xw7 217100 DN — 1m>0Nn
Technion — Israel Institute of Technology

[1"1D0N NI"190
The Technion Libraries

011j7'" A NI 2l ['"INX ' Y D'DNOoIN 'TIN'77 1900 N2
Irwin and Joan Jacobs Graduate School

N /

©
All rights reserved

This work, in whole or in part, may not be copied (in any media), printed,
translated, stored in a retrieval system, transmitted via the internet or other
electronic means, except for "fair use" of brief quotations for academic
instruction, criticism, or research purposes only.

Commercial use of this material is completely prohibited.

©
nNmy nridT 7

IX AT 112'N ,01102'X2 Y'9N7 VTN 1AXN2L [ONX7 ,01IN7 ,0'9TN7 ,('"NW?7> N*TNI) 7'NYN7 |'K
IX NI7'2 ,AXIN ,TINY7 NN0A7 112'NN (A 07Y7 0'W07A A win'Y' oyn? ,1nn 77n 7>
.07nN2a 1IoX NT 1IA'NA 71750 11INA "INoN YIN'Y 17NN



Effect of Polarization on Coherent Back
Scattering

Research Thesis
In Partial Fulfillment of The
Requirements for the Degree of

Master of Science in Physics

Moshe Diamant

Submitted to the Senate of

the Technion - Israel Institute of Technology

Iyar, 5770 Haifa April 2010



© Technion - Israel Institute of Technology, Elyachar Central Library

The Research Thesis Was Done Under The Supervision of Prof. Eric Akkermans

in the Faculty of Physics



Contents

1 Probability of Wave Diffusion

1.1 Modelsof disorder . . . . . . . . . . . .
1.2 Perturbation theory . . . . . . . . . . e e
1.3 Definition of wave diffusion probability . . . . . ... ... ... ... L oo
1.4 TheDiffuson . . . . . . . e
1.5 The Cooperon . . . . . . . . . i it e e e e e
1.6 Diffusion in momentum Space . . . . . . . .. ... e

1.6.1 TheDiffuson . . . . . . . . . . . e

1.6.2 The CoOoperon. . . . . . . . .. i ittt e
1.7 Additional crossed diagrams . . . . . . ... ..o

2 Coherent backscattering
2.1 Incoherentalbedo . . . . . . . . . . . .. e
2.2 Coherentalbedo . . . . . . . . .. e e e

3 Dephasing

3.1 Thestructure factor . . . . . . . . . . e e e

4 Dephasing in H®)and H(©)

4.1 Thescalarmode . . . . . . . . . e e
4.1.1 Parallel channel . . . . . . . . . . . . e
4.1.2  Perpendicular channel . . . . . . . ... ...

5 Contribution of H®) and H'C) to the scattered intensity
5.1 The Hikami box diagram . . . . . . . . . . . . . e
5.2 The approximated 1D problem . . . . . . . .. .. ...

25
26
27

30
32

35
36
36
38



CONTENTS

6 Conclusion

A Disorder and averaging

B The Mathematica calculation

C Experimental setup and various results

Bibliography

47

48

49

54

57



List of symbols

l pol
Ye

GR

[(r,r)

Pa

Wave length

Elastic mean free path
Interaction strength
Advanced Green’s function
Retarded Green’s function
Diffusion constant
Structure factor

Diffuson probability
Cooperon probability
Albedo



List of Figures

1.1
1.2
1.3
1.4

1.5
1.6
1.7
1.8
1.9
1.10

2.1
2.2

3.1

4.1

5.1
5.2

C.1
C2

A typical result of coherent back scattering measurement . . . . . . . ... L. .. 3
Average Green’s function . . . . . . . . . L. e e 9
Theselfenergy . . . . . . . . . . 10
The contribution of X to the averaged Green’s function . . . . . . . . . .. ... .. ... ... 10
Two possible configurations of scattering events which contributes to the Green’s function

G, v ko) o o o 13
Trajectories which share the same ensemble of scattering . . . . . . .. ... ... ... .... 14
Trajectories which contribute to the Diffuson . . . . . . ... ... ... .. 00 15
Trajectory reversal . . . . . . . L. e e e 17
Motivation for the additional Hikami boxes . . . . . . . . . ... ... ... ... ... .. 21
The dressed Cooperon . . . . . . . .. . L e 23
Contribution to the total probability . . . . . . . .. .. ... 24
The contribution of the Diffuson (right) and Cooperon (left) to the albedo . . . . . . .. .. .. 28
Experimental validation of coherent backscattering . . . . . . .. ... .. ... ... ... .. 29
The interaction vertex fora polarizedwave . . . . . . . . . .. ... L L o 31
The polarization in H B) 37
Diagram of the Cooperon and the Hikami box H(©) . . . . ... ... ... ... . ... . ... 42
Comparison of theory and experiment . . . . . . . . . . . . .. ... 46
A typical experimental SEtUD . . . . . . . ..o e e e 55

Result of coherent back scattering measurement performed by the author . . . . . . . . ... .. 56



List of Tables

3.1 Contribution of the Diffuson and Cooperon in different channels



Abstract

This work deals with energy conservation in coherent back scattering. Formulated in the mid 1980’s, coherent
back scattering infers that for a weakly disordered medium (where the elastic mean free path is much greater
than the wave length of the incoming radiation) symmetry with respect to time reversal allows for an additional
term in the perturbation theory. The effect of this term changes the angular distribution of the scattered intensity.
For the case of a semi infinite system, the intensity is doubled at the zero angle direction and the width of the
resulting peak is of order !/ki, where k is the wave number and /, the elastic mean free path. However this
additional term seems to violate energy conservation as the addition to the scattered intensity is not compensated
by a decrease in the rest of the reflected intensity (that is, for angles larger than TL)' The reason for this turns out
to be the omission of other terms in the perturbation series, which contribute to the same order. The inclusion
of the aforementioned scattering terms restores the normalization. This was found also experimentally. In this
work it is shown that this remains correct when taking into consideration the polarization of the waves.



Introduction

The phenomenon of coherent back scattering [1, 2, 3], which was predicted theoretically in the mid 80’s and
later observed in many experiments ([4, 5, 6, 7] to name but a few. More references can be found in[8]) is an
example of a coherent behavior which exists in a random medium. Such a medium lacks translational symmetry
as opposed to lattices used to model systems in condensed matter. One cannot assign a specific configuration
to the constituents of the medium (be it a discrete set of scattering bodies, or a continuous function like the
refraction index). Instead one can only consider an ensemble of configurations and their statistics.

Coherent effects arise due to the oscillatory nature of a wave . One of the most known examples is the Young
double slit experiment, where two coherent sources create an interference pattern. Now suppose we take a large
number of sources with random phases and measure the formed interference pattern. It will appear random
since the sources are uncorrelated. If we superimpose the average intensity of many such experiments (varying
randomly the distance between the slits in each experiment) we find a uniform resulting intensity. The interfer-
ence terms cancel out and we have the sum of the individual intensities of the sources. Such reasoning lead to
the thinking that coherent effects are lost upon averaging.

The picture is more complicated for diffusion and scattering in a random medium. While we can still model
each realization of the disorder as a set of scattering sources close to the surface of the medium, much like the
variation of the Young experiment above, we can not rule out the existence of constructive interference. The
phase of each outgoing wave is determined by the length of the path it traversed inside the medium. If the
phase difference of the different scattered amplitudes can be ignored we can use the classical description for the
scattered intensity. This result is represented by the arc in figure (1) and described in section 1.4.

The works of Akkermans and Maynard [1] and Golubenstev [9] showed that it is possible to include another
scattering process in the intensity calculation. This contribution which was known as the Cooperon is described
in section 1.5. One noticeable hallmark of the Cooperon is that for a semi-infinite medium, when the wave is
back scattered - that is when the incoming and outgoing waves emerge along the same direction - the scattered
intensity is doubled with respect to the classical scattered intensity. The inclusion of the Cooperon however
raises a problem. It is known that the contribution of the Diffuson along with the Drude-Boltzmann term' is
normalized. The contribution of the Cooperon is always positive which seems to violate energy conservation?.

In spite of this apparent violation of a fundamental principle in physics, we can not ignore many successful
experiments which agree with enhancement of the back scattered intensity. The Cooperon (like the Diffuson)
are derived using perturbation theory, and as such are only part of the complete description of the scattered
intensity. Indeed, there are more terms in the perturbation series [10] which contribute at the same perturbation

I'See chapter 1
2The scattering is elastic and the medium is thick enough so no radiation passes completely though it
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Figure 1: A plot of the angular distribution of a scattered monochromatic wave from different media [7].

order as the Cooperon. In this work we show that the net contributions of the Cooperon and two other terms -
known collectively as a dressed Cooperon - is zero.

The outline of this work is as follows. In chapter 1 we introduce the theory of wave diffusion, and the origin of
the Diffuson and the Cooperon. We use the results of this chapter to derive the contribution of the Diffuson and
the Cooperon to the scattered intensity in chapter 2. Chapters 3 and 4 extend the ideas of the former chapters to
include polarization. Finally, in chapter 5 we show how the inclusions of the additional terms in the perturbation
series help to restore energy conservation. A comparison of the theoretical result against experimental one is
presented at the end of the chapter.



Chapter 1

Probability of Wave Diffusion

Throughout this work we use results of wave diffusion theory. We therefore review them now. We follow the
presentation and notation found in chapter 3 and 4 of [8]. The reader is referred to that source for a more detailed
presentation.

1.1 Models of disorder

In this section we give a brief description of the Gaussian and Edwards model of disorder which we will make
use of later.

The Gaussian model of disorder is one of the simplest yet useful models. Suppose that the disorder potential is
a continuous function V (r). The Gaussian model is characterized by

Vir) = 0 (1.1)
V(r)V(') = B(rr). (1.2)
where -~ describes averaging over the realizations of the disorder. All higher uneven moments vanish due to

(1.1), and higher even moments can be derived from (1.2). We can further simplify the model by assuming that
B (r,r’) depends only on the distance such that

B(r,f') = B(r-r). (1.3)

Another simplification can be made if we restrict the correlation function to be short ranged. A good choice for
such a function is

B(r—r') = Byd(r—r'). (1.4)

In the following work we will use (1.4) as our specific correlation function.

A different model, which involves discrete scatterers, was studied for electrons by Edwards in 1958 [11].In this
model the disorder potential is

V=) vir—rj). (1.5)

=

1

J
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In the limit where the scatterers density n; = g approaches infinity, and the potential v (r) is very weak, the
Edwards model becomes equivalent to the previous Gaussian model [8], provided we identify

B(q) = nyv(q)’ (1.6)

where q is the Fourier variable conjugate of r —r’. The advantage is that we can solve the problem of discrete
scatterers, under the conditions specified above, by using continuous functions which are easier to work with.

1.2 Perturbation theory

In this work we wish to calculate quantities which result from multiple scattering of electromagnetic waves.
We work in the limit where the wave length is much greater than the size of the scatterers. This limit is known
as the Rayleigh scattering. In this limit the effects of polarization and disorder on the scattering amplitude are
independent of each other. This allows us to use the scalar wave approximation and incorporate the polarization
later. The electric field intensity in the presence of an arbitrary potential V (r) = —k3u (r) is described then by
the following Helmholtz equation

[~A—k(1+um)|yr) = 0 1.7)

where L (r) = % is the random variation of the dielectric constant as measured relative to its average value, and
ko is the wave number of the given monochromatic wave. This can be treated as an eigenvalue problem for the
differential operator . (and %} for a free medium)

L = —A+V (1.8)
L = —-A (1.9)

where A is the Laplacian operator. These operators act on functions in L? (square integrable) with an inner
product

Olx) = / drg” (1) (1) (1.10)

are self-adjoined and have a complete set of eigenfunctions which form a basis! in which we can expand any
sufficiently regular function[12]. We can write these operators in the spectral representation

<z

/dnxn\wnwnl (L11)

% /dnkn\¢n><¢n|. (1.12)

where |y,), A, and |@,) .k, are the eigenfunctions and eigenvalues of . and % respectively and n is a contin-
uous parameters which is used as an index to label the various functions of the basis[12]. A common approach
for solving (1.7) is to use the Green’s function G (r,r’, ky) which is the solution of the inhomogeneous equation

[-A—K(1+u(r)]G(rx k) = &(r—r). (1.13)

I The functions composing this basis are not necessarily square integrable.
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In its operator form the Green’s function is defined as follows

1

G =
k-7
and
A 1
Gy = ———
0 12— %

in a free medium. The Green’s operator? relates between y (r) and (1)
(rl(—2)6ly) = (rly)
(-2 [ ar (xlGw) (x| w)

(B —%) / G k) w(r) = )

y(r)

where ., is the differential operator with respect to the variable r in the spatial representation.

(1.14)

(1.15)

(1.16)

To obtain the Green’s function in the spatial representation G (r,r’, ko), we start with its spectral representation

b
27

[ ) ( W
= [ dntn A
/ " k(z)_;Ln

(9%
|

. 1
 KR-%

[altztion,
12— ks

The Green’s function is given by
G(r,r' k) = (r|G|r)
_ (rlyn) (| ')
= /dn k% o

_ Vi (1) v, ()
= /dnk%_ln .

2 A similar derivation exist also for the free Green’s operator.

(1.17)

(1.18)

(1.19)

(1.20)
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We can check now the validity of (1.16)

(B —2) / G (1, ko) w (1)

(-2 [ar [ant Dy @)
B /d/ (8- kz%(r)%() @)

= [a| [amnerv )] vw)
- /dr’5 (r—r)y(r)
() (1.21)

The free Green’s function (for the case  (r) = 0) has a similar form

Go (r,xr' ky) = /dndbzl((%ﬁk(r’). (1.22)
0 n

We see that we can express the Green’s function through the eigenfunctions and eigenvalues of the correspond-
ing differential operator .. For the free Green’s function it is quite easy. The eigenvalue equation for %
is

L2000 = ku@n (1.23)

whose solutions for a three dimensional infinite space are plane waves e’ T with an eigenvalue k. Inserting into

(1.22) we find

eik-(rfr’)
Go (r,r' Kk = /7dk. 1.24
o (r.r', ko) 2 -k —ie (1:24)
The added imaginary part was inserted to ensure convergence. Performing the angular integration we are left
with

oo

k e*ik|r7r'| _eik‘rfr’|
Go (r,¥' ky) =
0 (r.' ko) /i|r—r’| K3 —k>—ie
0
Since the integrand is even we can write
@ k efik|r7r/| _eik|r7r’|
Go (r,v' ky) = dk
o (1.’ ko) /2i\r—r/| 12— 12 —ig

—oo

We solve this integral in the complex plane

—ik|r—r'| _ ik|r—r’|
Go (r,¥' ko) = ?§ L

2ifr—r'|  k3—k2—ie

k 71k|r r| zk‘r r|
= &lg : . —dk
2i|r—r'| (k+ko+ig) (ko —k—i€)
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This integral has a pole in the upper and lower halves of the complex plane. Using the residue theory we have
2miGyt (r,W k) = L—h

where /; has a contour around the upper half of the complex plane, and I, around the lower half.

ik|r7r/‘
no= 35 K ¢ gk
Sk>0 20 [r — Y| (k+ ko + ig) (ko — k — i€)

k _—ik|r—r'|
= ¢ o ‘ __ak
ar<0 20|t —¥'| (k+ ko + i€) (ko — k — i€)
Performing the integration we have
k eik|r—r"
L = —ko+i
! 2ifr—r'| (k+ko+ i€) it
kO ei(k()+i€)|l'7r,|
2ile—r'| 2(ko+i€)

1 eik() ‘r—r’|

e—0 ir—r| 4

and similarly

i eiko‘r—r’|
L = —— —
: r—r/| 4
The free Green’s function is then
1 eiko‘rfl‘/|
A / o
Go (r7r,k0) - 7|r—r’| 41

If we had chosen the opposite sign before i€ in (1.24) we would get

1 efik0|r7r/|
GR (v,r' k _
0( Y O) r—r'| 4m
The two solutions

e:Fik0|r—r"

Gt (e, ko) = ! (1.25)

Cr—r|  4rn
the retarded Green’s function with the minus sign in the exponent and the advanced Green’s function with the
plus sign in the exponent describe waves propagating in opposite directions to each other.

It is possible to solve the eigenvalue equation for the full Green’s function G (r,r’, ko) using the solution for the
free Green’s function. Noting that
A 1
G, -V



CHAPTER 1. PROBABILITY OF WAVE DIFFUSION 9

we find an iterative equation for the Green’s operator
G = Go+GyVG (1.27)
which allows us to express the full Green’s function using the potential term and the free Green’s function.

In real space, using the basis |¢), >, defined in (1.23), (1.27) reads
G(r,r' kg) = Go(r,x',ko) —k(z)/drlGo(nrl,ko),u(rl)Go (r1,r' ko) +
ké/dl’]dl’QG() (l‘,l‘] ,k()) u (I‘] ) GQ (1‘1 7l’z,k()) u (l‘z) G() (I‘Q,I‘/,k()) . (1.28)

When averaging over the disorder in (1.28) only terms with an even number of k% u (r) in them will remain. From
(1.2) each pair k(2) u(r) k% L (r') will contribute B (r —r’) after averaging. The averaging restores translational
invariance which prompts us to write the averaged Green’s function in momentum space as the following series’

G(kk) = Go(k)+— ZB k) Go (k—q) Go (k) +
QzZZGO )Bo (q) Go (k—q) Go (k) Bo (q) Go (k—q') Go (k) + ... (1.29)

where Q is the volume of the system.

Gk = SN

Figure 1.1: The average Green’s function in momentum space. The first three diagrams correspond to the first
three terms in (1.29)

Consider now the double sum in (1.29) (the third diagram in figure (1.1)) . It can be factored into a product of
two sums
2
ZZGO ) Bo (q) Go (k —q) Go (k) Bo (q) Go (k—q') Go (k) = Go (k) |} Go (k) Bo(q) Go (k—q) | . (1.30)
q

We can divide all the terms in (1.29) into two types. Those which can be factorized into a product of other terms,
and those which can not. In the diagrammatic description the former are known as reducible or separable and
the later as irreducible. The sum of all irreducible diagrams is called the self-energy and designated by X (k).

3Note that the second term in (1.28) cancels after the averaging, and the second term in (1.29) comes from the third one in (1.28).
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Figure 1.2: The self energy ¥ is composed of all the irreducible diagrams. The first diagram corresponds to X.

(1.29) can be written in the following way
G(k,kg) = Go(k)+Go (k)X (k) Go (k) +Go(k)Z; (k)G (K)Z1Go(K)+...

In a similar fashion we can construct all separable terms from products of the self energy and write the series
(1.29) as

Go (k) + Go (k i

n=1

Go (k) + Go (k) Z (k) G (K, ko) . (1.31)

G (k, ko)

From (1.31) we obtain the average Green’s function for a scalar wave in a disordered medium

1

—R.A
G (k. k e —
(k. ko) 12— k2 — XRA (K)

(1.32)

The first term X is

(k) = éZB(q) Go(k—q). (133)
q

[5,) 50— +>00 45000 .

Figure 1.3: By retaining only the first term in the self energy the averaged Green’s function is the sum of the
following diagrams [8].

We are interested mostly in the imaginary part of £; which determines how the wave amplitude is affected by
the disorder (the real part introduces a shift to the wave frequencies which is equal for all frequencies). Using
the following relation between the Green’s function and the density of states per unit volume

po(ko) = 2"” ZSGO (K') =Y 8 (@ (ko) — o (K')) (1.34)
kl
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The imaginary part of the first term of the self energy can be written as

TTCYe
seft 0 = =2y (ko)
2k
')/ekO
= - 1.35
4 ( )
2
where the density of states of a free wave pg (ko) = 22—%6 was used and ¥, = (B(q)) is the angular average over
the correlation function® (1.6). We define now a length scale, the elastic mean free path /,
1 1
— = ——3xfK). (1.36)
I ko

As for the higher terms in ¥, in a three dimensional system they are of order /q%le [8] and in the limit kol, > 1,
also known as the weak disorder limit they are negligible. The justification for using this limit is as follows. In
the limit of high densities and weak potential the Edwards model coincide with the Gaussian model which we
use. The individual scatterings in the Edwards model can be described using the Born approximation where the
scattering cross section can be related to the correlation function (1.6) through

Y = (B(q)) =47n;o. (1.37)
From (1.36) we have
1 Ye
= 1.38
le 4w ( )
Combining the above result we have
1
- = no. (1.39)
le

For Rayleigh scattering in a homogeneous medium the cross section is proportional to ngz, where O here is
the size of the scatterer. Inserting into (1.39) we have

1 Q)
—— o< — (Un; 1 1.40
kol, A3 ( nl) < ( )

where on the right hand side we have a quantity which is much less than 1 according to the model we use (we

assume the wave length is much larger than the size of the scatterers).

In the weak disorder limit we can see why /, is called the elastic mean free path. Inserting (1.36) into (1.32)
(and ignoring the real part of ¥) the averaged Green’s function in momentum space is

kA 1
G (kk) = . (1.41)
(k. ko) K-k it

The added imaginary term in the denominator is responsible for an exponential decrease of the average Green’s
function in real space

+iko ‘rfr’| Je—r|

1
¢ e (1.42)

—R.A
G (l‘,r/,ko) = 7EW€

We can thus consider /, as a mean distance between scattering.

“4For the correlation function (1.4) Ye = By.
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1.3 Definition of wave diffusion probability

Consider a Gaussian wave packet with an average frequency @y and width o, centered near a point r at time
t. We define probability function p (r,r’,t) to find a wave packet at a point r’ in a later time . The Fourier
transform with respect to time of this correlation function is given by

p(rr o) = ?Gﬁ,o (r,r')Goy o (),1) (1.43)

where o is the Fourier conjugate of ' —t. We use the pg , the density of modes of a free wave. It differs from
the true density of modes in the medium by correction of the order (kolef2 which is negligible in the weak
disorder limit. If we confine ourselves to a small frequency band (@ < ©) where the density of states also
changes slowly we can consider pg as independent of the frequency and further simplify the calculations. The
probability function (1.43) obeys the following energy conservation condition

/ /o L
/p(r,r,m)dr = & (1.44)

A simple approximation for (1.43) is the Drude-Boltzmann approximation, for which the average of a product
of Green’s functions is replaced by a product of averages,

Am_ _
po (r,r o) = ;Gﬁo (r,r') Cfa\)rw (r',r). (1.45)

Using (1.42) and expanding ko (@y) — ko (@ — ©) ~ wg—i‘; = @ where v is the group velocity we obtain

1 . / [r—r'|

/ ilr—r'|ky ,—

pol(r,r' kg) = 7e| | 0g e, (1.46)
( ) 4melr—v/)?

This approximation describes the probability of a diffusion from r to r’ with no scattering. When calculating
the total probability for such a process we find that it is not normalized,

r

/po(r,r’,z)dr’ =< Ot)e @ (1.47)

where the elastic mean free time between scattering is 7, = ZT‘ The reason is that (1.46) does not take into
consideration multiple scattering. Such a process will be described in the following section.

1.4 The Diffuson

To calculate (1.43) we must consider all possible scattering sequences between the initial point r and the final
point r’ with average frequency @y, for all possible configurations of the scattering locations. The Green’s
function which describes the amplitude of such propagation is

s

G (r,x' ko) = Z!%(r,r',‘gN)|e’k"$N (1.48)

N=1
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where the first sum corresponds to the number of scattering events in the sequence. The second sum is over all
possible ordering of the scattering events positions in the sequence. .« (r,r’,%y) is the amplitude associated
with a unique sequence and kg% is the accumulated phase gained along a scattering trajectory of length .. A
typical contribution to the sum is shown in figure (1.4)

Figure 1.4: Two possible scattering trajectories which contributes to the Green’s function G (r,¥' ko). The two
trajectories have a different number of scattering events, none of which shared by both trajectories [8].

To see where such an expression comes from we turn to equation (1.28). Consider the second term on the right
hand side. It involves two scattering events located at the points r; and rp. The integration in (1.28) corresponds
to the inner sum in (1.48) which runs over all scattering sequences, their positions and order. The outer sum
corresponds to the different terms on the right hand side of (1.28).

In the limit of weak disorder, that is when the elastic mean free path /, is much greater than the wave length

A= i—(’)’ the short range of the potential in (1.4) has the following consequences on the average GRGA.

1. Only trajectories of GX and G* with the same ensemble of scattering events are kept. If the ensembles are
different we have terms where we need to average over V (r1)V (rz) with r # rp, which in our model is
zero. See figure 1.5
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Figure 1.5: Trajectories which share the same ensemble of scattering, yet reaching the different scattering
events in a different order. The two trajectories accumulate a different phase and interfere with each other
destructively [8].

2. Of those trajectories which fulfill the above criterion we keep those where both GR and G* propagate
along the sequence of scatterers in the same order. Since the elastic mean free path’ is much greater than
the wave length, trajectories with different order of scattering events will have a phase difference greater
than 27 which leads to destructive interference. See figure 1.6.

In this approximation, called the Diffuson approximation the entire procedure is made up of three stages

1. An incoming wave which makes its way to the first scattering event.
2. A sequence of scattering along a path which obeys the restrictions above.

3. An outgoing wave from the last scattering event.
The entire scattering process between the points r and r’ can be described by the following expression

(r',r2). (1.49)

4r — — — —
pa(rr @) = 7/dr1dr2G1:,0 (r,rl)Gﬁ,O,a,(rl,r)Fw (rl,rz)GIZ,O (r2,x') Gﬁb,w

The terms 620 (r, rl)éA (ry,r) and 620 (ry, 1’ )EA (r',ry) refer to the incoming and outgoing wave re-

wy—® 0p—@
spectively, where G* is the averaged Green'’s function of the Helmholtz equation, which for a medium whose
dimension L is much greater than the elastic mean free path, is given by (1.42).

The second stage describes a scattering sequence between the point r and the point r' with any given non
negative integer number of intermediate scattering events. It is called the structure factor or vertex function,

3One should understand that the elastic mean free path exist only after the averaging. However, it is still very unlikely for two trajectories
with a different order of scattering to accumulate the same phase.
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Figure 1.6: Two trajectories which propagate along the same sequence of scattering. They contribute to the
incoherent scattering term.[8]

designated here as I'y, (ry,r2) and defined through (1.49). With only a single intermediate scattering event, the
scattering process is given by

pd(rar/aw = /dr]G GA

(21

o (rl,r)V(rl)Ef,o (ri,x) 62,07(1, (r,ry) (1.50)

which gives zero due to (1.1). This will be true also for any sequence of an uneven number of scattering events.
We next consider a scattering process with two intermediate scattering events at r; and r.

S1

pa(r,r, o) ﬂ/drldrzéR (r,r])é‘z)ofw (1‘2,r)V(r1)V(r2)§1§,0 (r2,1') Gy o (r,12)

)~ @ (r',rz)

g

= 7/dr1dr2G rrl)GA) o (r2,1) (rl—rz)G (r1,r)G

4 — —
= 77/6/dr1dr25(r1—rz)Gl(f)0 (r,rl)GAwO,w

(rl,r)éf,o (ri,x') 5’2)070) (r,r). (1.51)

Comparing this result to (1.49) we see that for a sequence two scattering event

Ty (ri,r) =7%06(r1—r). (1.52)

Since in our model all the scattering events are independent we can construct Iy, by repeatedly inserting addi-
tional scattering events. We have the following integral equation for the structure factor

[y (ri,ry) = 706(r —r,,)+ye/dr265,o (rl,rg)ff;},w(rz,rl)rw (ra,r,). (1.53)
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The product of average Green’s function in (1.49) and (1.53) is simply the Drude-Boltzman term (1.45). Insert-
ing it we write p; as

c
pa(r,r. o) = H/dl‘ldl‘npo (r,r;) T (r1,1,) po (ra,r') (1.54)
and
c
'y (I‘l,l‘n) = %5(1'1 *rn)+ﬁf)/e/dr2rw (1‘271',,)])0 (1‘1,1‘2). (1.55)

The sum of the two expressions py (r,r’) + po (r,r’) is normalized. See section (1.6) for a more convenient
calculation in momentum space.

In the weak disorder limit (1.54) can be related to the solution of a classical diffusion equation. This approxi-
mation is valid only for a large number of collisions® and when the structure factor varies a little on a scale of
I, (I,VTy, (r1,ry) < T (ry,r,) =T (ry,r'), |r, — 1| & 1,). This is also known as the diffusive limit. When these
conditions are fulfilled we find that

(—i— DA, )T (r1,1n) = %S(rlfrn) (1.56)
e
(=iw—DAy)py (r,r,0) = &(r—r') (1.57)
where D is the diffusion constant defined as ;
D— % (1.58)

in a three dimensional system and v the group velocity of the wave which was derived in (1.46). The solution
of the diffusion equation are refereed to as the probability to propagate from a point r at time 7 to a point r’ at
time ¢’

1.5 The Cooperon

While the combination of the Drude-Boltzmann term (1.45) and the Diffuson (1.54) is normalized’
/ dr' (po (v, @) + pa (1,7, @)) = 1

we must remember that (1.48) is not a complete explicit expression of p (r,r’,®). We demonstrate now that
there exist other scattering processes which contribute to the diffusion probability. Such a scattering process
can be constructed by reversing the scattering sequence of one of the propagating amplitudes as shown in
diagram (b) of figure (1.7). The trajectory’s length remains the same, and if the system possesses time reversal
symmetry® the same phase k.%y will be accumulated by both propagating amplitudes. Such a system will have
the property

GRA (r, r’) - GRA (V/J’) ) (1.59)

9The exact solution of (1.54) and (1.55) for an infinite medium can be calculated. It can be shown to be a solution of a classical diffusion
equation up to exponentially small corrections. When |r — 1’| & [, the difference is about 0.03. See appendix 5.1 in reference[8].

TThis will be demonstrated in the next section.

8See Appendix 2.2 in reference [8].



CHAPTER 1. PROBABILITY OF WAVE DIFFUSION 17

Notice that for the Diffuson the initial and final point are identical for both amplitude. However, they need not be
so for if we reverse one of the amplitudes, as depicted in diagram (d) in figure 1.7. We can write the probability
for such a contribution starting with (1.49) and interchanging the coordinates of the advanced Green’s functions

1 _ _ _ _
X (r,r ) = Fp()/drldrzdé (r,rl)Gﬁlw (rp,r) T, (rl,rz)Gg (r2,1') G‘2~7w (r,r;)  (1.60)

This process is known as the Cooperon[8], or the maximally crossed diagram.

Figure 1.7: a) The Diffuson. b) Reversal of one of the trajectories. ¢) If ¥ and ¥’ coincide then the phase
difference cancels out. d) If v and ¥’ differ there is a phase difference between the two propagating amplitudes
which diminishes this contribution greatly.[8]

If the structure factor varies slowly on a scale /,, as we assumed for the Diffuson, it can be taken outside the
integral and the Cooperon becomes
2
I, (r,r')

X (r,r @) = W{}@/dnéﬁ(r,n)@%(r’,rl) . (1.61)
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We now consider the resulting structure factor I, (ry,r,) and how it changes under the reversal of the scattering
order. Since the structure factor is composed of products of averaged Green’s functions (see (1.55) and (1.53))
which are invariant under the exchange r; < r, for a translational invariant system, the structure factor is
invariant under time reversal of the trajectory

I, (r,12) =T (r1,12). (1.62)
For r = r’ in (1.60) We obtain
XC (rvrv (D) = pd (I‘, 1'7 (J)) . (163)

The Cooperon contribution is equal to the Diffuson contribution when the scattering is along a closed trajectory.
When r # 1’ the scattered wave and its conjugate will reach each point with a phase difference, since they
propagate along different paths. By summing over disorder, that is, summing up the contributions of all the
amplitudes, all sequence for which r # r’ will contribute amplitudes with a varying phase which will eventually
cancel out. Only trajectories for which r and r’ are sufficiently close will remain. In three dimensions we find[8]
that

X (rro) = X (rr,o)—s_—e & (1.64)

where R = |r —1/|. The contribution of the Cooperon decreases exponentially as r and r’ are further apart (as
in sub-figure (d) in figure (1.7)).

1.6 Diffusion in momentum space

The averaging over disorder brings translational invariance (through (1.4)). We utilize it by switching to mo-
mentum space. We present first the Fourier transform of the Drude-Boltzmann term (1.45) for a wave packet
with an average frequency wy

po (g, 0) = ;Eﬁo (@) Gay—o (k—q) (1.65)

where Q is the volume of the medium, and q is the Fourier conjugate of |r—1’|. This expression can be
calculated in the limit of weak scattering (when_gl, < 1, that is when the two amplitudes propagate in the same
direction, not to be confused with the condition for weak disorder kyl, > 1)

/|.

po(q,0) =1, (1+it.0 —Dg’7.). (1.66)

1.6.1 The Diffuson

The structure factor (1.55) in momentum space is given by

To(@ = %+ g X0 (@G, () Goy o(k—a). (1.67)
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This expression can be factored into the form

Ye
1 pro(q,@)

Te

e ((I) =

The Diffuson probability in momentum space is

¢
Pa(@.0) = —po(a.0) T (q)
Po(q.0)
f— 167
= po(q,0) 1— ro(q.0)
Te
Using the approximation (1.66) the last expression rewrites as
(q,0) = _
P ®) = i Dg

19

(1.68)

(1.69)

(1.70)

We can use this result to verify that the Drude-Boltzmann term and the Diffuson give together a normalized

probability. In the limit of weak scattering we have from (1.66)

p(@=0,0) = pa+po

Po
= po <1+1_T",,0>
Te

= —é(l—kiwre)
i

]

where in the last equality we neglected all terms of order &' (w7).

1.6.2 The Cooperon

Taking the Fourier transform with respect to variable r —r’ of (1.60) we have

X(qo) = TPy (k+ )" (k= 3) 1% (k+K) G (K +

2
Q kK

As was shown before, the Cooperon and Diffuson structure factors are identical, so that

/ _ Ye
Fw (Q) B 1— P0(Q,®)
Te
B N S
7, —iw+DQ?
Ye

—ioT, + 1202

(1.71)

(1.72)

(1.73)

(1.74)

(1.75)
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where Q = k + Kk’ and in the second equality we used (1.66). We see that the structure factor has a peak about
Q = 0 whose width?® is i For the Cooperon therefore, the main contributions comes when k ~ —k’, and

neglecting the dependence on q < k, we find by transforming (1.61)

1 —R 1\ 2 e
Xlao) = e (WG W) P ©

Te 1

TPoQ % —iw+DQ?*’ (1.76)

An important point is that the Cooperon contribution in this approximation has no dependence on q. This is the
result of the spatially localized nature of the Cooperon which is evident from the fact that (1.76) is proportional
to the Fourier transform of I (r,r’) 6 (r—r’).

1.7 Additional crossed diagrams

We noticed earlier (see (1.71)) that the Drude-Boltzmann term and the Diffuson give together a normalized
probability. The inclusion of the Cooperon seems to violate this normalization. Looking at (1.64) we see the
Cooperon contribution to the probability is positive for all scattering angles. This contribution should be com-
pensated in order to restore the normalization of the probability. We address the issue of the existence of other
possible contributions to the probability, which cancel out with the Cooperon. Indeed, there are two such con-
tributions, of the same order of magnitude as the Cooperon which we must include. These two contributions
H®) and H(©) along with the Cooperon, which we designate also as H@) to emphasize the relation between the
three contributions, are known as Hikami boxes [13]. To see the motivation for such diagrams consider diagram
(a) in figure (1.8) where the Cooperon structure factor is represented by the two vertical lines. Inserting a scat-
tering event on one of the legs representing 615_2 changes nothing as such corrections are already included in the
average Green’s function (see section (1.2)). The lowest order possible correction in displayed in diagram (b).
These diagrams corresponds to the second order Born approximation [10], where the propagating amplitudes
can scatter up to two times from the same scatterer.

It is possible to insert additional scattering events in the path of the advanced or retarded waves as displayed in
diagram (c), giving higher order contribution to the scattered amplitude. Each such impurity will add a factor

ye/drléR (r,x) ch (r,r') (1.77)

for the retarded wave or

ye/dr’éA (r’,r)éA (r',r) (1.78)

for the advanced wave.

Each of these terms contributes a factor of koLIE to the scattering amplitude compared to HA-5:€).

90 ~ k6 when 8 < 1 where 6 is the angle between k and k'
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Figure 1.8: a) The Cooperon diagram. The structure factor is represented by the two vertical lines. b) One of
the two leading diagrams in the second order Born approximation (in the other diagram the advanced
amplitude, shown as a dashed line, goes through an additional scattering event). c) Higher order term. The

contribution to the scattering amplitude of this diagram is reduced by a factor of T 1] 7 with respect to the
0le

diagrams above it.

To construct these diagrams we start with the combination of Green’s functions in the Cooperon'?

HY (r1,r2,r3,08) = G (r1,02) G (14,01) G (r4,13) G (r3,12) (1.79)

Now insert an additional scattering event in the path of the retarded Green’s function which will add the term
%0 (r—r)

H(B) (r17r27r37r4) = Y /dr/ER (rlvr/) EA (r47rl)ER (rl:rZ)

<G (I‘/,l‘3)6A(l‘3,l‘2)6R (r4,1'). (1.80)

10These four Green’s functions represent the two incoming and two outgoing amplitudes
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By inserting the additional scattering event in the path of the second amplitude we construct H ()

H (r,r2,r3,15) = ye/dr’éR(rl,m)EA(r3,r’)ER(r4,r3)
<G (m,r')@A(r’,r])@A(r’,rg). (1.81)

The two additional Hikami boxes are depicted in figure (1.9). The combination of all three Hikami boxes (see
figure 1.9) results in what is known as a dressed Cooperon

H = HY4+H® 1 HO, (1.82)
The points rp and ry4 are the end points of the structure factor which we integrate over

H(I‘l 71‘3) = /dl‘zdl‘4H (1‘171'2,1‘371'4) (183)

where the left hand side results from the translational invariance. The most important property of the dressed
Cooperon is that its total contribution is zero

H= /dRH (R) =0. (1.84)
To show this we define first the general function /™" (R)
(R = )/g/Inl[dr,'lﬂldr}ﬁ’e (r,ry) e (rm,l,rm)éA (1)) .G (x),x) (1.85)
=1 =l
with R = |r —r/|. In momentum space f™" (R = 0) is given by
ORI k G w)" [6" w0 (1.86)

This reflects the fact that /™" (R’ = 0) is independent of the order of the sequence of the retarded and advanced
Green’s function. The function’s value at R’ = 0 is given by[8]

e (REm—=2)! o\t ?
mngy = gom TS [ e i 1.87
) =Dl m—1)1 \ 2k, (1.87)
2 ,
Particularly we are interested in 22 (0) = 2 (21—,;) and f21(0) = 2% The expression for the Cooperon, using

the f™" (R’) function as defined above, is given by
1
HY (ry—r3) = —f2(0). (1.88)
Ye
To see this we write i 22 (0) explicitly

yifz’z(o) = /Iz]dr,-lg[dr;-é(rr’)GR(r,rl)...GR(rl,rz)GA(rz,r’l)...GA(r’z,r’)
e =1 =l

= /dndl‘zdl‘/]dl‘/zaR (r,r)) G (r1,12)G" (rz,r’l)éA (r5,r)

/ H" (R)dR.
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The two other contributions are given by

HEO (r—1r3) = — [/>'(0)]". (1.89)

When written explicitly we have
1 _ _ _
" Vs (0)]2 — /drldrdmdr’yeé (r—r') GR(rl,r) G (rs,1') ek (ry,r1)
e

x/dr2dr3drdr’5R (r,rz)éA(rg,rz)éR (r',r3)
= /drldr4drye5R (rl,r)éR (r4,r)6A(r4,r])

xdradrsG (r,02) G (r3,12) G (r,13)

= /H<B>(R)dR
We can see we have
yg[fz’l(o)]z—i—yifm (O)=/dRH(R):0 (1.90)
9
\ — M \\\—|—\ X
T3 "
r]
I H(A) HB) HC)

Figure 1.9: The dressed Cooperon is the sum of three Hikami boxes. These diagrams corresponds to the
incoming and outgoing Green’s function, omitting the structure factor.

Finally, one can construct additional diagrams which will contribute to the classical probability P, by inserting
more Cooperons and Diffusons in an alternating order [8]. This is very similar to way we treated the self energy
¥, where the Diffuson plays the role of the free propagator and the Cooperon the role of the scattering diagram
in figure (1.3). This contribution is presented in figure (1.10) and leads to the following expression

IC ) IC ) :
Piao) = Fiao) a0 S p o) (K5 (191

e e
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Figure 1.10: The sum of these diagrams contributes to the renormalization of the diffusion coefficient [8].

where I, (q, ®) = Dg*t.X. (q, ®) is the contribution of the dressed Cooperon!!. The term

I.(q,m) 2n? I3 ¢? 1
Pi(q,o = £~ , @ T —— 1.92
i (a.0) =5 T e )%_HHDQZ (1.92)
in the limit kyl, > 1 which we work in is small, and the sum of the series is
/ P2 (qv a))
P,(q0) = d AR (1.93)
1= Fy (g, 0) <5~

This expression can be written in a form similar to that of the classical probability P; by defining a renormalized
diffusion coefficient D’

D = D(l—XC(;l’w)> (1.94)
and

P! (q, ®) RN (1.95)

a\@ —iw+D'g> ’

We see that the result of including the Cooperon contribution in the classical probability leads to a smaller
diffusion coefficient, a phenomenon known as weak localization which appears also in conduction in disordered
media.

'Notice that in the limit of week scattering ¢ — 0 it indeed vanishes.



Chapter 2

Coherent backscattering

In this section we examine the scattering of a monochromatic wave by a random medium. The bulk of the
medium is considered large enough so our problem becomes scattering from a semi-infinite diffusive medium.
We assume a plane wave, which hits the interface of the medium. Detectors are set up to measure the intensity
scattered at different angles from the interface. The total incoming flux, the integral of the intensity across the
beam cross section per unit time is

Fy=1pSc 2.1

where c is the speed of light (which is the group velocity for a monochromatic wave), Iy «< |E \2 the intensity
which is proportional to the square of the electromagnetic field , and S the medium cross section. The scattered
wave is spherical far enough from the source, and the measured flux per unit time and solid angle is

dF .

o= cR*1 (RS,) (2.2)
where R is the distance to the detector and 7 (RS, ) is the angle dependent intensity which is measured by the
detector located at a distance R from the medium. We are interested in the ratio between the scattered and the
incoming fluxes, also called the albedo!

o (5) 1 dF R?I(RS.)
Se) = ——= = —
Fy dQ S Iy

2.3)

For a random medium the two main contributions are the Diffuson and the Cooperon discussed in the previous
chapter. Known as the incoherent and coherent albedo, respectively, they are two contributions which survive
the averaging over the disorder. Each of them is composed of an incoming plane wave, a diffusion process
inside the bulk and an outgoing spherical wave - the only difference is the time reversal of one the trajectories.

I'The albedo depends on the inverse square of R as will be shown later, which cancels the dependence on R in (2.3).

25
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2.1 Incoherent albedo

We consider a semi-infinite geometry with an interface at z = 0, with g (r) = 0 for z < 0. For such a geometry?
we expect all the incoming flux through z = 0 to leave through the same interface®. A scalar wave propagates
from the free medium in a direction k; toward the interface at z = 0 and crosses it at the point r as can be seen
in figure 2.1. The incoming wave is

(ry-r):

yiln) = Vleo m ek 24)

where the decaying exponential is the probability for free propagation until the first scattering event at r;. The
contribution of the Diffuson to the intensity scattered in the direction §, is given by

2
’ 2.5)

N —R
(RS, — /drldrz [ (r)PT (r1,) |G (12, R)
where the Green’s function represent the outgoing spherical wave, and R is the distance to the detector. Now,

since the detector is located far apart from the interface, R is much greater than r, which is of order of the
elastic mean free path and we can use the Fraunhoffer approximation

R\’ R r-R
R—ry| = |r|4/1+ <> 22 2~ - (2.6)
r |2 2|
for the above mentioned Green’s function
R _(or)z kR
G ,R) =~ e o2~ 2.7
(r2,R)~ e e AR 2.7
Using the explicit form (2.4) we can write (2.5) as follows
Iy / ()2 _(om)e
1;(RS,) = ——— [ dridrie e I'(r;,rp)e le . (2.8)
(®5) = s (r1.r)

For a normal incoming wave we can replace |r; —r| = z; and |r, — /| = 2, with g = cos 0, the cosine of the
angle between the normal to the interface and the outgoing wave (see figure (2.1))

I _n-z )
Id (R7‘I.L) = (475)7021# /dl'ldl'ze le F(rl,rz)e Hle (29)

It was shown in the previous chapter that in the weak disorder limit the structure factor is a solution of a classical
diffusion equation (1.56) and is related to p, (r,r2) through
12

ri,rp) = —<I(r,r). 2.10

pa(ri,r2) Aol (rT2) (2.10)

The Diffuson contribution to the intensity is then

Ipc S rr _a _*

L = 2 [ dndze z2)e Bl 211

A 47rl§R2// zidzae e py(z1,22) € (2.11)
0 0

The origin can be taken at any point in the plane z = 0 due to translational symmetry in the £, directions.
3Under the assumption of elastic scatterings.
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where p,y(z1,22) = fsdzp pa (p,z1,22) is the diffusion probability for a semi-infinite medium, and p is the
projection of the vector r; —r; on the plane z = 0. Using the image method [8] we calculate

1 1 1
pa(p,z1,22) D = - - (2.12)
\/p2+(Z1—zz) \/pz—(21+12+220)
with* zg = % Integrating over p we get
(122) = 3=l +at2o-la -zl
Pa(21,22) = D i1 T22 20 — |21 —22
2D
with z,, = min (z1,22). Integrating over the z coordinate we find the incoherent albedo to be
3 20 ‘u
Oyg=—H|—+——F]. 2.13
¢ 47r'u<le+u+1> 2.13)

2.2 Coherent albedo

The calculation of the Cooperon contribution (see figure 2.1) to the albedo is obtained in a similar way to the
Diffuson. The contribution of the Cooperon to the scattered intensity is

L(RS.) = I / dridray (r) y* (1) D(r1,02) G (02,R) G (Rom) (2.14)
We use the Fraunhoffer approximation again, and for an incoming plane wave normal to the interface
L (RSe) = o 7(4 IR)2 /drldrzefzleee"k’”z' ¢ 3 ki (ry,r) ¢ T g~ Ke T2 g~ A ke T

Collecting the terms together we find the coherent albedo to be

1 (a1 gz PSR
o = . / drvdrse” )T (1) gy eillete) i m) 2.15)
(4m)=S

Here the phase difference between the two trajectories manifests itself in the complex exponential. We see
that when the incoming and outgoing waves have opposite directions the phase term cancels. For u = 1 (the
incoming and outgoing waves are parallel) we find

1 ,leﬂ
o, = m dl']dl'ze e F(}"hrz)
= oy(u=1)

“4For the geometry in this problem p (z1,22) is solution of the diffusion equation with the boundary condition that it vanishes for z = —z.
See appendix A5.2.3 of [8].
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Thus the back scattered intensity is enhanced by a factor 2 due to the Cooperon. The explicit expression for the
coherent albedo after the integration is’

3 1 2 1 —e 2kl
o (kL p) = o ( L. (2.16)

2\p+l k.|l
(%+|kL|le) u ‘L‘e

withk, = (ﬁi —|—lA(e)L. To see why we neglect (rj — rz)z, that is the projection of r; —r; along the z direction,
we turn to equation (2.15). The coherent albedo, o, is strongly attenuated in the z direction so only values of
z) and zp which are small compared to /, contribute. This means that |z; — z»| will usually be much smaller than
p which enters only through the structure factor, a quantity which we assume to vary slowly on a scale of /,.

In the weak disorder limit, where kol, > 1, we see why the Cooperon contribution is limited to small angles.
k, =~ ksin(6) with a kol, having a typical value of order of & (102). For example, when 6 = 0.1rad and
kol, = 100 the albedo already decreases to 0.1% of its value for 6 = 0.

Figure 2.1: The contribution of the Diffuson (right) and Cooperon (left) to the albedo [8]

A typical experimental setup is described in appendix (C). The phenomenon of coherent back scattering was
observed in many experiments. A good source for a list of selected reports is found in the references section
of [8]. An example of an experimental validation of (2.13) and (2.16) is shown in figure (2.2). It is evident
from the figure that the Cooperon contribution is indeed positive for all scattering angles. With the Diffuson
and the Drude-Boltzman contribution being normalized, the Cooperon contribution seems to violate energy
conservation. In the following chapters we demonstrate how this problem is resolved.

5 A more detailed calculation of the Cooperon contribution to the albedo is found in [8].
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N

Backscattered Intensity
o

-100 0 100 200 300
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Figure 2.2: A plot of the backscattered intensity vs. angle. The solid line represent the Cooperon contribution
(2.16) while the dashed line represent the Diffuson contribution (2.13) [14]. The broad cone is for a TiO,
sample with kl, = 5.8 &+ 1 and the narrow cone is for a BaSO4 sample with kl, =22.6 + 1.



Chapter 3
Dephasing

In Chapter 1, two scattering processes which contribute to the scattered intensity, namely the Diffuson and
Cooperon, were introduced. In that chapter we treated only the problem of scalar waves. We now wish to
extend the theory to include polarization as well. To that end we first extend the description of the scattering
events to include the polarization degrees of freedom.

In the limit where the wave length of the radiation is much larger than the size of the scatterers, also known as
Rayleigh scattering, the polarization P’ of the scattered wave depends on the incoming wave polarization P and
the scattered wave vector k' = (ky, ky, k)

P'=—K x (k' xP) 3.1
This can be written in matrix form
P = M(K)P (3.2)
- —kk, ke
M(k) = —kky 1-k2 —kyk. (3.3)
kk —kE1-R
We define the classical polarizability of the medium o = U?‘SE where U is the volume of the scatterer. The
scattering amplitude is given by the following tensor
Vap (R') = vo (K) = vo (8 — Riky ) (3.4)

where vy = ozok% replaces the scalar scattering potential of the Edwards model in (1.5), and the indices a, 3 take
one of the Cartesian components x, y, z. The scattering amplitude is now related to the change in polarization as
shown in figure (3.1). The correlation function of the scalar Gaussian model (1.6) is generalized to the following
form

Baﬁ,yé =niVayVps- 3.5
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Figure 3.1: The interaction vertex for a polarized wave. Diagram (a) represents the interaction vertex of a
Diffuson, and diagram (b) of a Cooperon.[8]

For a scalar wave we defined 7, to be the average over the correlation function (1.2), where the averaging is over
the directions of k’

%e=(B(k—K)). (3.6)
The introduction of polarization requires us to average not only over all possible scattering directions, but also
over all possible polarizations of the outgoing wave

Yool = §,<Baa,ﬁﬁ> . 3.7

Using (3.5) Yo for a wave with polarization in the « direction is

2
Yoot =niVg Y (MopMpq ) = S (3.8)
B

From (1.38) we see that the elastic mean free path is also modified

3
Lpot = S le- (3.9)

The longer mean free path /,,; is the result of the restriction imposed by (3.1) on the direction of the scat-
tered wave. In (3.8) all polarization directions are averaged over equally. In the absence of equation (3.1) the
scattering amplitude (3.8) would be independent of the polarization and ¥, = [,,;. However, due to (3.1) the
correlation function Byg ys is proportional to the scattering cross section given by the Rayleigh formula

(1- (<)), (3.10)

Therefore scattering is most likely when P is normal to k/, which also means P = P’. The scattering angles now
are more inclined to be in a plane perpendicular to P. This restriction limits the possible scattering trajectories
and forces a greater number of scatterings before leaving the medium. When considering the elastic mean free
path, we can think of the polarized case as a scalar one with a longer elastic mean free path.

Ley kjo?
o (kK ,P) =
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3.1 The structure factor

When polarization is taken into consideration the scattering depends on the four polarizations of the two incom-
ing amplitudes (o, B) and the two outgoing ones (7, §). These states associate to the interaction vertex a tensor
which couples between the incoming and outgoing polarizations [8]

1
bap.ys = MapMpa = 75 (65ar5ps + Sus Opy + 8y 8ap) - (3.11)

The tensor (3.11) can be cast into a 9 x 9 matrix form

(3.12)

|
— o OO~ O OO ®
SO OO, OO
SO~ OO O NSO O
SO oo O NO —~ O
— 0O OO WO oo~
O — OO OO OO
SO N OoO OO~ OO
SN O — OO O OO
[ BeNeBeol - olo el S

The elements with the largest values are on the main diagonal, indicating that the polarization is more likely not
to change after a scattering event. Inserting byg s into (1.67) (where for a scalar wave by 45 = 1) we have the
following iterative equation (compare with (1.67))

Lapys (q) = Vebaﬁ,yé + Zraﬁ,uv (q) buv,yéw(q) . (3.13)
wv

The function w(q) = % (1 —qurpol) with 7,5 = %‘L’e comes from the Drude-Boltzmann approximation in
momentum spacel , and the diffusion constant is D = %cz Tpol = %cl po1- The presence of I, and 7,,; in w(g)
which was defined for the scalar problem comes from the modification of the elastic mean free time and length
due to the polarization. The matrix (3.12) can be diagonalized, giving three” eigenvalues denoted by k = 0,1,2.

2
bi=0) = 3
1
bip=1y = 3 (3.14)
7
b(k:Z) - E
In the diagonal basis (3.11) is now
1 1 1
bapys = 5 (b1 +b2) 5(1)/5[36 + 3 (—=by+Dy) 5a55ﬁy+ 5 (bo—b2) Saﬁ 5y5- (3.15)

'See (1.66) and (1.65)
zb(k:1> and b(;—,) have a degeneracy of 3 and 5 respectively.
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This tensor is a product of two rank-2 tensors in a three-dimensional space and therefore can be decomposed

into the sum of three irreducible tensors: a scalar, an antisymmetric and traceless symmetric.

(0) 1

Taﬁ,yS = gaaﬁ575
T = Lrs i 6,50
apys = 7 [0arOps—Sasdpy]
T Lt st 8uss] — 2808
ays = 5[ ayOBs + Ous M‘g Oy -
These tensors are orthogonal
> K) (k)
T, B.uv uvyé_akk'Taﬁ )
ITRY

and their sum is the unity
Z ﬁ Yé =1

These properties allow us to write the polarizatlon tensor as their linear combination

bapys = Zbk aﬁya
Since the subspaces are orthogonal we can treat (3.13) as a scalar equation in each subspace
Ty (q) = Yebx + Tk (q) brw (q)
and solve it appropriately. We thus obtain three distinct modes

%bk _ Ypul/‘rpol
[=bow(g) ~ L+Dg

I =

which are characterized by a relaxation time

T, =T by
k ! .
po % b
For the three distinct modes we have
ypol/f ol
Lo(q) = Diqg
ypul/‘L' ol
Ti(q) =
L 2
Tpol Dq
Vpol/T ol
g = w75
2
77pul +Dq

(3.16)

3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

Taking the Fourier transform with respect to the momentum q we see that the modes with® k # 0 have an

exponential time decay with a characteristic time of the order 7,,;. (3.13) can now be written as

O‘B ys = Zl“k I3 7= F()T( )+F1T(]) +F2T(2)

3k here is not a momentum but the index of the three irreducible tensors TO(‘ ﬁ) 75

(3.26)
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which, by using (3.16), gives the following result

1 1 1
Lopys = 3 (I +1Iy) 6&75[35 + 3 (I +1I3) 50555[;),—1- 3 (To—TI7) 5&[3 375 (3.27)

This last result allows us to calculate the contribution of the Diffuson and the Cooperon to the scattered
intensity for a polarized wave. We consider the case of an incoming wave and its conjugate, having the same
polarization (since they emerge from the same source). This means o¢ = f3 for the Diffuson and a = ¥ for the
Cooperon in (3.27). The outgoing amplitudes also have the same polarization (y = 6 and 8 = 0 respectively).
The contributions of the Diffuson and the Cooperon for a polarized wave are presented in table 3.1.

Diffuson Cooperon

Parallel (o = §) Togea =3 (T0+2I2) Taaaa =3 To+207%)

Perpendicular (@ #6)  Tuepp = % (To—T?) Toppo = 1“251"1

Table 3.1: Contribution of the Diffuson and Cooperon in different channels

From table (3.1) we learn that both the Diffuson and the Cooperon have their contribution to the parallel channel
attenuated compared to their scalar value, although their relative magnitude remains the same. On the other
hand, only the Diffuson contributes to the perpendicular channel, as the Cooperon contribution is proportional to
the I'y and I'; modes which decay rapidly. Notice also that the Diffuson contributes equally in each polarization
channel

Y Taops =To (3.28)
B

This results from conservation of energy. That is, the sum of the contributions in all channels, which constitute
the Diffuson for a polarized wave, is equal to the total contribution of the Diffuson for a scalar wave.



Chapter 4

Dephasing in #®)and H©)

It was demonstrated in section 1.7 that the contribution to the scattered intensity of all three Hikami boxes
is zero. In the previous chapter we saw that the Cooperon contribution for a polarized light is different from
scalar case. The scattered intensity in the parallel channel is decreased by two thirds, while in the perpendicular
channel the scattered intensity is zero. This naturally raises the question if the contribution of the three Hikami
boxes is still zero. We must therefore find how the two other Hikami boxes, which differ from the Cooperon
due to the additional impurity, behave when polarization is considered. In (3.1) we diagonalized the interaction
vertex in order to decouple the different modes. However, for H (B€) it is more convenient to work with a
different set of tensor projectors than (3.16), which allow us to couple the added impurity (see figure (4.1))
more conveniently to the crossed diagrams [15]. The new set of tensor projectors is created by exchanging the
second and forth index in (3.16)

1

0)

9055%3 = 3 a5 Oyp 4.1
1 1

Zfa?yﬁ = 3 (8ayOp5 — Oap Osy) 4.2)
2 1 1

*7056?713 = 3 (BoryOp5 + Bap Osy) — 3 %50yp- (4.3)

The former set of projectors (3.16) can be expressed in terms of the new ones

70 _ l(g<2>_9<n+g<o>)
3

0 _ %(y@)_i_y(l)_zy(o)) 4.4)
5 5 1

@ _ 570,350,150

T AR AR

and the structure factor in the new basis is

r 5
Lopys = <30 ~T+ 3F2> 70

o, It 5 AR
B s L . 4,
+<3+2+62>3+3+2+6y (43)

35
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The two Hikami boxes contain an additional impurity which is described by the interaction (3.11). This inter-
action couples to the structure factor. Expressing the interaction as a superposition of the tensor projection, we
can use the orthogonality of the projectors to treat the scattered intensity as a sum of scalar intensities. Since
we know that only the scalar mode I';— will contribute we need not calculate for the k = 1,2 modes.

4.1 The scalar mode

At the end of the previous chapter we saw that the scattering of a polarized wave can be separated into three
distinct modes we designated as I';. Of the three, the modes k = 1,2 were characterized by a quick time decay.
This leaves the £k = 0 mode which diverges for small frequencies and large wave length mode, as the only
contributing mode in our approximation, which is valid for time scales much greater than the elastic mean free
time. This is the same approximation we used to relate the structure factor to the solution of the diffusion
equation in section 1.4. We generalize (1.79) and (1.80) to the polarized case employing the same procedure
used in (3.1), that is by replacing the scalar scattering potential with (3.4) giving in momentum space [15]

Hig @) = baraH® (a) 4.6)
H gy (@) = bprasH® (@). 4.7)

Using (3.16) and (3.19) it is easy to calculate that in the parallel channel

1

HE aa (@) = $H? (@) (4.8)
1

Hidao (@) = sH®(0). (4.9)

It seems that (1.84) is no longer valid. However, H®€) differ from H”) in the way the extra impurity couples
to the structure factor. In this section we calculate the effect of this coupling to see how it modifies the structure
factor.

4.1.1 Parallel channel

Consider diagram (4.1) which represents H (B) and indicates the polarizations during free propagation.

The contribution to the k = 0 mode' is given by[15]

xk=0 Zbk)rko

ad.yB abay” ap.bs
(¥ (k=0)
;k e 7l) 749, (4.10)
a /

'We only consider here the I'y_, the zero mode of the structure factor which does not decay exponentially. We still need to sum over
all three modes for the additional vertex by.
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Figure 4.1: A schematic drawing of the polarization of the radiation for the Hikami box H B). The two lines
marked with o and & represent the incoming amplitudes with their respected polarization. The lines marked
with B and y represent the outgoing amplitudes. The fine dashed line represent the scattering due to the
additional impurity. a,b are the polarization directions which are summed over in (4.10).

The Hikami boxes enter through bg;)ay. By exchanging the places of the B and 0 we have a and f as the

polarizations going into the structure factor and b and J as the outgoing ones. For the parallel case we have

x,m 0 o« Z p(¥) abw 4.11)
a,b,k’'

The tensor 9 L bat implies that a = b = o (else it will be zero), which allows to write ﬂ b = % The in-
timidate polarizations a, b take on the values x, y,z. Due to the isotropy of the medium each sum contributes the
same as the other. This triple contribution cancels the 1/3 factor leaving us with

’ k
X o< To Zb”%faaa 4.12)
We calculate now for each k'
1. =0
K=0
yoc(aﬂa ) = 6aa5aa

(4.13)
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2. k=1
K=1 1
<7.Ot(a,acc ) = E [6aoc 5{106 - 60606 6aa] =0 (4‘14)

k=2 1 1
ya(a,a(x ) = 5 [aa(x 5{10{ + 50(05 5aa] - g aaa 5{10{

2
2
= 4.15
3 4.15)

The contribution of the scalar mode in the parallel channel is therefore

b 2b
thc(g.aoc = <3,0+32>F0
8
= —TI 4.16
510 4.16)

The H'©) contribution is in the parallel channel is identical to H (B) as can been seen from (4.6) and (4.7) when
o= ﬁ =y= 0.

The H® contribution is

T
XS o = 5 (4.17)

We see that H#C) in the parallel channel are decreased less than the Cooperon.

4.1.2 Perpendicular channel

For the perpendicular case we have o = ¥ and 8 = 6 (compare with the Cooperon where we had o =  and
B = v. The difference is the result of exchanging between 3 and 0 in the new base). The H (B) contribution is
given by
(0) k (k) (0)
Xopap = L P07, 0 s s (4.18)
a,b.k

The expression for Zég_)bﬁ implies that « = 8 and b = . Since o # B (for the perpendicular case) we must
have a,b # a. '

We now need to check that these conditions guarantee that (4.18) gives zero. For that we need to calculate
T fork=0,1,2.

ab,aq
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1. k=0
70 = Lsue
ab,ao - g abQaa
- 0 (4.19)
2. k=1
g0 s s 6 8] =0 420
abaf E[aa bB — Cof ab}— (4.20)
3. k=2

The tensor projector is composed of terms from both the k = 0 and k = 1 tensors, which give

g8, = = 4.21)

We see the HB) does not contribute to the perpendicular channel. We follow the same calculation for H(©). For
H©) we have

(0) k (k) 5(0)
Xapop = L T0T5 05 Tawar (4.22)
a,b.k
which requiresa = b= o # f
1. k=0
0
Ty = 0 (4.23)
2. k=1
g0 s S — 8us8u] =0 424
abaf T E[aabﬁ_ aﬁab}— 4.24)
3. k=2

Just as for H®) this term is zero.
The outcome of the above calculations shows that the contribution of H(5:€)
channel is multiplied by a factor 8/15 due to the polarization

b 2b
X(gz(g,aa o< (30 + 32> Iy

8
= T (4.25)

to the intensity in the parallel
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while contributing nothing in the perpendicular channel, like the Cooperon.

That the structure factor is attenuated differently for H#€) compared to H4) raises a doubt about the correctness
of (1.84) for the polarized problem. However we only calculated in this section the effect of the polarization
degrees of freedom on the structure factor. We did not calculate the total contribution of the Hikami boxes to
the scattered intensity which depends also on the scattering angle. This will be done in the following chapter.



Chapter 5

Contribution of H®) and H© to the
scattered intensity

The results of the last two chapters are now used to verify that the two additional Hikami boxes, H®) and
H'©) restore energy conservation for the polarized coherent backscattering. The result of the calculation is then
compared to experimental measurements of the scattering intensity.

5.1 The Hikami box diagram

We have shown in chapter 4 that when the polarization is taken into consideration the contribution to the intensity
of H®€) can be written as a superposition of the contribution of each mode. Only the scalar mode has a
contribution which is not strongly attenuated in the parallel, and the effect of polarization is to simply multiply
it by a factor 8/15. In the perpendicular channel there is no contribution to the scattered intensity by H BC) In
this part we calculate the contribution of the scalar mode in the parallel channel and show that it restores the
normalization of the probability.

Let us write the expressions for the different constituents of the diagram which appears in figure (5.1). First
there is the incoming wave (for simplicity we take the incoming wave to be normal to the interface)

A
Wilr) = g el 5.1)

To o a4
yi(r) = \/%e Yol g ikiz (5.2)

The wave amplitude in (5.1) follows a series of scattering events from r; to r, which is represented by the
structure factor, and finally emerges from the scattering medium, where the exit term is

[y —rs | i
212 ikR
G (rp,R) ~ e i giker2l
4nR
() ikR
AT cosal p e
e 2/palcosaeflke~r24nR (53)

41
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Figure 5.1: Diagram of the Hikami box H (©) . The black line represents the incoming and outgoing amplitudes
of equations (5.1) and (5.3). The green line represents the incoming amplitude in equation (5.2) which scatters
from the additional impurity. The red dashed line represents that amplitude as it leaves given by equation
(5.6). The two advanced Green’s functions are given by (5.4) (in green) and (5.5) (in red).

and the Fraunhoffer approximation has been used to obtain the second equality.

The wave amplitude (5.2) propagates from r to rp, scatters along an opposite trajectory to that of the first
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amplitude from r; to r; and finally propagates back to r, from which it leaves the medium towards the detector.
The parts r — r, and r; — r are described an advanced Green’s functions

[r—ry| ik|lr—r
L eiklr—r2]

[c4 = ol ——— 54
(rr2) ¢ 41 |r — 1| ©4
| pikfr—ry |
Iea - Moo € 55
(r1.r) ¢’ A7 |r —r| (5-5)
The outgoing amplitude is
2 . —ikR
G't,R) = e 2'pozcme’ke‘r%nR (5.6)

We see that the outgoing amplitudes (5.3) and (5.6) have a similar form. They differ only by the attenuation due
to an additional path covered by the second amplitude' and a phase factor. We can now write the expression for
the outgoing intensity in the direction $,
. 4w 41 _ _ _ _ —R o
HRS:) === [ dridradegs (v) g7 () G (r,;e2)T(r,r2) G (r1,0) G (2, R) G (LR)  (5.7)
po
where the 14—”1 = % comes from (1.80)
po

Inserting the explicit expressions into (5.7) we have, once replacing the structure factor with the diffusion
probability (1.56)

47ZCI 47‘[ _ iz . ,m eik‘l‘—l‘z‘ 7m eik‘l‘—l‘]l
= 0T dridrodre Zpet K)o Mpol ———pa(ry,m)e Tl ————— (5.8)
2 1 ’
Lot Ipol AT |r — 13| 4m|r —ry|
N ekeR ___ = —ikeR
e leglc"sae*lke‘rz e leolcoszxelkeT
47R 47R
. o (w1 _a el ik
— CIO dre 211)01 ( H ) drldrze 211)01 elk'<r17r>e leol eipd (”1,7'2)
l;)ale An|r —ry|
e ikfr-r| - o
X e 2’]3(:[ 678 2/])01” eflkf'(r27r)
47 |r — 13
with p, given in cylindrical coordinates by
1 1 1
pa(p,z21,22) = (5.9)

47D \/P2+(Zl—22)2 \/p2+(11+12+220)2

5.2 The approximated 1D problem

The diffusion term makes the integration difficult, and we must resort to an approximation of the original
expression. Let us recall that for weak disorder /,,; >> 4. As a result we notice the complex exponential terms
in (5.8) oscillate rapidly when r —r; or r —r; are of order of /,,;. We can use this to our advantage to simplify
the calculations.

I'This additional path can be seen in figure (5.1) marked with a dotted line along the red dashed line. The length of the path is
[r—rzfcos (6 —a) =k, (ra—r).
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1. We take the z coordinate of the points r,r; and r to be identical in p;. The reasoning behind is that
these coordinates can not be to different from one another (on a scale of a wave length) or the complex
exponentials in 5.8 will oscillate rapidly, giving zero after integration. Since the diffusion probability p,
varies much slower with z,z1,z, compared to the other terms in the integrand, these coordinates may as
well be taken as identical.

2. Looking at (5.8) we see that the scattered intensity in (5.8) varies much slower with p compared to z. We
choose therefore to take p as a constant of value rl,,;. r is a fitting parameter which we expect to be of
order of 1.

With the above approximations we end up with a much simpler integral. The approximated diffusion probabil-
ity? py depends only on one coordinate

1 1 1

47TDlpo[ r r2+4(i+%)2

lpol

Py (2) (5.10)

We can solve the rest of the integral following the calculation in [16]. The integral in (5.8) has been decoupled
now, and contains a product of integrals, each depending on a single variable.

y —
= & /dze 75 )

3
Rzlpol

, _ PR . _ 2
X / dre® TG (rry) e T / drye™ TG (r) x) e Tool® (5.11)

We can see that the last couple of integral differs only by the value of i, which is the cosine of the entering)\leaving
angle. Changing variables r = |r| — r| and introducing the angle 6; in figure (5.1) the integral for | is

I T eikr(coselfl) 7[%’&}
Jl (r) = _/ZEVZdT/Te pol Sin91d61 (512)
0

0

For a fixed r the integration must be split into two parts

1 Z T ] 7|:z+r(1+c0591)]
ja = _E/rdr/elkr(mse‘*l)e St L sin 01d6y (5.13)
0 0
1 o B A _|:z+r(1+0059])}
jB — E/rdr/elkl‘<(:()s.9171)6 2’[)01 sin91d91 (514)
z 0

where z is the distance of the added impurity from the interface and 3 is defined through the equality

z+rcosf =0. (5.15)

2Strictly speaking Pl (z) is not a true diffusion probability as it is not normalized. We resort to using it to simplify the calculations.
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The purpose of this splitting is to make sure the end points of the structure factor are kept inside the bulk when
r > z. The two integrals, ja p are easily calculated

|l (1 —e’p?l) +i(1 —ezl'kz)}
ja = —e i L . (5.16)
2 (ik+ 5
o lpol(f’pj + ]ﬁLZill_le—2ik2‘|
jg = —e T L 1”" (5.17)
2 (lk + %)
Combining the two terms, and neglecting the fast oscillating exponentials we get
eiﬁ”f’[ Lyor + L
L (r) = 7 12k (5.18)
2 ik + m
which in the limit k/,,; > 1 gives
—z il /
J — 2Ipol _pot 519
1=e T (5.19)
and similarly
Py
Jy=e Zpot P 5.20
T (5.20)

Our Notice that both results are imaginary, and therefore their product is negative which is expected, since the
HB) contribution is suppose to cancel out with the positive Cooperon. Inserting (5.19) and (5.20) into (5.11)
we have the following expression for the contribution of H(©) to the albedo

z 1
© _ _Lil/ ()
o = d
412 lpoIS re ” Pa (r)
c / *ﬁ(uTH) /

O e L S A

167rk21§01D

s _ oz (kL

_ 3 /ﬂ 1 ! o () (5.21)

T AR2]2
4k lpol ) lpol r r2+4( . +%)2

lp/)l

We wish to show that the inclusion of the the two additional contributions to the albedo, namely H®) and H(©)
restore energy conservation. Our approach is to minimize the total coherent contribution given by

a = /du(aocA+baB+bocc) (5.22)

where a and b are the prefactors found in the previous chapter. Numerically® we find the parameters r, klpor
which give the best fit to the experimental results

3Using the “Mathematica” software by Wolfram.
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Comparison of theory and experiment

Albedo

|

\
— o s — Scattering angle(rad)
Figure 5.2: The plot above shows the theoretical coherent contribution to the albedo (the solid line) for
kl,o1 = 6.7 and r = 0.9 compared to the experimental result of [7] (dots).
kl,o = 6.7 (5.23)

A plot of the fitting is shown in figure (5.2).

The coherent contribution to the albedo (2.16) with kl,,,; = 6.7 was calculated” to be 0.0028 compared to 0.0094
of the Cooperon alone. We therefore see a reduction of about 70% in the coherent contribution to the albedo
when including all three crossed diagrams. A similar calculation performed for the scalar problem gave a
reduction of only 60% (from 0.01 to 0.004). The detailed calculation is given in appendix B. We see that when
we include the polarization the coherent contribution is smaller by 30% compared to the scalar model.

“4In [7] the total coherent contribution was calculated to be 0.005 4 0.007 with a transport mean free path of 2.54-0.2.



Chapter 6

Conclusion

In this work we have shown the existence of energy conservation in the theory of coherent back scattering.
This seemingly violation was primarily due to the inclusion of the Cooperon alone contribution to the scattered
intensity. This contribution which is positive for all angles needs to be compensated for, as in its absence, the
remaining classical contribution is normalized. We proved that one can not include just the Cooperon since
there are other terms of the same order in the perturbation series as the Cooperon. These additional terms along
with the Cooperon constitute a dressed Cooperon, whose contribution over all angles vanishes as should.

In order to compare the theory to experimental results we also included the effects of polarization. The polariza-
tion distributes the classical contribution to the intensity evenly between all directions. The coherent intensity
subsists only in the parallel channel (where the outgoing polarization is parallel to the incoming one), albeit
attenuated by a factor of 1/3 for the Cooperon and 8/15 for the two other crossed diagrams.

The contributions of the additional crossed diagrams, H (B€) were then calculated. In order to overcome the

difficulties associated with the integration we suggested using a single z coordinate for the point r,r; and rp.
That, and ignoring the propagation parallel to the surface of the medium (the p coordinate) allowed us to turn a
multivariate integration into a product of single variable integrals which is easily obtained.

The expression for the albedo included a fitting parameter whose value should depend on the polarized mean
free path in the problem. This parameter, together with the polarized mean free path were obtained by looking
for the best fit of the theoretical model to an experimental result. The outcome showed that the total coherent
contribution was smaller when polarization was included in the calculation, compared to the scalar model,
although not by much. Better result would be probably obtained if a full analytic solution of (5.8) could be
found.
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Appendix A

Disorder and averaging

A random medium is much harder to characterize than a lattice. By definition there is no internal structure
or order which will allow us to describe the medium using a simple set of mathematical relations. This is not
uncommon. Even lattice models which are used to describe most systems in a condensed phase are a simple
idealization, as one is well aware of the existence of impurities, defects and other elements which break the
periodic structure used by the model. However, unlike theories which involve lattices, in a random medium we
cannot treat the random elements of the potential as a perturbation, simply because there is no internal structure
to begin with. All we can do is average over different realizations of the system.

What is a realization? Consider the different trajectories of the diffusing radiation inside the medium. Each
ends up at a certain scatterer near the boundary of the medium (the probability for the last scatterer to be located
deep within the bulk decreases exponentially). The scatterer can be considered as a source of a spherical wave.
For our purpose, a realization is an ensemble of such sources whose phases are random. The randomness
comes from the fact that trajectories which end up at different scatterers most likely have different lengths. The
accumulated phase with which the waves leave the medium depends on the length of those trajectories. For
two trajectories, whose lengths are of order of several mean free path and more, to have the same phase would
require them to be identical to an accuracy finer than a wave length. In the limit of A < I, which we employ
is it is very unlikely. Each such realization is characterized by a detected image called a speckle pattern [17].
Each speckle pattern is unique and has one to one correspondence to its generating realization.

As a result of the motion of the scatterers, a moment later we will have a different set of scatterers which scatter
the wave toward the detector. This new realization will have a different speckle pattern. After a while the
detected intensity will be the sum of the speckle patterns. The image formed in the detector is the average over
time. According the ergodic hypothesis it equals the average over the different realizations of the disorder.

In chapter 1 it is demonstrated how the Diffuson and Cooperon are constructed from the ensemble average. It is
important to note that these two contributions are mathematical abstracts and not physically measured objects.
They are but a way to calculate the average of the true physical objects which are the speckle patterns.
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The Mathematica calculation
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The following expression are
f : angle dependent H®*X contribution
g : The angle dependent Cooperon contribution

F : The total H5*©) contribution

G : The total Cooperon contribution

h : The total angle dependent coherent contribution
H: The total coherent contribution

¢ is the parameter ki,

y is the scattering angle (6 in the text)
r is a fitting parameter

1

1
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Fle,r):= NIntegrate[— , {x, 0, 100}, {y, 0, 1.57}]

G(c):= NIntegrate[

9 0, 157}

. cos(y)+1)2
8x) (c sin(y) + 2 cos(y) )

h(c ,vr ,y):=axf(c,r,p)+bxg(c,y)
H(c ,r):=aF(c, )+ bG(c)

We insert the raw data extracted from reference [7]
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raw = Table[
Import["C:\\Users\\mickey\\Desktop\\latestdata.txt", "Table"]]

{{0.00887, 0.852535}, {0.00887, 0.792627}, {0.00887, 0.746544},
{0.01774, 0.695853}, {0.01774, 0.668203}, {0.01774, 0.64977},
{0.01774, 0.62212}, {0.02661, 0.562212}, {0.02661, 0.520737},
{0.03548, 0.479263}, {0.04435, 0.423963}, {0.05322, 0.368664},
{0.06209, 0.322581}, {0.07096, 0.285714}, {0.088701, 0.258065},

{0.097571, 0.207373}, {0.106441, 0.179724}, {0.115311, 0.16129},
{0.133051, 0.147465}, {0.141921, 0.133641}, {0.150791, 0.119816},
{0.159661, 0.110599}, {0.168531, 0.096774}, {0.177401, 0.082949},
{0.186271, 0.069124}, {0.212881, 0.059908}, {0.230621, 0.046083},
{0.257232, 0.032258}, {0.283842, 0.023041}, {0.310452, 0.009217},
{0.354802, -0.004608}, {0.390282, -0.013825},

{0.425763, -0.023041}, {0.461243, -0.02765}, {0.505593, -0.032258},
{0.576554, -0.036866}, {0.603164, -0.041475},

{0.665254, —-0.041475}, {0.700734, -0.041475},

{0.753955, -0.046083}, {0.789435, -0.046083},

{0.860395, -0.046083}, {0.878136, —-0.046083},

{0.949096, -0.041475}, {0.984576, -0.041475}, {1.02893, -0.041475},
{1.09102, -0.036866}, {1.13537, -0.036866}, {1.17085, -0.036866},
{1.2152, -0.036866}, {1.25068, -0.032258}, {1.28616, -0.032258},
{1.3039, -0.02765}, {1.33051, -0.023041}, {1.36599, -0.023041},
{1.44582, -0.023041}, {1.4813, -0.023041}, {1.52565, -0.023041}}

We create a list of values from the theoretical expression for the angle dependedn coherent contribution
with the following values for ¢ and r

6.7
0.9

o Ha
o < nh"

0.

To ensure the theoretical and expreimental data have the same scale we multiply the theoretical
expression by 3 (so the polarization prefactors in h(c, r, y) are now b=1 for H®) and a=1.6 for H#+9),

a=1.6
1.6

1 1

P4 (x+ %)2
x (cos(y)+1)
2l(ce)e =V

} (0, 001, 1.57, 0.01)]

1
fit = Table[{ » = B4 Nlntegrate[— , {x, 0, 100}] +

< (4esiny)
1—¢ * 2 cos(y)
(8 7l') (3 ( csin(y) + cos(y)+1 ])

. cos(y)+1 2
7 ((8 ) (c sin(y) + 2 cos(y) ) )
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{{0.01, 0.791954}, {0.02, 0.675464},
{0.03, 0.5798}, {0.04, 0.500446}, {0.05, 0.434024},
{0.06, 0.377973}, {0.07, 0.33032}, {0.08, 0.289532},
{0.09, 0.254402}, {0.1, 0.223972}, {0.11, 0.197472},
{0.12, 0.174283}, {0.13, 0.153897}, {0.14, 0.135899},
{0.15, 0.119946}, {0.16, 0.105753}, {0.17, 0.0930812},
{0.18, 0.0817313}, {0.19, 0.0715337}, {0.2, 0.0623446},
{0.21, 0.0540418}, {0.22, 0.0465204}, {0.23, 0.0396903},
{0.24, 0.0334737}, {0.25, 0.0278032}, {0.26, 0.0226203},
{0.27, 0.017874}, {0.28, 0.0135197}, {0.29, 0.00951801},

{0.3, 0.00583462}, {0.31, 0.00243907}, {0.32, —-0.000695534},
{0.33, -0.00359306}, {0.34, -0.00627471}, {0.35, -0.0087594},
{0.36, -0.011064}, {0.37, -0.0132036}, {0.38, -0.0151918},
{0.39, -0.0170407}, {0.4, -0.0187614}, {0.41, -0.0203636},
{0.42, -0.0218564}, {0.43, -0.0232478}, {0.44, -0.0245452},
{0.45, -0.0257552}, {0.46, —-0.0268839}, {0.47, -0.0279368},
{0.48, -0.0289189}, {0.49, -0.0298349}, {0.5, -0.0306889},
{0.51, -0.0314849}, {0.52, -0.0322263}, {0.53, -0.0329163},
{0.54, -0.0335581}, {0.55, -0.0341543}, {0.56, —-0.0347074},
{0.57, -0.0352198}, {0.58, -0.0356937}, {0.59, —-0.0361311},
(0.6, -0.0365337}, {0.61, -0.0369033}, {0.62, -0.0372415},
{0.63, -0.0375497}, {0.64, -0.0378294}, {0.65, -0.0380817},
{0.66, -0.0383078}, {0.67, -0.0385089}, {0.68, -0.038686},
{0.69, -0.0388399}, {0.7, -0.0389717}, {0.71, -0.039082},
{0.72, -0.0391718}, {0.73, -0.0392416}, {0.74, -0.0392921},
{0.75, -0.0393241}, {0.76, -0.039338}, {0.77, -0.0393345},
{0.78, -0.0393139}, {0.79, -0.0392768}, {0.8, -0.0392237},
{0.81, -0.0391549}, {0.82, -0.0390709}, {0.83, -0.0389719},
{0.84, -0.0388584}, {0.85, -0.0387307}, {0.86, -0.038589},
{0.87, -0.0384336}, {0.88, -0.0382648}, {0.89, —-0.0380828},
{0.9, -0.0378878}, {0.91, -0.0376801}, {0.92, -0.0374598},
{0.93, -0.0372271}, {0.94, -0.0369823}, {0.95, -0.0367253},
{0.96, -0.0364565}, {0.97, -0.0361759}, {0.98, —-0.0358836},
{0.99, -0.0355797}, {1., -0.0352645}, {1.01, -0.0349378},
{1.02, -0.0345999}, {1.03, -0.0342509}, {1.04, -0.0338907},
{1.05, -0.0335195}, {1.06, -0.0331374}, {1.07, —-0.0327443},
{1.08, -0.0323403}, {1.09, -0.0319256}, {1.1, -0.0315},
{1.11, -0.0310638}, {1.12, -0.0306168}, {1.13, -0.0301592},
{1.14, -0.0296909}, {1.15, -0.029212}, {1.16, -0.0287225},
{1.17, -0.0282225}, {1.18, -0.0277119}, {1.19, -0.0271908},
{1.2, -0.0266592}, {1.21, -0.0261172}, {1.22, -0.0255647},
{1.23, -0.0250018}, {1.24, -0.0244285}, {1.25, —-0.0238448},
{1.26, -0.0232508}, {1.27, -0.0226465}, {1.28, -0.022032},
{1.29, -0.0214072}, {1.3, -0.0207723}, {1.31, -0.0201273},
{1.32, -0.0194723}, {1.33, -0.0188074}, {1.34, -0.0181326},
{1.35, -0.017448}, {1.36, -0.0167537}, {1.37, -0.0160499},
{1.38, -0.0153366}, {1.39, -0.0146141}, {1.4, -0.0138824},
{1.41, -0.0131417}, {1.42, -0.0123922}, {1.43, -0.0116341},
{1.44, -0.0108674}, {1.45, -0.0100925}, {1.46, —-0.00930952},
{1.47, -0.00851851}, {1.48, -0.00771962}, {1.49, -0.00691287},
(1.5, -0.00609816}, {1.51, -0.0052752}, {1.52, —-0.0044434},
{1.53, -0.0036017}, {1.54, -0.00274827}, {1.55, -0.00188003},
{1.56, -0.000991807}, {1.57, -0.0000746792}}

we plot the raw data vs the theoretical result for ¢=6.7 and r=0.9 in the polarised case where a=1.6

ListPlot[{raw, fit}, PlotRange » All, Joined » {False, True}]
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raw = Table[Import["C:\\Users\\mickey\\Desktop\\latestdata.txt", "Table"]]

In the following 3 lines we calculate the total coherent contribution to the albedo for
1) HA*B+O) with r=0.9, ¢ = 6.7, a = 1.6
2) HU+B+O) with ¢ = 6,r=0.8, a =1 (scalar problem where the chosen values give the best fit in this

case)
3) The Cooperon contribution for ¢=6.7 (polarized case)

4) The Cooperon contribution for c=6 (scalar cse)
(8/15) *F[6.7, 0.9] + (1/3) *G[6.7]
0.0027999
(1/3) % (F[6., 0.8] +G[6.])
0.00424565
(1/3) *xG[6.7]

0.00942122
(1/3) *G[6]
0.0104269



Appendix C

Experimental setup and various results

Attempts to observe coherent back scattering have met success to various degrees since the 1980’s. The main
difficulty is the need to place the source of the radiation and the detector on the same line. One possible setup
which is used to overcome this involves placing a beam splitter in the path of the wave. This allows the scattered
wave to be directed to a detector located away from the line of the incoming wave.

The setup is composed from the following main parts:

1. A coherent source of radiation

2. A combination of a pinhole and converging lens.

3. A beam splitter which let some half of the wave propagate forward, while deflecting the other half.
4. A quarter wave plate which turns a linear polarization into a circular one.

5. A sample of material with proper qualities.

6. A polarizer.

7. Detector.

The purpose of the pinhole and the lens is to expand the emitted coherent beam in order to form an approximated
plane wave. A more important role plays the quarter wave plate. It’s used to filter out the single scattered
contribution to the outgoing wave. This contribution to the scattered intensity does not contribute to the Diffuson
or the crossed diagrams, and is much greater than of the later ones, masking their signal. The plate turns the
incoming linearly polarized wave into a circular polarized one. Such a wave has its phase reversed when going
through a single scattering reflection. Upon passing the second time through the plate it becomes again a linearly
polarized wave, but with a polarization perpendicular to that which it had before. Placing a properly aligned
polarizer will then block the single scattered wave. After the light pass through the plate, the beam splitter
reflects part of it to a focusing lens and a detector. The use of a beam splitter has its own problems, as it can
alter the polarization if the wave, which will make it difficult to block the single scattering background. The
results of an experiment carried with the above setup are shown in figure (C.2).
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Figure C.1: A typical experimental setup
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Figure C.2: Result of coherent back scattering measurement performed by the author with the setup described
in the appendix. The classical intensity is represented by the arc with its maximal value at about 20 (in
arbitrary units). The peak in the middle is the non classical contribution, shown to reach a maximal intensity
at zero angle with an enhancement of about 70% with respect to the maximal intensity of the classical
contribution. The source of the fluctuations is the measuring apparatus which includes an opaque screen
before the detector. The detected beam passes through a rectangle opening in the screen which results in a
convolution between the beam and a sinc function.
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SV NMN YA PXN PINPN TR D227 DDA YYIR INNN IO NIAY NNXIYD NN OW M PPANN
TINWN M0 NN NN MIN DNNN JINII-TINT IR DY TN NOITH .PININ MDY NN
MNVONY NN 27N HNIM INNRD . THN NYNN NNNIYD INY DX DMV MY 297 NIAYINKDN NRNIDN
JPYNND MY PIN NN NI (TR IPAPH NPNY) NINPN Y NADINNY 2N THNA JTAIN PRI YVOIN

-91NN NHRNYN N NPY NN DIAYNN NN 2WINN Y SNYIONN 29INNN 1Y NDPYN INI NON
1P NV DMAND IN ITPTPHRN NIRXIND 21PP INNNY ONYIDN NV NY DIDN DXIDIN NINX NN
(20N TNIND OINA PA XPININD PNHIIN P2 OMYN) PPANND VNI YW NPINA DMONN DNV DITO POND

JPDOW MPINM 110 TRND 51T NNV 9901 XN MY VNI 12 YNV NRY 1P 0N Y9N

S9N SY T IMIND SNYIONN NPT DX MW TIY DIIPY NNIN 70-N IIY NON MTIAYA RPN
onn HE) HO »y oimony) Dapnn oaND MY oy T (HA 'y 19500) PR pispm no
DV O) DYYPN) DDA VYV YW DNON (dressed Cooperon) "W1a9 NIAYP" NINIPIN MNIIN THY
PRY 792 .DON XN HRONNIN NN 2N N99ON DIMINY NN (Hikami boxes - MINN MNOND
FPYNN OV OYPNN MY ITOAY MININT I ,22100 9TO2 IPIVOND TMINN 99 NIX 2N Y910

WY DAWINN THINTIP MTIAYA YNAN 93N SY 10PN NN PNIYNI TN NNY XN 1 NTAY S TN
SPN TN PIYNI DNPIZ IWRD 21900 KN NINY 230 P2 PEPRIOIND TN M 9) MY 7970 93 My
ONN VP OY [ONND BNDN VP OY D)0 MIANDNN NN INNNY NIV NIN MSPRIVIND TN 20
H®E) HC) prpn MNDAPY DRI NN TAYHL 20PN 93 MY NIVIND DNYN DMLIAN SY NmInn
DN NDITY TINI) NINPY MITA YNON 23N JVW NP 922703 AVIPHN 23N JYW I P NN
INNNY MNIM DASHN JY MRHND NN 73N ORI 21N PP WP DY 2579 D) NN
DMLIAN MY NINPN MY YT YIP NOLPL NYHOM DIAPN NP DY MWD MDD MNDNP YV
PPN TV NODINN NN RPY NYIITN 10 Ypannw 299 199w nsa onnn HE) HO qona onxn
MY P OINY PI9PY TN NN PR ML 95 My I N HE) HE) pow Ty nnyra nnsyy
MY 772N - MNY IPINA NN SY WINN NP9 XM M0 TMINDNP YW NYOWNN I3 0P IR

ATY MO IV MY DYINM ,INOP I

NN 2008 TNV VAPV TMIPD2 MNHN ON DMNX ONYN DX, DXIWNHN 7D N PNAY 1N Dy
-UN NN MNDNP SV NMINN NN ©2951070 DPI90NN DNTPNN P2 ONN NN NDIN TINN DXAWNN
JPONRNN NIRNIND 0N



PPN

DX2IWNN B»D2DAN MNIPYN TANX NP INNRD OVINMPN NN NYNN MIVNX MDY NPOIW R NTIAY

M NN N NYIITA TNYNVY 25210 NNOY MDNN R 2730 INMON NN NINDID MWINNN NP9 NP2

TOT DRMND PN DX THNA NYNON NNNIYN JOYW T X9I0DN I¥N TN PLIINT YVOIN N0 NT)
NN 29

NI NN NN N, YNT OPYAIN 1DINA FPRIPN DINDPIIND DN GDIND 2270 NN 21D MNY THnN
21902 NYPNN NYNN NITDMLNRT NMTA IRIPNRI P 1PN MNVNIY NPIY DPTINR Ky NvnY 71D
NV 'Y IMN INND PRI XD M9 NI T I0N THNM INRD NPIYIAN MOYXYW NNYA NN PRI NPy
NP PPNNPAND 93 - TINN JY NPIYANR HPNNANDT DNMNND 1P NG D212 210DN" DIV PUNTIN
NANNN NN NINY TY DN NITO 12 XN THNT DIDI 53N TWUNRD NI ¥)II2 D NANN I GO
THNAD 99N >IN DNILP DXWLPNY YN 20N TN DX PON OX INJ) IR NOMON WM TIT NINKRD
20N INWYN 2772 NHY MO 2501 NIAY DIYLPNN INY 11D Y3 NN YN NINY TINT 9 yopn S5
TNNA MDA NANNDN 20 TR TPANI IIMNY 7PIVPO PR DNMIN DY NTOOY ToN yan m 7an
INSIND INNY NN Y9¥2 PP DNYN 2N SYOPNY 725 12229 DY N 11901 1951 72y IMN 219000
TNNN 292 TIND DNPIINN DRI GOIN MANYD TN NIAD 19N NN YN DY JI1ONY 17 1IN
NN DNN TAR 92 AWNR ATV PINY RY¥ND) NANNY 933 712>9910 OP THTINK NXIND NATY NINNY MD>0N)
TPIAN NN AR IPRIPR TN OY 09) ININD WM TN IRNIND JPRIPN M OY RN T 539 jpn
N DN NPIAN HY 91T 1901 DY NN (speckle pattern) DN 12N OV NYYT N 1IN MOINRNN
DD DY OMINYI XY DHVINN MIARNNN AN Y M O1DDA JPRIPN MO Oy O9) HY DIDY NpY

IRIPN INONIDA NIAY DPPNNY TN RI NPLITMNP MYOINY NYTH NNNI R NDN 7292 MNNWN

TN TN ONYN DNTDNN GO TINN NYYNT NN T2 INY PRY IR NV PTT Py vIn
7129910 NN D3N NN MITD INNYN TIPNNPINDN 219 JY NMONN IR ITIVOY DIDIDN DNI0N DIDOP
TN MYIVNIN P2 RO YIN 1IN NN, 05N 500 DY NYIVN 555 NYW 101700 TNNa Nywnn SV
DRI JW NITO NINR TNNRD DOYI VW AN TIINM 2010 N 7PNINND DINNYY INT YD NNyl
- N DY0N HY NNMNN NN TIAND IV NYIP NN DX S0ATY MYIWND P oD YIaN
POYY NTNR YPI TPIAND WP 00NN INY  .D00NN NV (Diffuson) NOIDT DY DINTN
NN DY DTON 7PN XD 12D ORI NOIPIN NMNN NI - NOWTN HY NMINA PHAND 111 7P
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