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We propose superluminal solitons residing in the momentum gap (k gap) of nonlinear photonic
time crystals. These gap solitons are structured as plane waves in space while being periodically self-
reconstructing wave packets in time. The solitons emerge from modes with infinite group velocity causing
superluminal evolution, which is the opposite of the stationary nature of the analogous Bragg gap soliton
residing at the edge of an energy gap (or a spatial gap) with zero group velocity. We explore the faster-than-
light pulsed propagation of these k-gap solitons in view of Einstein’s causality by introducing a truncated
input seed as a precursor of a signal velocity forerunner, and find that the superluminal propagation
of k-gap solitons does not break causality.
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Photonic time crystals (PTCs) [1–11] are dielectric media
whose permittivity (ϵ) is modulated periodically in time,
causing time-reflected and time-refracted waves [3] to
interfere, giving rise to Floquet modes associated with the
momentum bands and band gaps (also called k gaps). PTCs
seem similar to one-dimensional spatial photonic crystals
(SPCs), whose dispersion is determined by periodic variation
of the permittivity [Fig. 1(a)], with gaps where the Bloch
modes have complex momentum rendering them localized
in space. This analogy is misleading, as SPCs and PTCs
differ in fundamental aspects. First, waves propagating in
dielectric SPCs exchange momentum with the spatial lattice,
conserving energy. In contrast, PTCs do not conserve energy
(the modulation breaks time-translation symmetry) but
conserve momentum. Second, the amplitudes of the gap
modes of SPCs always decay in space, whereas the Floquet
modes in the k gap of a PTC [Fig. 1(b)] exhibit exponential
growth (or decay) with time. The k-gap modes of PTCs
exchange energy with the modulation, and their presence is
related to causality (see intuitive explanation in Ref. [12]).
PTCs are now drawing growing research interest [10–21],
and recent experiments in epsilon-near-zero materials
with very large permittivity changes within few femto-
seconds [22–29] suggests that PTCs at optical frequencies
will be observed in the near future.
The momentum gap (k gap) in PTCs suggests the

existence of gap solitons, similar to those in SPCs. Gap
solitons are self-trapped entities residing in the band gap of
nonlinear periodic systems such as fiber gratings [30–35]
and waveguide arrays [36–42] [Fig. 1(c)]. Gap solitons of
SPCs inherit some of their features from the Bloch modes
associated with the band edge in the linear system; most
profoundly, they are always stationary with zero group

velocity. Is it possible to have gap solitons in the momen-
tum gap of a nonlinear time-varying photonic media?
If such k-gap solitons do exist, will they be stationary as
gap solitons in SPCs, or will their group velocity be infinite,
inherited from the Floquet modes of the band edge of
PTCs? Finally, if their group velocity is infinite, how can
they be reconciled with causality?

FIG. 1. (a) Band structure of a SPC created by spatial periodic
modulation ϵðxÞ ¼ ϵðxþ ΛÞ. (b) Band structure of a PTC created
by the temporal periodic modulation ϵðtÞ ¼ ϵðtþ TÞ. (c) Self-
focusing Kerr nonlinearity gives rise to a Bragg (ω-gap) soliton
emerging at the band edge where the group velocity (vg) is zero.
(d) Self-focusing Kerr nonlinearity gives rise to a k-gap soliton
emerging at the band edge where the group velocity is infinite.

PHYSICAL REVIEW LETTERS 130, 233801 (2023)

0031-9007=23=130(23)=233801(8) 233801-1 © 2023 American Physical Society

https://orcid.org/0000-0003-1741-5926
https://orcid.org/0000-0002-9421-2148
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.130.233801&domain=pdf&date_stamp=2023-06-07
https://doi.org/10.1103/PhysRevLett.130.233801
https://doi.org/10.1103/PhysRevLett.130.233801
https://doi.org/10.1103/PhysRevLett.130.233801
https://doi.org/10.1103/PhysRevLett.130.233801


Here, we find superluminal gap solitons in the momen-
tum gap of nonlinear PTCs. These k-gap solitons are
structured as finite wave packets in time but plane waves
in space. They travel faster than light, challenging special
relativity, raising fundamental questions about their physi-
cal essence. We reconcile our findings with special rela-
tivity through Sommerfeld’s forerunners, and suggest
experiments for launching pulsed beams whose peak
intensity propagates faster than light.
We begin from Maxwell’s equations in nonlinear time-

varying media with an instantaneous nonlinearity. For
simplicity, we assume the optical Kerr effect, but the ideas
are applicable to any local nonlinearity. In one-dimensional
media, this yields the relation between the electric dis-
placement D and the electric field of the light E, as
D⃗ ¼ ϵðt; jEj2ÞE⃗ ¼ ϵ0½ϵ1ðtÞ þ χ3jEj2�E⃗, with χ3 being the
Kerr coefficient. Here, ϵ1 is the linear dielectric constant
chosen to be spatially homogeneous but periodically
modulated in time ϵ1ðtÞ ¼ ϵrð1þ δ1 cosΩtÞ, where ϵr is
the mean value of the permittivity, δ1 < 1 a small real
dimensionless quantity and Ω ¼ 2π=T the modulation
frequency, and T the modulation period. We assume that
the medium is isotropic, drop the vector sign, and expand E
in terms of D as

E ¼ D
ϵ0ϵ1

− Γ3D3

ϵ0
¼ D

ϵ0ϵ1
− χ3D3

ϵ20ϵ
4
1

; ð1Þ

where we define Γ3 ¼ ðχ3=ϵ0ϵ41Þ. From the Maxwell
equations, we obtain

∂
2D
∂t2

¼ 1

μ0

∂
2

∂x2

�
D
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− χ3D3

ϵ20ϵ
4
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�
: ð2Þ

Equation (2) given in 1D can be extended to higher
dimensions, where the light is confined in all spatial
dimensions but one (see the Appendix). Equation (2) is
different from the conventional form ð∂2=∂t2Þ½ϵ0ϵ1ðtÞE� ¼
ð1=μ0Þð∂2=∂x2ÞE in terms of E [11]. We prefer D over E
because, for PTC, D is continuous, whereas E is not
necessarily continuous. Note that δ1 is small, so the
periodic modulation has a negligible effect on the Kerr
term, as long as χ3 is small. We simplify Eq. (2) to

1

c2
∂
2D
∂t2

¼ ð1 − δ1 cosΩtÞ
∂
2D
∂x2

− βjDj2 ∂
2D
∂x2

ð3Þ

with the speed of light in the medium c ¼ c0=
ffiffiffiffi
ϵr

p ¼
c0=n0. We approximate ϵ−11 ¼ ð1 − δ1 cosΩtÞ=ϵr and, in
the last term only consider the contribution of the self-
phase-modulation term and redefine the nonlinear co-
efficient β ¼ 3χ3=ϵ0ϵ3r .
To obtain the k-gap soliton, we find the dispersion from

Eq. (3) and derive an effective nonlinear Schrödinger-like
equation (NLSE) within, or close to, the k gap. There are
several alternative treatments [32–34,43,44]; we use the

nonlinear coupled-mode theory and seek solutions
as the sum of suitably modulated forward and backward
waves

Dðx; tÞ ¼ Afðx; tÞeik0x−iΩt=2 þ Abðx; tÞeik0xþiΩt=2 þ c:c:;

ð4Þ
with k0 ¼ Ω=2c. Substituting into Eq. (3) and applying
the slowly varying envelope approximation, we find that
Af;b obey

þi

�
1

c

∂Af

∂t
þ ∂Af

∂x

�
þ κAbþ γðjAfj2þ 2jAbj2ÞAf ¼ 0;

−i
�
1

c
∂Ab

∂t
− ∂Ab

∂x

�
þ κAf þ γðjAbj2þ 2jAfj2ÞAb ¼ 0; ð5Þ

with κ ¼ δ1Ω=8c being the coupling between modes and
γ ¼ βΩ=4c incorporating the Kerr term. If the nonlinear
term has the same magnitude for the self-phase and cross-
phase modulation, this equation is fully integrable and
yields Manakov solitons [45–50].
Locating the k gap.—To find the k-gapped band, we

define the two components field ψ as ψ ¼ ðAf; AbÞT .
Seeking solutions for the linear part of Eq. (5), of the shape
ψ ¼ χeiðPx−EtÞ with χ being a spinor, we insert this ansatz
into Eq. (5) for γ ¼ 0 and obtain the dispersion relation

Pð�Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
E
c

�
2

þ κ2

s
: ð6Þ

As expected from Ref. [11], there is a momentum gap
(“k gap”) for jPj < κ. The k-gapped band is plotted in
Fig. 1(c), where the sign� denotes upper and lower branches.
To investigate the group velocity and the group velocity
dispersion (GVD) around the band edge of the k gap, we
choose a point ½E0 þ ðΩ=2Þ; P0 þ k0� on the band, and
expand the dispersion (6) around it to the second order

vð�Þ
g ¼

�
∂Pð�Þ

∂E

�−1
¼ �

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE0

c Þ2 þ κ2
q

E0

c

1
CAc;

GVDð�Þ ¼
�
∂
2Pð�Þ

∂E2

�
¼ � 1

c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE0

c Þ2 þ κ2
q : ð7Þ

Note that the group velocity vð�Þ
g becomes infinite as E0 goes

to 0 (when the frequency goes to half the modulation
frequency ω → Ω=2) indicating that any physical solution
around the band gap must be a moving solution. Thus, the
energy carried by the soliton should (seemingly) travel faster
than light [Fig. 1(d)]. This raises the question of whether
the k-gap solitons are superluminal and how can this be
reconciled with special relativity. As we show later, k-gap
solitons are indeed superluminal [Fig. 1(b)]. Second, the
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GVD is nonzero at the band edges: GVDð�Þ ¼ �1=κc2 ¼
�8=δ1Ωc. Thus, even though the modes around the band
edge are superluminal, they still experience dispersive effects.
Namely, even though the first derivative of the dispersion
relation is infinite, the second derivative plays an important
role, and as shown below its presence is crucial to the
formation of k-gap solitons. The sign of the GVD denotes
normal or anomalous dispersion. Accordingly, the spinor
eigenvectors χð�Þ associated with P� are

χðþÞ ¼

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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c2 þ κ2
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− ðEcÞ
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ð8Þ
Note the normalization χðþÞχðþÞ ¼ χð−Þχð−Þ ¼ 1 and the
orthogonality χðþÞχð−Þ ¼ 0. The solutions at the band edges
are of the form χðþÞ ¼ ð1;−1ÞT= ffiffiffi

2
p

for the upper branch
and χð−Þ ¼ ð1; 1ÞT= ffiffiffi

2
p

for the lower branch. These solu-
tions can be described as awave that does notmove at all, and
all points in space have the same amplitude at any
given time, but the amplitude oscillates in time at half
the modulation frequency with Dð−Þ ¼ eiP

ð−Þx cosðΩt=2Þ
and DðþÞ ¼ eiP

ðþÞx sinðΩt=2Þ. Henceforth, we present the
lower-branch k-gap solitons, while the upper-branch solitons
are discussed in the Supplemental Material [51].
Solitons in the k gap.—Next, we derive the NLSE from

Eqs. (5). For the lower band branch (−), we seek solutions
of the form ψ ¼aðx;tÞχð−Þeeið−P0x−E0tÞ with P0¼ððE0=cÞ2þ
κ2Þ1=2. Substituting Eq. (8) into Eq. (5), we obtain the
NLSE for the slowly varying amplitude aðx; tÞ,�

−i ∂
∂x

− i
vg

∂

∂t
− GVD

2

∂
2

∂t2

�
aþ αjaj2a ¼ 0; ð9Þ

where α ¼ γf3 − ½ðE0=cÞ=ðE2
0=c

2 þ κ2Þ�g=2. To solve
Eq. (9), we substitute T ¼ t − ðx=vgÞ, X ¼ x, and obtain
the standard form ½−ið∂=∂XÞ − ðGVD=2Þð∂2=∂T2Þ�aþ
αjaj2a ¼ 0. Notice that in Eq. (7), GVD < 0 for the lower
branch (−); hence, to construct a bright soliton we need a
focusing Kerr nonlinearity α > 0 [37,39,41]. Otherwise,
we would obtain dark k-gap solitons. The bright
soliton solution for Eq. (9) is a ¼ u0sechðT=τ0ÞeiqX ¼
u0sech½ðt − x=vgÞ=τ0�eiqx, with τ0 ¼ τ0ðu0Þ ¼ ð1=u0Þ×
ðjGVDj=αÞ1=2, q ¼ qðu0Þ ¼ ðαu20=2Þ. Thus, we obtain
the soliton spinor wave function ψ ¼ u0sech½ðt − x=vgÞ=
τ0�χð−Þeið−P0þqÞxe−iE0t, and the corresponding electric dis-
placement vector (4) at the band edge (E0 → 0) with
parameters 1=vg ¼ 0, jGVDj ¼ ð1=κc2Þ, α ¼ ð3γ=2Þ, τ0 ¼
ð1=cu0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2=3γκÞp
, q ¼ ð3γu20=4Þ, and χð−Þ1 ¼ ð1= ffiffiffi

2
p Þ,

χð−Þ2 ¼ ð1= ffiffiffi
2

p Þ. The bright k-gap soliton of the lower
branch is

Dðx;tÞ¼2u0ffiffiffi
2

p sech

�
t
τ0

��
cos

�
kx−Ωt

2

�
þcos

�
kxþΩt

2

��
;

ð10Þ
where u0 is the peak amplitude, k ¼ k0 − κ þ q ¼ k0 − κ þ
ð3jγju20=4Þ is the effective intensity-induced wave vector, κ is
the strength of the coupling determining the width of the
momentum gap, and γ incorporates the Kerr term.
To observe k-gap solitons in experiments, it is useful to

confine the medium in a waveguide. Thus, we extend the
analysis to higher dimensions (see the Appendix). The
soliton (10) offers many interesting effects. First, the k-gap
soliton has the temporal form sechðt=τ0Þ, as shown in
Fig. 1(d), but no spatial dependence. Second, the k-gap
soliton differs from the stationary Bragg solitons in the ω
gap [30–35] [Fig. 1(b)] due to the infinite group velocity
they inherit from the Floquet modes at the band edge of the
k gap. Let us elaborate. Stationary Bragg solitons occur in
nonlinear periodic systems, such as optical fibers with
grating imprinted in them or in photonic lattices. These
Bragg systems conserve energy. The solitons arise from the
modes residing in the gap (of the linear system) which are
exponentially decaying with complex wave numbers, as the
exponentially diverging solution is nonphysical. The group
velocity of the Bloch waves in the gap is zero; hence, the
Bragg solitons, which arise from the gap modes, inherit the
zero group velocity and maintain the position of their peak
amplitudes as they evolve. In contradistinction, our k-gap
solitons conserve momentum instead of energy, and the gap
modes of PTCs (of complex energies) support exponen-
tially growing modes, unlike the energy-conserving Bragg
solitons. Fourth, the k-gap soliton is comprised of two
counterpropagating pulses generated simultaneously due to
the momentum conservation in PTCs [12,15]. The electro-
magnetic field of the soliton is oscillating at frequency
and wave vector: ω ¼ ðΩ=2Þ, k ¼ k0 − κ þ ð3jγju20=4Þ ∈ k
gap. Thus, the soliton oscillates at a frequency locked at
Ω=2, but its wave number can be anywhere in the gap.
Finally, the intensity of the soliton decreases monoton-

ically in time after it reaches its peak. This is surprising, as
in a linear PTC, the growing mode usually dominates the
dynamics. The nonlinearity leads to transfer of power from
the growing modes to the decaying modes. As the intensity
goes down, any slight variation in the state injects energy
back to the growing mode, resulting in an infinite train of
solitons that are equally spaced in time and do not interact.
This train of k-gap solitons emerges naturally under almost
any initial condition, extracting energy from the modula-
tion. The periodically emerging solitons do not interact
with one another because their creation does not arise from
nonlinear instability (as it does for bright Kerr solitons,
where the nonlinearity drives the instability). Rather, in
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PTCs, the instability comes from the linear part of the
system, and the nonlinearity acts as a restraining mecha-
nism instead of a source of instability. The emergence of
such a train of k-gap solitons is further discussed in the
Supplemental Material [51].
Proceeding to the upper branch (þ), we obtain k-gap

solitons for defocusing nonlinearity (γ < 0),

Dðx; tÞ ¼
ffiffiffi
2

p
u0sech

�
t
τ0

��
cos

�
ðk0 þ κ − qÞx − Ωt

2

�

− cos

�
ðk0 þ κ − qÞxþΩt

2

��
ð11Þ

[where the frequency and wave vector conform with the
“linear” k-gap, ω ¼ ðΩ=2Þ, k ¼ k0 − κ þ q ¼ k0 − κ þ
ð3jγju20=4Þ ∈ k gap. The detailed derivations are given in
the Supplemental Material [51].

Generating k-gap solitons from a localized input.—The
k-gap soliton is self-trapped in time but uniform and infinite
in space. This raises a natural question on how to generate
a k-gap soliton from a finite input beam. This issue is
highlighted by the superluminality of the k-gap soliton.
Thus, we simulate the evolution of the k-gap soliton from
a finite input “seed” beam with a limited bandwidth. We
launch a weak Gaussian beam into the nonlinear PTC,
with all its k components in the k gap and solve Eq. (3)
numerically. Figures 2(a)–2(c) present the evolution of three
input beams with spatial width ranging from narrow to wide.
Initially, the weak input beam associated with the k gap

exhibits exponential growth in time but no propagation
dynamics. The growing field is dominated by the k-gap-
induced amplification with a fixed subharmonic frequency
(Ω=2). As time progresses, the growing field becomes
strong, and the nonlinearity comes into play. The intensity
growth is arrested because the band structure changes
(through the nonlinear interaction) such that the wave
packet resides in the band rather than in the gap (see
Supplemental Material [51]). Once reaching maximal
intensity, the peak splits into two counterpropagating wave
packets [3] and travels at superluminal velocity (Fig. 2).
The field at different positions reaches the intensity apex at
different times, and we can track the envelope trajectory
and define an effective group velocity. This field envelope
preserves its temporal solitonlike shape with group velocity
exceeding the speed of light in the medium [Fig. 2(d)
and videos in Supplemental Material [51]), making it
superluminal in the sense that “its center of mass” (i.e.,
the intensity-weighted-average position of the soliton
quantity well correlated with the peak of the beam)
propagates faster than light, that is, faster than the effective
speed of light in the PTC (c=neff ).
Figure 2(d) presents the temporal profiles at different

positions for the simulation presented in Fig. 2(b). We
estimate that the superluminal apex propagation from x ¼ 0
to x ¼ 200cT within Δt ¼ 13.6T, so that the averaged

group velocity over that distance is about v̄g ¼ 14.7c.
Comparing the formation of k-gap solitons for narrow
[Fig. 2(a)], medium [Fig. 2(b)], and wide [Fig. 2(c)] input
beams, we find that v̄g of the peak is higher as the excitation
beam is wider. The increased velocity of the peak comes
from the larger interval the peak has to cover before it is
halted by the forerunner. The simulations indicate that the
k-gap soliton has infinite group velocity (v̄g → ∞) in the
limit of plane-wave (beam of infinite width) excitation
evolving into the theoretically predicted profile [Eq. (10)].
In the simulations, the parameters are c ¼ 1, δ1 ¼ 0.12,
β ¼ 0.01, Ω ¼ 4π, time is presented in units of 2T, and
space in units of 2cT. However, Eq. (10) implies that the
infinite group velocity is a universal phenomenon that does
not depend on the magnitude of the parameters, as long as
they obey the relative smallness of parameters with respect to
each other.
Next, we verify that this faster-than-light propagation of

the k-gap soliton does not contradict Einstein’s causality, by
comparing the group velocity and the information velocity.
The group velocity of a wave packet is commonly defined by
the motion of its center, while the information velocity is
defined by the motion of the leading edge [64–66].
Generally, physical superluminality is associated with gain

FIG. 2. (a)–(c) Generation of a k-gap soliton from an input of
(a) narrow, (b) mid-, and (c) wide beams, respectively. (d) The
temporal profiles of the k-gap solitons at different locations (x ¼ 0,
50, 100 ½2cT�) found numerically from the seed beam in (b). This
soliton exhibits superluminal behavior with effective average
group velocity of vg ¼ 14.7c. (e) Evolution of a truncated beam
with a central wave vector (k0) at the middle of the k gap. The
truncation mimics the forerunner of signal velocity, instead of the
center-of-mass light cone. Once formed, the k-gap soliton travels
faster than light in medium, but still slower than the forerunner of
the information in the leading edge. The peak (which is also the
“center of mass”) of the k-gap soliton always slows down before it
hits the forerunner, as indicated in (d) by the slowing-down of the
effective group velocity from its value in the section x ¼ 0 to
x ¼ 50, to a smaller value in the section x ¼ 50 to x ¼ 100.
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media where the apparent movement of the peak is created
from an increase in the local field by the gain, and not by
actual transport of energy. This implies that the velocity of
the wave front is the relevant information velocity, rather
than the velocity of the peak [10–14,66]. Thus, we launch a
truncated Gaussian beam into the PTC to have a clear cut on
the propagation of the information contained in the leading
edge. Figure 2(e) shows that the truncation position (the
forerunner) travels almost exactly at the speed of light in
medium, but never faster. This result holds even with
material dispersion ϵðωÞ by recalling that in the limit
ω → ∞, the electromagnetic response is always ϵ → 1.
The sharp edge (the forerunner) created by the truncation
consists of all spatial wave numbers; hence, the forerunner
always moves exactly at c0 (vacuum speed of light). As seen
in Fig. 2(e), the momentum constituents of the k-gap soliton
never go beyond the forerunner, and the peak slows down as
it approaches the forerunner. Further investigation shows that
the velocity of the peak of the k-gap soliton depends on the

seed’s spatial profile, with wider beams displaying faster
propagation before reaching the forerunner. Moreover, in
principle, the soliton can arise from quantum fluctuations, as
can be conjectured from recent work in quantum phenomena
in PTCs [12,15]. In that case, the k-gap soliton can arise
from arbitrary small noise by the amplification from the
k gap. However, even via the quantum process, the presence
of the slightest signal cannot overrun the forerunner [see
Fig. 2(e)].
Power dependence of k gap and threshold of amplifi-

cation.—We find that the presence of the Kerr nonlinearity
can alter the band structure of the PTC by shifting the k gap
to higher k vectors, and shrinking the k-gap width. Under
mean-field approximation, given nðtÞ ¼ n0 þ n1 cosΩtþ
n2I, with n0 ¼ ffiffiffiffi

ϵr
p

, n1 ¼ χ1=2, and n2 ¼ χ3=2, and I ¼
ðϵr=2ÞhjEj2i the field intensity, one can solve the nonlinear
energy band by linearizing around the k gap (see derivation
in Supplemental Material [51]), which yields

ωðk; IÞ ¼ Ω
2
� iΩ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4

�
n1

n0 þ n2I

�
2
�

c0k=Ω
n0 þ n2I

�
4 −
��

c0k=Ω
n0 þ n2I

�
2 − 1

4

�
2

s
: ð12Þ

The field intensity (I) shifts the center of the k gap. The
k-gap amplification or gain factor is given by the imaginary
part of Eq. (12): γðk; IÞ ¼ jℑ½ωðk; IÞ�j. That is, different k
components experience different gain factors. The arrest of
the exponential growth occurs because, as the intensity
increases, the shift in the band structure eventually brings
the k components of the soliton outside the momentum gap.
A detailed explanation can be found in the Supplemental
Material [51].
Conclusion.—To summarize, we presented k-gap solitons

in nonlinear PTCs and found them to be superluminal. The
faster-than-light behavior is understandable by Sommerfeld’s
forerunner, as tested numerically by the truncated seed beam.
Importantly, the superluminal k-gap soliton does not contra-
dict Einstein’s special relativity. The interplay between the
time modulation and the Kerr nonlinearity gives rise to the
exponential growth in time until a certain peak is reached,
followed by a decaying intensity profile leading to the shape
of a k-gap soliton that is always finite in its temporal width,
although instability eventually leads to a train of solitons. Our
results of superluminal k-gap solitons provide new insights
into the study of time-varying media [67] and the gapped
momentumstates [68] in photonics and other time-modulated
physical systems.

This research was supported by a Grant No. 2032635:
FA8655-22-1-7256 from the Air Force Office of Scientific
Research.

Appendix.—Extending 1D PTCs to higher-dimension
PTCs by confining the transverse direction: The

formulation of solitons in PTCs can be extended to
two spatial dimensions, where one of them is confined
in a waveguide structure in the direction transverse to
the propagation direction (henceforth, the “transverse
dimension”), and the entire index varies in time in a
spatially uniform manner. To reduce the underlying
equation to the k-gap solitons described in the main text,
the refractive index contrast defining the waveguide in
the transverse dimension has to be larger than the
temporal variations in the refractive index.
Formally, we take the conventional nonlinear wave equa-

tion forE in 2þ 1DPTCs,∇2E¼½ð∂2=∂x2Þþð∂2=∂y2Þ�E¼
μ0ð∂2=∂t2Þ½ϵðy;tÞE� with the variations both in time and in
the y direction, ϵðy; tÞ ¼ ϵ0ϵ̃rðtÞϵ̃rðyÞ, while keeping
the x direction uniform. Therefore, we simplify the wave
equation as�

∂
2

∂x2
þ ∂

2

∂y2

�
E ¼ 1

c2
∂
2

∂t2
½ϵ̃rðtÞϵ̃rðyÞE�; ðA1Þ

with μ0ϵ0 ¼ 1=c2, and ϵ̃rðtÞ ¼ 1þ δ1 cosΩt and ϵ̃rðyÞ ¼
1þ δðyÞ are both dimensionless. In our setting, we assume
both the time and spatial variations are small, δ1 ≪ 1,
jδðyÞj < 0.5ð≪ 1Þ.

It is important to note that, in order to significantly confine
the field in the y direction, we also require the spatial
variation in epsilon to be stronger than the time modulation
jδðyÞj > δ1. In our simulations, we use δ1 ≈ 0.3, so it is
smaller than relevant values of δðyÞ, and big enough to
support a substantial gap. In fact, the modulations are written
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in a convenient product form, which can be approximated as
ϵ̃rðtÞϵ̃rðyÞ ≈ 1þ δ1 cosΩtþ δðyÞ, where the term δ1δðyÞ is
negligible.
Next, we seek a solution of a separable form: E ¼

fðyÞEðx; tÞ ¼ fðyÞEkðtÞeikx, hence,
c2

ϵ̃rðyÞfðyÞ
�
−k2þ ∂

2

∂y2

�
fðyÞ¼ 1

EkðtÞ
∂
2

∂t2
½ϵ̃rðtÞEkðtÞ�¼−ν2:

ðA2Þ
Here, two parameters are introduced: wave number k and

frequency ν. Then, we obtain two separable equations:�
−k2 þ ∂

2

∂y2

�
fðyÞ þ ϵ̃rðyÞν2

c2
fðyÞ ¼ 0;

∂
2

∂t2
½ϵ̃rðtÞEkðtÞ� þ ν2EkðtÞ ¼ 0: ðA3Þ

From the first equation, we obtain the relation ν ¼ νðkÞ
and the confined transverse profile f ¼ fk;νðyÞ in the PTC
region. The second equation in Eq. (A3) is mathematically
equivalent to Eq. (2) in the main text, with νðkÞ acting
as a modified k wave number, but with some important
differences. Namely, here the equation is for the electric
field E, instead of the displacement fieldD in the main text.
Also, the equation here deals with a single k component,
whereas in the main text we use the spatial derivative. The
a priori assumption here is that the solution is separable (a
wave packet in y and multiplied by a spatiotemporal wave
packet in x and t). Physically, this means that the solution is
a guided mode (bound state) in the y direction, whereas in
x-t it is a spatiotemporal wave packet, as it is for the 1D
case. This is actually standard for experimenting with a
1þ 1D soliton in optical Kerr media [69], where all the
experiments were carried out in a slab waveguide structure.
We verified that this a priori assumption holds in the
presence of nonlinearity by comparing it to an analytical
solution that has only one k component.
Steady-state linear stability analysis of nonlinear PTCs:

Consider the NLSE [Eq. (9) derived in the main text]

�
−i ∂

∂x
− GVD

2

∂
2

∂t2

�
aþ αjaj2a ¼ 0; ðA4Þ

which takes the limit vg → ∞ at the band edge of the k gap.
This equation allows plane-wave [often called continuous
wave (cw)] solutions. In particular, neglecting the time
derivative, Eq. (A4) is readily solved to obtain the steady-
state cw solution in the following form:

a0 ¼
ffiffiffiffiffiffi
P0

p
expðiϕNLÞ; ðA5Þ

where P0 is the incident power, and ϕNL ¼ −αP0x is the
nonlinear phase shift induced by the Kerr nonlinearity.
The stability of the steady-state solution against small

perturbations is determined by linearizing the following
solution [63]:

aðx; tÞ ¼
h ffiffiffiffiffiffi

P0

p
þ ϵðx; tÞ

i
expðiϕNLÞ: ðA6Þ

Here, we perturb the steady state slightly and substitute
Eq. (A6) into Eq. (A4), resulting in the linear evolution
dynamics of ϵðx; tÞ (where we keep only the leading term):�

−i ∂
∂x

− GVD
2

∂
2

∂t2

�
ϵþ αP0ðϵþ ϵ�Þ ¼ 0: ðA7Þ

This linear equation can be solved easily by the Fourier
transform. However, because of the ϵ� term, the Fourier
components at wave vector K̃ and −K̃ are coupled. Thus,
we use an ansatz in the form

ϵðx;tÞ¼ ε1exp½iðK̃x−Ω̃tÞ�þε2exp½−iðK̃x−Ω̃tÞ�; ðA8Þ
where K̃ and Ω̃ are the wave number and the frequency
of perturbation, respectively. Substituting Eq. (A8) into
Eq. (A7), we obtain two coupled equations for ε1 and ε2:�

K̃ þ GVD
2

Ω̃2 þ αP0

�
ε1 þ αP0ε

�
2 ¼ 0;�

−K̃ þ GVD
2

Ω̃2 þ αP0

�
ε2 þ αP0ε

�
1 ¼ 0: ðA9Þ

This set of two equations has a nontrivial solution only
when K̃ and Ω̃ satisfy the following dispersion relation:

K̃ ¼ � jGVDj
2

Ω̃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω̃2 þ 4αP0

GVD

r

¼ � jGVDΩ̃j
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω̃2 þ sgnðGVDÞsgnðαÞΩ̃2

c

q
; ðA10Þ

where the critical frequency is defined as Ω̃2
c¼j4αP0=GVDj,

and sgnðGVDÞ ¼ �1 and sgnðαÞ ¼ �1 depend on the
signs of the group velocity dispersion and the nonlinearity,
respectively. This dispersion relation shows that steady-state
stability depends on whether the light seed experiences the
combination of normal GVD with the focusing nonlinearity
or anomalous GVDwith defocusing nonlinearity. In cases of
sgnðGVDÞsgnðαÞ ¼ −1, K̃ becomes imaginary for Ω̃ < Ω̃c,
which leads to instability. Correspondingly, the perturbation
ϵðx; tÞ grows exponentially, which makes the steady-state
cw solution (A5) unstable. The gain spectrum of this
instability is obtained by the multiple-scale analysis as
discussed in the Supplemental Material, Sec. 4 [51].
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