside of the norm operation yields

= 2πm√
T2(T1 + T2)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣−e−iE0T1 uF

0

(
mx
T2

)
uF

1

(
my

(T1+T2 )

)
i + e−iE1T1 uF

1

(
mx
T2

)
uF

0

(
my

(T1+T2 )

)∣∣∣2

−
∣∣∣e−iE0T1 uF

0

(
mx
T2

)
uF

1

(
my

(T1+T2 )

)
i + e−iE1T1 uF

1

(
mx
T2

)
uF

0

(
my

(T1+T2 )

)∣∣∣2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣.

We note that the eigenwave functions can be taken to be real, and by the properties of bounded eigenwave func-
tions in symmetric potentials, the ground state is even and the first excited is odd. Therefore, by the Fourier
properties, in the Fourier plane uF

0 (·) is a real and even function and uF
1 (·) is an imaginary and even function.

Therefore,

2πm√
T2(T1 + T2)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

∣∣∣uF
0

(
mx
T2

)
uF

1

(
my

(T1+T2 )

)
+ uF

1

(
mx
T2

)
uF

0

(
my

(T1+T2 )

)
(i cos (�ET1) + sin (�ET1))

∣∣∣2

−
∣∣∣−uF

0

(
mx
T2

)
uF

1

(
my

(T1+T2 )

)
+ uF

1

(
mx
T2

)
uF

0

(
my

(T1+T2 )

)
(i cos (�ET1) + sin (�ET1))

∣∣∣2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣.

By the absolute value operation,

= 2πm√
T2(T1 + T2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎛⎜⎝
(

uF
0

(
mx
T2

)
uF

1

(
my

(T1+T2 )

)
+ uF

1

(
mx
T2

)
uF

0

(
my

(T1+T2 )

)
sin (�ET1)

)2

+
(

uF
1

(
mx
T2

)
uF

0

(
my

(T1+T2 )

)
cos (�ET1)

)2

⎞⎟⎠
−

⎛⎜⎝
(

uF
0

(
mx
T2

)
uF

1

(
my

(T1+T2 )

)
− uF

1

(
mx
T2

)
uF

0

(
my

(T1+T2 )

)
sin (�ET1)

)2

+
(

uF
1

(
mx
T2

)
uF

0

(
my

(T1+T2 )

)
cos (�ET1)

)2

⎞⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Simplifying, we obtain

= 2πm√
T2(T1 + T2)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

(
uF

0

(
mx
T2

)
uF

1

(
my

(T1+T2 )

)
+ uF

1

(
mx
T2

)
uF

0

(
my

(T1+T2 )

)
sin (�ET1)

)2

−
(

uF
0

(
mx
T2

)
uF

1

(
my

(T1+T2 )

)
− uF

1

(
mx
T2

)
uF

0

(
my

(T1+T2 )

)
sin (�ET1)

)2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

= 2πm√
T2(T1 + T2)

∣∣∣∣∣∣∣∣4uF
0

(
mx

T2

)
uF

1

(
my

(T1 + T2)

)
uF

1

(
mx

T2

)
uF

0

(
my

(T1 + T2)

)
sin (�ET1)

∣∣∣∣∣∣∣∣.
Finally, we find∣∣∣∣|ψ1|2 − |ψ−1|2

∣∣∣∣ = 2πm√
T2(T1 + T2)

∣∣∣∣∣∣∣∣4uF
0

(
mx

T2

)
uF

1

(
my

(T1 + T2)

)
uF

1

(
mx

T2

)
uF

0

(
my

(T1 + T2)

)
sin (�ET1)

∣∣∣∣∣∣∣∣.
We see that the magnitude difference is proportional to

sin(�ET1 )√
T2(T1+T2 )

directly, with indirect dependence on T1 through

the scaling of uF
1 , uF

0 in the norm operation. As the scaling
is governed by T2,which we assume to be larger than T1 in our
setting, the overlap between the eigenfunctions in the norm
operation has weak dependence on T1. We conclude that

|||ψ1|2 − |ψ−1|2|| ∝
∣∣∣∣ sin (�ET1)√

T2(T1 + T2)

∣∣∣∣.

APPENDIX B: SIMULATION DETAILS

1. Vortex and lattice details

In this section, we describe the simulation method and
parameters used in the main text. We solve a dimensionless
GPE:(

− h̄2

2m
∇2 + V (r) + U0|ψ (r, t )|2

)
ψ (r, t ) = ih̄∂tψ (r, t ),
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where h̄, m are taken to be unity. The potential is taken as
a potential well with depth 10[arb. units] and radius 1. The
nonlinear coefficient is chosen in the range U0 ∈ [0, 100].
As the wave function is normalized to unity, it should be
understood that this factor implicitly contains the total particle
number inside the condensate, i.e., U0 = 4π h̄2as

m N0, where N0

is the total particle number and as is the scattering length.
We note that in Fig 2 and Fig 3, U0 is taken as 0 for linear
propagation, 100 for weak nonlinearity, and 10 000 for strong
nonlinearity. These values are chosen such that V (r) >>

U0|ψ (r, t )|2 and U0|ψ (r, t )|2 >> V (r) for the last two cases,
respectively.

The spatial dimensions are discretized into a 1024 × 1024
grid with a resolution of dx = dy = 0.0756 [arb. units]. For
propagation, we use the BPM or split-step method with a
temporal step of dt = 10−3[arb. units]. The number of steps
for complete propagation in the TOF and augmented TOF
is taken to be 3000. In the augmented TOF, the number of
steps taken under the partial propagation is set to be 558
(corresponding to �ET1/h̄ = π/2; see Sec. III C), while the
rest of the propagation steps are done under free propagation
with no potential. We note that for the noise simulations the
propagation time is taken to be slightly shorter in order to ease

computation time over repeated runs, a total of 1500 steps
with 558 being under the partial potential and the rest in free
propagation.

The lattice is constructed by duplicating the well poten-
tial into a 3 × 3 lattice with separation of �x = �y ≈
2.4 [arb. units]. The vortex lattice wave function is constructed
in a similar way, placing a single vortex at the center of each
well potential with a random flow direction and relative phase
to the other sites.

2. Random phase

The simulation details for the random phase are sim-
ilar for the above case with the following parame-
ter changes: The trap was taken as a harmonic trap,
V (x, y) = 1

2 (x2 + y2), the spatial discretization dx = dy =
0.0938 [arb. units],U0

∼= 8000 [arb. units] (strong nonlinear-
ity), and dt = 2 × 10−5 [arb. units]. Complete propagation in
the augmented TOF is taken to be 513, with 200 steps under
partial propagation. The random phase pattern was generated
by generating an initial Gaussian noise image, filtering it in
the Fourier plane to create smooth phase pattern, and scaling
its values to be in the [0, 2π ] range.
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