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Abstract

The topological properties of quasiperiodic chains are revisited. Chern numbers
known to label the infinite set of spectral gaps and diffraction peaks for infinite
chains, are shown to be related to the underlying structural palindromic symme-
try of finite chains. The deviation from this symmetry forms a periodic cycle as a
function of a structural degree of freedom ¢, driven by a series of structural events
termed phason-flips. Topological classification of spectral gaps is related to the two
independent phases of the scattering matrix: the scattering total phase shift de-
scribing the frequency spectrum and the scattering chiral phase carrying topological
information in a winding number as a function of ¢. Conveniently designed edge
stated of a generalized edge perform a spectral winding (as a function of ¢) directly
related to the Chern numbers, allowing to scan these phases. A full quantitative
description of these states by an effective topological Fabry-Perot cavity, and a first
experimental measurement of these predictions in a cavity polariton setup are pre-
sented for the Fibonacci chain. An identical analysis was carried out in reciprocal
space. Topological classification of diffraction peaks is related to a diffraction chiral
phase, found to carry the topological information (labeling the diffraction peaks) in
a winding number as a function of ¢. A splitting of diffraction peaks in a general-
ized edge setup performs a spectral winding (as a function of ¢) directly related to
the Chern numbers and allows to scan this phase. A first experimental observation
of this winding and its robustness against disorder, performed in a programmable
optical grating setup, is presented for the Fibonacci chain. The purely structural
origin of the topological labeling of spectral gap and diffraction peaks is also re-
visited. A two-dimensional structural map of phason-flips as a function of ¢ in a
finite chain is shown to form a perfect torus. This property constitutes an inter-
nal periodic boundary conditions with respect to ¢, and leads to the definition of a
quasi-Brillouin zone in reciprocal space. A quantitative formulation for the allowed
number of Chern numbers, and the deviation of the spectral gaps/diffraction peaks
from the infinite chain values are given. A first experimental observation of the
quasi-Brillouin zone is given for the Fibonacci chain, capturing 89 different Chern
numbers in a single measurement. A general discussion is presented regarding the
role of true quasiperiodicity in the properties predicted and observed, and also re-
garding the role of the quasiperiodic chain natural lengths. This work has relied on



the Fibonacci quasiperiodic chain as a leading example, but the results presented ex-
tend to a very large family of quasiperiodic chains, and expected to be generalizable
to higher dimensions.



Abbreviations and Notations

g genus (in geometrical topology), or the co-numbering generator
x Euler-Poincare characteristic

x» a characteristic function element (letter)

oy Hall conductance

C Chern number

#D #-dimensional

F; the jth generation Fibonacci length (Fibonacci number)

S; the jth generation Fibonacci chain

k an integer or outside wave-number (in the scattering of waves), or the spatial
frequency (in the Fourier transform or diffraction pattern), or an integer

k. spatial frequency (in the Fourier transform or diffraction pattern) along the z
direction

ks spatial frequency (in the Fourier transform or diffraction pattern) along the ¢
direction

k, spatial frequency (in the Fourier transform or diffraction pattern) of a diffraction
peak labeled by the integer ¢

k., gap mode frequency

7 the golden mean ”T‘/g =~ 1.618
p an integer

q an integer

m an integer

n an integer or refractive index

j generation number, or slab number along a chain
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N counting function (integrated density of states)

£(A) a substitution rule for a letter out of an alphabet.

¢ the modulation strength a.k.a. the phason

¢o a general origin preset for ¢

¢r a specific origin preset to obtain S

$par a specific origin preset to obtain a palindromic segment

F ~ a segment of length N of the infinite Fibonacci chain. A function of ¢.
<}7 ~ the mirror image of ? N

My the occurrence matrix for the #th super-letter

V4 occurrence vectors. Eigenvectors of My

x location along the quasiperiodicity direction.

C&P cut and project.

AAH Aubry-Andre-Harper.

IDOS integrated density of states.

n(¢) deviation (or violation) of palindromic symmetry.

£ AAH smoothing parameter.

S the scattering matrix

or(r) outgoing wave from the boundary L(R).

ir(r) incoming wave from the boundary L(R).

t transmitted complex amplitude.

f; transmitted amplitude phase.

7 reflected complex amplitude for incoming waves from the left

% reflected complex amplitude for incoming waves from the right.
7 reflected amplitude phase for incoming waves from the left
9 reflected amplitude phase for incoming waves from the right.

p density of states.

0(k) scattering total phase shift.



M transfer matrix.

E electric field.

z location along the quasiperiodicity direction.
ny refractive index for slab A.

np refractive index for slab B.

d 4 slab thickness for slab A.

dp slab thickness for slab B.

A wavelength.

a scaling parameter.

b scaling parameter.

F a general periodic function of period 1.
P artificial palindrome.

L geometric cavity length.

L effective cavity length.

0.qv cavity phase.

R mutual reflectance.

« scattering chiral phase.

W winding number.

~ diffraction chiral phase.
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Chapter 1

Introduction

1.1 Context and motivation

The investigation of topological features has long been recognized to be a powerful
tool both in mathematics and (more recently) in physics where it generalizes the
notion of symmetry classes. Topology allows to identify distinct families or classes
of structures which cannot be related by continuous deformations and which can be
characterized by one or a set of integer numbers, called topological invariants due to
their stability against a broad range of perturbations. This classification into topo-
logical classes has revealed particularly productive in mathematics. A well-known
example from geometry is the Gauss classification of surfaces in three-dimensional
space by their genus g (or integer Euler-Poincare characteristics y = 2—2¢), roughly
equivalent to the number of holes piercing them (e.g. a torus, with y = 0, cannot
be continuously deformed into a sphere, where x = 2, and so on). An early physical
example where topological features became particularly fascinating is provided by
quantum anomalies in field theory, i.e. to classical symmetries broken at the quan-
tum level | | - such as the chiral anomaly recently observed in condensed matter
[ |- The resulting anomalous currents were shown to be generically related
to topological quantities expressed by modern and sophisticated mathematical tools
such as the Atiyah-Singer index theorem or Chern classes [ ] The relevance of
topological descriptions in condensed matter physics became widely understood in
the context of the integer quantum Hall effect, where the Hall conductance o of
two-dimensional semi-conductors in a strong magnetic field is quantized in integer
multiples of a fundamental conductance oy | |- The quantized behavior has
been linked to the topological properties of the filled electronic bands in the pres-
ence of the applied magnetic field, characterized by a so-called Chern number C such
that the allowed conductance values arecy = Coy [ , ] Chern num-
bers and other topological invariants are now recognized to be ubiquitous in many
other systems, such as quantum anomalies | | the classification of topological
defects | | topological insulators and superconductors | |- band structures
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with Dirac | | or Weyl points | , |- and also for quasicrystals.

Among the large variety of complex non-periodic structures, quasiperiodic dis-
tributions play a special role. These structures have some of their physical prop-
erties (e.g. dielectric coefficient, potential, reflectivity, ...) modulated according
to a deterministic but non periodic pattern | , |- One of the many rea-
sons for the ongoing and continuous interest is that despite their lack of periodicity,
quasiperiodic structures exhibit long-range order manifesting in sharp diffraction
peaks | , |- and display interesting similarities with random structures,
e.g. localization of the modes, insulating behavior, highly structured spectra . More-
over, quasi-periodic 1D structures can be viewed as realizations of quasi-crystalline
order and there are interesting candidates to study transport and thus understand the
insulating behavior of these structures. A celebrated example in 1D is the Fibonacci
chain (denoted as S). i.e. a one-dimensional structure modulated according to the
Fibonacci sequence |Fib|. Among the many nontrivial properties of the Fibonacci and
other quasiperiodic chains, we may note that the study of wave (acoustic, optical,
matter, ...) propagation in these quasiperiodic structures reveals a highly lacunar
singular-continuous energy spectrum, with an infinite set of energy gaps arranged
in a multifractal hierarchy for infinite chains | |- Moreover, quasicrystals and
tiling spaces have long been recognized (by mathematical physicists) as being a
natural playground for topological features including the existence of topological
invariants | , |- These features were elaborately studied in 1D (where
structural and transport properties are better known) | , , |- For
instance, in the 1D case, the infinite set of spectral gaps corresponds to an infinite
set of Bragg peaks in the diffraction spectrum of a Fibonacci quasicrystal. Each
gap/peak is centered at a location k, = p + ¢/7 in appropriate units. Here ¢ and
p(q) are integers and 7 = (1 + /5)/2 is the golden mean. The integers ¢ and p(q),
labeling of the infinite set of spectral gaps (Bragg peaks) are proven to be topologi-
cal Chern numbers through another important approach. The gap labeling theorem
| , | 1abels the normalized integrated density of states of the chain, A/ (e),
at the spectral gap energies (¢ = ¢,,,) by the very same Chern integer numbers
p,q through N(esop) = p + ¢/7. However, despite a recent interest in the subject
| . ) ' . . . . , |- the under-
lying symmetry governing the relation of these properties to physical observables has
not yet been identified, and a more physical understanding of the existence of Chern
numbers in the quasiperiodic structures spectrum without external fields has not
been given. This subject has been long considered as tangential by the mainstream
topological physics community, or at least still enshrined in mystery.

The current work aims to fill this gap. Firstly we have identified a purely struc-
tural origin for the Chern numbers in the Fibonacci chain and have defined a real
space torus and a corresponding reciprocal space torus giving these topological in-
variants their most basic explanation - the winding number around some curved
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surface. These findings constitute a proposal for a direct and indirect (through a
winding number) measurement of the Chern numbers in the Fibonacci spectrum.
Secondly, we have structurally analyzed the Fibonacci potential problem to find an
underlying spatial symmetry cycle relevant for a large family of finite structures.
This cycle is the mechanism by which the purely structural winding maps into spec-
tral properties, obtained from the response of the structure to incoming waves along
the quasiperiodicity direction. Thirdly, we have analyzed the Fibonacci potential
example by means of the scattering approach to find that its spectral topological
features are related to the two independent phases of the scattering matrix. The first
phase is the total phase shift, which describes the frequency spectrum, and encodes
the Chern numbers in the gap labels. The second phase, is the (newly defined) chiral
phase which is sensitive only to topological features through a winding number. This
winding number corresponds to the Chern numbers of the gap labels. In addition,
conveniently designed gap modes, sensitive to the chiral phase and equivalent to
edge states are proposed to measure spectral properties directly related to the Chern
numbers. An effective topological Fabry-Perot cavity model is presented to discuss
these modes, shedding light on spatial symmetry issues. This analysis constitutes a
proposal for various forms of indirect (through the gap modes winding number or
spatial symmetry) measurement of the Chern numbers in the Fibonacci spectrum.
An identical analysis have been performed in reciprocal space, obtained from the
response of the structure to incoming waves perpendicular to the quasiperiodicity
direction. A diffraction chiral phase has been identified, and also a reciprocal space
counterpart for the gap mode winding. In addition, a new understanding emerged
from the reciprocal space analysis, allowing to obtain all allowed Chern numbers
for a finite chain in one diffraction measurement. Finally, we have experimentally
measured Chern numbers in the Fibonacci spectrum using two different setups cap-
italizing on our theoretical predictions. Our main results are general and apply to
a large class of quasiperiodic structures. We expect much of these current results to
be generalizable to higher dimensional quasiperiodic systems.

1.2 Some chronology

The current work started at 2010 with a very simple idea - we wanted to enter the
busy field of random lasers | , |- which has been debating the subject
of lasing mode formation and its correspondence to Anderson localization of light
[ |- We wished to contribute by using deterministic tools and keeping to 1D
structure which are easier to analyze and fabricate. This led us to explore fractal
and quasiperiodic chains, where the former is spatially fractal while the latter is
spectrally fractal. Firstly, these chains posses a multi-gap spectrum with spatially
localized prominent band-edge modes which may be considered as a deterministic
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counterpart of the random lasing spatially localized modes. Secondly, the theory of
Anderson localization prediction for a localization phase transition for d > 2, and a
crossover to localization due to the finite size of the structure for d < 2 is interesting
to explore using the non-integer fractal dimension. The methods we've chosen to
address this problem were the scattering approach (as a computerizable general tool
to understand non-periodic problem) [ |- and a rather low-budget experimental
technique for fabricating organic dielectric multilayer structures (spin coating) and
doping some layers with active material (organic dyes or core/clad quantum dots)
[KIM+07, YLG+ 06

During the process of perfecting the scattering approach computer code, and the
building of a spin coating lab including the doping by active material, came a new
idea (in 2012). A cavity QED prediction for nontrivial sub-lasing-threshold behavior
of modes within the spectrum of a quasiperiodic chain has shifted our attention. For
instance, spontaneous emission from a quantum emitter coupled (spectrally and
structurally) to a resonant cavity mode occurs at a different rate than in free space
quantified by a Purcell factor | , , , |- If the regular cavity
is replaced by a quasiperiodic one (Fibonacci for example), possessing a fractal
spectrum, an anomalous Purcell effect is expected which is a precursor of strong
coupling regime due to the (Fibonacci) cavity. The spontaneous emission from
within such a cavity is expected to decay following a power law rather than a
single exponent with the power being related to the spectral fractal dimension of
the Fibonacci spectrum. On top of that power law trend, log-periodic oscillations in
emission intensity were expected, being the true fingerprint of fractality | |- The
methods remained the same, with an additional tool: the wavelet transform | |-
This route encountered some experimental difficulties, as the relevant timescales for
the nontrivial phenomena could not be derived 'a priori’ at that stage.

During the ongoing process of perfecting the scattering approach computer code,
and the building and testing of the spin coating lab, came another new idea (in
2014). A first experimental quantitative measurement of the Fibonacci spectrum
fractality along with a hierarchical labeling of the dense set of spectral gaps related
to topological Chern numbers | |- and a tight binding paper linking topological
properties of quasicrystals to the winding of edge states | , | made us
realize we have the tools and methods to connect the gap labeling theorem to a
winding of edge states. Our choice to consider finite structures with low value
of contrast led to a successful analysis, predicting a factor 2 with respect to other
outstanding results and relating it to a combination of reflected phase shifts, and
also to a Fabry-Perot model | | quickly led to a successful first experimental
effort to spectrally measure these predictions in a cavity polariton setup through a
collaboration | |- In parallel, a surprising proposal to measure these numbers
in the diffraction profile of a Fibonacci Young’s slit experiment as a function of ¢, led
to another fruitful collaboration to achieve a purely structural understanding of the
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topological properties of quasiperiodic chains, lending more schemes to measure the
Chern numbers | |- This experimental collaboration has proven to be a pivotal
point in our understanding, as it was the first incidence of experimental observation
driving us towards a better theoretical understanding.

The nature of this work is to connect the knowledge gained by several usually
unrelated communities, in a meaningful way, helping all communities to benefit from
the progress made in these seemingly tangential fields.

1.3 How to read this manuscript

In a pedagogical effort, the content of roughly 5 papers and one book chapter has
been dissected into three technical chapters. As a result, each of these chapters
contain some review, a methods section and many new results. Well known results
are cited accordingly, and new findings or new notations usually cites our current
preprints, or written without citations. Chapter 2 discusses purely structural prop-
erties of quasicrystals through the Fibonacci example, in both real and reciprocal
space, focusing on the properties leading to the topological properties to be dis-
cussed in later chapters. Chapter 3 discusses the spectral properties of quasicrystals
through the Fibonacci chain example, e.g. the density of states spectrum probed
by the scattering of waves. This chapter also sets the ground for understanding
the last technical chapter. Chapter 4 discusses the findings regarding the relations
between the topological invariants of the Fibonacci spectrum obtained through the
gap labeling theorem, to other, perhaps more natural measurable quantities. These
quantities are the winding of scattering phases, and the winding of edge states, the
winding of the diffraction pattern intensity and phase, and a full diffraction map
of the available Chern numbers. Furthermore, this chapter discusses the origin of
the gap labeling theorem topological invariants using purely structural properties
of reciprocal space. This chapter contains a detailed theoretical understanding of
the topological properties of quasicrystals, and also the results of two experimental
realizations to measure these topological properties. Finally, chapter 5 summarizes
and gives our prospect to short and long term further research.
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Chapter 2

Structural analysis of quasiperiodic
chains

In this chapter we review some known methods for generating quasiperiodic chains,
and discuss their resultant structural properties. Among these properties we present
a new symmetry cycle occurring in a large family of finite quasiperiodic chains,
and also a discussion regarding the reciprocal lattice properties. We concentrate,
for simplicity, on the Fibonacci chain example, and generalizations are given when
possible.

2.1 Structural generation method

In this section we review relevant methods to generate the Fibonacci and other
quasiperiodic chains, and discuss their equivalence and differences, attributes and
generalizations. In addition we discuss some structural properties of the resultant
Fibonacci and other chains, relevant to the current work (presented in Chapters 3
and 4).

2.1.1 The Fibonacci chain - methods for generation

The Fibonacci structure is generated using a two letter alphabet and a building rule
which follows the Fibonacci sequence [Fib|. The letters may represent any physical
property such as density, dielectric constant, reflectivity, potential and so on. We
shall now describe five different building rules which yield the same structure.

2.1.2 Generation methods: Concatenation rule

The jth generation Fibonacci sequence, S;, is generated from the alphabet A =
{A, B}, from the initial two generations Sy = B, S; = A, and the concatenation rule

[Jan94]
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Figure 2.1: The first generations of the Fibonacci chain, S;; j =0,1,2,3,4,5,6.

Sj>1 = [Sj-15-2],

where the square brackets symbolizes concatenation. Repetitive implementation of
this rule yields the structures

A— AB - ABA — ABAAB — ABAABABA — ABAABABAABAAB - -,
(2.1)
where the lengths of the resultant chains, F;, are fixed by the same rule, ;- =
Fj—1+ Fj—2, and correspond to the Fibonacci numbers

F;=1,1,2,3,5,8,13,21, 34, 55,89, 144,233, 377, 610...., (2.2)

The resultant structures are also illustrated in figure 2.1. The ratio F;;,/F; tends to
the golden mean 7 = (1++/5)/2 in the limit j — co. The corresponding sequence Sy,
becomes rigorously quasiperiodic and invariant, i.e., self-similar under this iteration
transformation. The concatenation method for building the Fibonacci sequence is
very well known, but limited only to Fibonacci like quasiperiodic chains as it is not

generalizable.

2.1.3 Generation methods: Substitution rules

A substitution is a rule that replaces letters with words, thus generating highly
ordered, self-similar objects which are not necessarily periodic. As a graphic il-
lustration, figure 2.2 depicts a 2D generalization for substitution rules, where 2D
letters are replaced by 2D words. In our 1D case, this method considers an alpha-
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Figure 2.2: examples of 2D substitution quasiperiodic structures. (a) Rectangu-
lar substitution, and (b) Ammann-Beenker tilings generated using non-rectangular
substitution .From [Jol13].

bet A = {A,B,C,---} composed of different letters, and a substitution rule & (A)
[5586, Jan94], so that

{£(A)} = {£(4),4(B),&(C) -}
E([A1A2As---]) = [E(A1)E(A2)E(A3) -],

where the square brackets again symbolizes concatenation. Now, the jth generation
of a structure, 1V;, may be generated from an initial generation W, (composed of
the legitimate alphabet) through W; = &7 (Wp).

Specifically, the jth generation Fibonacci sequence, S; is generated from the
alphabet A = {A, B}, from the initial generation Sy = B, and the substitutions
&(A) = AB, &£(B) = A, through S; = ¢/(B). This process results in the same structures
(see figure 2.1) with the same Fibonacci lengths as in (2.1) and (2.2) [Jan94]. The
1D substitution rules method describes a very large family of quasiperiodic chains,
the largest variety compared to the other methods introduced here (see 2.1.7). This
generation method is used to establish the gap labeling theorem [Bel82, Bel92] which
assigns labels to spectral gaps (to be discussed in chapter 3), and is very relevant
to the understanding of the topological properties of quasiperiodic chains (see 2.1.7
and 3.4).

2.1.4 Generation methods: Characteristic function

We define a discrete map y,, taking, for each letter n, two possible values {—1, 1} that
we associate to the alphabet {B, A} respectively. Among possible choices for such
a function [Kes66, OP84, GO90, NLRO8|, we consider the form recently proposed in
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Xn(¢) =sign [cos (2rnT ' + ¢+ ¢y) — cos (m7 )] . (2.3)

The angular degree of freedom ¢ + ¢y can be safely ignored for S.,, but not for any
finite segment ? N=[x1Xx2 - -xn] of Sx. As we shall see, this is because the phase
¢ represents the translational degree of freedom resulting from the finite size. The
finite (concatenation or substitution based) chain S; can be reproduced by setting
¢ + ¢po=¢r =771, and N=F;. Alternatively, we may set ¢o=¢r., and consider the
modulation phase shift ¢ as a structural degree of freedom to be discussed.

The characteristic function (2.3), and its dependence on the value of the modula-
tion phase ¢ will be shown to be very useful to the understanding of the topological
properties of quasiperiodic chains (see 2.2). This generation method describes a
large family of periodic and quasiperiodic chains by replacing 7! by other (ratio-
nal and irrational) numbers. It is equivalent to the Cut and project method to be
discussed in 2.1.5. Moreover, omitting the sign|#| function from (2.3) generalizes
it to the Aubry-Andre-Harper potential | , |- Recently, a smooth transition
between the two models, using a smoothing parameter j, has been proposed | |-

2.1.5 Generation methods: Cut and Project (C&P) method

The Cut and Project (C&P) method has been used to investigate quasicrystals, tilings
and dynamical systems | , , |- As depicted in figure 2.3, a C&P chain
is obtained from the Z2-lattice crossed by a line A defined (for the Fibonacci case)
by y = 7'z +const. We denote A, the direction perpendicular to A and define
an acceptance window by the band of width Q (along A, ), centered at A, and
discard all lattice points outside this window. This realizes the "cut” part of the
algorithm. Note that this stage is enough to generate the chain: if we connect the
C&P set dots using lattice upward and rightward steps, and label them as “B” and “A”
respectively. A C&P set is obtained by projecting the remaining Z? points on A and
along A, . If we analyze the distribution of distances along A between neighboring
projections, we find it to be two valued. One value corresponds to the projection of
a step upward, and the other represents the projection of a step rightward. The two
possible distances along A between neighboring projections, are denoted {A, B},

1 is an irrational number,

and we thus generate S,,. We note that as the slope 7~
the line A intersects one and only one lattice point. In general, if a rational slope
p/q is chosen, then the line A periodically intersects infinite lattice point creating a
periodic chain, with a natural definition for the unit cell as the non-periodic segment
between intersection points. From this viewpoint we may consider S, as the infinite
unit cell of a periodic structure.

For finite chains the situation is different, due to the translational degree of
freedom. An origin has to be defined, which in turn determines the letter order.

In order to reproduce the finite Fibonacci chain §; (given by the substitution and
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concatenation rules) the structure origin is chosen to be the intersection point of
the line A with a Z?2 point, and the number of elements (letters) to be taken is Fj.
Drawing from the two last points, we emphasize that the finite Fibonacci chain S;
may be perfectly reproduced by many rational approximants, p/q, of the irrational
slope, 771, as long as the number of letters in the unit cell of the resultant periodic
chain, p 4 ¢ — 1, remains larger than F;. For Sy (with Fio = 89) this first irrational
approximant is 55/89. The rational approximants for 7—! follow the Farey sequence

1 1

171

1 2 3 5 8 13 21 34 55 Fi
R : : : : : : R (2.4)
2 3 5 8
Keeping to the Sjy example, any successor approximant to 55/89 will produce S,
while any predecessor will produce a distorted chain (more than one unit cell).
We note here that C&P method is equivalent to the characteristic function method

1, ¢
r—5-, where ¢

through the constant term in the equation for A, namely, y =7~
is the modulation phase shift in (2.3). Therefore, the C&P method spans the same

quasiperiodic chain family as the characteristic function method.

2.1.6 Generation methods: Co-numbering method

The co-numbering method ([ | and refs. therein) is very similar to the C&P
method, except that it allows for the construction of finite structures only - the
unit cell of a periodic approximant. Figure 2.4 depicts the process which, as in
the C&P, begins from the Z2-lattice crossed by a line A defined (for the Fibonacci
ffil
the concatenation/substitution chain Sj). The mutually prime F; and Fj44 (from

case) by y= « (with an approximant slope and with the origin set to reproduce
the Farey sequence) describe a periodic C&P structure with a unit cell containing
F; + Fj4+1 lattice points leading to F; + F;.1 — 1 letters, produced as before by
the projection of these in-band letters onto A. The co-numbering method defines
a spatial generating vector g, connecting the origin (the intersection point the line
A with a Z2 point) to the in-band lattice point with the smallest distance from the
line A. It has been shown that all the in-band Z? points may be obtained from each
other by successive vectorial addition of ¢ (a total of p+ ¢ times), and a geometrical
winding around the unit cell (see figure 2.4).

The generator ¢ may be found using one of the two the predecessor approximants
in (2.4), depending on the parity of j. This may be proven rather easily. Let the
zero crossing line A be represented by y = F;/F;1z. Let (z1,41) = (¢, p), where
q,p € Z is a general Z? lattice point. The expression for §(q,p), the minimal distance
of the point (¢, p) from the line A is

s(a.p) = Fip =yl
FP+Fia
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Figure 2.3: The Cut and Project (C&P) method. (a) The “cut™ a Z2-lattice (red
circles) is crossed by a line A defined by y=r—"'z+const (magenta) and acceptance
window  (green double arrow). Only points within Q are selected. The origin is
taken as the intersection point between the lattice and A (green ellipse). (b) The
“project™: Selected points are projected onto A (black lines), and the projections are
recorded (black dots). The distribution of nearest projection distances is two valued
with uneven occurrence (inset). If the possible distances are termed “A” and “B”,
and we record the first 13 letters, we obtain the chain S; =ABAABABAABAAB . (c)
C&P process for the rational slope 2/3. The line A crosses multiple lattice points,
thus defining the unit cell of a periodic structure ABAB ABAB ABAB.... (d) C&P
process for the Fibonacci slope with a slight change in ¢, resulting in the structure
AABABAABABAAB# Sg. The origin is still the green ellipse, but the intersection
point with the lattice has shifted along A. This shows that scanning ¢ is equivalent
to an origin shift along S..
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Figure 2.4: The co-numbering method (a simple example). The Z2 lattice is crossed
by the line A (solid magenta line) defined by y = %x The intersection point is
marked by a green circle. The thin blue lines orthogonal to A mark the physical
boundary of the unit cell, and the dotted magenta line notes the C&P allowance
band 2. The generator g is found as the first nonzero intersection of the line y = %a:
and this lattice point is marked as "1”. A sequential vectorial addition of g labels
p+ q = 8 times maps all p + ¢ — 1 = 7 in-band lattice points with a co-numbering
index. Alternating black and blue arrows account for the addition of the generator
g, the winding around the unit cell boundaries is indicated by the dashed arrows,

and the first two points are labeled to illustrate the method.

so the condition for the in-band lattice point with the smallest distance from the line
Ais

Fiyp — Fjqg =1,

for which a solution is guaranteed as F; and F;;; are mutually prime. We now
make use of the Vajda identity | |

]:j—&-u]:j-i-v - ]:j]:j—&-u-i-u = (_1)3']_-;1]:1/’

to show that by taking (u, ) = (—1, 1), and using the generalization _; = (—1)’*! F;
the predecessor approximant in (2.4), F;_1/F;. fulfills

FiaFin = Ff = (-1).

This implies that for S; with even j, taking (p,q) = (F;-1, ;) defines the generator
g. For odd j the predecessor approximant gives a point which is out of the band,
and we need to go to to next predecessor (more primitive) approximant, (p,q) =
(Fj—2,Fj—1). This is done by setting j/ = j + 1, taking (u,v) = (—1, —2), and noting
that F_; = 1; F_o = —1, to yield F},Fj,_3 — Fj—1Fj—2 = (—=1)7 = (=1)7TL,

This technique is used to label the in-band Z? points in a way which is very gen-
eralizable to other sequences and higher dimensions. However, it does not possess
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a translational degree of freedom, as an origin has to be set. We will use a similar
reasoning in chapter 4.

Remark

In this work, we depart from concatenation and substitution rules conventions, as
they always represent a single point in a wider structural map governed by the
degree of freedom ¢ and at any desired length. We choose to work hereafter with
the gauge phase ¢, occasionally returning to the equivalent C&P picture. However,
in most cases we will still limit ourselves to discuss only structures of length F; for
reasons to be described in chapter 4.

2.1.7 Substitution rules structures properties

The substitution rules method is used for the generation of periodic and quasiperi-
odic structures. In the case of quasicrystals, the substitution rules approach lends
a profound understanding regarding the occurrence of letters or super-letters, i.e.
doublets, triplets and so on, as they may be used as inflation or deflation rules
| , |- For instance, in the two letter alphabet, one can define the letter
occurrence matrix M, such that the matrix element M contains the occurrence of
the 7" letter in the j*" substitution, namely

£(A) \ _ A
<£<B>>:M1<B)’ ()

11
such that for the Fibonacci sequence M; = < L0 ) . Similarly we may define the

super-letter occurrence matrix Ms, such that a matrix element Méj contains the
occurrence of the ¥ 2-letter combination (doublet) in the j 2-letter substitution.
For the Fibonacci chain, the 3 doublets alphabet is {AA, AB, BA}, and the corre-
sponding substitutions are {{(AA) = ABAB, {(AB) = ABA, {(BA) = AAB}. No
BB doublets occur. The occurrences of the doublets in the 2-letter substitutions
are obtained as follows | , |- The numbers of doublets to be deduced (by
shifting a 2-letter acceptance window from left to right) is equal to the number of
letters in the substitution for the single first letter of the doublet. For {3(AA) and
&(AB) we should deduce 2 doublets (as the length of £(A) = AB is 2), and for
£(BA) we should deduce 1 doublet (as the length of £(B) = A is 1). Finally,

§2(AA) = &(AB) = (AB)(BA) ; £&(BA) = (A4),

which leads to the occurrence matrix
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Mg = 1 10
110
£3(BA) BA
&(AB) | =Ma | AB |, (2.6)
£2(AA) AA

and so on for M;. The occurrence matrices M; and M, may be diagonalized, and
the eigenvectors corresponding to the highest mutual eigenvalue may be normalized,
so that the sum of their elements is unity. In the Fibonacci case, the eigenvalues of
M; and M are {1—7,7} and {1—7,7,0}, respectively. Thus, 7 is the highest mutual
eigenvalue, and the corresponding normalized eigenvectors V;, V5 are

. 2r 1 —1
-
V1:<1 _1>;V2: 1—771 . (2.7)

-7
1—71

Using the identity 7-! = 7 — 1, equation 2.7 becomes

21 —3
V1:<T_1>;V2= 2—7
2—T
2—1T1

The elements Vl(i) represent the occurrence of the " letter, and the elements
Vz(i) represent the occurrence of the i** doublet. For the Fibonacci case we may
deduce from V) that the letter A occurs more than the letter B by approximately
61.8% : 38.2%. From V> we see that the AB, and BA doublets have an equal
occurrence of ~38.2% each, and the AA doublet has ~23.6% occurrence.

The above derivation is the foundation of C-theory and the resulting gap labeling
theorem for substitution quasiperiodic structures | , |- which is a crucial
element in understanding the topological properties of substitution quasiperiodic
structures. This theorem for the Fibonacci chain is described in chapter 3 and the
treatment of the resulting topological properties is discussed in chapter 4.

A final note on the family of substitution quasiperiodic structures. The eigenval-
ues of the occurrence matrix M; (upon diagonalization) may be sorted by length.
If the leading (largest) eigenvalue is greater than 1 (in modulus) and the others
are smaller than 1 (in modulus), the substitution is called Pisot, and when all eigen-
values are greater than 1 (in modulus), the substitution is called non-Pisot [ ]
The Fibonacci substitution is a Pisot one, as the modulus of the eigenvalues of M/
are {~ 1.618, ~ 0.618}. Another example for a non-C&P Pisot substitution is the
Thue-Morse quasiperiodic sequence, whose substitution is £(A) = AB .£(B) = BA,
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and the letter occurrence matrix is M; = L1 ] The corresponding modulus

of the eigenvalues of M; are {2, 0}. An example for a non-Pisot substitution is
&(A) = AAAB .£(B) = BBA which generates a quasiperiodic structure, for which

. 3 1 . .
the letter occurrence matrix is M; = N In this case, the corresponding mod-

ulus of the eigenvalues of M; are {~ 3.618, ~ 1.382}, which is clearly non-Pisot. All
characteristic function and C&P quasiperiodic structures have a substitution descrip-
tion which is strictly Pisot, and no characteristic function or C&P description exists
for non-Pisot systems. The fundamental structural and spectral differences between
Pisot and non-Pisot sequences are immense (see for instance the discussion in 2.1.9),
but lies outside the scope of this thesis.

2.1.8 Characteristic function (and C&P) quasiperiodic structures properties

A quick look at the characteristic function and the equivalent C&P method, reveals
a relation between the discrete nature of the chain and its quasiperiodicity. The
characteristic function y,(¢) is the sign of an under-sampled shifted cosine. Let
us first consider the function x(z) = cos (2rz 7~ + w7~!) for the continuous vari-
able z, and note that this is a regular cosine with frequency 7—!. If we take the
sign of the previous function, and relate it to the structure alphabet, it is still
a periodic rectangular function spending the same “time” being negative or pos-
itive. Next, we consider a shift in the amplitude of the cosine to yield x(z) =
sign [cos (2rz 7t +m771) — cos (m771)] =sign [cos 2z T+ 77l + 0.362---].
This function is still periodic, but now spends more “time” being positive than neg-
ative. The final step in this understanding of (2.3) is to under-sample this function
so that instead of a continuous z, we have a discrete x € N. This under-sampling
of the rectangular periodic function causes the resultant structure to depend on the
irrationality or incommensurability of 7! with respect to the grid 2 € N (see figure
2.5). For a rational approximant of the C&P slope 7!, a periodic sequence (with a
non periodic unit cell) is obtained. As p/q, the rational approximant for 7! travels
up the Farey sequence in (2.4), the quasiperiodic unit cell length becomes larger,
until finally at the irrational limit, an infinite quasiperiodic sequence is obtained
(infinite unit cell). This conforms to what we know from the C&P approach where

! results in a periodic structure with a unit cell of

any rational approximant for 7~
size p + ¢ — 1. As before, for any finite size N chosen, there exist {p;/¢;} rational
approximant set for 7—! which will produce the very same structure compared to
using the irrational itself (as long as N < p; +¢; —1). This property will be discussed
in chapter 4 in detail.

In this quick look at (2.3), we may also notice that the modulation phase shift

¢ is equivalent to some shift of origin along the infinite chain S., such that
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Xn(¢+ AP) = Xnian = Adp=2r71An (2.8)

which also corresponds to the C&P picture, where a scan of ¢ is equivalent to a
continuous translation of the “cut” band along the y-axis which causes the origin of
the resultant chain (the intersection of the line A with a Z? lattice point) to translate
with respect to the chosen structure. This implies that the relation between F ~N(9)
(generated through the characteristic function) to S; (generated by substitution or
concatenation rules) is that of translation along S,.. This property clarifies why
¢, which represents a translational degree of freedom, is meaningful only for finite
chains, and will be discussed in 2.2 in detail.

A unique property of the characteristic function (2.3), is the automatic occur-
rence of perfectly palindromic finite chains. If we examine (2.3), we notice that the
under-sampled shifted cosine y,(¢) is perfectly symmetric around the points where
its argument is 2rn 7! 4+ ¢g + ¢ = £1. If this condition is fulfilled for some letter
index n, then any structure where n is the central letter will be perfectly palindromic.
This property will be discussed in 2.2 in detail.

2.1.9 Structural properties of the Fibonacci chain and other C&P chains
Invariance under discrete translation

Any general finite Fibonacci segment F ~(#) (defined according to the characteristic
function approach) occurs in an infinite but discrete number of locations along S, (a
numerical example is given in figure 2.6). This discrete invariance to translation is
best understood using the concatenation method approach, by which every Fibonacci
generation is forever embedded in all the following generations. This invariance is
different than periodic structure case, as the recurrence of any string is discrete but
not periodic. An instrumental method to be used in chapter 4 is to numerically
verify whether a certain Fibonacci-like chain exists along S, or not. Figure 2.6
shows, as an example, the inspection of the occurrence of F ~(¢) and also of F N(P)
the mirror image of F ~(¢) along So.. The observed frequent occurrence of F'n(¢)
along S, is an indication for the long range order in quasiperiodic structures which
is manifested in this discrete translation invariance. This is not a unique property of
the Fibonacci chain, but a universal property of C&P structures (figure 2.7 shows two
more examples). The frequent occurrence of F y(¢) along the infinite chain is also
a universal property of C&P structures. As a curiosity, the Thue-Morse chain, which
is a Pisot substitution structure carries the same properties as the C&P examples. In
contrast to that, our non-Pisot substitution chain example (see 2.1.7) shows similar
long range order, but the mirror image structure never occur along the infinite chain
(see figure 2.8).
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Figure 2.5: Components of the characteristic function. (a) The behavior of
cos (277 *z)in blue and of sign [cos (2r7'z)] in red, where # € Z. The resul-
tant rectangular function in red is balanced between +1 (A) and —1 (B). (b) The
behavior of cos (277~ 'z) —cos (77~!) in blue and of sign [cos (277 'z) — cos (777 1)]
in red, where x € Z. Due to the positive offset, the resultant rectangular function in
red favors +1 (A) over —1 (B). (¢) The same functions as in (b), under-sampled
such that © € N (green diamonds for the full function and black circles for the
sign function). The under-sampling makes the discrete structure to sometimes skip
one oscillation. The positive offset makes sure that the —1 (B) half-cycle is never
skipped (i.e. no BB doublet). The resulting structure is: ABAABABAABAAB which
is identical to Sg (generated through concatenation or substitution).
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Occurrence of palindromes

A word is said to be a palindrome if it is invariant upon inversion. The Fibonacci
chain is referred to as almost palindromic. It is well known that the infinite Fi-
bonacci word, as all Sturmian words (see for instance [ ]) hosts an infinite
number of arbitrarily long palindromes. For the Fibonacci case it is possible to show
that S;(1 : F; — 2), generated by discarding the last two letters of S}, is always a
palindrome for any value of j | |- From this statement and the concatenation
rules approach, follows that arbitrarily long (lengths<}'j —2 for j — o) palindromes
exists throughout S..,, but as we will show in 2.2, these properties are not a neces-
sary condition. Using our observation regarding the symmetry of the characteristic
function, we will demonstrate new understanding of this phenomenon for all C&P
finite structures using the properties of the characteristic function approach (see
2.2).

2.1.10 Generalization to 1D Aubry-Andre-Harper (AAH) model

The results given here for the C&P or the characteristic function approach are gen-
eralizable to Aubry-Andre-Harper (AAH) potential by simply dropping the sign|#]
function in (2.3) (see [ ] and also the green diamonds in figure 2.5¢). The AAH
potential is still discrete, but it is composed of a continuous alphabet. For instance,
AAH sequences also contain palindromes when the cosine in the characteristic func-
tion is +1, but it does not share the discrete invariance to translation with the C&P
structures.

2.2 The modulation phase ¢ for a finite size Fibonacci chain

In this section we present some important properties of the structural phase ¢ defined
in 2.1. In chapters 3 and 4, we shall term it a phason and we will show how it drives
topological phases and topological edge states, essentially playing an analogous role
to the magnetic field in quantum Hall physics.

2.2.1 Structural effect of scanning ¢ on the Fibonacci chain

The 27-periodic modulation phase ¢ is a structural degree of freedom (a.k.a a phason
[ ]) of the C&P structures family. Scanning ¢ continuously through one period
for a finite chain (of length N), generates a series of only and exactly N identical
local structural changes until the structure returns to its initial composition (see fig-
ure 2.9). These local structural changes, which may be called phason-flips [ |-
are equivalent to the inversion of a single 6-letters segment BAABAB<«+> BABAAB
within the structure and occur only one at a time (see figure 2.10). The N resultant
structures are N different segments of S, which correspond to only N values of
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Figure 2.6: Occurrence of finite Fibonacci segments along S... (a)-(b) Occurrence
of the segments 78(@:) and ?8(¢F) in blue and red respectively. These segments
regularly occur (but not periodically) along S.,. The two segments occur at a
constant distance from each other as depicted in (c), showing the difference between
the occurrence coordinates of ?8(@:) and ?8(¢F). (d)-(f) The same plots for
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the Thue-Morse Pisot substitution. (c) The same plot for the non-Pisot substitution
discussed previously. There are no occurrences of the mirrored segment.

translation (or origin shift) with respect to the original segment (2.8). The lack
of change upon scanning ¢ between consecutive phason-flips is due to the fact that
the sign|#| function in the characteristic function allows for some variation of ¢
before one of the N letters may change due to a change of sign in the argument.
This allowance is also understandable from the C&P approach where the cut band
may be shifted for some distance before an in-band points leaves the cut band (and
another point enters, see figure 2.10).

The exact details of each phason-flip and the fact that only one change can happen
at a time is also very understandable from the C&P approach. Firstly, examining
figure 2.10, one may see how dragging the “cut” band upward may cause only one
type of flip, and dragging the “cut” band downward will result in the exact opposite
type of flip. Secondly, within a unit cell (up to the limit of an infinite unite cell
when the slope is irrational) only one change may happen at a time because within
the unit cell, the C&P line A may either intersect a single Z? lattice site, or none.
This discreteness of the ¢-driven phason-flips is of utmost importance as it underlies
the characteristic stepwise shapes in all of the spectral and topological ¢ dependent
variables (as will be discussed in detail in chapter 4).

When the ¢-scan N subsequent structures of length N are plotted on top of
each other in a 2D map, one can see that the ¢-driven phason-flips are distributed
according to the geometrical pattern which may be easily traced to the original C&P
72 lattice (see figures 2.11 and 2.12). Similar structure may be found for other C&P
slopes (see figure 2.13). This N — by—N 2D map we term {?N(@} is of great
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Figure 2.9: A continuous scan of ¢ in the characteristic function for the Fibonacci
chain causes the structure to change. Here plotted the counter of these changes for

?89 as a function of ¢. Inset: a closer look.

importance and will be discussed in detail in chapter 4.

Each phason-flip generates a valid segment of S, and is therefore equivalent to a
translation along S.,. Consequently we wish to explore these translations which are
in general multi-valued. Figure 2.14 depicts the numerical study of the equivalent
translations for the map {? N(gb)} with N = 89. It seems that the first appearance
of the 89 segments in the infinite chain (figure 2.14a) is simply the translation by
1 to 89 letters arranged in a tilted lattice pattern as a function of ¢ (or the segment
index in the map {? N(q&)}). The next appearances of the 89 structures along S,
is just as ordered in terms of the angled lattice pattern, but not as ordered in terms
of the translation values themselves (see figure 2.14b-d). Rechecking this behavior
for two other C&P slopes reveals similar behavior (see figure 2.15).
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Figure 2.10: ¢-driven phason-flips in the Fibonacci chain ?13@5): the C&P picture.
The structure origin is indicated by a green ellipse. (a) The original chain S5 =

13(¢r) . Orange arrows indicate the location of the first expected flip (for an
increase in ¢ equivalent to dragging the “cut” band downwards). (b) The chain

13(0F + Ag) differing from Sg by a single phason-flip. Orange and green arrows
indicate the location of the previous and the next expected flip (for an additional
increase in ¢). (c) The chain ?13@5 r+2A¢) differing from Sg by a two phason-flips,
marked with orange and green arrows. (d) Top to bottom, the resultant structures of
(a). (b) and (c). The orange brackets indicated the identical phason flips equivalent
to the inversion of a single 6-letters segment BAABAB <+ BABAAB.
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Figure 2.11: An x-¢ colormap of {? N((Z))}, with NV = 89 for the Fibonacci chain as
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Figure 2.12: The same map as in figure 2.11. Red circles indicate the location of
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Figure 2.14: The Fibonacci chain as a function of ¢. Equivalent translation for the
N = 89 segments of the infinite chain chosen through scanning of ¢ (by the resultant

segment index in {? N(gb)}) (a) The equivalent translation for the first occurrence

of each segment (in blue dots). (b) The same, for the second occurrence (in green).
(¢) The same, for the third occurrence (in red). (d). A superposition of (a)-(c).
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Figure 2.15: Other C&P chains as a function of ¢. Equivalent translation for the N =
89 segments of the infinite chain chosen through scanning of ¢ for C&P slopes 1/+/5,
and 1/7. (a) C&P slope of 1/4/5. The equivalent translation for the first occurrence
of each segment (in blue dots). (b) The same, for the four first occurrences (in
blue, green, red and cyan, respectively). (c)-(d) The same as (a)-(b) for C&P slope
of 1/m.

The natural next step is to consider the chain S; = ? 7;(¢r) as an initial segment
of S, and then translate an acceptance window of length F; along S by 1,2--- | N
letters. We then calculate the equivalent A¢ value for each translation through
equation 2.8. Figure 2.16 shows this analysis for C&P slopes 7—! (Fibonacci), and
also for the slopes 1/v/5, and 2/7. It appears that these N chosen translations
span the [0, 27) interval in A¢ (without repeating) is the same tilted lattice pattern.
Moreover, this 2D pattern for the Fibonacci appear to be perfect torus (see figure
2.17), while for the two other slopes, the patterns are not perfect tori (the misfit
occurs along the x-axis only). However, this is due to the fact that N = 89 = F
is a “natural” length for Fibonacci chains but not necessarily for the other slopes.
A simple “trial and error” approach leads to some values for the natural lengths for
the non-Fibonacci slopes, upon which the A¢ — Az patterns seem to become perfect
tori (see figures 2.18 and 2.19). This subject is still open for analysis.
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2.2.2 ¢-driven fractional translation

The ¢-driven equivalent translation along S., described above appears to be non-
monotonic, while in fact a closer look at the map in figure 2.11, shows that a
monotonic process of structural change occurs. If one follows the evolution of the
structure through the ¢-scan, they seem to be regularly drifting in one direction.
From (2.8), we recall that the translation by 1 letter along S, is accomplished for
A¢ = 2m 7~ = 1.247. Assuming that the N = F; identical phason-flips are evenly
distributed, this translation by 1 letter is accomplished by F;A¢/2r = Fj 771 2 F;_4
phason-flips. This gives rise to the notion of ¢-driven fractional translation of #
per phason-flip, completing after a full period in ¢ a fractional translation by 7 = 1.62
letters. This underlying monotonicity may be depicted by plotting the spatial corre-
lation between the segment F r,(¢4), and some target structure such as ¥ 7 (¢ =m),
given by F ;J((ﬁ)? 7;(¢ = m) where the letters (A, B) are represented by (0,1) and
taking values between 0 and 1 (see figure 2.20 for the Fibonacci case and another

C&P slope example)

(a) (b)

I I 1
g B
kS k=
2 o
S 0.5 4 05+ -
= I
5 B
& 73
| | | 0 | | |
% o5 1 15 2 0 05 1 15 2
o/ o/m

Figure 2.20: (a) The spatial correlation between the segment ?89(@, and some
target structure such as ?89@5 = m), as a function of ¢. (b) the same plot for the
C&P slope 1/+/5.
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2.2.3 ¢-driven fractional inversion

Following the same logic as the concept of fractional translation, the equivalence
of each structural change to the inversion of an internal six-letter segment leads to
the notion of fractional inversion. in order to define the fractional inversion, let us
reuse the inverted chain F ~ (¢) defined in 2.1.9. The fractional inversion for the
chain F ~ (¢) with respect to some initial chain ¥ ~ (¢;) is defined in [0, 1] as

N-1

1
N Z Xj+1 (i) + xn—j (9,

=0

§(o, b4)

where the letters (A, B) are now represented by (—1,1). £(¢, ¢;) = 1 means full inver-
sion (?N (¢i) = %N (#)), and £(¢, ¢;) = 0 means no internal inversion (?N (¢i) =
—F n (¢)). It appears that for every value of ¢;, there exists a value of ¢ where

N (pi) = 7 ~ (¢) (see figure 2.20 for the Fibonacci case and another C&P slope
example). This understanding may lead us to the conjecture that the N Fibonacci
segments of the set {? N (gzb)} consist of V/2 different segments, and their fully in-
verted duplicates. This will be discussed in the following subsection. Moreover, the
condition £(¢, ¢;) = 0 appears to be unreachable. In the Fibonacci case, this fixed
plateau at 0.236 is very understandable through the substitution rules approach, as
“BB” doublets never occur and the “AA” doublet occurrence is 27~ — 1 = 0.236, see
(2.7). For the other C&P slope example we used, the plateau is not fixed, and the
correlation to occurrences is not that obvious at this stage.
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Figure 2.21: (a) The fractional inversion between the segment ?gg(cﬁ), and some
target structures such as ?89((15 = ¢p) in blue, and ?89@5 = ¢p + 0.47) in red as
a function of ¢. The lowest fractional inversion plateaus at the value of 0.236 =
27~1 — 1. (b) the same plot for the C&P slope 1//5.

2.2.4 The ¢-driven palindromicity cycle

The notion of fractional inversion, along with the combined description using the
characteristic function ¢ and its associated C&P interpretation allows to unveil a
structural symmetry cycle of quasiperiodic chains, namely their palindromic char-
acter (mirror symmetry). As noted in 2.1, sweeping ¢ over a period in (2.3), we
observe that any chain of length N becomes perfectly symmetric for two specific
values,

Gpat(N)=—(N + 2)77~ +m, (2.9)

where m € Z. We quantify deviations, or violation of this palindromic symmetry
using a structural parameter 7(¢), defined in [0, 1] by

N
1 T
N

IXj+1(0) — xn—j(®)], (2.10)
7=0
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where | Y31 | stands for the highest integer smaller than -, and the letters (A, B)
are represented by (—1,1). For the two specific values where the chain becomes
perfectly palindromic, we expect F N (Ppal) = F N (¢par)» which leads to 1(¢pq;) = 0,
while the value 7(¢,,) = 1 means the the segment is an anti-palindrome (? N (Pap) =
f?N (¢ap)). Monitoring 7(¢) through a full period of ¢ reveals a regular behav-
ior of the deviation from a perfect palindrome between the two points of perfect
palindromic symmetry. This palindromic cycle for 7(¢) is displayed in figure 2.22a.
It is therefore natural to set the origin of ¢ at the palindromic symmetry, i.e., to
redefine ¢ as ¢—pq(N) (see figure 2.22b). This cycle is a universal characteristic
of C&P systems, quasiperiodic and periodic alike, as may be seen in figure 2.23.
To conclude, starting from a naturally occurring palindromic Fibonacci segment, the
¢-driven phason-flips shown in figure 2.12 also drives the structure away from palin-
dromic symmetry, and than back towards a perfect palindrome in a 7-periodic cycle.
The observation of a ¢-driven w-periodic palindromic cycle is one of the main result
of this current work, and as we shall see in chapter 4, it underlies the topological

properties of quasiperiodic structures.
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Figure 2.23: Behavior of 7 (¢) ( for N = 89) for other C&P slopes. (a) 1 /\/5, (b)
2/m, and (c) 10/17.

In the Fibonacci case, the fixed plateau at 0.764 is again understandable through
the substitution rules approach, as “BB” doublets never occur and the “AA” doublet
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occurrence is 27~ — 1 = 0.236, see (2.7). For the other C&P slope example we used,
the plateau is still fixed, but the correlation to occurrences is not that obvious at this
stage.

A combination of the palindromic cycle and the existence of inverted struc-
ture pairs within one period of ¢, leads to the understanding that the N struc-
tures described by F N (¢ — ¢par) contains all the structural information in the band
0 < ¢ — ¢pay < 7, while the structures corresponding to 7 < ¢ — ¢, < 27 may be
generated fro the previous set by taking ¥ N (¢ — dpat) = ¥ N (27 — @ + dpar)-

We note here that although we have restricted ourselves to chains of length F;,
the palindromic cycle defined and observed above persists even for structures of
non-Fibonacci lengths. For instance, in figure 2.23, the deviation from a palindrome
is calculated for the length NV = 89, which is not a natural length for the chosen C&P
slopes. However, there exists a fundamental difference between the palindromic
cycle of the chain ¥ ~n (¢) with N = F;, and with N # F;. To understand this,
let’s review the palindromic properties of (2.3). Discarding the previous choices for
origin, the master characteristic function becomes

Xn (¢) = sign{[cos(2mnT~! + ¢) — cos T 1]}.

Examining the characteristic function for a given fixed ¢, we will now show that a

very long Fibonacci structure contains a series of palindromic symmetry poles cor-

responding to the Fibonacci numbers. The characteristic function itself is symmetric

(palindromic) around sites/interfaces where cos(2rn7—' + ¢) = +1, therefore,
2”pal(¢) ¢

4+ - =m; mé€EZ. (2011)
T T

However, for palindromic symmetry to occur in a physical structure, n,,(¢) may
only take integer (mid-site) or half integer (interface) values. Moreover, as 7 is
irrational, the palindromic condition involves both the structure length (determining
its center coordinate) and ¢. If we take ¢ = 0, we are left with

anal (¢ = O)
T

=m; m € 7.

The approximate solutions for this equation are npy (¢ = 0) ~ 2 = 3558%.. _

17,27.5,44.5..., or npq (¢ = 0) ~ F; = 34,55,89.... . This approximations hold as a
function of ¢ (F;) = mod(@, 1), with respect to the tolerance of the sign function of

a shifted cosine. In other words, these symmetry poles are locally palindromic, until
somewhere the symmetry breaks. This also means that the approximate separations
between palindromic symmetry poles are {F;}, {%} , {]:j + %} For a nonzero
value of ¢, with the appropriate winding number, (2.8) gives An(¢) = g—; Therefore,
the approximate solutions for (2.11) are 7,,(¢) =~ npa (6 = 0) + An(e).

Now if we take a finite size structure of a given length N, the picture is no longer
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approximate. If we define n..,,; = 232, there will always be two values of 0 < ¢ < 27
where the structure becomes a perfect palindrome

N+1
d)pal:— + +m; m € Z.
s T

CoS(2mNeensT * + bpat) = £1 =
This can be interpreted as follows: for any structure length there are two values
of ¢ which will translate it via (2.8) along S, so that its geometrical center will
coincide with a palindromic symmetry pole of a long enough palindrome. So, for a

general structure length N = F; + AN, the palindromic values of ¢ are

7:_f_7_;:_f_7+g(fj);g<<1, (2.12)

which is equivalent to keeping ¢ = 0 and translating the structure center along
Seo by An = —% — &N 4 L7 (F;). This result shows that the required value of ¢
makes the center of the structure coincide with a palindromic symmetry pole. It is
here where chains of length 7; differ from others. In the case AN = 0, the structure
edges (separated from the center by F;/2) are also located at palindromic symmetry
poles. However, if we choose a structure with non-Fibonacci length, the center slab
and the edge slabs are poles of different families. Therefore, a different value of ¢
is required to bring the structure to palindromic symmetry around the edges and
around the middle slab.

2.2.5 Generalization to 1D Aubry-Andre-Harper (AAH) model

The results given here for the C&P or the characteristic function approach are gen-
eralizable to Aubry-Andre-Harper (AAH) potential by simply dropping the sign|#|
function in (2.3) (see [ ] and also the green diamonds in figure 2.5¢). The AAH
potential is discrete, but it is composed of a continuous alphabet. Consequently, there
are no ¢-driven phason-flips, but a continuous change in the entire structure as a
function of ¢, and the discrete staircase dependence on ¢ shared by C&P structures
is replaced by continuous dependence (see figure 2.24a). The absence of phason
flips annuls the meaning of fractional inversion/translation. However, the deviation
from a palindrome 7(¢) may still be defined, and we observe that AAH structures
also experienced a 7-periodic palindromic cycle, with the same values of ¢,,. How-
ever, this time the cycle is without a plateau, as there is no meaning of words and
occurrences (see figure 2.24b). In chapter 4, we shall see that this result verifies
the topological equivalence between the Fibonacci and the AAH chains.
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Figure 2.24: The Aubry-Andre-Harper structure dependence on ¢. (a) An x-¢ col-
ormap of {AAﬁ N(¢)}, with N = 89 as a function of ¢. This time the colormap is

continuous in the interval [~1,1] — cos(77~!). (b) Behavior of 1 (¢ — ¢pa)-

2.3 Reciprocal space properties

Reciprocal space properties played a crucial historic role in the crystallography of
quasicrystals. The electron diffraction measurement yielding a reciprocal space sharp
diffraction pattern with a rotational symmetry which is irreconcilable with periodic-
ity | | has extended the formal definition of a crystal to include quasiperiodic
structures. In this section we will describe the reciprocal space properties of C&P
chains, and their connection to the spectral properties of the chains. These proper-
ties which are purely structural in origin will become instrumental in chapter 4 in
the understanding of the topological properties of quasiperiodic chains.

2.3.1 Bragg peaks analysis of 1D structures

The diffraction pattern of infinite C&P quasiperiodic chains shows a dense set of
Bragg peaks with their positions related by irrational numbers. In contrast to pe-
riodic crystals, where d integer indices are sufficient to characterize the diffraction
of a d dimensional structure, n integer indices (d < n) are required to generate
the diffraction vectors of quasiperiodic crystals | , | Except for the spe-
cial case of non-Pisot quasicrystals that will not be discussed here, the relation be-
tween measurable diffraction peaks and theoretical Bragg peaks are quite similar
between periodic and quasiperiodic structures. In 1D, the infinite chain (periodic
or quasiperiodic) possess Bragg peaks, but for finite systems (as all experimental
systems are) the diffraction spectrum contains sharp diffraction peaks which are
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related to the Bragg peaks of the infinite chain. The main difference in that sense
which sets quasiperiodic structures apart from periodic crystals is the large amount
of peaks, the variable intensity of the peaks, and the fact that in general the spatial
frequency of the diffraction peaks does not coincide with that of the infinite chain
Bragg peaks.

The diffraction spectrum of the infinite Fibonacci chain is composed of sharp
peaks, at the spatial frequencies given by

ky=p+qr? (2.13)

where 7 = (14 +/5)/2 is the golden mean, ans p, ¢ € Z. The locations and properties
of the diffraction peaks may be analyzed using the C&P | | and the C&P based
co-numbering | | approach, after proper normalization. Figure 2.25 shows a
numerical calculation of the diffraction pattern for Fibonacci chains of two lengths.
The prediction of (2.13) in determining the resonant spatial frequencies k, seem to
be a very good fit, rapidly improving as a function of structure length.

The reciprocal space viewpoint is important to this work because the generalized
Bloch theorem connects the Bragg peak spatial frequency and the spectral gaps
obtained by the interrogation of the structure by the scattering of waves. In chapter
4 this relation will become very useful in explaining the topological properties of
quasiperiodic structures, especially with regards to the question of their origin and
the role of true irrationality.

Diffraction intensity
=
W
I
[

(b) %[ N IR L |

sity

| | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
spatial frequency

Figure 2.25: The Diffraction pattern of a Fibonacci chains (generated by substitu-
tion/concatenation) S;o (a) and Si4(b), in blue solid lines. The spatial frequency
axis is normalized as described in chapter 4. Red dotted lines mark possible values
for the diffraction peaks k, predicted by (2.13).
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2.3.2 The role of irrationality in reciprocal space

A repeating question regarding the topological and other properties of quasiperiodic
structures is the following: if we are always dealing with a finite chain, then why
do we need to use an irrational C&P slope, and how does the properties of the finite
chain relate to those of the infinite chain.

From a purely structural point of view as developed here, we plot the diffraction
spectrum of a C&P structure as a function of the C&P slope in a colormap (see figure
2.26). This plot is identical to that of Wannier | | for the case of Bloch electrons
in magnetic field, where the spatial frequency is replaced by magnetic field, and the
C&P slope is replaced by the electron density. Following the analysis by Wannier,
we label the lines with the integers [¢, p|] such that each line equation is y = gz + p
with (x,y) corresponding to C&P slope and spatial frequency respectively. Figure
2.27 depicts some of those labels. In the Fibonacci case these labels correspond to
those of (2.13), as depicted in figure 2.28.

C&P slope
©
(o))

o
~

0 0.2 0.4 0.6 0.8 1
spatial frequency

Figure 2.26: A colormap depicting the diffraction spectrum such as presented in

figure 2.25 for multiple values of the C&P slope. The Fibonacci chain slope, 77! is

indicated by a red arrow.
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Figure 2.27: The same colormap as presented in figure 2.26, with inverted axes. The
labels [q, p] for several lines are indicated by white arrows.
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Figure 2.28: Top: the diffraction spectrum for the Fibonacci chain Si4 from figure
2.25. Bottom: A section of the colormap from figure 2.26 around the Fibonacci slope
7-1220.62 and the corresponding line labels [qg, p] as presented in figure 2.27. These
labels are now assigned to the diffraction peaks, and corroborate (2.13).

These relations and conclusions are deeply connected to the topological proper-
ties of quasiperiodic chains, and will be discussed in detail in chapter 4. For the time

45



being, just by analyzing this C&P Wannier diagram, we may say that the labels [q, p|
of (2.13) have a regular dependence on the C&P slope and nothing abrupt happens
at irrational slopes. The parameter which strongly depends on the slope is the num-
ber of diffraction peaks. We define the degree of irrationality of the C&P slope p’/¢’
by the length of the resulting unit cell, equivalent to p’ +¢' — 1 (see 2.1.8). For such
a slope, we find a maximum number of nonzero non-redundant values of diffraction
peaks k, to be ¢’ —1. As a trivial example, the simplest periodic structure “ABABAB...”
corresponds to the C&P slope p'/q’ = 1/2 yielding only one diffraction peak. A less
trivial example is the Fibonacci chain S, for which we have p’ /¢’ = 55/89, yielding
88 (at maximum) observable diffraction peaks. Therefore, C&P structures generated
by slopes of stronger irrationality and having the corresponding structure lengths,
will have a number of diffraction peaks which will grow as ¢’ — 1, and in the limit
of a truly irrational slope and an infinite chain we will have an infinite number of
peaks. The other side of this argument is that for a finite system, the labels of the
observable diffraction peaks are conserved as compared to the infinite chain, but

/
their spatial frequencies deviate from their infinite chain position by ¢ (7'_1 — 5;%) .

2.3.3 Generalization to the Aubry-Andre-Harper model

The results given in 2.3.2 for the C&P or the characteristic function approach are not
strictly generalizable to Aubry-Andre-Harper (AAH) potential obtainable by simply
dropping the sign|#] function in (2.3). The AAH potential is discrete and quasiperi-
odic when using an irrational argument, but it is composed of a continuous alphabet.
In this case, the maximum number of diffraction peaks for this structure is 2 (cor-
responding to a periodic structure). This behavior is depicted in a Wannier-like
diagram in figure 2.29a. However, using a recent proposal | | to smoothly mod-
ify the AAH model into its equivalent C&P model (using a smoothing parameter 3),
we see that the number of diffraction peaks gradually increases (shown in figure
2.29).
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Figure 2.29: The diagram in figure 2.26 redone for the Aubry-Andre-Harper (AAH)
model with the smooth transition parameter 3 (axes are omitted for clarity - they
are identical to those in figure 2.26). Panel (a) is for the true AAH model. Panels
(b)-(f) correspond to § = 0.3,1,2, 5,10 respectively.

47



48

Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G



Chapter 3

Spectral analysis of quasiperiodic
chains

In this chapter we develop methods, essential for the understanding of chapter 4.
The well known scattering matrix approach | | will be revisited, and presented
using specific notations which will become useful in chapter 4. The computerized
version of our scattering matrix method will be demonstrated for various families of
structures, finally focusing on the Fibonacci spectrum and its topological and other
properties. Additionally, we revisit the gap labeling theorem which assigns integer
topological labels to the spectral gaps. Finally, we discuss the concept of inducing
defect gap modes in any structure with a gaped spectrum, and develop a Fabry-Perot
cavity model to fully analyze such modes.

3.1 Tools and methods: Scattering analysis of 1D structures

3.1.1 Background

We now review the methods for studying wave propagation in one-dimensional
complex structures. Examples are presented for transport through finite-sized lay-
ered dielectric systems with periodic, quasi-periodic, fractal, disordered, and random
structure, to illustrate the effect of spatial structure upon the spectrum of modes as
well as the local mode intensity.

Both classical and quantum waves are highly sensitive probes of the details of
the physical and geometric structure of the medium in which they propagate. Pe-
riodic dielectric structures produce spectra with transmission bands, leading to the

remarkable physics of photonic band gaps | |- Other kinds of structures,
such as quasi-periodic | , , , | fractal, disordered or random
structures| , | lead to other distinct spectral features such as topological

features. Important questions include the frequency distribution of modes, as well
as their spatial localization and structure. We describe the density of states, the
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counting function (the integrated density of states), the transmission probability,
and also the local field amplitude and intensity, each of which has a direct physi-
cal meaning, and present a variety of results to illustrate the effect of the layered
structure type on the aforementioned physical quantities. This summary is intended
to highlight the adaptation preformed to this very well known method | |- and
also to introduce the notations which will be helpful in the next chapters.

3.1.2 Wave equations

The general aspects of coherent propagation are common to a wide variety of waves
which propagate in scattering media. This notwithstanding, each type of wave ex-
hibits its own characteristic behavior. We now present several examples of wave
equations, and we study two important classes in greater detail: the Helmholtz equa-
tion, which describes scalar wave propagation suited for electromagnetic TE or TM
modes propagating in a dielectric, and the Schrodinger equation associated with a
non interacting electron gas (weakly disordered metals or semiconductors).

Helmholtz equation

The case of electromagnetic waves is special, for several reasons. It is probably
one of the earliest examples where changes in wave phase coherence due to pas-
sage through a random medium was examined. In the beginning of the twentieth
century, very precise studies were carried out on electromagnetic wave propagation
through diffusive media, specifically the atmosphere. From a conceptual viewpoint,
this problem stimulated the community working in the theory of probability, who
regarded it as a new field for the application of methods developed for the study of
Brownian motion. For the atmosphere, the description in terms of a static disordered
medium is not appropriate. For many other cases, however, the description in terms
of static disorder described by a time-independent potential works well, and it is this
case that we consider here.

For a TE mode propagating in the x direction along a medium with spatially
varying dielectric function ¢(z), Maxwell’s equations for the electromagnetic field
amplitudes, E, = ¢(z)e~™! and H, = x(z)e~ !, become two coupled equations

d
7:”{:0)( ) 7X_Zk0 @T/J;

dr €
where ky = Tw/c, namely for an average dielectric of refractive index @ = /€/¢

and average dielectric constant ¢ (See for instance [ ]) This reduces to a scalar
Helmholtz equation for ¢ (x),



e(x)

where v(z) = & — 1 = n?(z) — 1, with refractive index n(z).

Schrodinger equation

The Schrodinger wave equation for a particle of mass m in a one dimensional po-
tential V' (z) also has a Helmholtz-like form

P dy
2m dz?

+ V(x)yp = Ey(x).

This can be formally written as H ¢ = k?1).

The two examples we have discussed are not the only ones to exhibit effects
related to coherent propagation in complex media. In fact, these effects are com-
mon to all wave phenomena (quantum, optical, hydrodynamic, etc), independent
of dispersion relation and space dimension, provided that there are no nonlinear
effects. Indeed, these may hide complexity effects. Moreover, nonlinear equations
often have special solutions (solitons, vortices,...) whose stability is ensured by a
topological constraint which is very difficult to destabilize by means of a disordered
potential. The competitive role of disorder and non-linearity is important but is still
relatively poorly understood .

3.1.3 Scattering matrix formalism

Propagation through a one-dimensional structure can be described by a scattering
matrix, or S-matrix, S(k), relating incoming and outgoing amplitudes of propagating
plane waves of wave vector k = w/c (see figure 3.1a) . Excellent pedagogical
discussions, particularly for one-dimensional systems, can be found in | , |-
The scattering S matrix is defined as

(D)) s () e

The transmission and reflection amplitudes, ¢t =|t|e!%, 7 = ]r\eﬁ, and ¥ = ]r\ei?
are marked by arrows corresponding to left or right incoming waves in the two
experiments represented on figure 3.1b. We consider the system to be invariant
under time reversal, so that the matrix S is symmetric. Furthermore, it is unitary
(8! = St) as a consequence of conservation of probability (for the Schrédinger
equation), or of the intensity of the field (for the Helmholtz equation). This leads
to the set of relations

TP+ =1
P2+t = 1 (3.2)
e = 0.
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Figure 3.1: The scattering problem. (a) A sketch for the notations of incoming
and outgoing waves. (b) The amplitude notations for two possible experiments:
incoming waves from the right or from the left.

The scattering matrix, therefore, contain two magnitudes and three phases. Equation

(3.2) implies that detS = 7% —t2 = —t/t*. Since S is unitary, it can be diagonalized
by a unitary transformation into the diagonal form containing only two independent

ei®1 0
( 0 it ) (3.3)

Defining the total phase shift, 6(k) = (®1(k) + ®2(k))/2, we then have

phases

det S(k) = e*0) = —ti* . (3.4)

From the definition of the phase of the transmission amplitude, ¢ = |t|e’%, and from
(3.4), we obtain the relation §(k) = 6;(k) +n/2. A simple and elegant relation exists
between the phase shift §(k) and the change of density of states p(k), such that

p(k) — pO(k) = —Im% Indet S(k), (3.5)

where pg(k) is the density of states for the free system, namely with zero potential
for the Schrodinger equation, or €(z) = ¢ for the Helmholtz equation.

The source of scattering in either Schrodinger (or Helmholtz) equation is the
varying potential V() (or the varying refractive index n(x)). Should it vanish (the
free space case), the S-matrlx reduces to the identity. Now assume that the potential
decreases fast enough so that we can enclose the scattering system inside a region
of size L, much larger than the support of the scattering potential (as some sort
of “black box”). We then apply periodic boundary conditions, ¢(0) = (L) and
Y'(0) = ¢'(L), at the boundary of the large box, noting that for large enough L, the
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physics is independent of the precise boundary conditions. For large enough L, we
have

1/}(0) = 1/}<L) = i, +or = ORe’ikL + Z-ReiikL
WO0) =y (L) = k(i —or) = ik(oge™" — ige T

These algebraic relations may be written as a spectral condition

det(l—eikL<0 1>S(k)> = 0.
10

Solving for S, leads to the following relation between the total phase shift and the
possible wave vectors

(3.6)

Noting that kf@O)(L) = mn/2L are the eigenmodes in the absence of scattering poten-
tial, namely for §(k) = 0, we can rewrite (3.6) for two consecutive values of n under
the form,

dé(k)\
(kin+1 — k‘n) <L + dk‘) =T
Defining the density of states, or density of modes (DOM) as p(k) = 1/(kny1 — kn)
leads to (3.5)

1 di(k)
p(k) = po(k) = oL dk

For the integrated density of states (of modes), also known as the counting
function, N'(k) = [ ¥ p(K')dK', we obtain

§(k) = TLAN (k) = nL (N (k) — Ny(k)), (3.7)

which relates the total phase shift of the S-matrix, and equivalently the transmitted
phase shift, to an important spectral quantity. Both (3.5) and (3.7) are rather
remarkable (and well-known) results since they express the fact that a measurement
of the scattering data from a black box allows one to retrieve its spectral information
provided it is coupled to the external environment. This is the strength of the
scattering approach.
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3.1.4 Transfer matrix formalism

In the previous paragraph, we have advocated the description of wave propagation in
complex systems using the S-matrix. It relates outgoing to incoming amplitudes in a
unitary way, and provides a number of elegant expressions for spectral and transport
quantities. However, in certain situations, such as for transport in one-dimensional
problems, the transfer matrix formalism offers computational advantages. For ex-
ample, in layered systems it is useful to take advantage of the propagation of an
incoming wave along a given fixed direction using the multiplicative property of the
transfer matrix. To see how this works, we rewrite (3.1) in an equivalent form, now
relating left-bound and right-bound amplitudes, instead of incoming and outgoing
amplitudes (see figure 3.1)

D) ) e

which defines the transfer matrix M. Note that det M = 1.

Remark: A great asset of the S-matrix and M-matrix formulations is that they
are very general and they do not require to specify a wave equation or any lo-
cal properties such as group velocity, dispersion at least until some more specific
calculations.

The main advantage of the transfer matrix description over the algebraically
related S-matrix is that it allows to computerize the calculation of the total trans-
fer M matrix for many complex structures such as the cases of a one-dimensional
periodic, quasi-periodic, fractal-like and random. This results from the multiplica-
tion structure, i.e. a piecewise-constant stratified structure | |- although the
method can serve as an approximation for any dielectric stratified medium with
€ =¢(z) ,u = p(z). The transfer matrix can be viewed as a mapping transforming
the wave after it passes through each scatterer (interface conditions) or layer (phase
accumulation).

The implementation of the method in the case of the propagation of electro-
magnetic waves in one-dimensional (1D) waveguide structures built out of complex
media is described as follows. We first reiterate the basic equations and then consider
specific cases of layered dielectric media: free space, Fabry-Perot structure, periodic
structures (photonic crystals), random systems and single impurity. Finally, we dis-
cuss in more detail the case of a Fibonacci potential. In all these cases, we obtain
spectral quantities (transmission, counting function and density of modes) and the
steady state (stationary) local structure of the electric field.

The use of the transfer matrix method for solving Maxwell equations in photonic
systems essentially converts them into a set of finite difference equations in real space
and then rearranges those equations into the form of a transfer matrix | |- The
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general solution for the transverse electric (T'E) electric field E, propagating along
the z-direction in a 1D structure is obtained from the solution of the wave equation
c20’E, — 0?E, = 0. Tt takes the form

E, (th) _ E£—>) (ZO) ei(kz(z)z—wt) + Eg(g(—) (ZO) ei(—kz(z)z—wt)’

where ES) (z0) and foIS (z0) denote right-bound (—) and left-bound («+—) waves
steady-state amplitudes evaluated at the origin z; of the structure. Setting k(z) =

n (z) k, we can write for a monochromatic wave of frequency w,

B, (z) = B{7) (29) €)% 4 B (z9) e7(2)2, (3.9)

(=) (=)
E; - E;
( o) ) =M ( B > , (3.10)
Zend 20

where zq and z,,,4 are the coordinates of the two outer boundaries of the structure. In

Using (3.8), we obtain

non-absorbing dielectric structures considered here, conservation of energy implies
that M is a unitary 2 x 2 complex valued matrix of unity determinant. In a layered

structure zp < 21 < --- < 2zeng» and denoting M, ..., the transfer matrix associated

41
to a layer, we have a general multiplication scheme

M,~.,.=M

Zend—1"Zend

MZ14)Z2 MZO*}ZI .

For practical purposes we use a scheme which is a bit more intricate. Namely, each
M., ., , appears as a product of sub-matrices responsible either for the crossing of
an interface between two adjacent dielectrics or for the free propagation through a
homogeneous dielectric slab. Also, we will now restrict ourselves to the more specific
case of a binary layered structure built out of N slabs of two types of dielectrics A
and B, where n4 p are the respective refractive indices in type A and B slabs of
respective corresponding thicknesses d4 g. The dielectric contrast, describing the
modulation strength and defined as (nxigh — Niow) /Mow- The notations for this case
are given in figures 3.2 and 3.3. The solution for the electric field in a single slab
of type A or B can be written as

Eap = E\ jemashs 4 Bl )e-inanks (3.11)
where E,(:B) and ES_B) are the right-bound and left-bound electric fields evaluated at

the left boundary of slab A, B.

Remark: As stated in the before, the M (or S)-matrix formalism does not re-
quire precise knowledge of a local wave equation inside the structure and can be
formulated without the input of a local group velocity (even when ill-defined in the
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Figure 3.2: Setup and wave propagation notations for the dielectric scattering ge-
ometry problem. {ir,or} = {E(L_’),Eg_)} denote the electric field amplitudes
of incoming and outgoing waves at the left boundary, respectively. Similarly,
{ir,or} = {Eg_), E}(;})} are defined outside the right structure boundary.

present case due to the discontinuity of the refractive index in the layered structure).
But at some point the writing of relations (3.9) and (3.11) rely on the definition
of a wave vector and a group velocity : here we assume free propagation in each
individual slab.

An interface I = A +» B between adjacent slabs A and B is defined in figure 3.3.
The boundary conditions at a dielectric interface are imposed through continuity

relations
(=) )] _ =) (+)
Ey + B = FEg A By (3.12)
and
n <EH) + E(“)) —n (EH) + E(“))‘ (3.13)
A\ 7A A )| B\*B B J|5- :

The phase accumulation which accounts for free propagation through a slab A or B
is

(=) _ (=) ina pda Bk _ (=) 0A
EA*),B—) - EA(—,BHB BEAE = EA%,Bee B

(<) _ (&) —ina pda pk — (+) —id 4
EA—>,B—> - EA<—,B<—6 S EA<—,B<—€ 7,

where we have defined,

o4 =nadak , 0 = npdgk. (3.14)

It is convenient to set the layer thickness so that nqsd4s = npdp which leads to
04 =0p =9.

Remark: All scattering matrix based plots in this chapter and on have the same
x-axis: §/m = ndk = 2nd/\. For simplicity, the axis title is given as k.
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Figure 3.3: Setup of notations for the continuity relations at an interface BA or BA
(a), and for the free propagation through a slab A or B (b).

The next step is the change of variables

(+)  — p) (=)
Eyp =E p+Eyp (3.15)
(=) () (=) ’
EA,B =1 (EA,B - EA,B) )
The continuity equations (3.12) and (3.13) can then be rewritten as
(+) _ )
Ey s I = EB,A‘I
+- +- (3.16)
) _nBa (=)
AB|p, nas CAB|;

This leads to the definition of four sum transfer matrices defined by the two sets of
relations,

T ( EH) )
= 1AB _
I+ B B

I-

and

( E®) ) 7, ( E) )
B0 ) B0 )
< EM) ) 7 ( EM) ) |
E) b E) B
Now, with the aid of (3.14) and (3.15), we obtain four real valued matrices

1 0 . 1 0 .
TAB:<0 nB>:TBA?TBA:<o m)ZTAB’

nA nB

and
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T [ cosdap) —sindym
AB) sindyp)y €OSda(R) ’

so that the total transfer matrix M, n of N dielectric slabs is

( B ) M ( B ) (3.17)
_ = Mn B . .
EC) N EG) .

To illustrate the efficiency of this systematic approach to the calculation of My as a
product of an appropriate sequence of the four sub-matrices, we consider the matrix
M; describing the Fibonacci chain S5 inserted between infinite slabs of type A (to
preserve unitarity) as

Ms([A] [ABAABABA|[A]) = TATABTBTBATATABTBTBATATATABTBTBAT A

Once the transfer matrix is obtained, the next step is to find the scattering matrix.
One way is to use the algebraic transformation between the matrices.

3.1.5 Scattering and transfer matrix calculations

The spectral numeric calculations in the current work begins by simply obtaining the
S-matrix components, {t, 7, ¥}, directly from the M-matrix. We consider the two
experiments schemes in figure 3.1b, and write the corresponding version of (3.17)
such that

B =1
E(Y) =t (k) t — 741
, = M, : 3.18
BT =7 (k) —it AT - 1) (3.18)
E{) =0
and
EM™ =1
(R) _ 4 —
Ey =7 (k 1+ —~ t
Ny AN o | =Mu| . (3.19)
Ey7 =t(k) i(1="r) it
EP =1

From these expressions, we directly calculate the amplitudes {¢, 7, %} (magni-
tude and phase), and from them, deduce the transmission and reflection coefficients
T (k) and R (k), the density of modes p (k) and the counting function N (k).

* Transmission and reflection spectra

The transmission and reflection spectra are calculated for the case in (3.18) or
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(3.19), so that the spectra are normalized by the incoming plane wave electric field
amplitude. The final expressions are

TEK =tk = —2L
(k) = |t (k)] ETIRE (3.20)
2 | Meorth)|=2 _ 3.20

R(k) = |7 (k)] =7 (k - =
( ) ‘ ( )‘ ‘ ( )‘ ||Mtot(k)||2+2
—~ 12 — — — — — —~
where HMH = M{ + ME + M3, + M3, and M = [M,;].
* Density of modes spectrum calculation

The density of modes (DOM), p (k), can now be calculated from either the scattering
or transfer matrix, utilizing the total phase shift (k) or the phase of the transmitted
amplitude 6, (k). For a 1D system of length L, the normalized DOM given by (3.5)
is p(k) = %deél(f) = %%(,f). The normalization with the length L is convenient as it
keeps the DOM of a free system equal to one, and simplifies the evaluation of the

relative enhancement of p (k) for a structured system compared to a free one. This
normalization also allows, in the case of aperiodic inhomogeneous systems, to give a
meaning to otherwise ill defined quantities such as the effective group velocity and
wave vector. The calculation of p (k) using either scattering or transfer matrices is
thus based on,

p (k) = +Im & Indet S(k)
(k) = %d@t(k) _ 1y (R)z(k)—a'(k)y(k)
t

dk — L 22(k)1y2(k)
(k) = 2 (k) + iy (k)

* Integrated density of modes (counting function) calculation

The integrated density of modes, also normalized by 1/L, and following the very
same relations may be calculated as

{N@—émmmam
N (k) = 27 (6,(k) +7/2)

* Amplitude of the local electric field

The electric field amplitude and intensity k£ — z maps are obtained by calculating
E* (k) for each z coordinate inside the structure, using two transfer matrices instead
of one: the total transfer matrix J\Zot, and the partial transfer matrix from the left
end to the point of interest ]\Af] We now describe the calculation for the case of
incoming waves from the left and also for a combination. An equivalent process
may be repeated for incoming waves from the right. Firstly, 77 and ¢ are calculated
as before using M. Then, we can simply use ]\A/.I'/J to calculate the field and intensity
in slab j using
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E) — [ 7+1
(E(—) >j:Mj<z‘(7>—1)>

E}wt — Re [E]Jr} , E;nv — E;r‘ (321)

2 2
net __ net env __ env
et = |Bpet| 1o = |

The net electric amplitude at a point z, is the coherent amplitude sum of multiply
reflected right-bound and left-bound waves, incorporating interference effects inside
the system. This process is repeated for all j in order to create the full electric field
E"™ (k, z) and intensity distribution 1" (k, z) maps which depend on the incoming
wave phase. The phase independent, or envelope spatial distribution is given by
E“™ (w, z) and I°" (k, z) maps.

3.1.6 Scattering computer code properties

A straightforward Matlab computer code has been developed in order to perform the
numerical scattering calculations throughout this manuscript. Here we describe the
general algorithm, and the few nontrivial points to concentrate upon.

The input to the code is any binary structure, generated by any method of choice,
and the two refractive index values {n4,np} (which defines the contrast). The code
then performs the following actions:

1. Calculates the real matrices T4yg and T4 for later use.

2. Fits the proper slab thickness so that n ds = npdp.

3. Creates the z—axis describing the coordinate of interfaces along the structure.
4. Creates the wave-number sampling grid 0 < 0 (k) = knada = knpdp < .

5. Calculates the real matrices 74 (§) = T (9) for later use.

6. Calculates the real matrix M;,; (6) using the input structure and the appropriate
multiplication of T4p, Tpa, Ta, TB.

7. Calculates the complex scattering amplitudes ¢ (5) , 7 (8) , r/(9).

8. Calculates the real matrix J\A/f] () using the input structure (slabs 1 till j) and
the appropriate multiplication of Tap, Tpa, T4, TB.

9. Calculates the spatial behavior of the electric field amplitude and intensity

within the structure.
Some nontrivial points important to realize such code:

1. In the calculation of the counting function, care should be taken when unwrap-
ping the numerical data of the reflected phase shift to avoid artifacts.
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Figure 3.4: The normalized density of modes (left part) and the transmission spec-
trum (right part), for free space (no scattering structure).

2. The spectrum of many structures contains very sharp, high quality factor modes
accompanied with an extremely large density of modes with a very narrow
bandwidth. Examples are band edge modes in photonic crystals, defect/boundary
modes in photonic crystals and quasicrystals, and Anderson localized modes in
disordered structures (see figures 3.10, 3.11, 3.15, 3.18, 3.20, 3.25, and 3.26).
This fact forces the user to make a very fine wave-number sampling grid to ac-
commodate such modes which is very costly in terms of computational power.
We advocate the use of an adaptive grid rather than a fixed one, which turns
out to be crucial in some structural schemes.

3. In spectra which contain transmission band gaps, the calculation of the trans-
mitted amplitude and of the electric field spatial behavior within a gap may
suffer from numerical instability. In this case the transfer matrix elements
become extremely large and prone to error as some calculation calls for the
difference between two large numbers. Apart from standard floating point and
normalization methods, we advocate the calculation of the inverse transfer ma-
trix instead of the “straight” one, so now the electric field amplitude within
the gaps are exponentially magnified through the transfer sub-matrices multi-
plication and then renormalized, in contrast to the exponential decay in the
electric field amplitudes which is numerically unstable.

4. The spatial resolution in the calculation of the electric field spatial behavior can
be greatly enhanced to account for intra-slab behavior by a simple numerical
subdivisions (pixelization) of the slabs.

5. High resolution spatial data is costly in terms of memory. It is better to record
only the electric amplitudes at the left interface of each slab, and redo the
phase accumulation calculations on demand starting from this record.

3.1.7 TIllustrative Examples of Layered Systems: Free space

In this illustration, the entire structure is composed of type A slabs. The transmission
spectrum and the normalized density of modes are shown in figure 3.4. As expected,
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Figure 3.5: Left panel : the electric field amplitude ¥ — 2 map for free space.
Right panel: a cross section of the map along the entire stack at a single frequency
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Figure 3.6: The normalized density of modes (left part) and the transmission spec-
trum (right part), for a Fabry-Perot resonator.

both quantities are equal to one and independent of k. The electric field amplitude
map is displayed in figure 3.5. The map shows the fundamental sinusoidal oscilla-
tions of the traveling plane wave, as seen in the cross section of the map on the right
part of the figure.

3.1.8 Illustrative Examples of Layered Systems: Fabry-Perot structure

The all dielectric Fabry-Perot resonator is realized here by placing two type B slabs
separated by several type A slabs, and for illustration we have chosen the refractive
index np to be three times larger than n4. The transmission spectrum and the
normalized density of modes are presented in figure 3.6.

Although this simple realization serves as a poor resonator, transmission peaks
and dips are distributed according to the Fabry-Perot resonance condition % =
m, where m = 0,1,2.... The density of modes is enhanced above the free one at
resonances and attenuated off-resonance. This is, of course, due to interference
effects inside the resonator as displayed by the corresponding electric amplitude
map in figure 3.7.

The electric field amplitude map is identical to the free space map with the
additional “selection rules” for the Fabry-Perot cavity (“allowed” and "forbidden”
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Figure 3.7: Left panel : the electric field amplitude map for a Fabry-Perot resonator.
Right panel: a cross-section of the map along the entire stack at a frequency of an
allowed mode (2L = 6) ) in blue and of a forbidden mode (2L = 7.5) ) in red.

modes). The two different cross sections of the map shown in the right part of
figure 3.7 make clear the strong destructive interference effects taking place in off-
resonance frequencies inside the structure.

3.1.9 Illustrative Examples of Layered Systems: Periodic structure - pho-
tonic crystal

In recent years, light propagation in periodic dielectric media such as photonic crys-
tals has attracted attention due to their novel physics as well as light-guiding ap-
plications. Compared to homogeneous media, the new property of periodic media
is the existence of band-gaps inside Bloch bands, where linear light propagation is
forbidden due to interference (see | D-

The transfer matrix formalism is particularly convenient to study the case of a
periodic layered system. In this case, the calculation of the total transfer matrix
(Mo (k)™ for a sequence of N slabs, simplifies considerably thanks to the Cayley-
Hamilton theorem which states that for unimodular matrices,

M? — (TrM) M + 1 = 0.

This allows to easily obtain in a recursive way, powers M" of the transfer matrix

M"(k) = Uy—1(cos )M (k) — Uy,—_2(cosb), (3.22)
where U, (cosf) = Singﬁfel)e are the Chebychev polynomials of the second kind. A

direct calculation shows that

TrM"™ = cosnf(k) = T, (cosb),

where T),(cos @) are the Chebychev polynomials of the first kind. It is also straight-
forward to obtain the expression of the transmission coefficient Ty = |tx|? for a
Bragg system made of NV identical layers each described by the same transfer matrix
M. From (3.22), we have the expression of M*, which by definition is of the form
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Figure 3.8: Periodic Bragg system of 10 unit cells. The band structure is calculated

using both the Chebychev polynomials (3.23) and via the transfer matrix numeric
approach (3.18). Right part is a close up on the long wavelength band edge mode.

(3.8), namely,

1 Un-1
— = —Un_
i 0 N—2
N 1

N D gy

in » N-1
2 2

Since det MY = 1, then ’ti‘ —‘@‘ =1, so that
N N
Tv = |tn]2 = = L g (3.23)
1+ e 2( sin 0 )

where the calculation for 771 ¢; can be performed using Fresnel equations. This
analytic method, and also the straightforward numeric algorithm equivalently obtain
the well known Bragg spectrum with transmission bands and band gaps (see figure
3.8 for a comparison).

Remark

Note that this analytic solution in (3.23) is specific to the periodic case and although
some generalizations exist, it can hardly be generalized to other more complex struc-
tures which are our main interest, and for which the only the general relations must
be used to obtain the spectrum.

The dielectric photonic crystal analyzed from here forth is composed of alternat-
ing type A and B slabs with 20 unit cells [AB|. The refractive index is chosen to be
ng = %n A- The transmission spectrum for this 40 slab photonic crystal is shown
in Figure 3.9. The periodicity gives rise to transmission bands and photonic band
gaps centered at the % condition, as expected. A closer look at the transmission and
the density of modes spectrum near the first stop band is depicted in figure 3.10 for
transmission and figure 3.11 for the density of modes.

The sharp band edge modes with a 50-fold enhancement in the DOM compared
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Figure 3.9: The transmission spectrum for a 40 slab long photonic crystal whose
structure is illustrated in the inset.

Figure 3.10: The transmission spectrum for a 40 slab photonic crystal. The figure
on the right shows a close-up on the long wavelength band edge mode.

to a free system is observed. The number of resonant modes corresponds to the
number of unit cells.

The electric field amplitude map corresponding to this photonic crystal is dis-
played in figure 3.12, as well as a close up look at the band edge modes. Figure 3.12
shows that the band edge modes also have an enhanced electric field distribution
peaks - up to 12 times that of the incoming field, due to constructive interference
effects and transient energy buildup. It is also visible that while the electric field
"hot-spots” in the long wavelength band edge mode tends to be located in one type
of slab, it tends to be located in the other type for the short wavelength band edge
mode. This feature is presented more clearly in figure 3.13.
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Figure 3.11: The normalized density of modes spectrum for a 40 slab photonic
crystal. The figure on the right shows a close-up on the long wavelength band edge
mode.
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Figure 3.12: The electric field amplitude ¥ —z map for a 40 slab photonic crystal.
Spatial boundaries of each slab are indicated by dashed gray lines. Bottom figures
are a close-up on the long (bottom left figure) and short (bottom right figure) band
edge modes.
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Figure 3.13: The electric field amplitude cross section for the long and short wave-

length band edge modes in a 40 slabs photonic crystal. Electric field of the short
and long wavelength modes concentrate on different slab types.
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Figure 3.14: The normalized density of modes (left part) and the transmission
spectrum (right part), for a weakly disordered structure.
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Figure 3.15: The normalized density of modes (left part) and the transmission
spectrum (right part), for a strongly disordered structure.

3.1.10 TIllustrative Examples of Layered Systems: Random structure

Disordered layered structures have been studied in very great details as a successful
and easy to implement model for 1D realization of Anderson localization | ,

, | (and references therein) and other related complex systems. It would
be a hopeless task to list all relevant works here.

In accordance with our binary layered structure model, the dielectric random
system is generated here by a random "coin flip” sequence of type A and B slabs.
This process can be easily done with any random number generator, and repeated to
create an ensemble of disorder realizations of each structure in study. The strength
of the disorder in 1D chains depends on the localization length as compared to the
structure length. Calculating for a 55 slabs long structure, we have obtain a weakly
disordered random chain by setting the refractive index np to be 10% higher than
n4. For a strongly disordered random system, the refractive index contrast was set
to np = 2n4. The transmission spectrum and the normalized density of modes for a
weakly disordered structure is displayed in figure 3.14.

It can be seen in the right part of figure 3.14 that a weak disorder can attenuate
the transmission spectrum significantly, but as seen in the left part of the figure,
the density of modes is not much affected by this disorder. Figure 3.16a shows
that in the case of weak disorder, the modes are smeared spatially and the spatial
distribution of electric field extends to the edges of the stack, i.e. there are no
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Figure 3.16: The electric amplitude map for disordered structures. (a) a weakly
disordered structure. (b)-(d) a strongly disordered structure, with increasing close-
up view of a resonant mode.

localized modes - the localization length in this case is greater than the total length
of the structure. The transmission spectrum and the normalized density of modes
for strong disorder is shown in figure 3.15. In contrast to the previous case of weak
disorder, the transmission for strong disorder is inhibited for all frequencies except
for a set of a realization dependent discretely distributed modes. The density of
modes shows the same discrete resonant frequency pattern together with a significant
enhancement of the DOM compared to a free system. The electric field amplitude
map for strongly disordered structures in figures 3.16b-d shows that the electric field
amplitude map displays vanishingly small values for all frequencies except for some
high transmission, high DOM spectrally isolated modes. These modes are spatially
localized with a localization length smaller than the structure length (localization
length appears to be here about 5% of the structure length). The electric field
amplitude is greatly enhanced in the resonant modes - about 70 times that of the
incoming wave - also due to constructive interference and transient energy buildup.

3.1.11 Illustrative Examples of Layered Systems: Aperiodic structures - “Frac-
tal” Cantor set structure

The triadic Cantor set is fractal structure, generated by the removal of the middle
third of a finite interval, and then repeating this action on each remaining line
ad infinitum. The meaning of the term fractal is related to the definition of self-
similarity or discrete dilational (scaling) symmetry. If we write the general scaling
law for the 1D “mass” within a given length, m(Ax), namely
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Figure 3.18: The normalized DOM (left part) and the transmission spectrum (right
part), for the 4th generation triadic Cantor set structure with ng = 1.5n.4.

m(bPAzx) = aPm(Ax), (3.24)

we find this scaling is correct for the Cantor set only for b = 3 and a = 2, showing
that this scaling symmetry is discrete and not continuous. The general solution in

this case is

m(Az) = (Az)m¥"°F (In Az/ Inb)
F(X+1)=F(X), (3.25)

where F is a periodic function of period 1. For the triadic Cantor set we expect
the mass as a function of length to behave as a power law with a fractional power,
Ina/Inb = 0.631, along with a log periodic oscillation which is the fractal fingerprint.

A finite iteration of the Cantor set structure is realized here by arranging type
A and type B slabs according to the triadic Cantor sequence (see figure 3.17). The
refractive indices are set here such that ng to be 50% larger than n 4. The transmis-
sion spectrum and the normalized density of modes for a 4th generation Cantor set
structure is shown in figure 3.18. Similar to the random structures, this structure
exhibits a gaped energy spectrum with jagged discrete resonant modes accompanied
by a DOM enhancement. A close up look at the transmission curve of one of these
modes, and the electric field intensity map for the same mode is given in figure 3.19.

Figure 3.19 shows that as in the random structure spectrum, the resonant modes
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Figure 3.19: A close-up on the transmission curve (left) and electric Oeld intensity
map (right) for a resonant mode in figure 3.18.

in a Cantor set structure are isolated spectrally, and localized spatially. However,
the spatial localization in the Cantor case is geometric in nature - the electric field
spatial distribution is enclosed in the middle third of the structure, while the smaller
Cantor motifs at both sides serve as dielectric mirrors (just like the Fabry-Perot
resonances discussed above). This view of a Fabry-Perot resonances in a cavity
delimited by aperiodic mirrors will be discussed in 3.3 as it is instrumental for some
of the findings to be described in chapter 4.

3.1.12 TIllustrative Examples of Layered Systems: Aperiodic structures - the
Fibonacci quasiperiodic structure

The Fibonacci quasiperiodic structure has been defined and discussed at length in
chapter 2. Following through with the scattering approach for the chain S, setting
the refractive indices to be np = 1.5n 4, the transmission spectrum and the normal-
ized density of modes spectrum are shown in figure 3.20. The spectrum shows two
distinct band gaps, and some spectrally isolated band-edge modes with enhanced
DOM, arranged according to a self-similar “fractal like” structure. Note that the
DOM does not obey an exact self-similarity, but only an approximate one. However,
it has been established | | that the energy spectrum of an infinitely long Fi-
bonacci structure is multi-fractal from the Cantor set family (see figure 3.17). This
type of spectrum is called singular-continuous, and the number of spectral gaps is
infinite. To explore this self similarity in a finite chain, we consider the transmission
spectrum for two different generations of the structure. The spectra are depicted in
figure 3.21.

The similarity between the middle section of the transmission spectra for different
Fibonacci structure can be seen in the close up figures (the middle spectral feature
is the same for very different bandwidths). This result initially obtained in | |
is reproduced here. Another way to observe the same property is the counting
function, NV (k), shown in figure 3.22. The gaps appear as plateaus and the modes
contribute to the staircase. Zooming in on the spectrum results in a discrete self-
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Figure 3.20: The normalized density of modes (left part) and the transmission
spectrum (right part), for the Fibonacci chain Sy.
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Figure 3.21: Transmission spectrum and stack structure for Sy (a) .and S;,. Struc-
tures are illustrated above the spectra. The self similarity of the spectra is evident
in the close-up on the middle part of the two spectra.
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similarity. However, in the previous paragraph regarding the spatially fractal Cantor
set, a quantitative measure of self similarity and fractality has been demonstrated
in (3.24) and (3.25). A similar argument applies here as well, with the counting
function replacing mass, and wave-number k replacing the length, namely,

k+Ak
N(PAK) = aPN(Ak); N(Ak) = / (k) (3.26)
k

which results in a scaling law with a corresponding power law behavior and log-
periodic oscillation,

N(Ak) = (Ak)Pe/NOF (In Ak/Inb)
F(X+1)=F(X), (3.27)

where F is a periodic function of period 1. Figure 3.23 shows a numerical calculation
of N'(Ak) [Gur], for a Fibonacci chain of ~ 2000 letters. This calculation has shown
that even for a “finite iteration”, the fractal fingerprints are observable. However
this lies outside the scope of this thesis.

The electric intensity map for the Fibonacci chain Ss, and a close up look at
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Figure 3.23: (a) Density of modes spectrum and stack structure for Sis. (b) A
numerical of the quantity AV'(Ak) in (3.27) .

some interesting modes is shown in figure 3.24. The plots show that the electric
field intensity is vanishingly small for almost all frequencies except for some discrete
modes. For some of these modes the electric intensity spatial distribution is localized
and (surprisingly) symmetric around the middle of the stack, and self similar and
resembling the Cantor set structure. The reason for the symmetry is believed to be
the almost palindromic nature of the Fibonacci sequence | |- This somewhat odd
electric field spatial structure is probed due to the enhanced intra-slab resolution of
the calculation. Here too there is a strong enhancement of the electric field amplitude
in the band edge modes - up to 60 times that of the incoming field.

0 70
250
10 800 60 150C
1500 200 g
50
o 600
150 40 100C
lOOO 60
400 100 30
40 b0
b0 | 200 50 10
0

1 0. 3228 0 325 0 488 0. >07 0. 67>

—_
(=l
(=)

Slab No.

—
W
S

o
o
]

(=)
(=]
w

Figure 3.24: The electric field intensity map for the Fibonacci chain Sg. Left- full
spectrum. Other plots: close up zoom on some isolated modes. Spatial localization
and spatial self-similarity are apparent.
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3.2 Gap modes in quasiperiodic structures: A Fabry-Perot ap-
proach

It is well known that the energy spectra of periodic and quasiperiodic chains contain
transmission pass bands and band gaps. Band gaps are characterized by a vanishingly
small density-of-modes and transmittance values and a high reflectance. There are
several methods to induce gap modes in structures with spectral gaps, the most
familiar being defect modes. Gap modes are very useful due to their relatively high
spectral isolation and spatial localization. Here they will prove as a tool to probe
the topological properties of quasiperiodic structures (in chapter 4). In this section
we will argue that the concept of “gap mode” bears a Fabry-Perot like meaning (see
a short discussion in the Cantor set paragraph in 3.1.11), and that in that sense,
many seemingly different gap modes are all the same. An even broader view may
be developed using this notion to connect every spectrally isolated transmission
mode (e.g. Anderson localized mode in random structures, band-edge modes) to an
effective Fabry-Perot cavity, however this lies outside the scope of this current work.

3.2.1 An example: Defect modes in photonic crystal structure

We begin by discussing the best known example for a gap mode, which is the di-
electric (photonic) crystal with a single structural defect. If we consider a local
defect inserted into a dielectric periodic chain, a localized defect mode with perfect
transmission arises inside the band-gap, where light is said to be “trapped” by the
local defect and can thus propagate without loss. This is somewhat against intuition.
For instance, one would expect light to be guided in a higher index region due to
total internal reflections as occurs in a traditional optical fiber. Yet, light is better
guided in a lower index region such as an air-hole in a photonic crystal fiber (due to
the defect). Apart from low-loss fibers this “work horse” is utilized in lasers-on-chip
(VCSELs), and for trapping light in very small volumes for Purcell effect or single
photon device purposes | , , |-

”

For our scattering analysis we take the simplest periodic chain “ABABABAB.....",
with a defect (say an [AA] segment) inserted to the center of the chain. This produces
a mid gap mode, localized spatially inside the defect. The transmission spectrum and
the normalized density of modes for a photonic crystal hosting a single impurity is
shown in figure 3.25.

A close up look at the defect mode transmission and its electric field amplitude
map, is depicted in figure 3.26. The defect mode is indeed isolated spectrally and
localized spatially. However, if unintentional defects also exist, additional defect
modes can exist and may “smear” each other spatially and spectrally.
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Figure 3.25: The normalized density of modes (left part) and the transmission
spectrum (right part), for a photonic crystal hosting a single defect.
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Figure 3.26: A close-up on the transmission curve (left part) and the electric field

intensity map (right part) for the resonant defect mode in the photonic crystal
structure.
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Figure 3.27: (a) A gap mode associated with a defect in a periodic chain (the red
line illustrates the gap mode electric intensity envelope). (b) The same as (a)
with “closed” boundary. The refractive index of the continuum is smaller than the
chain’s, and the dotted red line signifies evanescent decay. (c) The same as (a)
with a periodic hetero-structure.

3.2.2 A general classification for gap mode producing schemes

Restating the discussion in 3.2.1, photonic crystals with a structural defect are known
to contain electromagnetic modes at intra-gap frequencies, and electromagnetic field
localized within the defect | , , |- In fact, the defect is only
one scheme which generated gap modes. For the periodic case, it is also known
that for certain termination choices, an undisturbed photonic crystal may also give
rise to gap modes, termed surface (or edge) modes, due to the electromagnetic field
localization at the edge | , , |- This type of gap modes will
exist for any type of closed boundary conditions, e.g. an index mismatch mirror (as
in figure 3.27b) or a metallic mirror. A third scheme which is known to generate
gap modes, is the periodic hetero-structure composed of the concatenation of two
periodic chains of different period or different unit cell | , |- In this
scheme, the gap mode electromagnetic field localization is at the interface. A sketch
of these schemes for the periodic case is depicted in figure 3.27. In all cases depicted
in figure 3.27, the electric field is exponentially localized. In the surface gap mode
case, the decay into the continuum is evanescent. In all cases, the existence of
bulk/edge modes is usually attributed to the breaking of the crystalline translational
invariance symmetry by the structural defect or boundary. In the analytic solution
for photonic crystal energy spectrum no extended electromagnetic modes with purely
real wave vector are allowed to have frequencies within the gap. Evanescent modes
with complex wave vectors are a legitimate solution of the eigenvalue problem, and
are allowed within the gap. Therefor any symmetry breaking feature such as a
structural defect or a boundary may arouse evanescent gap modes localized within
the defect or boundary respectively| , |-
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Figure 3.28: (a) The artificial palindrome for the Fibonacci segment F ~» hosting

gap modes in the interface indicated by the dotted line. (b) A Fibonacci segment F y
bounded from the right with a metallic mirror, hosting gap modes at the edge. (c) A
Fibonacci segment F' 5 bounded from the right by a continuum with refractive index
smaller than the chain’s, hosting gap modes at the edge. The arithmetic operators
symbolizes the fact that the artificial palindrome is a generalized mirror.

Although less known than the periodic case, gap modes may be easily induced
in any structure with spectral gaps. Even in the case of the Fibonacci photonic
quasiperiodic chain, gap modes of all kinds have been observed: defect modes
[ |- Fibonacci hetero-structures | , , , , ,

, , , |- and surface gap modes in the case of a closed
structure | , , , |- The origin of such gap modes in struc-
tures lacking symmetry is not that obvious. As a result, these gap modes have been
given various names, such as “defect mode”, “perfect transmission resonances”, and a
multitude of explanations are given for their origin | , ) , )

|-

Here, we suggest and demonstrate a more geometrical optics point of view, which
explains and predicts the existence and frequency of all the cases discussed above.
This effective Fabry-Perot model is described in 3.3.

3.2.3 The artificial palindrome structural scheme

One scheme to produce gap modes has proven to be extremely important for the
topological analysis of quasiperiodic chains, given in chapter 4. We call it the artifi-
cial palindrome scheme, and it is the concatenation of a chain with its mirror image
(see figure 3.28a for the Fibonacci artificial palindrome).

This composite structure falls into the category of a hetero-structure scheme, but
it is closely related to a closed boundary condition scheme. Imagine a given chain
bounded from one side by a perfect mirror (either metallic as in figure 3.28b or index
mismatch based as in figure 3.28c). Waves traveling to the mirror plane are reflected
back into the chain, traveling in a reverse direction, and sometimes with the opposite
phase. If we discard of the mirror, and unfold the structure with respect to the mirror
plane, we arrive at the artificial palindrome scheme. Note that from a symmetry
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argument, the possible gap modes residing in the interface of the artificial palindrome
are equivalent to the union of the possible edge modes in the metallic mirror case
(with a node in the mirror plane/interface), and the possible edge modes in the
mismatch mirror case (with an anti-node in the mirror plane/interface). Therefore,
the artificial palindrome scheme is a generalized mirror (generalized edge), hosting
a double number of gap modes compared to any mirror. In the Fibonacci case,
the artificial palindrome, along with other hetero-structures has been used to induce
the appearance of perfect transmission resonances | , , , )
|- Here we show that the nature of these resonances is geometric.

Figure 3.36 depicts the transmission spectrum of the artificial palindrome P =
[?ggg} , based on the Fibonacci chain Sy. The artificial palindrome, which is readily
applicable to scattering approach (requiring scattering boundary conditions), has
become instrumental to the analysis of topological properties through the behavior
of edge states as a function of the modulation phase ¢ in chapter 4.

3.3 The effective Fabry-Perot model

This section presents a simple but extremely versatile model which predicts the

existence and frequency of gap modes in the interface of a hetero-structure composed

of substructures with gaped spectrum. We are also able to show that it predicts

the frequency of other perfect transmission resonances observed is | , ’
, , | within the transmission bands.

This model treats each substructure as a frequency specific, phase shifting mirror,
and then calculates the Fabry-Perot resonances for the cavity thus defined. The
substructure mirror is frequency specific as the reflectance depends on frequency,
and is sufficiently high within the gaps. It is phase shifting because, unlike the more
conventional mirrors which either conserve phase or flip it, a multilayer structure
may contribute any phase due to multiple reflection and interference. As for the
cavity length, we will show that a geometrical cavity between the multilayer mirrors
may be included, but is not necessary.

3.3.1 Formulation, and Resonant mode conditions

In the standard description, a Fabry-Perot cavity is defined by two mirrors separated
by the length L, and a discrete spectrum (of resonant wavelengths ),,) obtained by
the resonant condition 2L./)\,, = m€Z. An alternative view is given by the winding
of a (frequency dependent) cavity phase,

4L

—_— (3.28)
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where \(k)=2n/k is the wavelength. This leads to a resonance condition 9, (k,,) =
2mm, with m € Z. The interface between the right and left part of a hetero-structure
defines a zero length effective cavity between two frequency specific and phase
shifting mirrors. The accumulated phase shift of this effective cavity is termed the
cavity phase

— —
Ocav (k)= 0 right (K)+ 0 15t () (3.29)
(for notations see figure 3.1). This cavity phase is used to generalize (3.28) to
arrive at
4L
Y k)= — ecav k ) 3.30
Lvecav ( ) A(k) + ( ) ( )

for which the resonance condition, ¥ g, (kmn) = 27mm, holds even in the absence
of a geometrical cavity (when the two substructures are concatenated with zero
separation, L = 0).

Alternatively and equivalently, we define a generalized frequency-dependent ef-
fective cavity length, composed of the geometrical length, L, and a cavity phase
dependent virtual length, namely

L (k) EL—I—&M, (3.31)

4 s
which considers any additional cavity phase as an effective cavity length, and thus
holds even in the absence of a geometrical cavity (L = 0). Resonant modes occur at
gap frequencies satisfying the usual Fabry-Perot condition for the generalized length

2L (k) /N k) =m € Z. (3.32)

We note here that although (3.32) may hold for many values of k, only {k,,} values
within the spectral gaps (where the reflectance values are sufficiently high) produces
gap modes. The figure of merit used to predict the existence of gap modes is the
mutual reflectance

Rk) = |T7'ighr| ‘Tleft| ) (3.33)

related to the finesse of a Fabry-Perot cavity through

VR

o (3.34)

Finesse =

(see also the discussion in 3.3.4). We usually demand that the mutual reflectance
exceeds 90% in order to predict a gap mode. However, we are able to show that
the remaining values which fall within the transmission band will result in perfect
transmission resonances, but this lies outside the scope of this thesis.
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The effective cavity length dependence upon & implies that for nontrivial 0., (k).
resonant modes are not equally spaced in frequency as in the traditional Fabry-Perot,
and even that a single Fabry-Perot mode may manifest in more than one frequency
(see for instance figure 3.36). Moreover, in the case that a genuine cavity of length
L with a uniform refractive index inserted between the substructures, the increase
in the effective cavity length reduces the resonant mode separation. Since the gap
widths did not change, multi-resonant-modes will appear in the gaps (see an example
in figure 3.38).

This model serves to unify all gap modes producing schemes. Through this ge-
ometrical understanding, defect and surface modes have the same physical origin.
Additionally, any hetero-structure with overlap in the substructure spectral gap fre-
quencies will give rise to gap modes of the exact same origin. Moreover, we believe
that this model may help to better understand the mechanism for strongly localized
and spectrally isolated modes in undisturbed structures. However, this lies outside
the scope of this thesis.

3.3.2 Fabry-Perot cavities with wavelength dependent effective length

We will start by stating that the important notion of a k dependent cavity length
due to the phase shift in the mirrors is only seemingly strange. In fact, the use of a
k dependent cavity length defined in (3.31) is required even in Fabry-Perot cavities
of regular mirrors. In order to clarify this last statement, let us discuss two standard
cases for a Fabry-Perot cavity. The first is of length L and two dielectric constant
mismatch type mirrors which conserve phase. The second is of the same length with
two metallic mirrors, where each mirror contributes a 17 reflected phase shift which
is frequency independent (up to the plasma frequency). The Fabry-Perot resonant
frequencies for both cases are well predicted without the use of any phase shifts,
by the standard formula 2L/\,, = m € Z, with the lowest order nontrivial mode
at A\; = 2L. However, metallic and dielectric mirrors provides different boundary
conditions forcing nodes and anti-nodes in the electric field envelope, respectively
(see figures 3.29a-b). Therefore, in the dielectric index mismatch phase conserving
mirrors case, odd modes are anti-symmetric and even modes are symmetric (with
respect to the mid-cavity coordinate) as usual. However, in the metallic mirrors case,
the relation between spatial symmetry and the parity of m is the other way around.
Moreover, if we now consider a non-standard Fabry-Perot cavity of size I with a
dielectric mirror at one side and a metallic mirror on the other represented in figure
3.29¢, we see that resonant modes are now asymmetric, and the lowest order mode
occurs at at A = 4L, unaccounted for by the traditional formula by 2L/\,,=m¢Z.
These deviations from the standard view are well understood when using the
effective Fabry-Perot cavity length assigning an additional % virtual length for each
metallic mirror following (3.31), and the resonant condition given by (3.32). In the
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Figure 3.29: The first 5 Fabry-Perot resonant mode (and symmetry) for various
mirror schemes. (a) The case with two index mismatch phase conserving mirrors
(gray vertical strips represent the mirrors). (b) The case with two metallic phase
flipping mirrors (golden diagonal stripes represent the mirrors). (c) The hybrid
case with a metallic mirror on one side, and an index mismatch mirror on the other.
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Figure 3.30: A sketch of the same cases as in figure 3.29 explained by replacing
metallic mirrors by a phase conserving mirror, retracted by a quarter wavelength,
i.e. explained by a frequency dependent cavity length.
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all dielectric cavity, the cavity phase shift is zero, i.e. £ (\) = L, and resonant modes
2L

occur at A\, = <, with electric field anti-nodes at the boundaries, and with anti-

symmetric(symmetric) odd(even) modes with respect to the mid-cavity coordinate
(figure 3.30a). In the all metal cavity case, we have £ (\) = L + % as each metallic

mirror effectively extends the cavity by 2 (figure 3.30b). The resonant modes

2L
m—1

which gives identical frequencies to the all dielectric case but for the opposite parity.

are retrieved by solving \,, = 2£(\,,)/m self consistently to arrive at \,, =

This result, along with the fact that the effective and the geometrical cavity center
coordinates coincide, fully explains the spatial properties of resonant modes in an all
metal Fabry-Perot cavity. In the hybrid cavity case, we have £ (\) = L + %, as only
one (metallic) mirror effectively extends the cavity by % (figure 3.30c). Solving
Am = 2L(\p,)/m self consistently gives \,,, = 2L/(m — 1/2) yielding a different set of
resonant frequencies than previous cases, including A\; = 4L. As the effective cavity
center coordinate is shifted by % from the geometrical cavity center coordinate,
symmetric and anti-symmetric modes for the effective cavity appear asymmetric
with respect to the geometrical cavity center coordinate.

We proceed with the case studied in 3.2.1. The effective Fabry-Perot model
perfectly predicts the existence and describes some spatial properties of the gap mode
in photonic crystal with a central defect. Figure 3.31 shows a comparison between
scattering matrix calculations and the generalized Fabry-Perot model predictions for
the case of a 55 layers long 1D photonic crystal composites with an optical contrast
1 : 2, with a perfect fit (for m = 2). Figure 3.32 depicts the spatial distribution of the
electric field in the gap mode frequency, showing that the electric field is localized
within the defect, and also that the electric field spatial distribution is symmetric
with respect to the cavity center (understandable for en even m - see figure 3.29a).
The calculated gap modes are indeed Fabry-Perot modes. Figures 3.33 and 3.34
shows the same calculation for a photonic crystal with a large defect leading to the
appearance of multi-gap modes with a perfect fit. The spatial symmetry of the gap
modes indeed alternate between symmetric and anti-symmetric corresponding to the
parity of the Fabry-Perot integer m.

We proceed with the Fibonacci case. We are easily able to induce a defect in a
single Fibonacci chain (figure 3.35), simulate a reflective edge of the two possible
kinds, or create an artificial palindrome (figures 3.36, 3.37, 3.38, and 3.39), with all
frequencies and spatial symmetries perfectly predictable by the Effective Fabry-Perot
model.

3.3.3 Spatial symmetry prediction

A property which is identical to he traditional Fabry-Perot is the spatial symmetry of
resonant modes. Resonant modes in the spectral gaps of a hetero-structure possess
the Fabry-Perot alternating symmetric/anti-symmetric spatial electromagnetic field
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Figure 3.31: Density of modes (in blue) for a 55 letter periodic chain with a central
defect (inset). The Effective Fabry-Perot model finds a solution within the spectral
gap: ko = 0.5 fitting the scattering method calculated spectrum.

Figure 3.32: The Electric field strength of the gap mode presented in figure 3.31 (in
blue) on top of the structural detail.
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Figure 3.33: Density of modes (in blue) for a 55 letter periodic chain with a 30
letter long central defect (inset). The Effective Fabry-Perot model finds 9 solutions
within the spectral gap {k,,} m = 17,18, ...,25 fitting the scattering method calcu-
lated spectrum.
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Figure 3.34: The Electric field strength of the gap mode presented in figure 3.33 (in
blue) on top of the structural detail.
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Figure 3.35: The Fibonacci chain Sywith a non central single letter defect. (a)
Density of modes for the undisturbed structure (in blue) compared to the same
structure with single non central defect (in red). The 2 effective Fabry-Perot model
intra-gap solutions with {k,,} m = 2,3 is in purple circles. (b) The Electric field
strength of the defect gap modes m = 2 (in red) and m = 3 (in blue) on top of the
structural detail.
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Figure 3.36: The Fibonacci chain Sowith a reflective boundary conditions, and in the
artificial palindrome scheme. Density of modes for Sy based artificial palindrome
(in blue), for Sy with a reflective boundary condition (index mismatch neontinuum <
ng) (in dashed green), and for Sy with a reflective boundary condition (index
mismatch neonginuum > np) (in dashed red). The effective Fabry-Perot model intra-
gap solutions {k,,} is in purple circles.
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Figure 3.37: The Electric field intensity profile and spatial symmetry for selected gap
modes of the structures of figure 3.36. (a) Sy based artificial palindrome. (b) The
Sy chain with a reflective boundary condition (index mismatch ncontinuum < nB)-
(c) The same as (b) for a metallic reflective boundary, ncontinuum > np-
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Figure 3.38: The Fibonacci chain Sowith a reflective boundary conditions, and in the
artificial palindrome scheme with a geometrical cavity length. (a) Density of modes
for artificial palindrome with a 48 letter geometrical cavity (in blue), compared
to the undisturbed structure (in red). The effective Fabry-Perot model intra-gap
solutions {k,,} is in purple circles. (b) Density of modes for the chain Sy with a
reflective boundary condition (index mismatch neontinuum < np) with a 24 letter
stand-off (in blue), compared to the undisturbed structure (in red). The effective
Fabry-Perot model intra-gap solutions {k,,} is in purple circles. (c) The same as

(b) for a metallic reflective boundary, ncontinuum => np-



(a) [k Il |
(o v 1 L X 2t v
P v ¥
3
-
" AL AL
bl 73 ANSAY WYYV VY AN
LA AN MY R AAHAL
A~ Y AARAR RS m
2 ~
i
14
:‘_ b Ry
ANV M ANAAAAN AN
AL AAN a L1
(b) A ANV \
ATV 1
~MM
L~ ~ AN MM
LHAH-HAT Y VWY
AWV VWYY
UM VVVVVV VY
| ANAHANAN NV /\/\/\/W\/

=
<
d
P
=
-3
>
5
=
=
—_
==
=
2=
2 =
——

Y
<
=

3
1
)]
)3
)]
4
Y
b)
)
2
[4
2
P2
2
>
<
D>
2 <

b

=

MANAAMIANAY M

Figure 3.39: The Electric field intensity profile and spatial symmetry for selected
gap modes of the structures of figure 3.38. (a) Sy based artificial palindrome with a
48 letter geometrical cavity. (b) The Sy chain with a reflective boundary condition
(index mismatch ncontinuum < np) with a 24 letter stand-off. (c) The same as (b)
for a metallic reflective boundary, ncontinuum => ng-

86



distribution (with respect to the mid-cavity coordinate) as a function of the parity of
m. Odd (even) modes are anti-symmetric (symmetric) with respect to the geometric
center, all having electromagnetic field anti-nodes (nodes) at the effective cavity
boundaries (see figures 3.29a, 3.34). When the structure is delimited by a reflective
boundary, only half of the possible modes show up, due to spatial symmetry selection
rules (see for instance figures 3.35, 3.37, and 3.39). This spatial attribute, which
holds only within the virtual cavity length, will come in handy in the analysis of the
topological properties of quasiperiodic structures in chapter 4.

3.3.4 Calculation of gap modes for a hetero-structure

The artificial palindrome discussed in 3.2.3 is used throughout chapter 4 to monitor
the topological properties of the quasiperiodic chain spectrum (see also 3.4). This
is accomplished through monitoring the properties of the gap modes as a function
of the modulation phase ¢ defined in 2.1, and discussed in 2.2. We shall now derive
the conditions for the existence and frequency of a gap mode in the spectrum of a
hetero-structure through the scattering approach.

We consider a hetero-structure [J;.J;] with no geometrical cavity. This hetero-
structure can be described using its scattering matrix Si2 (k). We will now obtain a
relation between Si2 (k) and the scattering matrices S (k), Sz (k) of the respective
substructures Jq, Jo using the definition for a general scattering matrix given in 3.1,

namely

and the following matrices

_ 1) tie) . _ jz 1
Si2) = - ; S12 = < |-
@ < i) T ) < T R )

The same description is available through the complex valued transfer matrix
generally defined by (3.10), namely

such that

/g i)/t yr-  R/p
M) = 7/ - oty ; Mg = /ﬁ ")
- 1(2)/t1(2) 1/t1(2) N /T 1/T
We now define the chiral phase «(k), relating the two reflected wave amplitudes
= Ry
of the scattering matrix, 7 = | 7| e'?, and & = |7 |e?. As | 7| = |7

, We may write
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L= e (3.35)

The chiral phase a(k) probes the asymmetry of a given structure, vanishing iden-
tically for palindromic structures. In 3.6, we will discuss the important role of the
chiral phase, along with the total phase shift §(k) in the scattering matrix, and in
the analysis of topological properties.

The total phase shifts d1, d2, 12 of the respective scattering matrices Si, Sz, S1o
are defines as follows.

‘ t i ‘
e2i01(2) — d6t81(2) _ @ _ "1 : e2i012 — detSyy = — — ?: ’ (3.36)

* *

12) "1

while through (3.7) we have

d1(2) (k)

™

= AN (k)3 22 Anuh).

™

Rewriting the definition for the chiral phase, we yield

— 1 — 1
0 12) = O12) — 591(2) 5 0 12) = d1(2) + 51(2)-

As in the regular scattering calculations, we again make use of the multiplicative
properties of the algebraically related transfer matrix, namely My, = M; M. We get

Ve 7 pe 7 U~ R
M12 — /t2 2/t2 /tl l/tl — g /T . (3’37)
~Ta2fty 1ty T/, —-E/r 1)1
Using (3.36), it is possible to extract from (3.37) the hetero-structure scattering
total phase shift 012. After some algebra, we arrive at a relation between the hetero-

structure scattering total phase shift d2, to the substructures scattering total phase
shift 6; and ds.

o L — (727"

2012 = g2 : (3.38)
rorq1— 1
Expression (3.38) may be rewritten under the definition
w1 (7o) 1-¢
W = = P (=T 3.39
€ 72?1_1 C_lﬂc 2"”1’ ( )
to arrive at a simple expression
_ ¥
519 — (01 + 62) = 5 (3.40)
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Through ¢, two Fabry-Perot parameters are naturally introduced into the formal-
ism. From the definition (3.39), we have ¢ = |r||rs| ¢(T1482) = Reifeor, where
Ocar is defined in (3.29) and %R(k) = |ry||rs| is the mutual reflectance of the sub-
structures, related to the finesse of the Fabry-Perot cavity by (3.34), and used in
the effective Fabry-Perot model in order to predict the existence of gap modes (see
3.3).

Thus, we write the relation between the hetero-structure and substructures total
phase shifts 419, 01 , d2 to the cavity parameters R, 6.,, represented by ¢, namely

R cos (0cqw + £) = cos (%), (3.41)

Equation (3.41) can be rewritten as:

T +mm MR = 0 (open system
g-{" (open sy ). (3.42)

arctan (%) MR > 0 (closed system)

We shall also rewrite (3.42) for nonzero R as

(k) PR (k)cos (Oeav (k) — 1

2 = R(K) sin (e (K)) (3.43)

tan

The condition for the appearance of a single gap mode k,, in a perfect gap
(% = 1) of the spectrum of [J;.J5] is

612(km) —[01(km) + 62(km)] =7 + 27tm. (3.44)

where m € Z. Using (3.40), we equivalently write the condition as ¢ = 27m. This
condition may be viewed as a resonance condition of the Levinson theorem | |-
We may rephrase the condition as: a new gap mode will arise at a frequency where ¢
completes a full winding and the mutual reflectance is perfect. However, this relation
is only approximate for the more realistic case of %@ < 1. From (3.41), one can see
that for this perfect mutual reflectance case, ¢ (0c4y, | = 1) = —0.4, » Which yields an
alternative condition for the appearance of a new mode, 0.4, (k) = 27m. Analyzing
(3.43) for perfect and also imperfect mutual reflectance, we observe that although
any deviation from perfect mutual reflectance smears the winding of ¢, the winding
of 6.4, remains intact (see figure 3.40). It seems that 6.4, captures the emergence
of new modes through its winding despite the imperfect mutual reflectance, and it
is more suitable than ¢ for identifying new modes in spectral gaps. However, this
should not come as a big surprise, as we already argued that any gap mode is nothing
but a Fabry-Perot resonant mode predictable by the condition 6.4, (k) = 2wm which
was already derived in 3.3.

. . -
A comparison of the behaviors of 0., = 26 o and ¢ = 25?10@0 — 46§>10 for
the artificial palindrome hetero-structure based on the Fibonacci chain S, is given
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Figure 3.40: ¢ (0cq,R) as calculated from (3.41). The relation ¢ = —0.4, holds
only for perfect reflectance..

in figure 3.41, examined at two different spectral gaps, characterized by different
2, while ¢ ceases
2, the
condition 6.4, (km) = 2mm can be used to calculate the gap mode frequencies for the

values of % = |r|2. Indeed, the winding of 0., is unaffected by |r

to cover the interval [0,27] (even for |r|> = 0.98). Thus, for any value of |r

artificial palindrome.

3.4 The topological spectrum of substitution chains

The dense distribution of gaps in substitution based infinite quasiperiodic chains
can be characterized by the gap labeling theorem | , , , |- It
provides a precise expression of the (normalized to unity) integrated density of
states (IDOS) N (k,qp) at k values residing inside the gaps. For the case of the
Fibonacci infinite chain, gaps are labeled by means of two integers (p, ¢) such that,

N (gap) =p+qr7 ", (3.45)

where 7 = (1++/5)/2 is the golden mean. and p(q) keeps A (k,q,) within [0, 1]. The
purely spectral expression (3.45) is derived from the purely structural substitution
rules for the Fibonacci chain as follows. We start from the occurrence matrices
M, and Mo, defined by (2.5) and (2.6), the highest mutual eigenvalue 7, and the
normalized eigenvectors Vi and V5, given by (2.7). Then, the normalized IDOS in
the gaps can be calculated as follows | , |- Let Z[z] be the set of finite
polynomials of degree N with integer coefficients,

90



Q

of of
05 05

1 1
15 -1.5D

0.365 0.37 0375 0.38 0.385 0.39 0.395 0225 023 0235 024 0245

Figure 3.41: The behavior of the phases ¢ (6.4, (k) ,9R) and 6.4, (k) as a function of k
for the artificial palindrome [§10<§10} with a dielectric contrast of 25%, at different
spectral gaps (gap edges are indicated by red bars, and the gap mode frequency
is indicated by orange arrows). (a) Gap at k ~ 1 — 7~! given by (2.13), with
R =|r]2~0.98. (b) Gap at k ~ 27~ — 1, with |r|> =~ 0.25.

N
Zlx]) = {anx” qEZ,N € N} . (3.46)
n=1
Now, N, the IDOS at possible gaps is equal to [ , ]
Nyap = {aP (") P (97") € Z[9]} mod. 1, (3.47)

where a € {V;,V»2}, and ¢ is the highest common eigenvalue of the occurrence
matrices (i.e. ¥ = 7 for the Fibonacci chain). Using (2.7), the set appearing in
(3.47) for the Fibonacci chain is reduced to

-1 1— —1 2 —1_1
Nyap = {m:m;@( . );qs(T )}

T2 T3

mod. 1, (3.48)

where n;23€N, and ¢ 23 €7Z. Since 772=1—7"1, the set can be further compacted

into
Nyap = {q77 1, q € Z} mod. 1, (3.49)
where ¢ € Z, leading to (3.45). These features which have been widely studied
| , , , , | and recently measured in a finite system using
cavity polaritons | |- are shown in figure 3.42.
The integers ¢ and p(q) belong to the Chern class, i.e. Chern numbers were
shown to appear as integer labels to the spectral gaps | , |- Chern num-
bers | , |- are topological invariants known to play a role in problems

where an underlying topology exists. Examples are provided by the quantum Hall
effect, anomalies in Dirac systems and topological insulators. For each case, the
origin of topological features is identified, e.g. magnetic field, chirality or nontrivial
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Figure 3.42: Normalized IDOS for the Fibonacci chain Sy, with a dielectric contrast
of (Nhigh — Niow)/Miow = 15%. The location of 8 selected gaps using their topological
numbers [p, q] are indicated in accordance to (3.45).

band structures. The appearance of such numbers in the spectrum of quasiperiodic
structures such as the Fibonacci chain, marks the quasiperiodic structure spectrum as
topological. The quasiperiodic structure is topological with no further manipulation
(such as external fields) required, as it originates from a purely structural property.
However, this statement still lacks an understanding regarding the underlying sym-
metry, relating Chern numbers in gap labels to other known topological problems.
The purpose of chapter 4 is to address this point and to propose new expressions
and possible measurements of Chern numbers in their most fundamental definition-
a winding of a phase driven by some gauge field.

The gap labeling theorem is defined for any substitution quasicrystal, although
the amount of integers required to label each spectral gap is usually larger than 2.

3.5 Spectral gaps and Bragg peaks

Here we use the opposite argument to that given in 2.3. The fact that the quasiperi-
odic chain scattering spectrum is topological (through the integer labels of the spec-
tral gaps) extends to its reciprocal space properties, discussed in 2.3, through the
generalized Bloch theorem. The spatial frequency of the infinite number of Bragg
peaks of the infinite quasiperiodic chain is directly related to the infinite number of
spectral gaps in the scattering (or transmission) spectrum. Figure 3.43 shows this
equivalence holds for the Fibonacci chain S;y example.
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Figure 3.43: A reciprocal space and scattering analysis of the Fibonacci chain Si.
The relations between the spatial frequency of observable diffraction peaks (a),
and the frequency of the spectral gaps in the transmission spectrum (b), where the
contrast is 100%.

Regarding this equivalence, we note that the diffraction spectrum arises from
purely structural properties, while the scattering of waves involves parameters such
as dielectric contrast, controlling the width of the gaps. In chapter 4 this relation
will become very useful in explaining the topological properties of quasiperiodic
structures, especially with regards to the question of their origin and the role of true
irrationality.

Furthermore, through the gap labeling theorem given in (3.45), lends topological

meaning to p, ¢ in expression (2.13).

3.6 Independent phases of the scattering matrix

In this section we reiterate some understandings regarding the properties of the
scattering matrix in order to provide a new language considering the independent
phases of the scattering matrix and their relations to observable properties. This new
definition will bear meaning in the analysis of topological properties of quasiperiodic
chains (to be discussed in chapter 4), but we believe this definition is universal, i.e

it is applicable to other scattering problems.

3.6.1 Two independent phases

The scattering matrix S of any chain (3.1) contains four elements. These four
elements consists of only two (related) amplitudes, |¢t| and |r| where
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rl = 17| =7

r|* + Jt)* =1,

but three phases, namely 6;, ? and? (see 3.1). However, being unitary and thus
diagonalizable, the diagonal form of S (3.3) contains only two independent phases
®,(k), and ®o(k). The next textbook step is the definition of the total phase shift,
d(k) = (®1(k) + ®2(k))/2. The total phase shift is obviously the first independent
phase of the scattering matrix. This phase leads to the density of modes spectrum
p(k) and counting function A (k) for any chain. For quasiperiodic chains, it is this
phase that takes the singular continuous fractal properties, and even topological
properties in substitution based structures. We note here that through (3.2), the
total phase shift may be expressed using the transmitted phase shift, or using the
average of the two reflected phase shifts, namely

S(k) = 0,(k) + /2
_ % (7 n ?) . (3.50)

The transmitted phase shift is independent on the direction of the transmission exper-
iment (see figure 3.1b). Therefore, p(k) and N (k) for any chain are indifferent to a
full inversion of the chain, and do not differentiate between symmetric or asymmetric
chains. The second independent phase of the scattering matrix is not consensual.

This second independent phase of the scattering matrix has to involve a different
combination of 5? and . Our proposition here, is to consider the chiral phase o =
? — 5) as the second independent phase of the scattering matrix for various reasons.
One very natural reason is the fact that unlike 4, the chiral phase « is sensitive to the
symmetry of the chain (for example it vanishes identically for inversion symmetric
chains). The second reason is not that obvious, and involves the fact « is the
scattering phase which is sensitive to the gauge phase ¢, through the palindromic
symmetry cycle discussed in 2.2. This will become clearer in chapter 4.

A questions to be asked is what observables may depend on the phase «, as the
entire spectral properties are encapsulated in the total phase shift §. The obvious
answer is non scattering observables due to a non scattering boundary conditions.
For instance, the conditions for the existence of new gap modes in a hetero-structure
such as the artificial palindrome are related to the chiral phase a (see 3.6.2).
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3.6.2 Scattering analysis of a hetero-structure

This problem has already been analyzed using two different methods in 3.3.1 and
3.3.4. Here we note that the cavity phase shift .., shown by the two approaches to

govern the condition for new resonant gap modes may be written as:

Ocar (k) = 20(km) + a(ky) = 27m, (3.51)

essentially dependent on both phases of the scattering matrix (including a direct
dependence upon «). This formula will prove to be very important in understanding
the relations between these phases in terms of topological properties.
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Chapter 4

Topological properties of
quasiperiodic chains: theory and
experiment

This chapter presents our main findings regarding the existence of Chern topological
invariants in quasiperiodic chains, their properties and their physical origin. We will
propose 6 new schemes to measure these Chern numbers, and demonstrate the ex-
perimental measurement in 4 of those schemes. When relevant, the differences from
outstanding results will be discussed. This chapter is ordered in a more chronolog-
ical rather than pedagogical manner. Section 4.1 gives further introduction regard-
ing topological invariants and their properties. Section 4.2 conveys the theoretical
analysis of the topological properties of quasiperiodic chains using the scattering ap-
proach. Section 4.3 describes a first experimental measurement of Chern numbers in
the spectrum of the Fibonacci chain using the theoretical proposal given in section
4.2. Section 4.4 describes a first experimental measurement of Chern numbers in
the diffraction pattern of the Fibonacci chain. Finally, Section 4.5 gives a theoretical
description of Chern numbers in quasiperiodic chains from a purely structural point
of view, clarifying the results given in section 4.4, and also shedding light over the
existence of Chern numbers in quasiperiodic chains without any external fields.

4.1 Topological invariants: Further introduction

This section reviews and reiterates important subjects regarding topological invari-
ants for various systems including C&P quasicrystals.

4.1.1 topological invariants in physical problems

Topological features of physical systems, thoroughly investigated in condensed mat-
ter physics during the last decades, provide a general classification of a wide range
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of physical phenomena in terms of a small number of integer topological invari-
ants. A common example is provided by the topological classification of geometrical
surfaces by means of the integer Euler-Poincare characteristics. For instance (see
chapter 1, and figure 4.1), a sphere cannot be continuously deformed into a torus.
A comprehensive approach to the above ideas is given in terms of Chern numbers.
These numbers play an important role in modern physics and particularly in con-
densed matter. They have been used to classify possible stable defects (e.g. vortices,
dislocations) of ordered phases of matter. Chern numbers are also instrumental to
understand, from a topological perspective, the quantization of the Hall conductance
in quantum Hall effects and have motivated several topological models of quantum
condensed matter, e.g. topological insulators and graphene. In the wake of the
quantum Hall effect discovery, relations have been established between topological
properties and quasiperiodic order.

Figure 4.1: A sketch of the topological properties of a sphere (a) and a torus (b)

Since the discovery of the integer quantum Hall effect| | and its explanation
in terms of topological invariants (see for instance [ ]) much attention has
been devoted to the physics of topological phases. A topological phase, and its
transport properties such as the quantum Hall conductance depends mostly on the
bulk spectrum topology and not on the bulk structural details, thus being robust
against imperfections. The current carrying states in such systems are topological
edge states localized at the system boundaries and with energies inside the bulk
band gap between Landau levels, obeying certain chirality rules. Understanding the
classification of electronic states according to topological invariants in many body
systems with bulk spectral gaps becomes an important problem no longer confined to
solid-state physics but expanding into neighboring domains. For instance, cold atoms
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systems can be tailored to possess large synthetic analogous magnetic fields and spin-
orbit coupling controlling the topological phases| |- Another example which
is non-magnetic are photonic systems have been used to mimic condensed matter

physics | , , , |-

4.1.2 The physics of topological edge states

Much of the recent interest in topological phases involves the existence and prop-
erties of edge-states | , , |- For us it is important to stress here
two points. The first point is that the edge states themselves are not topological.
In 2D systems such as the integer quantum Hall effect, they are the current carry-
ing states due to the insulating properties of the bulk. Therefore, the measurement
of edge-states per se is not the most fundamental measurement of the topological
properties, but a rather convenient indirect measurement. The second point is that
in the case of quasiperiodic chains, since the edge is zero-dimensional, and no ex-
ternal fields are at play, the existence of edge states is not required to obtain the
topological properties. In the case they do exist, their properties carry topological
information. Therefore, in this chapter we will see that one needs to be careful in
how to produce and constrain edge states in order to reveal the entire quasiperiodic
topological “story”.

4.1.3 Topological properties of quasicrystals

For quasiperiodic chains such as the Fibonacci chain, the scattering and diffraction
spectrum has been shown to carry topological information | , |- How-
ever, the fundamental physical interpretation of the existence of Chern numbers
with no further manipulation or underlying symmetry has been enshrined in mys-
tery. Recently, a relation between quasiperiodic order and topological properties
has been theoretically and experimentally addressed in tight binding Aubry-Andre-
Harper model and Fibonacci systems using edge states | , |- A traverse
of topological edge states has been predicted as a function of an internal degree of
freedom, the modulation phase, and a derivation of corresponding Chern numbers
through a Chern density defined from projection operators. An effect of this traverse
has been measured experimentally for an Aubry-Andre chain in the adiabatic pump-
ing of light from one edge of the chain to the other. Another work has connected the
band Chern numbers in Cut&Project crystals to the winding of the reflected phase
shift as a function of the modulation phase | , , , |

In the past years, we have investigated the spectral and topological aspects of 1D
Fibonacci and other quasicrystals | , |- Here, we report of the progress
made regarding this link between quasiperiodic order and topological phases. Ana-
lyzing the structural effect of the 27-periodic modulation phase ¢ on a given struc-
ture, we have found an overall structural cycle of deviation from palindromic sym-
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metry which is 7-periodic with respect to the modulation phase. Using a scattering
approach, we have identified the scattering chiral phase « as a fundamental probe of
topological information. This result contains a factor 2 with respect to other results
| , , , |- due to the factor 2 between the modulation phase
periodicity and the spatial palindromic symmetry cycle. Using this understanding,
we have constructed an edge state producing scheme where the edge state intra-gap
frequency is sensitive to a. In this proposed experiment, Chern numbers may be
obtained using a simple spectral measurement of the edge state frequency, and the
account for the winding number of the edge state upon a scan of the modulation
phase along a full period. Using a scattering analysis, we exactly predict the topo-
logical edge state existence and frequency for every open gap as a function of the
modulation phase through an effective Fabry-Perot geometrical model. This model
generalizes our approach even further, and also yields a Fabry-Perot rule for the
spatial symmetry of the edge state. We have pursued this proposal, and performed
such a measurement in a cavity polariton setup, and demonstrate this indirect mea-
surement of Chern numbers in two open gaps using the edge state winding number
and also the spatial symmetry changes as a function of the modulation phase.

From the previous discussion, it may seem that the existence of Chern numbers
is a characteristic of the energy spectrum only. Surprisingly, we have also shown
that gap Chern numbers also exist in purely structural aspects of the quasiperiodic
chain and may be directly measured using nothing but the diffraction pattern of the
structure. In addition to being complementary to the spectral one, this new approach
allows to measure in a simple setup, extremely high values of Chern numbers for
rather short structures. We have pursued this proposal, and recently performed such
a measurement using a programmable diffraction grating.

4.2 Topological properties of Fibonacci quasicrystals: A scat-
tering analysis of Chern numbers

This section consists of a scattering based study of topological properties of Fibonacci
quasicrystals | |- Chern numbers which label the dense set of spectral gaps,
are shown to be related to the underlying palindromic symmetry. Topological and
spectral features are related to the two independent phases of the scattering matrix:
the total phase shift describing the frequency spectrum and the chiral phase sensitive
to topological features. Conveniently designed gap modes with spectral properties
directly related to the Chern numbers allow to scan these phases. An effective
topological Fabry-Perot cavity is presented.
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Figure 4.2: (a) The scattering setup. A finite chain is inserted in between perfect
dielectric media supporting incoming (ir,ig) and outgoing waves (or,, or). Displayed
case: P= FnyF y (1 indicates the interface) (b) The chain ? ~ with a reflecting
boundary condition (golden bar), is equivalent to the unfolded open structure P in
(a). (c) Complex amplitudes corresponding to a wave incident respectively on the
right or left side of the chain.

4.2.1 Preface

Topological features of quasiperiodic structures have been studied under various
guises (see 4.1). Chern integers label the dense set of gaps in the energy (fre-
quency) spectrum [ , , |- More generally, Chern numbers are known
to play a role in problems where the underlying topology has been identified e.g.,
magnetic field, chirality or nontrivial band structures. However, in quasiperiodic
structures like the Fibonacci chain, the physical origin underlying the existence of
Chern numbers has not yet been identified. We consider finite Fibonacci chains and
study the behavior of some spectral quantities driven by the modulation phase ¢ (de-
fined in chapter 2) accounting for the important but not yet studied palindromic or
mirror symmetry of Cut and Project (C&P) quasiperiodic chains. We then propose
new expressions and possible measurements of Chern numbers using the analysis
results. We shall discuss the specific case of Fibonacci chains, but we expect our
results to apply to a larger class of similar quasiperiodic chains, and also for higher
dimensions.

Quasiperiodic systems share similar spectral properties, e.g. their singular con-
tinuous frequency spectrum has a fractal structure, with a dense distribution of gaps
characterized by the gap labeling theorem (discussed in chapter 3). It provides
a precise expression of the normalized counting function N (g44,) at energies ¢,
inside the gaps. For the Fibonacci chain, gaps are labeled by means of two integers
(p, q) such that, N (g4ap) = p + g7, where 7 = (1 + 1/5)/2 is the golden mean. The
integers ¢ are known to be Chern numbers and p(q) keeps N (¢,4,) within [0, 1] (see
figure 3.42). We stress that although self-similarity and gap labeling are spectral
properties of the infinite S, (where ¢ is irrelevant), they hold very well in finite
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chains.

Our analysis of the Fibonacci chain makes use of three of the generation methods
described in 2.1. The first is substitutions which justifies the gap labeling theorem
and the appearance of Chern numbers in gap labels. The second is the characteristic
function which defines ¢, predicts the existence of perfect palindromes, and gives
equivalent result to the C&P method which are more computerizable. The third is
C&P which allows for a useful interpretation of ¢, as the rearrangement of letters
equivalent to translation (see figure 2.3), in a series of identical local phason-flips
BAABAB <+ BABAAB arranged in a C&P-like geometrical pattern (see figure 2.12).
This inherent discreteness underlies the characteristic stepwise behavior of spectral
and structural properties as a function of ¢ (depicted in many figures throughout
this chapter).

The main analysis method is the scattering approach discussed at detail in 3.1.
Figure 4.2a reiterates notations to be used in this section. We recall that any quantum
or wave system with a potential defined with respect to a free part can be probed
using scattering waves of wave vector k, thus our results may be generalizable to
many other systems.

Another essential ingredient in this analysis is the ¢-driven palindromic symmetry
cycle, n(¢) (described in 2.2 and depicted for the Fibonacci case in figure 2.22),
as we shall see. This cycle, is underlying the existence the spectral manifestation
of Chern numbers in C&P quasiperiodic chains, and in the corresponding Aubry-
Andre-Harper tight binding model (described in 2.2). The structural phase ¢ driven
symmetry cycle, thus plays a role analogous to the magnetic field in the 2D quantum
Hall effect, and we wish to express the Chern numbers labeling spectral gaps as the
winding of some phase with respect to the gauge phase ¢. In accordance to that, the
origin of ¢ is set in this section to a palindromic symmetry value.

4.2.2 Semi-quantitative numeric description

We start by restating that the scattering total phase shift §(k) do not discriminate
between the sequence ?NE[Xl)(g ---xn] and its reversed F y=[xn xn-1---X1]» and
therefore it is not sensitive to the symmetry of the sequence (palindromic or not).
This insensitivity, in addition to the fact that shifts in ¢ are equivalent to translations
(shifts in origin) along S.., clarifies why bulk spectral properties (e.g. transmittance,
density of modes, counting function), derived from §(k), are independent of ¢ (see
figure 4.13a). Specifically, the independence of the counting function A/ (k) upon ¢
implies that the Chern numbers appearing as the integer labels of the gaps are also ¢-
independent. This agrees with the fact that the gap labeling theorem is used for S,
for which ¢ is undefined, and based on substitution rules for which ¢ is unimportant.
This is not the case for the reflection amplitudes, related by * =7 ¢, where « is the
chiral phase (defined in 3.3) which is, by definition, sensitive to the symmetry of the
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Figure 4.3: Colormap: |« (¢, k)| for ?N ; N = 89. On top: The transmittance
spectrum for the structure. On the left: the structural palindromic symmetry cycle.
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Figure 4.4: (a) The colormap of figure 4.3, at k values inside the gap ¢ = —1. (b) A
cut through the colormap in (a) at mid-gap (blue circles), compared the structural
palindromic symmetry cycle (green line).

structure as measured in the difference between the two experiments in figure 4.2c.
The vanishing of a (identically) for palindromic values of ¢ makes it a candidate for
a spectral counterpart of the structural deviation from palindromic symmetry 7(¢).

A numerical calculation of the chiral phase 0 < |« (¢, k) | < 7 for the set {?89(@}
defined in 2.2.1 yields a beautiful butterfly-like map with a strong dependence upon
¢ as well as upon k (see figure 4.3). A closer look reveals that within each of

the gaps, |a (¢, k)| is a very regular function of ¢, essentially insensitive to k (see

close-ups in figures 4.4a, 4.5a and 4.6). The purely structural staircase of phason-
flips aided dependence on ¢, is equivalent to multivalued translation, but also drives
various structural properties such as fractional translation, fractional inversion, and
the deviation from a perfect palindrome, through a regular dependence upon ¢ (see
2.2). Here, we show that it is mapped to a regular winding of the scattering chiral
phase as a function of ¢.
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Figure 4.5: (a) The colormap of figure 4.3, at k values inside the gap ¢ = 2. (b) A
cut through the colormap in (a) at mid-gap (blue circles), compared the structural
palindromic symmetry cycle (green line).

Furthermore, within a 27-period of the phason ¢, the chiral phase «a,4(¢), where
q is the Chern number of the gap label, is strongly correlated to the palindromic
symmetry cycle and consequently completes an integer amount of windings (figures
4.4b, 4.5b). The winding number, including the sign, is related to the gap Chern
number ¢ by

27
Wan)=5- [ a6 ™8 —ag
0

where the integration is defined in a piecewise manner, and «,(¢) is properly un-
wrapped. The winding corresponds to a /¢ period, with the zeroes coinciding with
the zeroes of the structural deviation from palindromic symmetry 7(¢) , as depicted
in figures 4.7, 4.8, and 4.9. We may say that «,(¢) behaves numerically as the ¢
harmonic of the palindromic symmetry cycle. This constitutes a novel method to
measure the Chern numbers labeling the gaps in quasiperiodic chains through the
winding of the phase «, as a function of the gauge field ¢. This method, together
with the gap labeling theorem forms some complete topological scattering formula-
tion. Both independent phases of the scattering matrix carry the same topological
information. The total phase shift is independent on the phason ¢, but the topolog-
ical invariants appear as integers labeling the spectral gaps. The chiral scattering
phase is independent of k& within the gaps, and carries the information of the gap’s
topological invariant in the integer winding as a function of the phason ¢.

The measurement of the gap labeling Chern numbers through the winding of
aq(¢), proves to be a much more sensitive method than the gap labeling itself.
Firstly, the condition (3.45) is proven for S., and holds for finite systems (within
experimental/numerical resolution), while such arguments are not needed in the
case of the perfectly integer winding of a,(¢). Secondly, for a finite chain, this
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Figure 4.6: (a)-(f) The colormap of figure 4.3, at k values inside the gaps ¢ =
3,4,5,6,7,8, respectively.

method seem to obtain many more Chern numbers than accessible (open) gaps
in the integrated density of states spectrum (figure 4.6f, for instance, monitors 16
windings corresponding to ¢ = 8 which is unobservable in the integrated density
of states spectrum of the same structure). It seems that the limitation for this
measurement comes from the finite number N of phason flips within a period of ¢
which will eventually cause an under-sampling of the winding. If N = 89, and we
take a minimal value of 3 sampling point per winding, we should be able to capture
30 windings which corresponds to a gap labeling Chern number of ¢ = 15. Figure
4.10 shows a numerical measurement of Chern number ¢ = 13 under the conditions
discussed here.

In this context, we note here that the two ingredients of «,(¢), namely ?? (¢, k)
and ?? (¢, k), also experiences an integer winding as a function of ¢ within spectral
gaps. This winding is equal to ¢, but it is not decoupled from the spectrum, as the
phase (or origin) of the winding has a significant dependence on & (see the right
panel in figure 4.17) . That been said, the reduced number of windings compared
to a,(¢) may be used to measure a Chern number twice as high. Figure 4.12 shows
a numerical measurement of Chern number ¢ = 25 under the conditions discussed
above.

We note that schemes for such measurement of Chern numbers by using the
reflected phase shift have already been proposed [VIMB11, FHA12, Hafl4, PPHI5].
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Figure 4.7: In the center: The integrated density of states (IDOS) of 7 N ;N =289,
with gap labels [p,q] using (3.45). On both sides: « (¢, k) ,at k values within the
gaps ¢ = +1 (compared to the palindromic symmetry cycle).

Although not strictly quasiperiodic, the structures considered by this body of work
may be generalized to quasiperiodic chains. The main differences with respect to
the current work are given in figure 4.11. The winding of the reflected phase shift
over the 27-period of ¢ is indeed integer which is equal to q. However, there is no
explicit explanation given to this winding of the phase except for a connection to
the existence of topological edge states. Moreover, no method is given to derive or
understand the zeros of this winding (which also depend on k), and also, the zeros
of this winding is not correlated to the palindromic symmetry cycle, neither to the
zeros of the gap mode crossover discussed ahead. Finally, up to this current work,
the reflected phase shift method has not been tested against a theoretical prediction
for the values of gap Chern numbers. Here we have a combination of reflected phase
shifts which is by definition a probe for the structural symmetry cycle driven by ¢
in C&P chains. This combination is k-independent within the gaps, and has natural
zeroes at the palindromic values of ¢, which are 7-periodic in clear correlation to the
palindromic symmetry cycle, and to the zeros of the gap mode crossover discussed
ahead. Accordingly, the longest period possible for « is = (for |¢| = 1), and for
higher values of ¢ more zeroes occur (i.e. the period of the structural palindromic
cycle is always 7, whilst the period of the spectral palindromic symmetry cycle is
gap dependent and equals 7/q ). Finally, the current work has tested its prediction
against the theoretical Chern numbers derived from the substitution rules.

As stated in 3.6, the phase o,(¢) is most conveniently investigated using states
other than ¢-independent scattering states. We thus consider distinct choices of
boundary conditions and study the resulting gap boundary states whose spectral
locations depend on these choices, e.g. closed (mirror) boundary condition, interface
or local defect (see 3.2). Since each choice leads to edge states of the same origin
(see 3.3), without loss of generality, we consider a finite Fibonacci chain (of length
N = Fj, to properly fix the origin of #) with reflective boundary condition at one
end (figure 4.2b). To adapt this setup to the scattering approach, we unfold it as
displayed in figure 4.2a, to arrive at the artificial palindrome P = F NF ~ Which is an
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Figure 4.8: In the center: The integrated density of states (IDOS) of ? N ; N =89,
with gap labels [p, ¢] using (3.45). On both sides: « (¢, k) ,at k values within the
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Figure 4.9: In the center: The integrated density of states (IDOS) of F N N =289,
with gap labels [p, ¢] using (3.45). On both sides: « (¢, k) ,at k values within the
gaps ¢ = +3 (compared to the palindromic symmetry cycle).

open scattering system of length 2N which may be regarded as a generalized edge
(see 3.2.3). Since P is not a bona fide Fibonacci chain, additional interface modes
appear in the gaps of ? ~ at values k,,(¢). A numerical calculation of the artificial
palindrome spectrum as a function of ¢ reveals that the gap modes frequencies
km(¢) behavior as a function of ¢ essentially depends only on the Chern number ¢
of each gap as assigned by relation (3.45). Modes cross the gaps in a direction set

by sign(¢) and a crossing period of 7/|q|, in perfect accordance with the winding

of o, and with the palindromic symmetry cycle, as shown in figures 4.13, 4.14,
4,15. When ? n is palindromic (? N = ? ~). and « vanishes, P reduces to ? N
with periodic boundary conditions instead of a mirror. It is also possible to show
numerically that P(¢) = ?2 ~ (@) in the spirit of 2.1.9. Naturally, no gap modes exist
as depicted in figure 4.15. This constitutes a novel method to measure the Chern
numbers labeling the gaps in quasiperiodic chains through the spectral winding of
conveniently designed boundary states as a function of the gauge field ¢ using a
simple spectroscopic setup.

Using the fact that taking P = ? N? N instead of P = ? N? N is equivalent to
taking « — —a, we have also been able to mimic the behavior of a closed system
(with reflective boundary conditions at both ends) using the structure ? N? N? N
now having topological gap modes localized at the two interfaces (mimicking the
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Figure 4.10: o/ (¢, k), at k = 137—! — 8, labeled by ¢ = 13.

[2,.2]_/
08 1381/ ]
1041
8°° s
iz
Qo4 )
s
—k=nt +A 0.2rvi5 7
0 : 0
0 1 2 0 0 1 2
o/n k o/n

Figure 4.11: In the center: The integrated density of st3t>es (IDOS) of ? N N =89,
with gap labels [p,q] using (3.45). On both sides: 6 2 (¢,k) ,at two different k
values within the gaps ¢ = +1 (compared to the palindromic symmetry cycle).

two edges of a closed system), and traveling in opposite directions. This is depicted
in figure 4.16.

Once again, we note here that other schemes for such measurement of Chern
numbers using the properties of edge states have been proposed, demonstrated and
analyzed | , |- Although the proposed Aubry-Andre-Harper structures
are not describable by C&P neither by substitutions, the structures considered by
that body of work can be generalized as such | |- The main differences from
the current work are as follows. Firstly, the edge states in those demonstration are
excited due to the ¥ = (0 boundary condition at the edges. However, the experimental
paper | | does not gives this explanation. Secondly, the Chern numbers are
not measured through the winding number of the edge state, but using a Chern
density argument, without testing it against a theoretical prediction. The winding
number was added later in a theoretical paper | |- Thirdly, this body of work
only counts the winding, but gives no explanation to the mechanism of the winding
or information regarding the zeros of the windings. Finally, the calculated winding
of the edge states seem to pause after every winding and then to restart another
winding. The authors were aware of this problem and attempted to explain it. Here
we have a correspondence of the gap mode winding to the structural palindromic
symmetry cycle driven by ¢ in C&P chains. This correspondence has natural zeroes
(with a periodic boundary condition argument) at the zeros of 7(¢), which is 7-
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Figure 4.12: ?? (¢, k), at k/m = 257! — 15, labeled by ¢ = 25.

Figure 4.13: Topological gap modes in the spectrum of the artificial palindrome P =
¥ N? ~: N =89. (a) A semi 3D plot of the density of states as a function of ¢ and k
for the structure F'n; N = 89. The ¢-independent gaps with ¢ = +1, +4 are marked

with dashed red ellipse. (b) The same as (a), for the structure PE? N? ~N; N =289.
Gap modes and their traverse as a function of ¢ is observable.

periodic, and topological zeroes at the other zeros of a(¢). Accordingly, the longest
period possible for the winding is = (for |¢q| = 1), and for higher values of ¢ more
zeroes occur (i.e. the period of the structural palindromic cycle is always 7, whilst
the period of the gap mode winding is gap dependent and equals 7/q ). Our Fabry-
Perot understanding of the problem suggests that if the authors of [KLR"12] were to
use a phase conserving boundary conditions, than instead of the observed traverse
they would have a pause, and instead of the pause they would have a traverse.
The fact that spatial symmetry constraints forbids half of the possible gap modes is
visible in figures 3.36, 3.37, 3.38, and 3.39. Additionally, the current work has tested
its prediction against the theoretical Chern numbers derived from the substitution
rules. Finally, a quantitative description for the existence of topological gap modes
including an explanation to the disagreement regarding the winding number is given
in 4.2.3.
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Figure 4.14: Topological gap modes in the spectrum of the artificial palindrome
P=FnNFn; N =289. Eight selected gap modes frequencies as a function of ¢ is in
colored markers, compared to the transmission spectrum below, and the palindromic
symmetry cycle on the left.

4.2.3 Quantitative description

The observations in 4.2.2 become more quantitative by recalling the expressions
developed for the emergence of gap modes in a hetero-structure developed in 3.3.4.
The condition for the appearance of a gap mode k,, in the spectrum of P was found
to be

Ocar (¢, k) =27m. (4.1)

This condition has been exactly obtained using two points of view: A full scattering
calculation with a Levinson theorem-like resonance condition, and an effective Fabry-
Perot model. Since 6.,, for the artificial palindrome 'PE? N? N is obtainable from
the scattering analysis of ?N through (3.51), gap modes k,,(¢) of ?N bounded
by any type mirror at one end, can be obtained from the scattering data of the
corresponding open chain. Using a mutual reflectance condition (3.33), we define
Kk, k;{ as the low and high frequency edges of the gap labeled by ¢, and define &,
such that k] < k, < k:;]c. Now, if for a value of ¢, there exists k., (q,¢) € k, such
that the condition 4.1 is fulfilled, then it represents the (spectral) location of a gap
mode of the gap ¢, allowing to characterize their crossing direction and periodicity
in correspondence to the gap Chern number ¢ (see figure 4.18). As observed in
4.2.2, at ¢ = 0 set to be a palindromic value for ¥ ~.» this condition is not fulfilled
for any gap, and also at ¢ = 7, and ¢ = 2wx. Counting the number of crossovers
in the gap ¢ yields 2¢ complete crossovers. The counting may be performed by
normalizing the k-axis so that k,,(q, ¢) — k., (¢, ¢) = 27 (km(q, @) — ki) / <k;{ — kf)
properly unwrapping /,(q, ¢) and calculating

110



o'

Figure 4.15: Topological gap modes in the spectrum of the artificial palindrome
PE? N? ~; N =89. (a) The integrated density of states (IDOS) of F n; N = 89,
with gap labels [p, ¢] using (3.45). (b) Eight selected gap modes relative in band
frequencies as a function of ¢ is in blue (gap edges are in light green), compared to
the palindromic symmetry cycle on top and to the gap Chern number ¢. Red bars
split the ¢ axis to guide the eye in estimating the Harmonic.

2

1 dky, (¢, ¢)
k! =— [ dp —"— "+ =2
0
defined in a piecewise manner, to yield a another determination method of the
corresponding Chern number g.

This quantitative description is the basis of the more qualitative analysis of
4.2.2. Using (3.51) allows to disentangles 6., into §(k), insensitive to ¢, and a
k-independent «a,(¢), both displaying the topological properties in different ways
(see figure 4.17). As a straightforward consequence of this definition of 0.4, its
winding number for any k € k, within a gap ¢ is

2

dgc[l'l) b 7k k
W (Be) = 5 / ag Pearld dq; LIS (4.2)
0

defined in a piecewise manner, provides another direct determination of the cor-
responding Chern number ¢. These expressions quantify the methods to measure
the gap Chern number proposed in 4.2.2, by presenting an exact mechanism which
determines the existence and frequency of topological gap modes, and a correspon-
dence to a ¢-driven scattering chiral phase and a ¢-driven structural symmetry cycle.
These results are especially interesting since they relate the Chern numbers labeling
the spectral gaps of the infinite chain S, to the scattering matrix of finite chains
without any need for approximations. In other words, the gap labeling prediction

111



g=-1 el
EENNEEREEN

q=2 ,MWMM

0 05 1 15 2

Figure 4.16: Topological gap modes in the spectrum of the structure

N? ~NExn; N = 89. The eight selected gap modes (see figure 4.15) relative in
band frequencies as a function of ¢ is in blue for the first interface, and magenta for
the second (gap edges are in light green), compared to the palindromic symmetry
cycle on top and to the gap Chern number ¢. Red bars split the ¢ axis to guide the
eye in estimating the Harmonic.

for Chern numbers in the integrated density of states are given for S, and may hold
only approximately for finite chains, while the winding of edge states occurs only
in a finite chain carries exact information regarding the Chern number of S,. It is
thus possible to directly deduce Chern numbers from a scattering experiment.

The Fabry-Perot interpretation leading to (4.2) which is described in 3.3 lends
an understanding regarding the spatial symmetry of the topological gap modes. As a
gap mode traverses the gap, it keeps the parity of m in (4.1) and therefor its spatial
symmetry with respect to the interface. When this mode is merged into one band
edge, and another gap mode bifurcates from the other, the parity of m is changed.
This means that the traversing modes spatial symmetry flips between traverses. This
flipping may be understood if we consider the Fabry-Perot description for the case
with a geometrical cavity allowing for a multi-valued Fabry-Perot resonant frequency
comb to be observed (see figures 3.38 and 3.39). In this case it is clear that the
resonant modes alternate in the parity of m, and that scan of ¢ will cause all of
them to regularly traverse the gap. Here we observe the same behavior, through
a spectral window which is the same width of the gap mode separation. This is
another method to count the number of traverses, i.e. to measure the gap Chern
number.

These topological properties presented here do not depend on the structural mod-
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Figure _?.17: Left to right: a comparison between the colormaps for qu(ﬁb), Ocav (0, k)
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Figure 4.18: Topological gap modes in the spectrum of the artificial palindrome
P = ?N?N; N = 89. (a) Colormap of 0.4, (¢, k) within the gap ¢ = —1. Light
green areas correspond to the resonance condition (4.1). (b) Crossover of the gap
mode k,,(¢). Relative spectral location (red) is compared to the resonance condition
(4.1) in blue, and to the palindromic symmetry cycle (green). (c)-(d) The same
as (a)-(b) for ¢ = 2.

ulation strength (or dielectric contrast). However, the value of contrast affects the
number of spectral gaps open for analysis, which is higher when the contrast is in-
creased. Also, the value of contrast affects the details of the staircase behavior of the
scattering chiral phase and of the gap mode crossover. For any value of contrast the
staircase jumps are not even as some are larger then other. This is understandable
since within spectral gap frequencies, the interface (as any other slab) is exponen-
tially coupled to its neighbors (as discussed in 3.2.2). Phason-flips occurring close
by to the interface will promote the phase winding and mode crossover more than
phason-flips occurring further away. Increasing the contrast strengthens the expo-
nential decay, making the large staircase jumps even higher at the expense of the
smaller jumps. In the limit of very high contrast, one staircase jump is responsible
to the entire winding/traverse making it harder to observe the phenomenon. This
is depicted in figures 4.19, and 4.20.

In summary, we have shown in this section that topological properties of quasiperi-
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Figure 4.19: Contrast dependence of the topological gap modes trajectory as a func-
tion of ¢ for the structure P = F N? ~; N = 89. (a) The spectral location of gap
modes k,,(¢) as for the ¢ = —1 gap with a 15% dielectric contrast and (b) The same
as (a) for a 80% dielectric contrast.
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Figure 4.20: The effect of a single phason-flip on the scattering chiral phase oy (¢),

for the structure P = ? NF ~; N =144, and ¢ = —1. (a) The phason flip counter
compared to a properly unwrapped aq(qb) as a function of ¢ (inset: a close-up
view). (b) The effect of a single phason-flip on the scattering chiral phase a,(¢) as
a function of its distance from the center for two values of dielectric contrast (15%
ans 80%) in Linear scale (c) The same as (b) in logarithmic y-scale.

odic Fibonacci chains encoded in Chern numbers labeling the dense set of spectral
gaps, are related to the existence of an underlying palindromic symmetry driven by
a structural gauge phase ¢. Using a scattering approach, we have shown that these
Chern numbers can be obtained either by following the behavior of conveniently
generated gap modes or by measuring scattering phases. Equivalently, finite length
quasiperiodic Fibonacci chains act as topological mirrors so that cavities defined
by two such mirrors enclose modes whose properties are determined by topological
features. These results are readily applicable to all C&P quasiperiodic chains, and
the corresponding Aubry-Andre-Harper model.
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4.2.4 Generalizations to other C&P slopes and the Aubry-Andre-Harper model
(artificial palindrome scattering)

Our results are readily generalizable to any C&P slope, and also to the Aubry-
Andre-Harper scattering potential. Calculations have been performed for several
C&P slopes, to arrive at the same conclusions as in 4.5.3. Figures were left out for
the sake of compactness. The Aubry-Andre-Harper scattering potential was out of
reach for our binary structures computer code (see 3.1). We will suffice in com-
paring tight binding calculations from | | to our own and conclude that they
fit perfectly. In fact, we can reset the origin in the original plots by knowing the
palindromic value of ¢, and also explain the factor 2 in the number of traverses
between both calculations by mere boundary conditions constraints. In that note,
we reiterate our opinion that the artificial palindrome is a generalized edge, which
is the most natural scheme to observe edge states and their correspondence to the
structural palindromic symmetry cycle.

4.3 Experimental measurement of Chern numbers using the
edge states of Fibonacci polaritonic quasicrystals

The work described in this section is the fruit of a collaboration with the polariton
measurement team in LPN, CNRS, Marcoussis, France | |-

In this section we investigate the topological properties of cavity polaritons con-
fined in quasiperiodic potentials following the Fibonacci structures P = ?N? N
(described in 4.2.2). Edge states forming in the gaps of a fractal energy spectrum
are imaged in both real and momentum space. These edge states traverse the gaps
periodically the gaps as a function of the phason ¢. The period and direction of the
traverses provide a direct determination of the gap Chern numbers. Additionally,
we show that the Chern numbers can also be retrieved from the spatial symmetry of
the edge states.

To fabricate these Fibonacci structures, we process a planar microcavity (of nom-
inal Q factor 70000) grown by molecular beam epitaxy. The cavity consists in a
A/2 Gag g5Al.95As layer surrounded by two GagoAlygAs/Gag g5Aly95As Bragg mir-
rors with 28 and 40 pairs in the top and bottom mirrors respectively. Twelve GaAs
quantum wells of width 7 nm are inserted in the structure, resulting in a 15 meV
Rabi splitting. Fibonacci structures are designed using electron beam lithography
and dry etching. Each structure consists in a quasi-1D cavity (wire), whose lateral
width is modulated quasi-periodically, as shown in the SEM image of figure 4.21c
(top view).

The modulation consists in two wire sections A and B of same length a = 1um,
but different widths w, = 3.5um and wp = 2.2um. The width modulation induces
an effective 1D potential for the longitudinal motion of polaritons (figure 4.21b),
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Figure 4.21: (a) Illustration of the C&P method dependence on the phason ¢. (b)
Nominal energy potential corresponding to a laterally modulated 1D cavity. (c)
Scanning electron microscopy (SEM) image of a portion of a 1D cavity reproducing
the Fibonacci based sequence P = F y F' . The letters A and B correspond to two
different widths of the cavity. (d) SEM image showing the full view of 3 fabricated
Fibonacci structures, corresponding to 3 different values of the phason. Vertical blue
arrows indicate the position of phason-flips in the sequences.

that follows the desired Fibonacci sequence. The SEM image of three exemplary
structures, with N = 55, is shown in figure 4.21d. The position of the interface
between the substructures is indicated by a vertical line. These structures correspond
to three different values of the phason ¢. The exciton-photon detuning is of the order
of —20meV for all experiments.

To study the polariton modes in these quasi-periodic structures, we perform low
temperature (10K) micro-photo-luminescence experiments. Each structure P(¢) is
excited non-resonantly at low power, using a CW single mode laser at 740nm. The
excitation spot covers a 80um-long region centered on the interface. The emission
is collected with a 0.5 numerical aperture microscope objective and focused on the
entrance slit of a spectrometer coupled to a CCD camera. Imaging the sample surface
or the Fourier plane of the collection objective allows studying the polariton modes
either in real or momentum space.

Figure 4.22 shows the real (a) and momentum space (b) photo-luminescence of
P(¢) with ¢ = 0.67. An intricate energy spectrum is observed, with the alternating
state bands and band gaps. The emission in real space allows identifying two types
of modes in the spectrum: modes extending over the whole structure, and modes
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(encircled) localized at the central interface. The extended modes aggregate into
bands, as can be seen in the momentum space emission: these modes are bulk modes
forming a fractal energy spectrum characteristic of the Fibonacci quasi-crystal, as
previously evidenced in similar structures | |- The states that are localized at
the interface lie in the gaps of the fractal energy spectrum: these are the topological
edge states proposed to correspond to the gap Chern numbers q. Two such edge
states are visible in figure 4.22 within the highest amplitude gaps.
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Figure 4.22: (a)-(b) Energy-resolved emission from P(¢) with ¢ = 0.67 in real
space (a) and in momentum space (b). Edge states are visible in the two lowest
energy gaps, characterized by ¢ = +2 and ¢ = —1. These states are localized at
the central interface (z = 0). (c) Integrated density of states (IDOS) obtained by
wave-vector integration of the spectrum of panel (b). (d) Spatial profile of the edge
state of gap ¢ = +2 measured in a series of structures of same width wy = 3.5um
of letters A, but various widths wp of letters B, yielding different contrasts for the
Fibonacci potential.

We monitor the evolution of interface states as the phason is varied over a period
27 with the origin of ¢ is set, as before, at a palindromic value. To test the predic-
tions in 4.2, we have designed on a single panel the N = 55 required realizations
of P(¢), with wg = 2.4um. For each structure, we perform spectroscopic measure-
ments similar to that in figure 4.21a-b, and extract the energy of the two edge states
respective to the lowest bulk energy mode (bottom of the parabola, energy Ej). The
process results are plotted in figure 4.23, where the gap boundaries are indicated by
the horizontal lines. We observe that, as the phason is scanned, the states perform
a spectral traverse inside the gaps. The direction and periodicity of this traverse is
different for the two edge states: the lower energy state traverses 4 times upwards
(winding number W = +4), while the higher energy state traverses 2 times down-
wards (W = —2), when ¢ spans [0, 27). This winding of the edge states allows for
a direct extraction of the Chern numbers (see 4.2). Indeed, the measured winding
number is VW = 2¢. The Chern numbers here extracted from the winding of the edge
states are thus fully consistent with those previously determined from the bulk band
structure (wave-vector position and IDOS in the gaps), illustrating the application
of the bulk-edge topological correspondence in our quasi-periodic system.

We note that the spectral traverses of the edge states deviate from a simple linear-
like traverse. Apart from the intrinsic staircase driven by the discrete occurrence
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Figure 4.23: Measured energy of the edge states of gaps ¢ = +2 and ¢ = —1 as a
function of the phason ¢. The energy of the lowest bulk mode is denoted as Ej, and
the solid lines indicate the gap boundaries.

of phason flips (also dependent upon contrast) this deviation is also due to some
disorder in the sample affecting the energy of edge states. The exact energy of edge
states is not a topologically protected quantity, while their existence and winding
number is. We estimate the fluctuations around the nominal spectral trajectory of
the modes, of the order of 50 ueV. Figure 4.22d shows the measured spatial profile
of the edge state ¢ = +2 in a series of structures of increasing potential contrast
(from top to bottom). Contrast enhances the localization of the edge state. Hence,
we expect the spectral traverse to be smooth in the limit of small contrast, and to
evolve towards a more abrupt profile as the contrast is increased. To verify this
prediction, we have performed experiments on two additional sets of structures,
having a higher and a lower contrast than the sample studied in figure 4.23. The
results, shown in figure 4.24, confirm the above prediction and also illustrate the
reproducibility of our experimental results.

Finally, we show that Chern numbers are not only encoded in the spectral prop-
erties of the edge states, but also in their spatial structure (as discussed in 4.2).
Figure 4.25 shows the measured spatial profile of the ¢ = +2 and ¢ = —1 edge
states for values of ¢ taken in the 4 successive quadrants: [0,7/2], [7/2, 7], [7,37/2]
and [37/2,27]. The states either show either a node or an anti-node at the in-
terface (z = 0). We refer to these two spatial structures as symmetric (S) and
anti-symmetric (AS), respectively. We observe that the ¢ = +2 state (red) switches
symmetry in each quadrant, while the ¢ = —1 state (blue) keeps the same symmetry
in the first two quadrants before switching to the opposite symmetry in the last two
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Figure 4.24: Measured energy of the edge states of gaps ¢ = +2 and ¢ = —1 as
a function of the phason ¢ for three values of contrast (determined by wg). The
energy of the lowest bulk mode is denoted as Fj, and the solid lines indicate the
gap boundaries.

quadrants. Comparing this behavior with the spectral features, we observe that sym-
metry flips are indeed exactly synchronized with the spectral traverse of the states:
they occur in between two successive traverses. Hence, the ¢ = —1 state changes
symmetry only once within a full scan of the phason, while the ¢ = +2 state changes
symmetry twice. These features demonstrate an alternative method for determining
Chern numbers in quasi-crystals, that could prove useful in physical systems where
the spectral degree of freedom is inaccessible.
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Figure 4.25: Measured spatial symmetry of the edge states of gaps ¢ = +2 and ¢ = —1
as a function of the phason ¢. The spatial symmetry flips between alternating gap
mode traverses.

In summary, in this section we have investigated the topological properties of
1D Fibonacci polaritonic quasi-crystals. We have evidenced the spectral and spatial
properties of edge states created in the gaps of the fractal energy spectrum of the
quasi-crystal. These edge states spectrally traverse inside the gaps upon varying the
phason. The periodicity and direction of this traverses allow a direct determination
of the Chern number assigned to each gap by the gap-labeling theorem. Moreover,
the spatial symmetry of the edge states provide an alternative and widely applicable

method to determine the underlying Chern numbers.

4.4 Direct measurement of Chern numbers in the diffraction

pattern of a Fibonacci chain

The work described in this section is the fruit of a collaboration with the cold atom
team in LKB, College de-France, Paris, France | |-
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Chern numbers are usually related to transport or spectral measurements (see
4.2 ,4.3, and also | , ]) In this section we report on an experiment
where the Chern numbers of quasiperiodic structures are directly determined by the
traditional crystallographic approach. We demonstrate that all the possible Chern
numbers for a finite-length Fibonacci chain can be observed directly in their diffrac-
tion pattern, using a quasiperiodic diffraction grating equivalent to a quasiperiodic
multi-slit Young's experiment. Finally, we also demonstrate quantitatively the sta-
bility of these topological invariants with respect to structural disorder. We realized
a simple optical setup which allows us to generate any finite-length Fibonacci chain.
The corresponding Chern numbers ¢ in 3.45 appear as winding clearly visible in the
diffraction patterns. Moreover this new approach allowed us to obtain a “topological
map” of these chains and to measure, in a simple setup, all available Chern numbers.
We measured high Chern numbers up to |¢| = 44 for a structure of N = 89 elements.
Our method provides a new and original experimental approach to study topological
properties of matter, different from transport or spectral body of work. The results
in this section imply that Chern numbers also characterize a fundamental, purely
structural aspect of quasiperiodic structures. These implications will be discussed at
detail in 4.5

(b)

02 03 04 05 06
kg (2m/a)

Figure 4.26: Experimental setup. (a) A sketch of the optical setup. A collimated
laser beam at a wavelength of 532nm diffracts off a grating programmed on a Digital
Mirror Device (DMD). The far-field diffraction pattern is measured on a CCD camera.
(b) A sketch of the DMD mirrors. (c) When the grating is structured following a
Fibonacci sequence along the horizontal  direction (and uniform along the vertical y
direction), we observe diffraction peaks characteristic of the quasi-periodic structure
of the chain.

In our experiment, we realized Fibonacci chains using a Digital Micromirror
Device (DMD), i.e. an array of about one million micron-sized mirrors (“pixels”)
of size a x a. Each mirror can be independently switched between a reflective (B)
and a non-reflective (A4) state (see figure 4.26b). We illuminated the grating with
monochromatic light source, and observed the far-field diffraction pattern on a CCD
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camera (see figure 4.26 and also 4.4.1).

As a preliminary experiment, we programmed along the z-axis a Fibonacci grating
F N ; N = Fio = 89 of length L = Fjp x a. We displayed one-pixel-large vertical
lines either in reflective (B) or non-reflective (A) state according to the structure
(semi-1D due to the 2D slab symmetry). We show in figure 4.26¢ the measured
diffraction pattern. Within our experimental resolution, we cannot distinguish the
positions of the peaks from those expected from (2.13) for the infinite chain, namely
k, = p+ q/7. in units of 27/a (see 4.5).

gq=-3 q=2 q=-1 q=4 q=-4 g=1 q=-2| g=3

01 02 03 04 05 06 07 08
k

Figure 4.27: Grayscale map: measured diffraction pattern for the structure
N? ~ ; N = 89. Each ¢ value corresponds to a different diffraction experiment.
The global pattern, which is almost independent of ¢, is compared to the transmis-

sion of an F y dielectric structure (above) calculated using scattering analysis of
chapter 3. Chern numbers labeling the transmission gaps (and diffraction peaks)
through (3.45) are indicated above.

To reveal the topological features hidden in this pattern, we studied the effect
of the phason degree of freedom by scanning over all chains corresponding to the
N distinct and relevant values of ¢, setting the origin of the ¢-axis at a palindromic
value of ¢ (in equivalence to the practice in 4.2).

In a first experiment, we measured the diffraction pattern of a grating consist-
ing of the Fibonacci composite ? N? n. All the results are consolidated to form
the graph shown in figure 4.27, where each ¢ value corresponds to a single diffrac-
tion measurement (shown in figure 4.26). We observe vertical stripes located at a
value k, corresponding to gaps in the transmission spectrum. These stripes appear
independent of ¢.

In a second experiment, following the ideas in 4.2, we used a grating consisting
of a Fibonacci artificial palindrome P = ? N? ~ (see figure 3.37a). The resulting
diffraction pattern as a function of ¢ is strikingly different (see figure 4.28). The
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Figure 4.28: Grayscale map: measured diffraction pattern for the structure P =

~NFn; N =89. Each ¢ value corresponds to a different diffraction experiment.
The global pattern, showing a dependence on ¢, is compared to the transmission
of an F y dielectric structure (above) calculated using scattering analysis of chap-
ter 3, and to the purely structural palindromic symmetry cycle of chapter 2 (on
the right). Chern numbers labeling the transmission gaps (and diffraction peaks)
through (3.45) are indicated above.

vertical stripes are now striated to form a regular and well-structured pattern which
is completely synchronized with the purely structural palindromic symmetry cycle
associated with the scanning of the phason (see 2.2). The direction of the striation
(which appears as a traverse of a single dark spot splitting the diffraction peak
in two) is determined by the sign of ¢ (figures 4.29 and 4.30). For palindromic
values of ¢, namely ¢ = 0, 7, 27, no diffraction peak is split, which is understandable
because the relevant structures are equivalent to the structure 7 N? N-

Specifically, the intensities measured at the original location of the diffraction
peaks k,, vary sinusoidally with ¢, with a period that we identify as 7/|¢| as the
g-harmonic of the palindromic symmetry cycle.

This behavior is in complete equivalence to the theoretical and experimental
results in the completely different system of the topological edge states in Fibonacci
scattering dielectric, discussed in 4.2 and 4.3. This constitutes a novel method
to measure the Chern numbers labeling the spectral gaps and diffraction peaks in
quasiperiodic chains through the winding of the split in the diffraction peak &, as a
function of the gauge field ¢. This method gives a purely structural meaning to the
gap labeling Chern numbers.

In a third experiment, following a proposal in 4.2 shown in figure 4.16, we
repeated the experiment with the structure ? N?N?N. In a complete analogy
to the spectral calculations, the measured diffraction pattern now shows a double
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Figure 4.29: A close-up view on the diffraction pattern of figure 4.28 for peaks
labeled with ¢ = 1,—3. The oscillatory behavior of the diffraction intensity at the
original peak frequency as a function of ¢ is shown.
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Figure 4.30: A close-up view on the diffraction pattern of figure 4.28 for the peak
labeled with ¢ = 2,4. The oscillatory behavior of the diffraction intensity at the
original peak frequency as a function of ¢ is shown.

striation with opposite directions (see figure 4.31).

In a forth experiment, we used the entire 2D map {? N(¢)} (defined in 2.2, and
depicted in figure 2.11) to obtain a single-shot measurement of all available Chern
numbers q. We programmed {? N(¢)} forming an N x N array of pixels where
the x direction is the quasiperiodicity direction, and the y direction is the phason
direction. The measured diffraction pattern in the (k,,k,) plane is associated to a
pattern in the (k,, ks) plane.

The resultant diffraction pattern of {? N(q&)}’ which came as some surprise, is
shown in figure 4.32. It displays a set of discrete peaks at well-defined positions in
the (k,, ky) plane. These discrete peaks are all located at the values &, obtained from
(2.13) exhibiting two main differences with respect to the previously obtained data
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Figure 4.31: Grayscale map: measured diffraction pattern for the structure
? ?N?N ; N = 89. Each ¢ value corresponds to a different diffraction
experiment. A close-up view for the vertical stripes of Chern numbers ¢ =
—3,2,—1,4,—4,1,-2,3 (from left to right).

for single chains (figure 4.26). Firstly, there are many more observable diffraction
peaks than the single chain case, even though the same amount of emitting pixels
are involved. Secondly and importantly, the peaks do not form a horizontal line,
but appear shifted along k, by a quantity equal to the Chern number ¢ of (2.13),
following a simple normalization of the k,-axis. This direct measurement of Chern
numbers in a single-shot experiment thereby provides a “topological map” of the
Fibonacci chain. For a finite chain of length N = F;, peaks with N different Chern
numbers are expected (see 4.5). In our experiment having Fjy = 89, we indeed
observe all the possible Chern numbers. This map bears a surprising equivalence to
the gap labeling theorem (which also originates from the structural building rule)
in the completely different system of the Fibonacci scattering dielectric problem
discussed in 4.2 and 4.3. This constitutes a novel method to measure all the Chern
numbers labeling the spectral gaps and diffraction peaks in quasiperiodic chains in
one diffraction topological map. The theoretical analysis of the properties of the
diffraction topological map (see 4.5) gives a structural meaning to the existence of
Chern numbers in quasiperiodic structures.

Finally, in a fifth experiment, we explored the robustness of the diffraction pattern
and of its topological features (depicted in figures 4.28, 4.29, and 4.30) against
structural noise. We studied a similar configuration as in the second experiment,
Pz? NF N~ but introduced noise by randomly selecting a fraction u of the vertical
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Figure 4.32: Grayscale map: measured 2D diffraction pattern (in a single mea-
surement) for {? N(¢)} ; N = 89. The axes are calibrated to directly display the

diffraction pattern as a function of &, and k, = k4. We observe peaks at the k,values
obeying (2.13) but shifted along the vertical axis to kg = ¢x2m/aN. The asymmetry
between the intensity of the diffraction peaks for positive and negative k, values is
due to the envelope of the diffracted intensity from the DMD, originates from the
form factor of the micromirrors.

lines (0 < u < 1) whose states (reflective or non-reflective) are also chosen at
random. Thus, 4 = 0 corresponds to a non-perturbed Fibonacci pattern and p = 1
to a random chain (see also 4.4.2). The resulting diffraction pattern was averaged
over many realizations of the noise.

In figure 4.34, we show how the diffraction pattern evolves with increasing p.
As expected, peaks are washed out when increasing the fraction n. We select three
specific values of ;1 and show the evolution of the diffraction pattern when scanning
the phason. Even for very weak peak signals, the modulation of the peak amplitude
is always present and keeps the same frequency and direction. This demonstrates ex-
plicitly the expected robustness of the topological properties of the Fibonacci chains
captured by the winding (and the winding number) of the diffraction peak amplitude
as a function of ¢.

To summarize, in this section we have demonstrated a simple way to measure
topological invariants associated with quasiperiodic structures. The theoretical anal-
ysis of these results (see 4.5) had greatly clarified the structural origin of Chern
numbers in quasiperiodic structures. Although we have worked with the simplest
example, the Fibonacci chain, our method is not limited to it and could be applied
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Figure 4.33: A close-up view of figure 4.32 .

to many other chains.

4.4.1 Optical setup

We use a 532nm laser source to illuminate our Digital Micromirror Device (DMD).
The laser output is coupled into an optical fiber used as a spatial mode filter. The
fiber output is expanded to obtain a Gaussian beam with 1/e? radius of about 5mm,
truncated using an aperture to give a roughly uniform illumination spot with a
diameter of about 2.5 mm. This size was chosen empirically to obtain the sharpest
observable diffraction peaks. For larger beams, the imperfections (in particular, lack
of flatness) of the DMD surface become more important and limit the achievable spot
sizes. The DMD (model DLP7000 from Texas Instruments) consists of a matrix of
1024 x 768 square micromirrors with a size a = 14um. The angle of incidence of the
laser on the DMD surface is on the order of 22° (see figure 4.26). Depending on the
mirror state the light is reflected almost perpendicularly to the DMD plane (state
“B”) or to a large angle which is blocked (state “A”). The diffracted light is focused
on a CCD camera using a 2" diameter aspherical lens with f = 100mm. The axes
of the CCD camera - corresponding to the reciprocal space from the DMD plane
— are calibrated by imprinting a periodic lattice of period 2a on the DMD, which
gives a square lattice of peaks separated from the zeroth order by 7/a. The manual
reorientation of this directionality, and the fact that the CCD records the intensity
using discrete spatial pixels, are the main source of error in deriving the sinusoidal
dependence of the diffraction peak amplitude upon ¢ (misalignment error).
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Figure 4.34: Colormap: robustness of the topological features against structural
disorder. (a) Diffraction pattern of the structure P= F y F y at ¢ = 0 for different
levels of noise p. Each value of i corresponds to a different diffraction experiment.
The three white dotted lines correspond to three specific values of p, namely pu =
0.73,0.83,0.93 chosen as examples. (b)-(d) Evolution of the diffraction pattern
when varying ¢ for three different noise levels, respectively. Note that only the [0, 7]
interval of the period of ¢ is scanned.
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4.4.2 Noise generation

We introduce noise in our DMD pattern in the following way. The initial signal is P=
F N? ~- Noting (we used N = 89 in our experiments), the total signal has a length of
2N. We randomly choose Ny ise mirrors out of the 2N mirrors of the chain. The state
of the selected mirrors is then randomly chosen between reflective and non-reflective
with a equal probability. This new, disturbed chain is then replicated as usual on
each line of the DMD (semi-1D due to the 2D slab symmetry). This constitutes a
single realization of a noisy pattern with a level of noise of © = Nppise/(2N). Note
that this algorithm a priori generates independent noise for the two parts of the
chain (? N and 7 ~). To average over several realizations of the noise pattern, we
reproduce the procedure by randomly choosing a new set of mirrors and randomly
flipping them. Each line from the figures 4.34a to 4.34d is obtained by averaging
the measured diffraction signal over 200 independent realizations of the noise. In
order to speed up the data acquisition process, we dynamically control the DMD so
that it scans over all the noise realizations during the CCD camera exposure time,
and the average is made by the CCD device.
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4.5 The structural origin of Chern numbers in quasiperiodic
chains
This section intends to clarify the somewhat surprising experimental results demon-

strated in 4.4. By doing so, is sheds light over the purely structural origin of Chern
numbers (some of these points are to be published as supplemental material for

[Dar16]).

4.5.1 Diffraction amplitudes for various structural schemes

The Fibonacci chain is defined by ?N(QZ)) = [xix2---xn] ; N =F; with

Xn(¢) = sign [cos (2nn 7' + ¢+ ¢y) — cos (m7 )] . (4.3)

The reflectance R, of a vertical line of pixels at position = na is given by R, (¢) =
[1_)‘21(@ 1_"22(¢)...1_X§"(¢)] which is either 0 for y = 1 ( pixels A) or 1 (pixels B)
for x = —1. The diffracted amplitude is thus the sum over all the active pixels B,

namely ,
A(ky) =) ethern(d) (4.4)
B

For a specific value of k,, taken to be k,, and a finite Fibonacci segment F ~. this
complex valued amplitude reads (with obvious notations):

AQ?N(@ = 3 ethurn(@) = Aq?Neieq(@ (4.5)
B

where AQ?N is the norm and 6,(¢) is the total phase. The inverted structure F N is
obtained by replacing x by —z + aN (a being the pixel size), we obtain,

Aqm(@ = 3 ehalaN-zp(@) Aq?Ne—wqw)eikan (4.6)
B

We now take advantage of two known results. The first is that the diffraction
intensities at k = k, for the two structures 7 N and ? ~ are the same (i.e. have
AT (@) =
]A?N (¢)]? = (Aq?N )2, a result we already used in (4.6). The second result is that for
the specific ¢ values, namely {¢,,; }, for which the Fibonacci sequence is palindromic,
i.e. 71\[ = ?N, we have Aq?N(gbpal) = A?N(%al) leading to kyaN = 204(¢pai)-

We now proceed with the experiment using the structure ? N? ~ (or equivalently

the same Chern numbers), and they have no ¢-dependence, namely,

7 N? ~ ). defining the spatial origin at the center, to obtain

A(I?N?N (¢) = A?Newq(@(e*?i@q(%az) +1)
FnFu F —ify(0) 2664 (¢par)
Al (¢) = Af Ve 0al@)(1 4 2ibalPpar)) (4.7)
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As in the experimental results, the resultant diffraction intensities are identical and

¢-independent,

=

AN @) = AT Y ) = 24T V(14 cos(20y(0pa)). (48)

Finally, we consider the topological experiment using the structure P = ? N? N
or alternatively the structure P/= F N? ~ » defining the spatial origin at the center,

to obtain
AP(¢) = ,4? ( i104(6) =204 (par)] e—i[eq(@_zeq(%n)
= 245V cos (04(¢) — 204 (dpar)) (4.9)
and
A7'(9) = A? N (e7a(®) 4 ¢a(9)) = 2A?N cos 0, () (4.10)

where, unlike (4.7), the diffraction intensity is now ¢-dependent. The results (4.9),
and (4.10) still require an understanding of the phase 6,(¢). Note that these results
are for any choice of origin, while in 4.4 we employ the choice ¢, = 0.

4.5.2 The phase term 6,(¢)

Here, we wish to show that the phase term 0,(¢) in the diffraction amplitude (4.5)
is linear with ¢, with a slope equal to the Chern number ¢. A thorough proof is still
an open ended subject.

This linear dependence can be understood from a simple calculation. From the
characteristic functiony in (4.3), we note that changing ¢ from an initial value ¢; by
an amount A¢ is equivalent to a spatial translation (or origin shift) along the chain
(see 2.2.1). Specifically, for A¢ = 27/, the resultant structure is translated by one
pixel only, and therefore the diffraction amplitude AqFz N(¢; + 2w /T) carries an addi-
tional (translational) phase, 0,(¢; + 27/7) = 0,(#;) + ak,. Using the approximation
ky = (2m/a)(p+ qr 1), leads to 04(¢; + 27/7) = 04(¢) + 2mqr . This phase shift is
achieved after (27/7)(IN/27) phason-flips out of the N total number of phason-flips
in a single period of ¢. Since each phason-flip involves a single active “B” pixel
translation by one pixel, each phason-flip contributes on average 27q/Fy to the ad-
ditional phase, completing ¢ periods in one period of ¢ (see 2.2.1). We thus write
the general phase term as a linear function of the modulation phase change A¢:

0q(pi + Ap) = 04(¢i) + qA¢. (4.11)

This linear dependence is depicted in figure 4.35, which shows a numerical plot of
the diffraction amplitude phase term 6,(¢) as a function of ¢ for different values of
¢, i.e. of k;, comparing ? ~ and <]F ~- Choosing ¢,, = 0 as the origin, three features
are easily observable :
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1. For a given value of ¢ (i.e. of k,), the two phases of 7 ~ and 7 ~ are deduced
one from the other by changing ¢ into —¢.

2. The total diffraction phase 6,(¢) is linear with ¢ with a slope g.

3. Changing k, into k_, is equivalent to changing ¢ into —¢.

These results seem to be a rather general feature of the diffraction pattern of both
periodic and quasi-periodic structures, and not restricted to 1D (see for instance
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Figure 4.35: A numerical plot of the phase 6,(¢) of the diffraction amplitude Aq?N (),

as a function of ¢ for the structures ? ~ (in blue) and ? ~ (in red) and for the
diffraction peaks k, for various ¢ values. (a)-(b) ¢ = +1, respectively. (c)-(d)
q = +2, respectively. (e)-(f) ¢ = +3, respectively. (g)-(h) q = t4, respectively.

The phases of the diffraction peaks (in figure 4.35) are in complete agreement
with the spectral gaps scattering reflected phase shifts discussed in 4.2. We have
also succeeded to extend this analogy to all values of k, and to show that just
as the winding of the scattering phases underlies the more convenient method to
observe spectral winding (e.g. of gap modes in the artificial palindrome), so do
the diffraction amplitude phases. Figure 4.36 shows the diffraction pattern phase
analogue to the scattering chiral phase « discussed in 4.2. This diffraction chiral
phase ~(k, ¢), given by

v(k, ¢) = phase [A?N(k:, d))] — phase [A?N(k:, d))] ,

and depicted in figure 4.36, is completely analogous to the pattern depicted in figure
4.3. The main difference between ~(k,¢) and «(k,¢), is that v(k, ¢) assigns the
same widths to the “gaps” (i.e. regions where it is essentially v(¢) ), while «(k, ¢)
assigns a contrast dependent gap width hierarchy. Similar to the case of «a(k, ¢).
the diffraction chiral phase allows to many more Chern numbers in its winding
compared to the intensity spectrum winding for the artificial palindrome case. This
constitutes a novel method to measure the Chern numbers labeling the spectral gaps
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and diffraction peaks in quasiperiodic chains through the winding of the phase of
the diffraction peak £, as a function of the gauge field ¢. This method gives a purely
structural meaning to the gap labeling Chern numbers.
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Figure 4.36: Colormap: |y (¢, k) | for ?N, N = 89. Completely analogous to |« (¢, k) |
of figure 4.3, including the complete synchronization with the diffraction peaks in
the k-axis, and to the the structural palindromic symmetry cycle on the ¢-axis.

4.5.3 Generalizations to other C&P slopes and the Aubry-Andre-Harper model
(artificial palindrome diffraction)

The diffraction method presented in 4.4 is not limited to the Fibonacci sequence. It
is readily generalizable to any C&P structure. Figure 4.37 shows a numerical calcu-
lation of the same methods applied to a C&P structure of slope 5~/2. The behavior
appears in full correspondence to the Fibonacci results, apart of two differences.
The first difference is that that we do not have the gap labeling theorem to aid us
with a prediction for Chern number values (as we do not know the substitution
for this structure, see 3.4). However, it appears that all the diffraction peaks and
windings are to be derived by the same formulation done for Fibonacci by replacing
7~ with 5~"/2, For instance, there is a peak at k = 1 -5~ "> with 2 windings, a peak
at k = 2-5~72 with 4 windings, a peak at k = 3-5-"2 ; modulo 1 with 6 windings and
so on. The second difference is that although the diffraction chiral phase still corre-
sponds to the structural palindromic symmetry cycle, the striations in the diffraction
peaks do not. The winding is conserved, but the origin of the striation is shifted (this
is indicated by the blue line in figure 4.37b which is where all diffraction peaks are
unsplit). This results from the fact that N = 89 is not a natural length for this C&P
slope (it was chosen due to the lack of other generating rules). This problem was
mentioned from structural considerations in 2.2.1, and will be discussed in 4.6.

Remark: more C&P slopes, such as 7—"/2, have been calculated to yield similar
results.
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Figure 4.37: (a) Colormap: |y (¢, k)| for a C&P structure with N = 89 and a slope
5-'/2 (with k and ¢ axes as before). Regions with a regular behavior of | (¢, k) | with
integer windings, correlated to the palindromic symmetry cycle are easily observable.
(b) Grayscale map: calculated diffraction pattern for two structure the artificial
palindrome based on the structure describes in (a). Each ¢ value corresponds to
a different diffraction spectrum. The global pattern, showing an integer winding in
agreement with (a). Blue line indicates the ¢ value where no diffraction split exists.

Figure 4.38 shows the application of the same methods for the continuous al-
phabet Aubry-Andre-Harper (AAH) model. It has been noted from purely structural
considerations in 2.3.3 that a maximum number of 2 diffraction peaks appear for
this structure, but using a recent proposal [K712| to smoothly modify the AAH model
into its equivalent C&P model (using a parameter ), more diffraction peaks may be
excited. The results are indeed equivalent to those of the Fibonacci artificial palin-
drome, except for a new upper limit to the number of observable Chern numbers
and diffraction peaks. This limitation depends on the smoothing parameter 5. For
B — 0 which is the pure AAH case, only two peaks appear, with winding numbers
+2 equivalent to Chern numbers +1, while fore higher values of 5 more diffraction
peaks and the corresponding windings appear. This is in full accordance to the
analysis presented in 2.3.3. The absence of diffraction peak splitting in ¢ values cor-
responding to structural palindromic symmetry is also evident and equivalent to the
C&P counterpart structure. The full correspondence of the AAH structure topologi-
cal properties to the palindromic symmetry cycle verifies the topological equivalence
between the AAH structures and their C&P counterparts.
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Figure 4.38: Colormap: calculated diffraction pattern for an artificial palindrome
based on the Aubry-Andre-Harper (AAH) structure with N = 89 and a slope 7!
(with % and ¢ axes as before). (a) Pure AAH structure (b) A modified AAH with
3 = 3. The global pattern appears to be a limited version of the Fibonacci case (and
the limitation is a function of 3).

4.5.4 Diffraction peak splitting - an Intuitive explanation

As much as the analysis of the oscillatory behavior of the diffraction peak amplitude
serves as a Chern number measurement, we wish to better understand the funda-
mental effect of diffraction peak splitting and its correspondence to gap modes in
the scattering spectrum of the dielectric system considered in 4.2. We do so using
the notion discussed in 4.2 that the phason ¢ acts as a modulation of an effective
cavity length between the substructure of the artificial palindrome. We define a “toy
model” consisting of two identical periodic gratings with a variable separation be-
tween them which is analogous to the case of a photonic crystals based Fabry-Perot
cavity with resonant modes.

Figure 4.39a depicts the diffraction pattern for the case with zero separation
(undisturbed periodic structure). The single diffraction peak describing the period-
icity of the structure is equivalent to the single spectral gap in the dielectric case.
Figure 4.39a depicts the diffraction pattern for the case with a single slab which is
equivalent to the dielectric photonic crystal with a single defect discussed in 3.2.1.
In the dielectric case a single gap mode is excited at mid-gap, effectively splitting
the gap in two. The diffraction pattern shows still a single peak, but split in two
(through the middle). This is understandable upon calculation of the Fourier co-
herent sum of amplitudes we will not give here. We’ll suffice to say that in the
undisturbed case, the diffraction intensity is the absolute value of a sum of cosines
with many frequencies, all having an anti-node at k£ = 0.5. In the single slab separa-
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tion the same sum exists, now all cosines have a node at £ = 0.5 which manifests as
a split in the diffraction peak. A more intuitive mental image is that the split in the
diffraction peak carries information regarding the gap mode in the dielectric system.

If we monitor this analogy over more separation values we realize that at in-
termediate separations, the split still exists, bur now the peak is unbalanced with
respect to the split (see figure 4.40). In the Fourier sum viewpoint, we have a
sum of cosines with an anti-node around k& = 0.5 but not exactly there. The gap
mode analogy still holds, and the location of the split in the diffraction peak carries
information regarding the gap mode in the dielectric case.

Finally, if we completely free the separation parameter, we manage to mimic the
topological winding of diffraction peaks measured in 4.4, with a winding number
completely dependent on the rate of separation change which functions as the toy
model "¢” (see figure 4.41).
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Figure 4.39: (a) Calculated diffraction pattern (in blue) for an undisturbed periodic
structure (given above in a grayscale map). The inset gives a close up view of the
single diffraction peak. (b) The same as (a) for a periodic structure with a single
slab separation.

To summarize this part, an instructive way to understand the topological winding
of diffraction peaks splitting in the Fibonacci artificial palindrome is the following.
Each of the many diffraction peaks (or spectral band gap) of a single quasiperiodic
segment carries the information of some partial periodicity in the structure. There-
fore, for each peak, the artificial palindrome scheme is equivalent (in the dielectric
case) to an effective Fabry-Perot cavity. We also know from the discussion in 4.2
that scanning ¢ is a nothing but a modulation of the effective cavity length. If we
translate this to the diffraction language, we have for each diffraction peak (sep-
arately) an identical case to our toy model. The difference between peaks is the
proportionality constant between ¢ and the Fabry-Perot effective cavity length.
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Figure 4.40: (a)-(f) A close up view of the single diffraction peak (in blue) for an
increasing amount of separation (shown in the inset). The imbalance of the split is
periodic in the amount of separation.

4.5.5 Chern numbers - structural origin

Here we aim to provide a theoretical description of the forth experiment presented in
4.4, i.e. to obtain the (k,, k) map. The starting point is based on the Cut and Project
(C&P) method, discussed in 2.1.5, and 2.1.8, which allows to obtain the Bragg peak
structure of S, [ , , ] In the case of a finite segment ? ~» we have
shown that there still exist diffraction peaks, located at approximate values of the
exact Bragg peaks spatial frequencies, and also were able to probe their topological
properties by scanning through the N possible realizations. Here, we extend this
approach and apply it to {? N(qﬁ)}, the entire 2D structure composed of all possible
N realizations (and defined in the rotated coordinate system (z, ®)), to obtain both
the (approximate) k values of the Bragg peaks and the corresponding observable
(exact) Chern numbers.

We recall that the infinite Fibonacci chain S, and any of its finite segments are
generated through C&P by choosing the angle 6§ between the C&P line A and the
basic Z2-lattice such that tan @ = 71, 7 being the golden mean (see 2.1.5). The first
and most important step is to realize that {? N(¢)} depicted in figure 2.11, may be
described as a 2D unit cell Z2-lattice with a rotated with an angle ¢ with respect to
the (z,$) axes (see Fig.4.42a). Disregarding the form factor of the 2D unit cell of
this lattice, the remaining square lattice of points is represented by the function,

1
Q(r,¢) = — Z(S(:U — kcosy —Isinp) d(¢p + ksing — [ cos @), (4.12)
472 —

where the sum is over a finite set of integers (k,l). The Fourier transform of the
rotated (z, ¢) Z- lattice is also a Z>-lattice rotated with the angle ¢ with respect to
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Figure 4.41: (a) Grayscale map: the periodic grating with a semi-continuously
increasing separation. (b) Grayscale map: the calculated diffraction pattern for the
structure set given in (a). Each "¢” value corresponds to a different diffraction
calculation .

the reciprocal space (k., ky), and represented by,

F(ky,kg) = 25(/% —mcosy +nsiny) §(ky —msing —ncosy), (4.13)

n,m

where the sum is over an infinite set of integers (m,n).

We now discuss the rotation angles # and ¢. In the case of S,, these angles
are such that tan# = tan o = 7!, while for a finite segment they are different. To
generate a finite chain F ~n of N letters, the slope of the cut A defined by tan # must
not necessarily be taken as an irrational but may be given by a rational approximant
p/q (as long as the unit cell of the resultant periodic chain p 4+ ¢ — 2 remains larger
than N). For Sy this approximant is 34/55. Similarly, to generate the complete
set of N finite chains, {? N(gb)}, the slope can again be taken as another rational
approximant p/q (this time the needed unit cell p + ¢ — 2 has to be larger than
2N +1). For Sy this approximant is 89/144. The rotation angle ¢ is quite different.
For the set {? N(qb)} with V = F; generated using any of the allowed values of 0,
the rotation angle ¢ determining the tiling angle of the new Z2- lattice has always
a fixed rational slope no matter how accurate is the approximation used for the
irrational 7, namely,

tanp =L (4.14)
b
where the two mutually prime integers (p;, ¢;) depend only on N = F; (see 4.5.7).
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For S1p, we have p; =5 and ¢; = 8.

The 27-periodicity of the set {? N(¢)} in the phason direction ¢, together with
the fixed rational angle of rotation ¢, means that the set may be folded to form
a perfect 2D torus (see Fig.4.42). From 2.2 we know that this finite size map
encloses exactly N unit cells (due to exactly N phason-flips). Therefore, the infinite
reciprocal space of the finite set {? N(¢)} with N = F; may be characterized by
a finite quasi-Brillouin zone , QBZy, (also a 2D torus) which generalizes the usual
notion of Brillouin zone. We use the fact that the rotation angle of the {? ~N ()
reciprocal lattice with respect to the (k,, k4) axes is still described by tan . To build
the torus QBZy in the (k;, k) reciprocal space, we follow the same guidelines as
the structural co-numbering approach (see 2.1). We set an origin (k, ks) = (0,0)
at some point and label them with the lattice coordinates [m = O,n = 0]. The
next step is to identify the three other corners of the QBZy, using (4.14), to be
[m = qn = —p| where (ky,ky) = (qcosy + pising,0)[m = pun = g where
(kay k) = (0, prsing+q cos @), and [m = q+pi.n = q—pi| where (ks kg) = (prsin o+
q1 cos ¢, pysin + g cos p). These 4 points define the torus QBZy as represented on

Fig.4.43. It exactly encloses N points.

(a)
o |

Figure 4.42: Structural properties of the 2D set {?N(gﬁ)} for N = 89. (a) The

structural  — ¢ map created through the Cut & Project method forms a tilted 2D
crystal with a 2D unit cell indicated by red and blue squares. The fact that p; : ¢; =
5 : 8 is easy to deduce. This map is a torus obtained by wrapping the map along
both axes, so that the four blue squares coincide. (b) An illustration of the resulting

torus.

We now discuss the normalization of the reciprocal space torus coordinates. The
k, coordinates may be normalized by (p;siny + g cosp)™' = 1/4/p? + ¢} so that
k. € [0,1]. After this normalization, the N points at which F'(k,, kg) # 0 correspond
to all N possible (approximate) Bragg peaks values kq. As for normalization along
the ¢-axis, it is obtained from the reciprocal lattice point with k4 = 0k, the smallest
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Figure 4.43: Construction of the torus QBZy for N = F;—;p = 89 with the corre-
sponding values p; = 5 and ¢; = 8. The red circles define the corners of the torus
QBZy which encloses Fiy = 89 points (lattice coordinates [m,n] are given). The
fundamental k4 value, dk,, corresponding to Chern number equal to 1, is represented
by the green circle (along with the lattice coordinates [m, n]). This lowest non zero
value of k4 in this case is obtained using the predecessor approximant (pi—1, q1—1)
in the Farey series. (a) An emulated lattice angled at ¢ (to set notations).

Colormap: the actual 2D Fourier transform of {F N(gf))} for N = 89.

nonzero value of k4. The (toroidal) vector between the origin and this lattice point,
(0ky,d0kg), is instrumental to find all points within the QBZy torus according to the
co-numbering algorithm (see 2.1). The N points are found through the recurrent
vectorial addition (and winding) of this vector similar to the co-numbering generator
(see Fig.4.43). This single fundamental lattice point is obtained using one of the two
the predecessor approximants of the slope tan p = p;/q; in (2.4), depending on the
parity of /. This point has been proven in 2.1 using the Vajda identity | |- Itis
given by the point [m = ¢;_1,n = —p;_1] for even [, or the point [m = ¢;_2,n = —p;_2]
for odd . In our example (j = 10 ; | = 4) this vector in reciprocal lattice coordinates
gives

q1—1€COS P + pi—1 Sin

\/ 7+ af

The expression for (0k,,dks) along with the co-numbering method sets the k-

(Okz, Okg) = , i-18inp —pp_ycosgp (4.15)

scales in the reciprocal lattice, thus leading to the integer (Chern) numbers C

kg msin g + n cos ¢
C(n,m)=— = : = 4.16
(n,m) 0ky  qi1Sing — pr1cOSQ mpy + nq ( )

138



where the last equality is obtained by noting that successive approximants in the
Farey series (2.4) fulfill [p;_1q; — ¢—1p1| = 1. We note here that (4.16) holds for
odd values of [ also as |p;_2q; — qi—2pi| = 1.

Additionally, a change of origin has to be performed in the k4 toroidal dimension,
such that all reciprocal lattice points with F;/2 < k,;/d¢ are wrapped around the
torus to have ky/0¢ — F;/2—ky/0¢. The F; values of k, now come in pairs of equal
magnitude and opposite sign. (see Fig.4.44).
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Figure 4.44: A properly unwrapped torus QBZy forN = F;_io = 89 . The red circles
define the 4 corners of the torus QBZy of figure 4.43. The fundamental k4 value,
0k, corresponding to Chern number equal to 1, is represented by the green circle.
k4 values now come in pairs of equal magnitude and opposite sign. (a) An emulated
lattice angled at . (b) Colormap: the actual 2D Fourier transform of {? N(gzb)} for
N =89.

Finally, the Fourier transform (4.13) of {? N(cb)}can be rewritten in terms of
the Chern numbers C and of the (approximate) Bragg peak values k, as,

m CoS  — n sin
F(k;,C) Zé r — L L 0(C —mp; —nqp) (4.17)
P+ af
where the integers (n, m) run over the 2D torus QBZy now entirely defined by

ke(m,n) = (mq —np) /(0] + q7)
Cim,n) = mp+ ng (4.18)

The total number of points in the 2D torus QBZy is the number of Chern inte-
gers available, which is exactly N= F;. It is bounded from above by F;/2, namely
|C(m,n)| < F;/2. Finally, we note that Chern numbers always appear in pairs of
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opposite sign associated to the structure length N and its minimal Farey approxi-
mate tan(#) = p/q, namely for the lowest approximant (periodic system), the values
C = £1 will show up first, followed by higher paired values while increasing the
ratio p/q. It is worth noting again that while the Chern numbers C(m,n) are always
integers, the (approximate) Bragg vectors k,(m,n) depend on the chain length but
they rapidly converge to the exact Bragg value obtained for N — co. This last claim
is demonstrated in figure 4.45.

This purely structural limitation to the observable number of Chern numbers,
and to the accuracy of the k, values for a finite chain may be used to give a formal
meaning to the gap labeling theorem of finite chains. The Integrated density of states
(IDOS) for a finite chain of length N = F;, may possess exactly N non-recurring
gaps located at k¢ values fulfilling

_1COs _1sin
ke = 9-1C0S9 + P11 LN modulo1 ; gozarctanﬁ; —Fif2 < C € Z < T2,

Vo a e

to yield exactly N corresponding IDOS values

_1cos _18in
Ne = £-1 PHPASNP o odulol ; gO:arctanQ; —Fif2 < C e Z < Fif.

VP &
(4.19)

Now, for the infinite chain (I — o0) we have cosy = 1/V1+7-2 ; sing =
71/V1+ 72 and /p? + ¢ = V1 + 7 2. Using the identities (for I — c0): q_1/q =
71 and p;_; /q; = 72, the expression for the finite size gap labeling theorem (4.19)

becomes:

Ne =C-m7 ! modulo1,

which is identical to (3.45).

4.5.6 Generalizations to other C&P slopes and the Aubry-Andre-Harper model
(topological map)

Performing the topological map method corroborate the conclusions in 4.5.3, and in
2.3.3. Figures 4.46 and 4.47 summarize the results.

4.5.7 Derivation of p, and ¢, for a structure of length N = F;

The = — ¢ map we use for the Fourier transform of {? N(¢)} is N by N (I letters

and N phason flips). In order that each phason flip becomes the center of the 2D
unit cell described above, we assign an area N for each tile (unit cell). The tile
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Figure 4.45: (a) The convergence of of dk, in the Fourier transform of {? N(qb)}

as a function of structure length (as expressed by the Farey generation describing
the reciprocal lattice) to 7! (represented by the 15th Farey approximant). (b)
In black dots the reciprocal lattice of the 15th Farey approximant (representing the
true quasiperiodic structure). In red squares the 89 reciprocal lattice points of the
4th Farey approximant. In magenta diamonds the 233 reciprocal lattice points of the
5th Farey approximant. The level of convergence in the k-axis is indicated in the
colored arrows in (a)

is generally a parallelogram, and sometimes it is square. Two classes of Fibonacci
lengths exist:

1) N = F, ; even j, e.g.: N =2,5,13,34,89,233,610...

For this class there exists the rule: N = F; = }'] .2/2 + ]-‘] ?/2_1. This means that the
tile is square, and that both real space tiling angles can be assigned the same Farey
approximant p; : q; = Fjp 1 Fjja_1-

Examples:

N =13 = Fg = F2 + F2 = 22 + 3% —the tiling is 2 : 3 (tile area is 13).

N =34 = Fy = F? + F} = 32 + 5% —the tiling is 3 : 5 (tile area is 34).

N =89 = Fig = Fi + F2 = 52 + 8% —the tiling is 5 : 8 (tile area is 89).

The 100% tiling is the true proof that the x — ¢ map is in fact a torus.

2) N =F;;odd j, e.g.: N = 21,55, 144,377...

For this class there exists the rule: N = F; = \/[}'(2]._1)/2 + .7-'(2]._1)/2_1][

+F?

2
7 (j+1)/2—1]'

(j+1)/2
This means that the tile is not square.

Examples:

N =21 = F; = \J[F+ FZ|[F2 +F} = /[22 +32][32 + 52] —the tile con-
stants are  : y = 3 : 3 and = : y = 2 : 5. The single tile coordinates [z,y| are
[0,0], [5,—2],[8,1],[3,3] (tile area is 21). Therefore the non-square tiling is 2 : 3 for
the z-axis (2-3+3-5=21) and 5 : 3 for the y-axis (5-3+ 3-2 = 21). This can be
fixed by deforming the y-axis, but there is no need because we already manipulate

this axis to be in units of C . The 100% tiling shows that the = — ¢ map is in fact a
torus.
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Figure 4.46: Colormap: topological map for the C&P structure with N = 89 and a
slope 5~ /2(with k and ¢ axes as before). Axes were discarded for clarity

4.6 The importance of keeping N = F;

In 2.1, we discussed the fact that characteristic function or C&P structures, apart for
having a structural degree of freedom ¢, are not limited in length as the substitution
or concatenation generated structures. We then argued that in spite of this freedom,
we restrict ourselves to the natural lengths V = F;. This section will shortly describe
why.

Firstly, from the Gap labeling theorem point of view, stated for the infinite chain
there is no length dependence and we have found it valid for structures with non-
Fibonacci lengths. Secondly, we have shown that the structural palindromic cycle
is universal to the C&P chain family, and its origin is a function of only slope and
length. However, when performing spectral calculation to monitor gap modes in
the artificial palindrome scheme, an origin shift is observed between the structural
palindromic symmetry cycle and the gap mode traverse, while keeping the winding
numbers intact (see figure 4.48). Following the quantitative approach using the
effective Fabry-Perot resonance condition (3.30) yields the very same origin shift
(see figure 4.49).

The shift in origin is found to be exactly —AN7~!, where AN is the difference
between the structure length and the closest Fibonacci number ;. This is due to the
expression 2.12 requiring that a palindromic symmetry pole will occur at the edge
where the gap modes are localized. Due to (3.51) we may deduce that the quantity
that changes as a function of AN is the total phase shift at the gaps J(k).

This problem was mentioned from structural considerations in 2.2.1, and has
been encountered in the diffraction setup when calculating for other C&P slopes
(see 4.5.3). Although the diffraction chiral phase still corresponds to the structural

142



i

it

110001 DI ERRRMNIAALY
T

Figure 4.47: Colormap: topological map for the Aubry-Andre-Harper structure with
N = 89 and a slope 7! (with k and ¢ axes as before). Axes were discarded for
clarity. (a) Pure AAH structure (b) A modified AAH with 3 = 3. The global pattern
appears to be a limited version of the Fibonacci case (and the limitation is a function

of 3).

palindromic symmetry cycle, the striations in the diffraction peaks do not. The
winding is conserved, but the origin of the striation is shifted (this is indicated
by the blue line in figure 4.37b which is where all diffraction peaks are unsplit).
Perhaps this may be used to find a set of natural lengths for non Fibonacci C&P
slopes (find lengths where both cycles are again synchronized). This Issue may also
be viewed from a completely structural point of view. In 4.5.5 we argue that the
structure set {? N(d))} is a perfect torus. Is is easy to see that if we change the
structure length along the quasiperiodicity direction then the torus in not closed and
we have a residual stub.
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Figure 4.48: Topological gap modes in the spectrum of the artificial palindrome
P = FyF y. Eight selected gap modes relative in band frequency as a function of
¢ is in blue (gap edges are in light green), compared to the palindromic symmetry
cycle on top and to the gap Chern number ¢. Red bars split the ¢ axis to guide the
eye in estimating the Harmonic. (a) N =93. (b) N = 89.
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Figure 4.49: Topological gap modes in the spectrum of the artificial palindrome
P = FnF y as predicted by the scattering phase 6.,,. The gap with ¢ = —1 is
investigated for the existence and frequency of gap modes using 6., (colormaps)
and specifically the condition .., = 0 (blue lines with circles), and compared to the

structural palindromic symmetry cycle (green lines with circles). (a)-(b) N = 93.
(c)-(d) N =93.
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Chapter 5

Summary and outlook

In the last 3 technical chapters we have reviewed much of the knowledge base in
the fields of structural, spectral and topological properties of quasiperiodic chains
in the aim to connect them in a meaningful way. The essence of the current work
is this connection to form a highly interdisciplinary field of mathematical physics,
scattering matrix approach, crystallography and cavity physics. Along the way we
have uncovered many pieces of physics for the first time, to our knowledge. Some
of which are still “open ended” at this stage and requires additional research. In this
chapter, we will attempt to browse through the plot of the last 3 technical chapters
in context, listing our contribution to this field, and finally mention the medium and
long range outlook for this line of research.

5.1 The story

Quasiperiodic chains have been long known to have rich topological properties.
Mathematical physics based analysis of the scattering and diffraction spectral prop-
erties of infinite quasiperiodic chains has well known outstanding results since the
1980’s. True quasiperiodicity or irrationality is not a matter of question for these
structures, and is crucial to produce a true multifractal spectrum with an infinite
number of spectral gaps (or diffraction peaks) ordered in a hierarchical manner and
labeled using integers which are Chern numbers. This mathematical classification of
quasiperiodicity is written in the same language as more familiar physical examples
of topological classification, such as quantum anomalies in field theory, the quanti-
zation of the Hall conductance in quantum Hall effects, where the Hall conductance
oy of two-dimensional semi-conductors in a strong magnetic field is quantized in
integer multiples of a fundamental conductance o, and topological models of quan-
tum condensed matter such as topological insulators, graphene, and the classification
of topological defects. For all these physical examples of topological classes, there
exists an underlying symmetry or a gauge field, governing the relation of these prop-
erties to physical observables. For quasiperiodic chains, these driving forces have
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not yet been identified or agreed upon, and a more physical understanding of the
existence of Chern numbers in such structures with no further manipulation (e.g.
field) has not been given.

The first step forward was to consider finite size quasiperiodic structures. If we
take the quantum Hall effect as an example, then without this step there would have
been no edge, no current carrying edge states and no Hall conductance. After the
experimental observation of quantized Hall conductance (in a finite system), a suc-
cessful theoretical effort has been focusing in the understanding of the manifestation
or the mapping of the topological properties due to infinite structures to that of real
life finite systems. A very similar path has been taken also in all the other examples
discussed above. In the case of quasiperiodic structures it has not been this simple.
Quasiperiodicity is an infinite concept in essence, a fact which has been a cause of
a great reluctance to consider finite quasiperiodic systems without classifying them
as periodic approximants of the quasiperiodic structure. However, a recent first
attempt has been made in Aubry-Andre type tight binding model, acknowledging
that when considering a finite segment of an infinite quasiperiodic chain you im-
mediately gain a structural degree of freedom which is, in essence, the choice of
the location of the segment along the infinite chain, or in other words, translational
degree of freedom given by the modulation phase ¢. Using this degree of freedom in
a closed quasiperiodic segment with edge states excited through some closed bound-
ary conditions, results in the freezing of the original (bulk) spectrum, and a regular
traverse of the edge states frequency which was analyzed to conclude that it carries
topological information, specifically in their winding number as a function of scan-
ning the structural degree of freedom ¢. In an effort to connect this phenomenon to
the subject of topological current carriers and topological pumping, such pumping
has been predicted and measured in Aubry-Andre type tight binding model systems.
Questions have been raised regarding the role of true incommensurability to the
results which have been obtained. In fact it has been shown that the same exact
results may be obtained by using the same model without true incommensurability.

The next step forward was to change from tight-binding approximation to the
scattering approach, and analyze discrete quasiperiodic chains, such as the (pure)
Fibonacci chain, which are generated by the well established methods such as sub-
stitution and C&P. The properties of substitution rules structures give access to the
gap labeling theorem’s prediction for the existence of Chern numbers, and the C&P
approach reveals the structural effect of the modulation phase ¢. In order to treat an
edge in the scattering approach, a generalized edge was designed, namely the artifi-
cial palindrome scheme. These building blocks led to the finding of the phason-flip
driven structural palindromic symmetry cycle which has a double frequency com-
pared to ¢. Spectrally, this led to the understanding that for low enough contrast,
the edge states of the generalized edge traverse the gaps in a way describable by an
integer winding number. There were two major differences from the Aubry-Andre
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tight-binding approach. The first difference was were that instead of the previous
C windings within one period of ¢, the winding numbers were now found to be
2C. The second difference was that instead of an edge state winding with pauses
(i.e. with many values of ¢ where no edge states exist), we now have a gap mode
inhabiting each gap at all times, except for the windings zeros which is in perfect
synchronization with the structural palindromic symmetry cycle. A quantitative ef-
fective Fabry-Perot model has been used to easily explains the missing windings in
the Aubry-Andre tight-binding results by means of boundary conditions constraints.
The synchronization of the spectral phenomenon of edge states winding to a vio-
lation parameter of a structural symmetry of the C&P structure with respect to the
same structural degree of freedom ¢ tells us that the generalized edge scheme is the
one to tell the whole story. This was complemented by another important ingredi-
ent is using the scattering approach to find a combination of reflected phase shifts
which is the spectral counterpart of the spatial degree (or violation) of palindromic
symmetry. The very same mechanisms were also found in the diffraction amplitude
phase of a single C&P chain, which translates to an intensity spectrum winding of
the diffraction pattern in the artificial palindrome scheme.

The final step came from backtracking to the purely structural properties of C&P
structures and the structural effect of the phason-flips. Noticing that the 2D map of
phason flips for a finite chain forms a perfect structural torus, brought tremendous
insight. A single segment of the C&P chain without any external periodic boundary
conditions whatsoever forms its own internal periodic boundary conditions with
respect to the translational degree of freedom (when controlled by the modulation
phase ¢). This quickly led to the definition of a quasi-Brillouin zone and to a
quantitative formulation for the allowed number of Chern numbers, and the deviation
of the spectral gaps/diffraction peaks/integrated density of modes at the gaps from
the infinite chain values. This last progress sheds light on the recurring questions
regarding the necessity of true irrationality, and of natural lengths to the properties
we observe. Moreover, to our opinion it depicts the most fundamental description
of the quasiperiodic Chern topological invariants: that of a winding around a torus.

5.2 Our contribution

1. We have performed a structural analysis of finite (discrete) C&P chains as a
function of the translational degree of freedom ¢. We have found, among other
properties, the existence of a structural (violation of) palindromic symmetry
cycle as a function of ¢, with a double frequency compared to ¢, and a natural
origin where the structure is a perfect palindrome, dependent upon only length
and C&P slope.

2. We have performed a non-tight-binding spectral scattering analysis of finite
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(discrete) C&P chains as a function of the translational degree of freedom.

. We have designed the artificial palindrome scheme as a generalized edge in
order to monitor the winding of topological edge states. We have found that
for low enough contrast, an integer winding occurs, with winding numbers for
each gap of 2C. For the Fibonacci case, each Chern number C was verified
against the prediction of the gap labeling theorem. We have measured these
predictions in a cavity polariton system.

. We have shown that the mechanism of the spectral winding of edge states in
the generalized edge scheme is perfectly synchronized with the violation of
palindromic symmetry cycle (the C-harmonic of the cycle). Specifically, at ¢
values where the structure is a palindrome no edge states occur for all gaps.

. We have formulated an effective Fabry-Perot model using the scattering ap-
proach. When employed to the artificial palindrome scheme, this model con-
stitutes an exact description of the existence and frequency of topological edge
states as a function of ¢. Trough this model we were able to equate seemingly
different situations such as different boundary conditions, a geometrical cavity,
defect systems and hetero-structures.

. We have uncovered a scattering phase shift (a) sensitive to the symmetry of
a single chain. This phase has an integer winding as a function of ¢ within
spectral gaps and no dependence on k. The winding numbers of this phase
for each gap is 2C. For the Fibonacci case, each Chern number C was verified
against the prediction of the gap labeling theorem. We have shown that this
winding is a much more sensitive probe of the Chern numbers than the edge
state method.

. We have shown that the mechanism of the spectral winding of the phase «
is perfectly synchronized with the violation of palindromic symmetry cycle
(the C-harmonic of the cycle). Specifically, « vanishes at ¢ values where the

structure is a palindrome.

. We have performed a diffraction analysis for C&P chains and explored the
role of true quasiperiodicity. A winding phenomenon has been discovered in
the diffraction pattern of the artificial palindrome structure, with an integer
winding numbers for each diffraction peak of 2C. For the Fibonacci case, each
Chern number C was verified against the prediction of the gap labeling theorem.
We have measured these predictions in a programmable grating optical setup.

. We have shown that the mechanism of the winding in the diffraction pattern
in the artificial palindrome scheme is perfectly synchronized with the violation
of palindromic symmetry cycle (the C-harmonic of the cycle). Specifically, at
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¢ values where the structure is a palindrome the diffraction pattern is identical
to that of a singe chain.

10. We have uncovered a combination of diffraction amplitude phases sensitive to
the symmetry of the chain. This combined phase has an integer winding as
a function of ¢ for the spatial frequency values of the diffraction peaks. The
winding numbers of this phase for each peak is 2C. For the Fibonacci case, each
Chern number C was verified against the prediction of the gap labeling theorem.
This winding is a much more sensitive probe of the Chern numbers than the
diffraction pattern method. We have shown that the mechanism of the winding
of this diffraction amplitude phase combination is perfectly synchronized with
the violation of palindromic symmetry cycle (the C-harmonic of the cycle).

11. We have discovered a way to describe the quasiperiodic Fibonacci chain as
a function of its translational degree of freedom (controlled by ¢) so that it
forms a perfect torus, leading to a toroidal reciprocal space, namely the quasi-
Brillouin zone.

12. Using the quasi-Brillouin zone for a finite chain, we provide new expressions for
the amount of available Chern numbers (which are exact) , and the deviation
of the spectral gaps/diffraction peaks/integrated density of modes at the gaps
from the infinite chain values.

13. We then demonstrate a single-shot measurement recording the entire quasi-
Brillouin zone with all available Chern numbers in a programmable grating
optical setup.

14. We present an explanation and new expressions for the relevance of the natural
Fibonacci lengths to our results.

15. We have shown the staircase by which topological boundary modes traverse
the gaps is governed by the phason-flips. The distribution of heights of the
stairs is contrast dependent. A contrast dependent exponential relation exists
between the distance of the structural event from the relevant boundary and
the height of the relevant step. This means that in the fully closed structure,
a phason flip with strong effect on the right edge state, will have a minimal
effect on the left one.

5.3 Outlook

5.3.1 Structural and spectral understanding of aperiodic order.

The current work has set up many new tools to analyze quasiperiodic chains. Some
tools rely on substitution rules, and some require a C&P or characteristic degree of
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freedom. However there are many C&P structures where no corresponding substi-
tution description is known. Perhaps some of the tools described here may help to
find the Chern numbers in another way, such as windings of measurable quantities.
On the other hand, there is a large family of quasiperiodic substitutions for which
a C&P description does not exist, and maybe a new translational degree of freedom
is required. Furthermore, the spectra of quasiperiodic chains have a rich topology
concerning the infinite number of spectral gaps on one hand and is a multifractal
on the other. Effort should be focused in understanding of the relation between
fractality and topology.

The role of potential or dielectric contrast in the exponential coupling modes
should be formulated in the most general form.

5.3.2 The effective Fabry-Perot model

Being do generic, out model constituted a new bridge between the cavity community
and the topological edge state community. Effort should be focused on projecting
the knowledge base in one community to the other. A promising such projection
may be topological Casimir physics.

5.3.3 Generalizations

In the current work, many generalizations have been presented, but the generaliza-
tion effort is far from complete. The entire field of possible generalizations is to
be explored, including generalization to higher dimension quasiperiodic structures.
In the same sense, a more formal treatment is required regarding the smooth tran-
sition between the limited Aubry-Andre-Harper model and the rich behavior of the
corresponding C&P structure.

5.3.4 What about p?

In the Fibonacci example, we have shown the integer ¢ to be the important Chern
number which manifests as a winding of phases/edge states/diffraction peak in-
tensity. p(q) was given a more co-numbering-like meaning, determining only the
winding in the k direction. Is there another scheme for which p is the important
Chern number? Or to generalize the question, in the case of a gap labeling expression
with many integers, which if them control the winding?

5.3.5 Is the palindromic cycle necessary?

Chern numbers exist in the labels of spectral gaps or diffraction peaks for any sub-
stitution structure. No translational degree of freedom is required, along with the
resulting palindromic symmetry cycle. Even in the cases where the modulation
phase ¢ is defined, the “topological map” method does not require any knowledge
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of palindromic symmetry as a function of ¢. On the other hand, it seems that in all
cases where an actual winding measurement of a Chern number is to be obtained,
the palindromic values serve as a natural origin “resetting” all windings. Secondly,
it seems that the w-periodicity of the palindromic cycle governs the relation between
winding and Chern number by adding a factor of 2. These aspects should be more
carefully analyzed.
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