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We study the time reflection and time refraction of waves caused by a spatial interface with a medium
undergoing a sudden temporal change in permittivity. We show that monochromatic waves are transformed
into a pulse by the permittivity change, and that time reflection is enhanced at the vicinity of the critical
angle for total internal reflection. In this regime, we find that the evanescent field is transformed into a
propagating pulse by the sudden change in permittivity. These effects display enhancement of the time
reflection and high sensitivity near the critical angle, paving the way to experiments on time reflection and
photonic time crystals at optical frequencies.
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Modulating the electromagnetic (EM) properties of a
medium at ultrafast timescales [1] is now gaining renewed
interest due to recent advances in ultrafast switching in
highly nonlinear materials [2–9]. Importantly, inducing an
abrupt temporal change in the EM properties of a medium
is fundamentally different from an abrupt change in space
(an interface) because causality plays a crucial role. In the
context of light-matter interactions, strong and abrupt
changes in the refractive index result in time reflection
and time refraction [1,10,11], and can yield a variety of
phenomena ranging from fast switching of ultrastrong
coupling [12–14] and localization by temporal disorder
[15,16] to enhanced emission by dipoles [17], quantum
fluctuations [17] and free electrons [18] in photonic time-
crystals (PTCs), and time-varying dielectric media
[19–25]. PTCs, photonic structures whose EM properties
are varied periodically in time with a period comparable to
a single cycle of a wave propagating therein, are perhaps
the most promising manifestation of such strong abrupt
variations in the refractive index [15,17,18,22,26–31]. As
we show below, a wave incident upon a spatial interface
with a time-varying medium exhibits unique properties.
When an EM wave propagates in a medium whose

refractive index varies within a few cycles, the wave
experiences refractions and reflections known as “time
refractions” and “time reflections” [10,11]. When the
medium is homogeneous, both time refraction and time
reflection are manifested in the translation of the temporal
spectrum, as a consequence of momentum conservation.
The time-refracted wave continues to propagate with the
same wave vector, whereas the time-reflected wave is
propagating backwards with a conjugate phase (due to
the sign change in the frequency) [7,11,32]. Importantly,
while time refraction is always significant, for the time

reflection to be measurable, the index change has to be
large (order of unity) and abrupt (occurring within 1–2
optical cycles), otherwise the time reflection is extremely
weak, and PTCs become unfeasible. This tough require-
ment to have a strong and abrupt change in the refractive
index is the reason why time reflection of light has never
been observed at optical frequencies. Thus far time reflec-
tion was observed with water waves [32] and cold atoms
[33] and was proposed in synthetic dimensions [34], but
with EM waves, it was observed only at microwave
frequencies [35,36]. The reason it is extremely hard to
observe time reflections at optical frequencies is profound:
many nonlinear optics effects are instantaneous (e.g., the
optical Kerr effect), but the index change they yield is at
least 1000-fold too weak to cause measurable time reflec-
tions. At the other extreme, some nonlinear effects can
provide huge index changes, but their response is orders of
magnitude too slow to drive time reflections because they
require transport (of charges, of atoms, etc.). There are only
a handful of exceptions: mechanisms giving rise to large
index changes occurring within a few femtoseconds (fsec).
One of those involves transparent conductive oxides, where
recent work has demonstrated index changes of ∼ 0.3
within 5–8 fsec [8,9,37]. Those experiments showed that
there is indeed a mechanism that makes time reflections and
PTCs feasible at optical frequencies. However, even in
that experiment—time reflection was too weak to be
measured. These recent experimental results imply that
new approaches are needed to achieve substantial time
reflection at optical frequencies.
Here, we study time reflection and time refraction of

waves incident upon an interface with a dielectric medium
experiencing a sudden temporal change. We show that a
monochromatic wave incident upon such an interface
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transforms into pulses. We find that the time reflection is
enhanced near total internal reflection (TIR), especially at
the critical angle which acts as an exceptional point
[38–42]. For incidence above the critical angle, we find
that the evanescent wave penetrating into the time-varying
medium is transformed into time-refracted and time-
reflected propagating (nonevanescent) pulses. The process
described here can be applied to analyze various photonic
systems involving spatial interfaces with suddenly chang-
ing dielectric media, and can enable the first experimental
demonstration of a PTC at optical frequencies.
Let us begin with the standard case of a monochromatic

planewave at frequencyω propagating in a one-dimensional
homogenous medium that at t ¼ 0 experiences a sudden
temporal change in its refractive index from n1 to n2.
Maxwell’s equations dictate boundary conditions at
t ¼ 0 such that the electric displacement and magnetic flux
density vectors are continuous in time [10]. These conditions
give rise to backward and forward propagating waves for
t > 0. Since the medium is homogeneous, momentum is
conserved, hence both of those waves have the same wave
vector as the original wave, but at different frequencies
ω0
� ¼ �ωðn1=n2Þ. The forward wave is the time refraction

and has positive frequency, whereas the backwardwave is the
time reflection, which has “negative” frequency. The physical
consequences of the negative frequency are that the time-
reflected wave propagates backwards in space with a con-
jugate phase. For simplicity, we assume that the electric
displacement reacts instantaneously to the change in the
electric field. Under this assumption, the refraction
and reflection coefficients (for amplitudes) for an instanta-
neous index change (a temporal interface) are ttime ¼
1
2
ððn1=n2Þ2 þ ðn1=n1ÞÞ and rtime ¼ 1

2
ððn1=n2Þ2 − ðn1=n2ÞÞ

[10,43,44]. Thus, to obtain significant time reflection, the
change in refractive index has to be large.
Next, we explore the nature of those phenomena for

a monochromatic plane-wave incident upon a spatial

interface with a time-varying medium. To do that properly,
consider first the simple example of a spatial interface
between two media. The interface is in the xy plane, where
for z < 0 the refractive index is n1 and for z > 0 the index
is n2 < n1. At time t ¼ 0 the second medium experiences a
sudden temporal change such that its refractive index
changes to n3. We denote θc;1 and θc;2 as the critical
angles for TIR before and after the temporal change,
respectively. In this setting, a plane wave of frequency
ωi, wave vector k⃗i ¼ ð0; ky; kzÞ and amplitude Ei ¼ 1 is
incident upon this interface at angle θi, as sketched in
Fig. 1. To calculate the evolution of the EM fields for t > 0,
we carry out the following process. Using the known fields
at t ¼ 0− and the temporal boundary conditions, we find
the EM fields at t ¼ 0þ, project the fields onto the
eigenmodes of the system after the sudden change, evolve
each eigenmode in time separately, and reconstruct the total
EM fields using superposition. This process holds for every
wave system that varies abruptly in time. We apply this
process on the example described above for a TE polarized
plane wave, and for simplicity set n3 ¼ n1. We focus on the
region z > 0. After the sudden temporal change, the waves
are characterized by their wave vectors and the dispersion
ωðk⃗Þ ¼ �ðc=n1Þjk⃗j. By projecting the fields on the eigen-
mode basis, we find the amplitudes of the time-reflected
waves E−ðκ⃗Þ, which correspond to the negative branch of
the dispersion curve, and the amplitudes of the time-
refracted waves Eþðκ⃗Þ which correspond to the positive
branch, as described by

E�ðκz; κyÞ ¼
tF
2

��
n2
n1

�
2

� ωðκ⃗Þ
ωi

κyky þ κzβ

κ2y þ κ2z

�

×

�
1

iðβ − κzÞ
þ πδðκz − βÞ

�
δðκy − kyÞ: ð1Þ

We denote tF as the Fresnel transmission coefficient and
β ¼ ðωi=cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 − n21sin

2θi
p

as the propagation constant of
the original wave in the z direction. The critical angle for
TIR occurs when the square root is zero, above it β is
imaginary. The amplitudes of the time-reflected waves are
shown in Fig. 2(a) for n1 ¼ n3 ¼ 0.8 and n2 ¼ 0.3. An
index change of this magnitude is feasible, as demonstrated
recently in epsilon near zero martials [9]. The symmetric
curves shown in Fig. 2(a) are explained as follows: for
t < 0, above θc;1 the EM field in the region z > 0 is an
evanescent wave, and as such it is spatially localized very
close to the interface. The strong variation in the refractive
index at t ¼ 0 causes time reflection, but the wave has no
spatial preference, hence the time-reflected waves evolve in
the same manner towards both sides of the interface. We see
that Eq. (1) displays high sensitivity in the vicinity of θc;1,
due to the transition from a purely real to a purely
imaginary value of β. Prior to the abrupt change in
refractive index, the imaginary propagation constant leads

FIG. 1. (a) A monochromatic plane-wave incident upon a
spatial interface undergoes refraction and reflection while con-
serving its original frequency ωi. (b) A monochromatic plane
wave incident upon a spatial interface with a medium that at t ¼ 0
undergoes an abrupt change in its refractive index from n2 to n3.
The abrupt index change gives rise to the appearance of a
continuous spectrum of waves, where each frequency propagates
at a different angle such that higher frequencies are concentrated
along the z horizonal axis. Thus, both the time-refracted and the
time-reflected waves form spatiotemporal wave packets which
spread during their propagation.
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to a complex polarization of the magnetic field, resulting in
a relative phase of ðπ=2Þ between the transverse compo-
nents of the electric and magnetic fields. As a consequence,
the time-average Poynting vector in the z direction,
indicative of the photon flux, is zero. However, following
the sudden change, a mismatch between the new imped-
ance of the medium and the wave impedance (the ratio
between the electric and magnetic fields) is created, altering
the relative phase between the fields and leading to a
nonzero photon flux in the z direction. Time reflection is
then induced to reconcile this phase difference and imped-
ance mismatch. The enhancement of the time reflection
near the critical angle for TIR and the sensitivity are similar
to other enhancement effects observed at the vicinity of that
angle [45,46], because that angle is an exceptional point.
Notice that each time-reflected and time-refracted plane

wave has a different frequency according to the dispersion
curve, and propagates at a different angle, as sketched in
Fig. 1(b). The relation between the propagation angle and
the frequency can be extracted from momentum conserva-
tion in the y direction, which Eq. (1) manifests for the
special case n3 ¼ n1 as the delta function dictates the same
ky for all waves, and is given by

ωðθÞ sin θn3 ¼ ωi sin θin1: ð2Þ

We see from Eq. (2) that, for a given input wave at ωi and
θi, the larger the ratio ðn1=n3Þ the larger the frequency shift
ωðθÞ − ωi, and the more the time-refracted and time-
reflected spatio-temporal wave packets spread in space
as the relative angles of propagation between waves with
adjacent frequencies increase. Notably, above θc;1, the
higher the angle of incidence, the broader the spectrum
of plane waves [Fig. 2(a)]. Waves with higher κz have
higher frequencies, thus the spectrum of the time reflection

and time refraction is broader. For higher values of ðn2=n1Þ,
β increases, resulting in a wider bandwidth.
The abrupt index change transforms the evanescent wave

into a propagating wave, for both the time-refracted and the
time-reflected waves. We use Parseval’s theorem to esti-
mate the power of the time-reflected and time-refracted
waves, displayed in Fig. 2(b). The power fraction that is
time reflected is highly enhanced above the critical angle,
exceeding 100% of the power of the original wave. For
waves incident below θc;1, the time-reflected power fraction
is the same as the reflected power for a plane wave
propagating in a homogenous medium whose refractive
index is changed abruptly from 0.3 to 0.8 [lower dashed
black line in Fig. 2(b)], approximately 9.8% of the power of
the original wave. Hence, below the critical angle, the time-
reflected power from the interface with a medium under-
going a step change in its refractive index coincides with
the simple case of time reflection of a plane wave in a
homogeneous medium, with the reflection coefficient given
above. This means that the time-reflected power is
enhanced above the critical angle, enhancement that can
even reach an order of magnitude compared to the time
reflection below the critical angle.
Up to this point, we provided analytical analysis of the

case in which the optical properties of the system undergo
an abrupt change, after which the entire space is homo-
geneous. We proceed with a numerical study on the time
reflection of a pulse incident on the same dielectric inter-
face, by numerically solving Maxwell’s equations for
different scenarios. For the simulation, we employ the
2D finite difference Time-domain (FDTD) method. We
create a simulation area, with a dielectric interface at z ¼ 0
between n1 ¼ 1.5 at z < 0 and n2 ¼ 0.3 for z > 0. We
launch a TE-polarized pulsed Gaussian beam with a mean
frequency ωi ¼ 2 × 1015 ðrad=sÞ toward the interface, as
illustrated [Fig. 3(a)]. At time t ¼ 0, when the peak of the

FIG. 2. Analytic results of the time refraction and time reflection induced by a sudden change of a dielectric interface for n3 ¼
n1 ¼ 0.8 and n2 ¼ 0.3. The critical angle for TIR is θc;1 ¼ 22°. (a) Normalized amplitudes of the time-reflected waves vs normalized
propagation constant in the z direction, for 3 different incidence angles. Below θC (blue) the Fresnel-refracted wave has a real
propagation constant, hence so does the time-reflected wave, and the spectrum is a delta function commensurate with Snell’s law. Above
θc;1 the propagation constant of the time-reflected wave is complex, always localized at normal incidence, and has a broader spectrum as
the angle is increased above TIR. (b) Ratio between the time-reflected and time-refracted powers to the incident power (defined as the
power in the region z > 0 at t < 0), as a function of the angle of incidence. θc;1 is marked by a vertical black line. (c) Spectrum of the
time refraction and time reflection for angle of incident θi ¼ 50°.
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pulse reaches the interface, we change the refractive index
in the region z > 0 to n3 ¼ 0.8, such that the critical angle
becomes smaller, θc;2 < θc;1 < θi. We choose the indices of
refraction according to recent experiment [9] in which time
refraction was observed in the regime of a single optical
cycle. To obtain meaningful information we choose points
in space (A, B, C) through which the incident, the time-
reflected and the time-refracted pulses, pass and sample the
pulses in time. Using these time samples, we determine the
spectrum of each pulse. The simulation results, along with
the spectra of the incident pulse, time reflection and time
refraction, are presented in Figs. 3(a) and 3(c), respectively.

By examining the result of the simulation, we find 5
pulses after the sudden change in the reflective index, as
shown in Fig. 3(a). The original pulse is reflected by the
temporal change because after the sudden change it stays
above the critical angle of TIR. There are two time-
refracted pulses which have positive propagation constant
in the y direction. One of the time-refracted pulses overlaps

with the Fresnel reflection of the original pulse from the
spatial interface, while the other passes through point C.
Lastly, we see two time-reflected pulses, one of them passes
through point B, while the other propagates toward point A.
Before the abrupt change we find zero photon flux in the z
direction in the region z > 0. After the abrupt temporal
changewe find that the index variation gives rise to nonzero
photon flux in the z direction, carried by both the time-
reflected and time-refracted pulses. We see that the time
reflection and time refraction are constructed of waves of
different frequencies, each propagates in a different direc-
tion, Fig. 3(a) at time t ¼ 45 fs. Figure 3(b) shows the wave
amplitudes as a function of their propagation angle and
frequency along with our theoretical curve following
Eq. (2). To analyze the fields recorded at points A, B,
and C we calculate their spectra, Fig. 3(c). The spectra of
the time-reflected and time-refracted pulses have similar
shapes, differing due to slight asymmetry between points B,
C, and the center of the pulse, and are broadbanded with
respect to the initial pulse. A simple estimation reveals that
this broadening of the bandwidth cannot solely be attrib-
uted to the bandwidth of the initial pulse. As a sanity check,
in a spatially-homogeneous time-boundary, the new band-
width would be narrower by a factor of ðn2=n3Þ ≈ 0.4,
significantly smaller than the observed broadening in
Fig. 3(c). Thus, this broadening is affected strongly by the
spatial interface. To further support our theoretical analysis,
we simulate a case of a cw laser beamwhich is closer in nature
to a plane wave. The results are presented in Sec. B of [44].
Finally, to complement the study, we simulate several

chosen cases of the time-varying interface. The scenarios,
described in Sec. A of [44] and the figures therein, are
similar to that of Fig. 3, with the abruptly varied refractive
indices causing a change in the critical angle of TIR from
θc;1 to θc;2. In addition to the case presented in Fig. 3 where
θc;2 < θc;1 < θi, we examine three additional generic cases.
(i) θc;1 < θi < θc;2, (ii) θc;1 < θc;2 < θi, and (iii) θc;2 <
θi < θc;1, Fig. 4. We observe that the abrupt change in the
refractive index transforms the incident monochromatic
wave propagating (nonevanescent) time-reflected and time-
refracted pulses, each carrying energy in the z direction.
Generally, we notice that for incidence above the critical
angle with a larger ratio n2=n1, the spectra of the time-
reflection and time-refraction pulses are broader, and the
higher the ratio n1=n3 the higher their central frequencies
are, as expected from the analysis following Eq. (2). In
addition, we examine cases of slower variations of the
refractive index, reaching a rate of the single cycle of the
EM pulse, Sec. C in [44]. We find that the time reflection is
strongly affected by the variation time of the refractive index,
being much stronger for abrupt changes. Nevertheless, the
main features of the time refraction and time reflection
described here are all observable for noninstantaneous yet
fast enough variation of the refractive index.

FIG. 3. Simulations showing the time-refraction and time-
reflection of a pulse, induced by a sudden change of a dielectric
interface for n1 ¼ 1.5, n2 ¼ 0.3, and n3 ¼ 0.8. (a) A pulsed
Gaussian beam is launched toward a dielectric interface posi-
tioned at z ¼ 0 (vertical red line). The EM fields at points A, B,
and C are being sampled as the simulation evolves in time. The
pulse is incident at incidence angle of θi ¼ 50°, which is above
θc;1, hence at t < 0 the photon flux in the z direction is zero for
z > 0. At t ¼ 0 the refractive index in the region z > 0 is changed
to n3 ¼ 0.8, so the angle of incident remains above the new
critical angle, θc;2. (b) Normalized amplitudes (log scale) of the
waves that make up the electric field in the region z > 0 at time
t ¼ 45 fs vs their frequency and angle of propagation. The
theoretical curve according to Eq. (2) is marked by the blue
dashed line. (c) Normalized spectrum of the incident pulse
(black) sampled at the point A in (a), along with the spectra
of the time-refracted (blue) and time-reflected (red) pulses
sampled at the points B and C in (a). The color bar in
(a) represents light intensity (log scale), normalized to the peak
intensity of the original pulse.
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To conclude, we studied the reflection and refraction of
EM waves from a dielectric interface with a medium
undergoing an abrupt change in the refractive index, and
focused on the effects near TIR. We found that mono-
chromatic waves are transformed into time-refracted and
time-reflected multispectral waves that form pulses.
Beyond the critical angle for TIR, the evanescent waves
are transformed into propagating pulses and the time
reflection is enhanced. The concepts discussed here can
be extended to reflection and refraction by a spatiotemporal
interface [47,48], and are expected to display similar
results. Our findings raise several intriguing questions.
For example, is it possible to design an optical structure that
enhances time reflection and reduces time refraction? Do
spatial evanescent modes exist in a PTC? How does TIR
affect the Floquet modes at an interface of PTC and a
dielectric medium? Finally, this work helps design the
experimental scheme for the observation of time reflection
at optical frequencies.
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