Vacancies in graphene:
Dirac physics and
fractional charges
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few words on graphene

; D, —
, i SR Neggative continuum

e Two-dimensional honeycomb lattice of carbon atoms built
out of two triangular sublattices Ty (T'g)

® |ow energy tight binding spectrum : £ = v, \p\

e Admits a continuous description ¥ = (IPPAE:;) H, =06p
B
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Vacancies in graphene- Parity

e Dirac Hamiltonian H,, . =06'p = —io - Vs parity invariant

x5 x,y B —y

vertical reflection + interchanging sublattices

v(r,¢) =e"? (.qizﬁl)rgcb)

\Ifl(T) — \112(7'), \112(7') — —\Ifl(T)
m-——m-—1
j=m+1/2

Degeneracy :j = £1/2 « m = —1,0




Creating vacancies in graphene

e Sputtering He ions b

Local vacancy.

Jinhai Mao, Eva Andrei et al. Nature Physics (2016)
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Creating vacancies in graphene

e Sputtering He ions b

® |ocal + Resonance spectrum using STM tip.

Before

A ¢

Local vacancy.
Local charge is changed by applying
voltage pulses to the STM tip

Jinhai Mao, Eva Andrei et al. Nature Physics (2016)
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Spectral consequences of vacancies

® |[ocal + Resonance spectrum using STM tip.

—e— LDOS vacancy

Single vacancy o LOS gephite
Zero mode g

o
':;::::%::::::::.—.as.um

No vacancy -

-200 -150 -100 -50 O 50 100 150 200

. dol V(mV)
Measure the tunnelling conductanceW prop. to the local DOS

M.M. Ugeda et al. Phys. Rev. Lett (2010)



Vacancies in graphene

Created by removmg a smqle carbon atom

duces a stable charge QAat the vacancy 5|
° Zero energy modes
e Breaks parity (sublattice symmetry)




Local charging of vacancies

Created by removmg a smqle carbon atom

duces a stable charge QAat the vacancy 5|
° Zero energy modes
e Breaks parity (sublattice symmetry)

e |ocal charge builds up around a vacancy :

(DFT) g
Coulomb potential ~1le - o | l

-70 meV

Liu, Y., Weinert, M. & Li, L. Nanotechnology 26, 035702 (2015)



Vacancies in graphene

Created by removing a single carbon atom

e |nduces a stable charge @ at the vacancy site
° Zeroe AoV 1 o TaTa XN —
) Breaks parlty (sublattlce symmetry)

Before checking that....
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Spectral signature of vacancies

e Model the local vacancy charge by a
massless Dirac Coulomb model :

fine

structure

Dimensionless quantity B = /0 constant

Scale free problem with continuous scale invariance (CSI)

The continuous scale invariance (CSI) is broken into a discrete scale
invariance (DSI) by any choice of boundary conditions

Important and measurable spectral signature (for the zero modes):
gquantum phase transition (scale anomaly) !

Omrie Ovdat, J. Mao, Eva Andre1, E.A (2017)



Dirac spectral quantum phase transition

Dimensionless coupling = Z

| d—1 1
Singular value [ﬁcr =TS _J

Continuous scale invariance (CSI) Discrete scale invariance (DSI)



Spectral signature of vacancies

e Massless Dirac Coulomb model :

H
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Spectral signature of vacancies
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Spectral signature of vacancies

0.00+

-0.05¢

=0 15F

Omrie Ovdat, J. Mao, Eva Andrei, E.A (2017)



Parity breaking

For s-wave channel m=0,-1, total angular momentum 1/2
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Multiple vacancies : zero modes

N, Avacancies Ng B vacancies

# of zero modes = |N, — Ng|

Numerical diagonalization
finite lattice

B. Sutherland, Phys. Rev. B 34, 5208-5211 (1986)
E. H. Lieb, Phys. Rev. Lett. 62, 1201 (1989)
V. M. Pereira,et al., Phys. Rev. Lett. 96, 036801 (2006)



Vacancies in graphene

Local
charge

Zero
modes

parity
breaking
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[ Topological | Froctional charge

{ Index § | modes

parity
breaking

Parity anomaly
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# of zero modes = |N, — Ng| = |Index H|

Index H = dimkerD —dimker D' H=—io0-V = (l())Jf l()?)
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{ Index ;
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Topological content of magnetic flux is replaced by vacancies

0-fo
Zero Local
% modes h charge
> |
IndexH = d

Broken
parity

Parit
Q _yp _Q

R. Jackiw Phys. Rev. D 29, 2375 (1984)

A. J. Niemi and G. W. Semenoff Phys. Rev. Lett. 51, 2077 (1983)
D. Boyanovsky and R. Blankenbecler Phys. Rev. D 31, 3234 (1985)
M. Ninomiya and C, Tan, Nuclear Physics B 257, 199 (1985)

E. Fradkin, E. Dagotto, and D. Boyanovsky Phys. Rev. Lett. 57,
2967 (1986)

Su, W.-P.,, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42,
1698 (1979)

4 : : )
e Massless Dirac model + magnetic flux

Compact space without boundaries :

Atiyah-Singer Index theorem.
\. y,

Kmmss Dirac model + vacancies m
graphene :

Topological content of the magnetic

flux_is replaced by holes in the plane.

[NB—NAcﬂI)J

\_ /

4 A
Index theorem in an open space with

boundaries and no gauge field

\_ J




Low energy continuum description




Scattering of a free massless Dirac fermion on a
punctured plane

Effective low energy model for graphene:

. 0 -id -9,
=6'p=|
. Single Dirac fermion A (_la’“ *oy 0
+ Massless (relativistic) £ = =|p|
» Free (No potential) | Vacancies | ° m=0
o o —©0
e Infinite plane 7
N i / / :

« Non-trivial topology | scatterers |




Single A-vacancy

Zero energy eigenfunctions:  Hy/(r)=—ic-Vy (r)=0
. “(r,E)
0,E)=> e e .
p(n0.5)= 20 [iwn’f(r,E)e”] A

[Determined by boundary conditions]

A
m WnB; |r=R Wm |r=R

1
Chiral boundary condition 0
1
Non standard, m dependent, parity breaking »

| oO0o| O | O




Single A-vacancy

Zero energy eigenfunctions :

y (r.0) M’ LiBoroleigj

All modes, except for :

j==+1/2 « m = —1,0
are projected out.

Consistent with the tight-binding model

A
wm |r=R

o]

ol ©

[o




Single A-vacancy

Zero energy eigenfunctions :

y (r.0) M [ : zej

® Resonance maxima

2 N —— r®decay

Distance (nm)

M.M. Ugeda et al. Phys. Rev. Lett (2010)

A
m W,ﬁ |r:R wm |r=R
1
0) | 0 I
-1 l 0 |
-2




Chiral boundary conditions break parity

but conserve energy reflection

* Energy reflection symmetry )
A—> m |y, || ¥l
For every E > 0 state
_ there is a E < 0 state p 0
1 0
(+ Parity symmetry ) <4P&p ° °
o |
y Sy y P ;
Chiral boundary conditions -2 0
do not preserve parity : 0

m— —m-—1




Fractional charge

« Charge density of the Dirac vacuum

p(r)==3 Ysien(E, v, (r)w, (r)

With a single vacancy o (r) = 1 vV -

#of zero modes



Fractional charge

« Single vacancy charge density

xxxxx




Fractional charge

Single vacancy charge density

p(r)=— I7I2 R -0 é<—.

p(r) =
1ol ® Resonance maxima
2
2F o o r" decay
04
=
p(r) ° <
1
P(R) . S
Y ? -o
02f
I O 1 N I N I N
00} 3 2 1 0
Distance (nm)

M.M. Ugeda et al. Phys. Rev. Lett (2010)
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Fractional charge

{ #0f zero modes |

L 1 L1 \

| 1 1 I . :
1 — l =—7IndexH | _

» t Vanishes without §
| vacancies !

Spectral asymmetry of
| topological origin "

(Can be fractional)



Multiple vacancies- topological switch

Q:J‘dzxp(r):_g(NA—NB):—glndeXH

. 414 1 415
Ansatz wavefunction Z T 0 Z

o Z _ZkA

[# of zero modes =|N _NBU
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Multiple vacancies- topological switch

ALl A vacancies are On and B’s Off



Topological switching

5!

Ng
INa— Ng| =0

S,

Na =

Index H

=4

Na =5, Np

Index H = |[Na—Npg| =1

All vacancies are Off

ALl A vacancies are On and B’s off



Summary-Further directions

e Single atom vacancies in graphene provide realisations of edge
state physics of topological origin.

« Graphene vacancies give rise to localised fractional charges,
parity symmetry breaking and zero modes.

e Charge fractionalisation result from a new type of chiral
boundary conditions without coupling to a gauge field.

 The physics of charged vacancies can be fully described by
means of massless free fermions in a Coulomb field.

e This scale free problem leads to a quantum phase transition
(scale anomaly) by changing the strength of the local charge.



Summary-Further directions

 [wo-dimensional analogous of 1D SSH model.

e Vacancies in graphene allow to realise prominent features of
2+1 QED.

e Existence of zero modes expressed by a topological Index,
multi-vacancy modes and related edge state physics have

analogs in non electronic graphene. Could be easily observed.

e The Quantum Phase transition (scale anomaly) and parity
breaking are specific to (electronic) graphene.

e Magnetism related to vacancies (Lieb Thm. Hubbard + bipartite).



Thank you for your attention.

Some references:

Nature Communications (September 2017)
Phys. Rev. D (RC), March 2018,

J.Phys. A (September 2018)
arXiv:1807.10297 (under review)

Please go to the poster of Omrie and Amit


https://arxiv.org/abs/1807.10297




