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insights to novel applications: opinion
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Abstract: In this opinion article, we briefly outline some historical highlights and the most
recent developments in the novel and exciting field of photonic time-crystals and present the
challenges, disruptive opportunities and potential impact on both the fundamental science of
light and on photonic technologies.
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The ability to achieve strong and rapid modulations of the electromagnetic (EM) properties of
materials has significant implications. Large in magnitude and ultra-fast changes in the EM
response even in a single-step manner can lead to profound effects [1-3], including time-refraction
and time-reflection. These processes seem similar to refraction and reflection from an interface
in space, but in fact, they are fundamentally different from their spatial counterparts. At a
spatial interface between two dielectric media the energy (frequency) is conserved; whereas an
abrupt temporal change in the refractive index of a homogeneous material leads to the frequency
(energy) change while the momentum (wavevector K) is conserved. Specifically, if the refractive
index changes from n; to n;, then the new frequency of the refracted and reflected waves w, is
given by wy = wy :’,—;, where w; is the frequency of the original wave. Also, causality implies that
time-reflections cannot go back in time (unfortunately; people tried — so far in vein), but instead,
are back-reflected in space with their phase being conjugated (as demonstrated in water waves
[4], in RF [5] and microwaves [6,7] and ultracold atoms [8] as well as in synthetic space [9]).
The time-refracted wave and the time-reflected wave have the same wavenumber as the original
wave; consequently, both phenomena result in spectral translation: a red-shift is observed for an
increase in the refractive index while a blue-shift occurs for a decreased refractive index (Fig. 1).
In time-varying materials, periodic concatenation of time-modulations can lead to the formation
of a so-called Photonic Time-Crystal (PTC) as was proposed in 2009 by Peter Halevi [3]. In
order to achieve a PTC at optical frequencies, the dielectric permittivity of the material, &(t), must
undergo periodic variations at time scales of an optical wave cycle. Strong, periodic modulations
in the refractive index causes multiple time-reflections and time-refractions, which interfere and
lead to dispersion relation organized in bands separated by bandgaps in the momentum (K) rather
than in frequency (Fig. 2). In PTCs the energy is not conserved (as time-translation symmetry is
broken by the modulation), and the states residing in the momentum gap exhibit exponentially
increasing or decaying amplitudes. This significantly impacts the physics involved. For example,
when a wave is incident on a (spatial) photonic crystal with its frequency residing within the
photonic bandgap - the wave is fully reflected, but when a pulse is propagating within a PTC
medium with momentum associated with the PTC bandgap - its group velocity goes to zero, the
pulse stops and its amplitude grows exponentially, drawing its energy from the modulation.
While various aspects of wave propagation in time-varying media have been studied over
the years [1,10-23], the experimental observations in the optical range are still challenging.
Importantly, the realization of photonic time-crystals relies on having sizeable time-reflections
and time-refractions. Generally, time-refraction is always present — even when the change in
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instantaneous, and the response can be as fast as the excitation pulse duration. In this sch
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where both phase velocity and wavelength are anomalously large, ideally diverge, while the
group velocity approaches zero. The continuity requirement for the normal component of the
displacement field causes the electric field to diverge at the interface between “normal” (epsilon
~ 1) and ENZ materials. This unique behavior of basic optic characteristics enables extreme
optics, including dramatically enhanced nonlinear responses. In TCOs, electrons can be driven
between the bands and within the conduction band to higher energies by ultrafast laser pulses.
Since such process relies on optical excitation, which is an induced transition, it is instantaneous,
and the response can be as fast as the excitation pulse duration. In this scheme, the excitation
pulse serves as a “modulator” for a relatively weak probe wave propagating in the medium that
experience the large ultrafast time-interfaces induced by the modulator beam. Past experiments at
optical frequencies in TCOs employed modulator pulses of tens to hundreds fs, hence were not in
the single-cycle regime and could not observe time-reflections. The recent TCOs developments
are a step towards the observation of time-reflections at optical frequencies thus paving the way
to the realization of the first PTC.

While PTCs at low radio frequencies were demonstrated already in 2015, there has been a
recent resurgence of interest in this area due to their intriguing connection with truly unique and
novel regimes for light-matter interactions [15,35—41].

PTCs draw parallels with spatial Photonic Crystals (PCs). Even though waves in periodic
structures were known for a long time, the field was transformed by Eli Yablonovitch’s pivotal
paper on the inhibition of spontaneous emission in PCs [42]. This seminal work catalyzed many
innovative concepts spanning thresholdless lasers, nonlinear optics in PCs, and beyond. In a
similar vein, recent investigations have focused on light-matter interactions in PTCs, as well
as in a broader class of time-varying media. Notably, in 2018, a theoretical study on wave
propagation in PTCs demonstrated — in simulations - that launching a pulse associated with
the momentum gap in PTC slows the pulse down to a complete halt, and its amplitude grows
exponentially, extracting energy from the modulation [14]. This paper not only established a
link between PTCs and topological phenomena but also identified the topology of the bands and
predicted topological edge states within the temporal domain. The subsequent paper on PTCs
[20] explored PTCs incorporating random variance in the temporal modulation, showing that
any pulse entering a disordered-PTC comes to a complete halt and is amplified exponentially,
with nontrivial relation to the phenomenon of Anderson localization. The predictions on PTC
containing disorder and on disorder in the time domain [20,43,44] were proved by experiments
with water waves [45]. Several theoretical papers on PTC-related physics followed including the
theory of interaction between free electrons and their radiation in PTCs, with both semi-classical
and quantum theories of this Cherenkov-like interaction [35]; as well as the classical and quantum
theories of radiation emission by classical dipoles and by 2-level atoms in PTCs [15]. One
important prediction is the concept of a laser based on radiation emission in PTCs, amplified
through the modulation of the refractive index within the medium. This novel type of laser
emits coherent light without relying on any atomic resonance holding the promise for achieving
broad tunability and pulsed emission, with spectral and temporal characteristics dictated by the
temporal profile of the refractive index modulation. Some PTC-research highlights include the
concept of spatio-temporal photonic crystals where a dielectric medium is modulated in both
time and space exhibiting bandgaps in both frequency (energy) and momentum has also been
presented [36,37]. The work of [36] suggests a link between PTCs and non-Hermitian Photonics,
PT-symmetry and exceptional points. The theory of nonlinear PTCs including the existence of
spatio-temporal solitons has also been reported [46]. The flurry of PTC-related research is also
witnessed by the workshop on waves in time-varying media [47].

The next steps for the area of PTCs are to demonstrate time-reflection at optical frequencies
and then realize a PTC by constructing several time-reflecting boundaries. This hinges on the
availability of tailorable and dynamically tunable optical materials such as TCOs including
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Indium Tin Oxide (ITO), Aluminum- and Gallium-doped Zinc Oxide (AZO/GZO) and other
materials that exhibit ENZ and, when losses are small, NZI behavior. Recently, very large
refractive index changes (~0.2) have been observed in TCOs occurring at single-cycle time scale
~5 fs [29]. When illuminating TCOs with an ultrashort laser pulse at 800 nm (mean) wavelength,
the induced change in the refractive index is ultrafast and broadband, thus enabling measurements
of large frequency translations associated with strong time-refraction. Namely, because of the
momentum conservation in time-varying media, increasing the refractive index abruptly leads to
time-refraction where the spectrum of all waves propagating in the medium is red-shifted, and
subsequently blue-shifted when the refractive index relaxes (decreases) back to its original value.
These recent results are the first-time observation of the red-shifted and blue-shifted time-refracted
light il e Bt stepiclathe dge Df MRiksaakeblp, denmen suatadineoreflectiamiatanptical frequencies and then
happenseializ€02PFC2 DYy dedyisprativigasevieraladtiores-vafleghimgnb thun dapjen ofitile tiimges on the availability of
scale of i} b1é23h d lebypa sheeidging hiakiage paieathenste Halinsuehles s onam¥siHelugifg Indium Tin Oxide (ITO),

constituting a significant milestone toward PTC realization.
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g(t) relaxation to its original value happens in ~10-20 fs [29], defying anticipated interactions with
phonons that happen on the time scale of ~200 fs [22]. These encouraging findings pave the way to time-
reflection measurements, constituting a significant milestone toward PTC realization.

The recent experiments [29] give rise to fundamental questions concerning physics occurring within such
few-fs time frames, challenging prevailing "two-temperature" model [25,48]. These findings defy
conventional exnlanations <ienifvine a recime where events occur faster than the decoherence nroces<es
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skepticism [22] questions the material’s ability to respond rapidly and recover after each light
cycle, the recent findings showed that the material can both respond within the cycle duration
and also relax to its initial state within the same timeframe. These observations hint nearly
instantaneous processes, which could be due to virtual interband transitions as recently suggested
[49].

Since the recent experimental observations [29] revealed dynamics that surpass traditional
theories such as the Drude model, Ohm’s law, or the two-temperature model, this opens the door
to studying new quantum effects. The exiting new phenomena are expected when processes
unfold more rapidly than the standard relaxation processes that typically disrupt classical and,
most importantly, quantum coherence and entanglement needed to enable the unique quantum
properties. This unparalleled regime could lead to novel interactions and phenomena, as it
operates on a timescale far faster than what conventional relaxation theories can accommodate. We
anticipate shedding new light on such meta-interactions and observing genuinely unprecedented
phenomena.

PTCs promise to advance technology significantly by enabling new radiation sources, novel
lasers, new quantum states of light such as cluster states and entangled photons as well as other
quantum devices such as detectors of entangled states and beyond.
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