X7 2171150 DR - [1M>0N
Technion — Israel Institute of Technology

[1'120N NI"190
The Technion Libraries

024j7'"a [XI'AI ['"NX WY D'DNROIN "TIN'77 1900 N2
Irwin and Joan Jacobs Graduate School

o /

©
All rights reserved

This work, in whole or in part, may not be copied (in any media), printed,
translated, stored in a retrieval system, transmitted via the internet or other
electronic means, except for "fair use"” of brief quotations for academic
instruction, criticism, or research purposes only.

Commercial use of this material is completely prohibited.

©
nmy nrdT 7o

IX DT 712N 017022 Y'ON7 . UTA 1NN JONN7 ,0AIN7 ,0'9TN7 ,('"NW7d N TN1) 7'Nun7 'K
IX D72, AXIN , TINTZ NNVAY 12NN (3 0NY7 Do "I wim'w" oyn? ,nnn 7mn 7
.07NN2 YOX AT 12N 71750 1AIN2 NoN WIn'Y 7NN



"He -2 nv9in-sy poon

an M

TS

- 000005438235
\ W02 'NA130 1IN movn




MHNUPRY N

‘He -2 npyn-Yy oo

mbaraismts PNn Yy NN

Nm NYIAPY MYLITN DY YPON N DYY
PODIDAT NOPYT

anam,m

IR ONTNIV PIN - 11MOVN VNIDY WIIN
1998 »y non

MYIYN PO

o 7
g —



MNNNOIPMY
ﬂlﬂN:l

APIPN PIIN .99 SV INDITN NP7 NVNPI WY N IPNN

OPNNN TONNA NN INNIN YY 19 NTIN N
DTIAYN TINNI NRYY MDOVINT MNYN DY 1IN NYRS MITIND 21372

STINYNIVN NTIN TPODIN NDPHNN Y 11IDVY SNTIN



o T N W —

17
17
19
25

29 .

29
30
32
34
35
36
37
38
41
42
49
49
51
55
56
57
58
58
59
60
64
65
66
81
83

02397359 199N

PPN

DNXPI DIN0 NHYI

911-9y *He Yv »n» TN INA
ITO-X 9032 TTIan Y-Sy 1avn
913-% ‘He Yv >9300 NINN
IPANN NYD

NX1an
1.1
1.2
1.3
14

91-9Y *He Y 01 TN MIND

N¥an

Y0P VNN -TINN DPDAa HIN-YyN
TIAPTINTN NPIDVIDID

IT-TION MV NIV

no1Yn Yy oMy

22731 MILNAD TPINPVD
TI212IYN-1993 71N NDY-INN

XY 51mnb "9

2150N-YNVIN MWIN

IR 5 TIioy A 7ayn

27932 NNVNAV TXNPPOY NPIPD) NPITY
NPIIN-DYY 12YN YY 170N NYswn
OOoT1I-YY ONIPIY MOV

03100

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

911-9y *He Y¥ NPSVIOPNRN BIOVPIDY PN YTIN

3 ba)
YDVPAN NNOININ

TIIPD MINSIN DY RN

AN NNXWY

212VY-MNOW

TYDOT 230 IMYNIN

NDYN NN

N2127YN 20 MAN

5113-9 *He Hw »PIPYN 277N YN Ny PT INNIVYIDN
NPINO) MINSIN OY INRNYD

2PV 2000 INVINN

D10

(Klein-Gordon) WTMX-)2IP IXMNVINN DY RNV : X NID)
MMNIpn NPXwI

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

1



13
14
15

44
45
46
47
48

69

70

71

72
73
74
75
76
77
78
79

80 .

OV NPYI

[17] *He Yv INON NDNOT
[17] 9113-9y *He YW NYXOYDPN DIOPOD
[19] 9901 Y NOVPN NVIWA MWNA T=0.75K -2 *He IMON Neow 900

MPTININN NN AN NNPY MNYN DIVTN DY

99332 PN NDIIYN 2220 THDTIN-DY MNP HY I MPTH
NNVIBNLN Y PN =(p/p)/n, oNN

DIYNY PN TNNRY : 27932 ©NHUNY APNNPH DDV W

(371 D11-5¥3 AVIPY MDD NTTNHY NONN ININ

[70] (3.1 'MWN) Y999 7y AWVINNNY TITHN NPSVIDPNN DINVPID
77 ¥ND (@ .[52] (3.18) PN D) MINDN DIVPOD 1’2 IRNYN
P=24atm (b

.(3.18) IRM (52] %107 S(K) P2 DNNWN

k—0 -3 maxm »on S(k) pa nxnwn

.S(k) -1 E(k) mysnna (3.25) mRm Z(K) 1102 M nnsw P AN

.[20] k=0 220 1NNXT 99 NINSIN

DMV D8N INIRMY [29] 9310 NDY 1NN P2 INNYN

(3.59) u(k)’-v(k)> 71Yn 280 Maxy (3.48) u(k)’,v(k)” 13PN MOPS
.(3.55) =1 (3.51) 0NRM [65] 1D DIOPOD

.(3.55) -1 (3.51) 7INM [67] 21022 NN NNXIY HY NAN-NP

(3.56,3.57) TPNINM [52] 0NN HPIPIN-37 Iy DY MO NNy

PR BCS -H Mpwn »onnn Y1ina 00900 o

1.1
1.2
1.3

2.1
2.2
2.3
2.4
2.5

31
3.2

3.3
3.9
3.5
3.6
3.7
3.8
3.9
3.10
3.1
3.12



MIPN

nnnn ovbnﬁ P OT Y TNPOMIPRN UMD YN N -9y (*He) ¢ DPYN
TN 510N (Saturated-Vapor-Pressure SVP) ©XTR-11-¥NY2 T,=2.17°K P01 1010000
TPYMOIX OIN TN, MIMNNY TN TTYN NNIVTI NAPVINP NN YA HIN-9YY ) Y1on
APMRPTININN MIVANT TIN XNPONPRND NNINY MINM HI-59N NRMND .7HOIHNT NYY
12993 YTR ST NP BN TPMPOIPRHDN PNINAD AW NPIMN NPN»TITNN

'HY2 9337 9102 3NN (P, NOHN MO9N YY) XHnTN 2337 : 022307 WY S1-Hyn pNan
(P, NON MY 5¥2) T1I-5Y 2957 MY ORI DTN-HYN HY MNIVIND DI NN 001 MPNN
Vg =1 'V, =2 DIMOHN IMON-NT2 NNdIT TN MY 0177 Y .IPITIVIN D320 1KY
Y 1Y MDY MNNYH TPIPIOIT-R IPAY NYND 391I-9¥0 DI MPAN TUNI
1Y 02070
M p=p,+p,,J=p,7,+p7,

DY HT-HYIY M2 (1)-1 .NYZ1DN MPANT NN p -1 521010 MDANN DIT XN J qwno
=) pg : DM DTN 23N NN OINNNN (52370 D112 230N 29 JY) D0 DNPTININ OYTI NY
Vg

PP TNITNN HY 210 TINN TN 2IPIVINT INTID MY INMOW 1T TPIIND

INON 92D NNVINLY OIIP KXY T D2 HTN-HYN HY NPPRPTININM

DYIVPID NN YTV ¥ NMOI9NVL DIRPTININT DTN INWY Pn MON NN INND >TI2

MY 1T TIN NT N 2IN-5¥N HY (D¥PPPIN-2INNP) NPIVINONN NIXVIDPND TV MIIIND
AN 2YND MO NPAPOIPIN NPNXRM DNV JY OVDIN-IN 79 HY DMON
1T NTIAY INNIN .22V S INTIAY DY DN DI-OYN SV OMPOIIPIAN YONNNN NINND

VYN NPIPNIVON BY M1 1YY (Mean Field) ysinn-nTv noowa 2mpn 1xn non

i

()OP Y312 7IRDY N73) 1M DIVPAD ¥ Mt 30V X3y (Weakly Interacting Bose Gas)

99 72193 N NTTRIN PN RPN TPIINI NHNRNN I NN PR .IN-DY *He -5 noy1a



,100% vYN> 17 (Condensate Fraction -2 M2XYN HNKY 1THN) DON YIMIY 1NN NNR-TIY
.T=0 -2 10% T9¥2 X1 DY HNN D=5 4 -D»Ynav Twa
H¢ NVPID ONPIV MY JNINS HY NPT NPNYIDPRA OIVPID 2IWNY ININ FPNNAN

:9T-5YN HY INYNN ANNDN TV 237 ANNPND NAY NNIN MNT DX JIIMI M0 ,930 NOYPND
. ) D . ik-R, +
(2) W(Rl---Rn)=(Ze J(Po =p;]9)
i=l

NN Py =) TIOON 280 YY DN IIPNI NN, 1 DIVN YW Dpnn Moy N R quNo

-9y 91207 NPIYNPR YOV XN NNIND .MDANN YV NIPXN NVINK YV 71PII9 0NIDI0
X D2 (Hard Core) NPWP-PYYY MSPRIVIN Y2 DIMUND 12 O7INP OPNIN 19
DAY MY RIN NPN TPXVIDPNN 9D T 23923 MIRYN THXVIDPNT YA nunwn

: NAN DVPIDN HIAPTIN NITN NNIVRI0T TPITINT DY DI NPV VIDIY 7Y 09 IN

Rk’

(3 e(k) = W(k)

(Static structure factor) oYM MANN -0TPN N S(K) -1 PNIVN NON NN M WD
TINSINY TN APNRNT NN (3) N022 .01V N 7Y TTNIY >90 K 7-Nopia

0P Z3-NOPA (NN XIPI) 1IRPY DIIVPID : MNIN MNINN NN 1IAYN KIN TYUNI DMOMIN

o ~!

DMIV-19 T 1NN MVan M Avnan .k = L9A 210 (hon xpy) oworm k=0

9X-NPEPNT WHNYA DN TIVDN WY N0NY NNNNNN NN 10WY 7T M0N0 TIwnn
2570 70PN MIAN BN DINVINY DN NUPONY GAIYNN .(2) -0 INY MDD NMPINON
onTava 1bhnw NIN NNPD2L . TIDNN 2NV IR DY MV NPMIVNX-PI NPIONP N7 AN
2999 1T VWA I MDY MPWD DINPYN YW HPI1AN 120710 NN DITAND 1121 1019 OV
.DMPYN MM HY MIAND JTIIN PNN HIX TTHIN DNIVPITN NX 20-7T

»WN H1-9Y *He - NN DM DN ,(1 779) *He -2 NVPIIN-5Y XUNY DT NN

: DVPION

N1V MY XA NINY 9D JIN-DyN DY SPNnn MPTINTNRN MNDN INX 1Py 2 193 (1

TANDYN-NINNN NINNI DIWNNYN TI OVI .0PNNN OMPYY HIN-dyn b nanna



YV MATIND P2 WP 2230 MNND 1PINY MINY 1900 0> Nt 1INN2 .(Linear Response)
mwvw onx o VN (Condensate fraction ng) n2o¥n MINXY (py) Y73N-HY7N 10 MY

PY INDIN NPIIY NI, 207 IMITINNN DYDY HYITIN KDY DI1R-5yn Yv mon
922 FPNDPN NN NIIWYNN 12¥) IDPTININN 21132 19N NPNDVITR-NI YIN-YIN NVITNP
SN PN A0 HIN-DY ISMPI0 HY NNION0 MINNNIT DY NYIANN B DT (TN

mnb TV WO PPPoN YY1t moyan nap vy (Quantized Vortex) momp n9ayn ,mn
:MOIMP-VNMNY DY 28N 1N NN TIV-JYNY MPONY BHIMIN DN ,AX)
. . 2

smowomoew L, L =L —iL, o, p,/p=(L)/h, n=[(L) /#L,)
Iy -2 Pg -2 TN ¥ IZIN-DYN XN AN PTINT YTIV IXIN .NDNDN MPISN NN p -1 771
o mN»y v 1;3n TNRY TPOMP NN DY NNRPPY DINID DMINY DIWIN . TNY DI
nbﬁwn\v NV MPONRT NN DIPIND ,21-HY2 HPVMIP MPNN YV 0D MINNIN 1IN
2J0N9D J9INI NN 1D

DYaP/M NPTV INNYHD NNMPN VNPT NNAWNT DY NPIVIOPRNIY OINNIND DN
-Vortex) mompn NN37yni 1990 Y1 H1-5yn DY 1090 71anm N2YN NN P2 WP
N9 DOWIND MDY MRNINY DINNN Y2APNNY WO Ne3wopNn 01vpsv .(Core

90N 0N DX PTIN VN TPVINPN NTITWNN HY NPXVIOPNN DITVPID NYSHNI N0
DYIND 7Y FTIN 11D 10079 .ITO-IND NIRNIND TANY J11-D¥0 12yn2 VNHVY MR
YOMIPN TN DX KIXNY 1713 IMYINNRI NONNI TTHAN-Pn J2yn Nay (Thouless)
99 May 7120 asny (Localization) 7*ponn 1P 1Y DI TN Y PINNNY
PV 72 DON NN NPDTN-9YN T2 Y0P THOHNNY DIXRXIN DN .2 N M TN NN
INNN T ARNIA NPIIN-9Y PN (Dot geometry=zero dimension) NHPNN MIVNMINII

WIN 1TO-RN TY 92 NPYIN-DY WY R3N) DNA 2 -1 1 DY712°02 07PN 022N MNYIND

POTR-HY W NPTNRIN-IT TN NMDIYNIY NXND) DO DY P20

Y NPIVINYNN NPIVIOPRN TY NNNINRN D1VPIVT VTN NINT DONSN DN 3 121 (2

PY-19IK HTN-5Y2 DIL AN WNNW THAYOXN »IPYWY ORIV DI LN H1-5Y *He -n

-«



Characterization of Superfluidity of ‘He.

NIR GOV



C:/

AYRWNY NO

Characterization of Superfluidity of ‘He.

RESEARCH THESIS

' SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

BY

AWION Yy NIINN MIOON
NIR GOV 'on

O,Z ’986?3 HDT;’D

SUBMITTED TO THE SENATE OF THE TECHNION-ISRAEL INSTITUTE OF TECHNOLOGY
SIVAN 5758 : HAIFA JUNE 1998

iy



538.341

.~

o



Y | To Riki and my parents.

This research was carried out in the Physics Department of the Technion
under the supervision of Prof. Eric Akkermans.

I wish to thank Prof. Eric Akkermans for the supervision and support
during the research.

¢

1 wish to thank Moshe Havilio for usefull discussions and encouragement.
f

The generous financial support of the Technion is gratefully acknowledged.
)

sy



Contents
Abstract 1
List of symbols 3
1 Introduction 5
1.1  Hydrodynamic description of superfluid He . ... ... ... 5
1.2 Superfluid-insulator transition due to disorder . . . . .. . . . 6
1.3 Microscopic description of superfluid “He . . . . .. ... ... 7
14 The research subject . . . ... ... ... .. ... ..... 10
2 Hydrodynamic description of superfluid ‘He 17
2.1 Introduction . . . . . .. e e e e e e e 17
2.2 The superfluid in a long cylinder - a coherent-ferromagnet . . 19
2.3 Hydrodynamic susceptibilities . . . . . ... .. ... ..... 25
24 Broken time-reversal symmetry . . . ... ... ........ 29
2.5 Vortexmodes . . . . ... ... ... . 29
2.6 Spontaneous circulationin a cylinder . . .. ... .. ... .. 30
2.7 Condensate fraction and vortex-core structure . . . . ... . . 32
2.8 Mapping to an XY-model . . . ... ... ... ........ 34
2.9  Path-integral calculations . ... ................ 35
2.10  Vortex-ring theory of the A-transition . . . . ... .. ... .. 36
2.11  Experimental evidence for spontaneous circulation in a cylinder 37
2.12  The effect of disorder on the superfluid transition . ... . .. 38
213 Superfluids filmsand lines . . . . ... ... .......... 41
214  Summary . . . . . ... e 42
3 A hybrid phonon-exciton model for the spectrum of superfluid *He 49
3.1 Introduction . . . . . ... ... ... .. ... 49
3.2  The effective Hamiltonian . . . ... ... ........... 51
3.3 Comparison with experimental results . . . . ... ... ... 35
.3.4  Scattering intensity . . . . . ... ... ... ... ... ... . 56
35 Vortexloops. . ... ... ... ... ... . ... 57
3.6 Ground-state energy . . . ... ... O 58
3.7 Condensate fraction. . . . ... ... ... ... .. ...... 59
3.8 Vortex-coredensity . . . . ... .. ... .. .. ... ..... 59



3.9

3.10
3.11
3.12

Appendix A:

Bibliography

Dirac Hamiltonian for the *multiparticle’-branch of superfluid

He . . . . . e 60
Comparison with experimental results . . . . . ... ... .. 64 .
Equivalent magnetic Hamiltonian . . . . . . ... ... .. .. 65
Conclusion . . . .. ... .. .. ... . e 66

Comparison with the Klein-Gordon Hamiltonian 81

1

>~



List of Figures.

1.1 The P-T diagram for the condensed phases of “He contrasted to that
ofanormal liquid [17). . . . . . .. .. .. ... L L 13

1.2 The excitation spectrum of superluid *He at T = 1.1°K from inelastic
neutron-scattering experiments [17]. . . . . . .. ... ... ... ... 14

1.3 The trace of the paths of six “He atoms at T = 0.75°K in the Path-
Integral Monte-Carlo calculations [19]. Three of the atoms are in-
volved in an exchange which winds around the boundary in the z
direction. . . . . . . . . . e e e e e 15

2.1 The two physically different ways to take the thermodynamic limit
k — 0: The plane-limit and the wire-limit. . . . . ... ... ... .. 44

9.2 The rotational frequency of the superfluid circulation around the axial
vortexinalongcylinder. . . . . .. ... ... oL L. 45

2.3 The ratio f = (ps/p)/no as a function of temperature. Comparison
between experimental results [29] and eq.(2.53) [31]. . . . . . .. ... 46

2.4 The two extreme cases of uniform permutations in a cylinder: Axial
lines and concentriccycles. . . . . . ... ... L. 47

2.5 The configuration of experiments to detect remnant vortices in sta-
tionary superfluid [37). . . . ... ... ... ... ... 48

3.1 The experimental spectrum compared with the Feynman spectrum
(eq. (3.1)) and more elaborate calculations [70]. . . . ... ... ... 69

3.2 Comparison between the experimental energy spectrum [52,71](points)
and the theoretical expression (3.18)(solid line) where the structure
factor S(k) is obtained from independent measurements [72,73]. (a)
and (b) correspond respectively to the saturation vapor pressure and
to P= 24 atm. The dashed line at 4A indicates the position of the
branch of the vortex-loop excitations. . . . . . . ... ... ... ... 70

3.3 Comparison between the experimental structure factor S(k) [72,73,54](points)
and the expression (3.18) (solid line) for the same two pressures as
in fig.(3.2) where the energy E(k) is obtained from independent mea-
surements [52,71). . . . . ... 71

il



3.4 Comparison between the experimental structure factor S(k) [54] (points)
and the expression (3.18) (solid line) at ¥ — 0 for T = 1.38°K and
T = 1.1°K. The dashed line is from the Feynman relation (3.1) using
the experimental energy spectrum [52]. The star and X mark the
theoretical S(k = 0) at the respective temperatures according to (3.22). 72
3.5 Comparison between the experimental scattering cross-section [52]
Z(k) of single quasi-particle excitations (points) at 1.1 K and the
theoretical expression (3.25). The two curves are obtained using re-
spectively in (3.25) the experimental results for S(k) [54](solid line)

and for the energy F(k) [71](dashed line). . .. .. ... ... .... 73
3.6 The experimental Raman scattering around k = 0 [20]. The peaks at

energies 2A and 4A are marked. There is no 3A peak. . .. ... .. 74
3.7 Comparison between the experimental condensate fraction at differ-

ent pressures [29] and the relation (3.31) suitably normalized. . ... 75
3.8 The Bogoliubov factors of the diagonalization u(k)?2, v(k)? (3.48), and

the density of an excited state u(k)2 — v(k)2 (3.54). . ... ... ... 76

3.9 Theoretical spectrum compared with experimental peak position [65]:
(a) S.V.P. (b) P=24atm. Solid line: eq.(3.51), dashed line: eq.(3.55),
short-dashed: free particle. . . . . . . ... .. ... ... .. 77
3.10 Contours of the experimental scattering intensity [67] compared with
theoretical calculations. Solid line: eq. (3.51),long dashed: eq.(3.55),dash-

dot: phonon-roton spectrum, short dashed: free particle. . . . .. .. 78
3.11 Scattering-intensity of the "multiparticle’-branch. Theory (solid line)
from eq.(3.56,3.57) compared with experiment [52]. ... ... .. .. 79

3.12 Arrangement of the spinsin the magnetic-analogue-Hamiltonian. BCS:
(a) without pairing, (b) with pairing. Dirac: (c) without unpaired
fermion, (d) with unpaired fermion. . . . . . ... ... ... .. ... 80

v



Abstract

In this thesis we have attempted to further our understanding of the phenomenon
of superfluid ‘He. The phenomenon of superfluidity in “He is an example of a
macroscopic quantum effect where the bulk matter has quantum features, such as
zero-viscosity, quantized circulation etc. These features appear as the ‘He is cooled
bellow a critical temperature Ty ~ 2.17°K (at Saturated Vapor Pressure (S.V.P.)),
where it changes from a normal fluid to the superfluid phase. The subject has been
intensively studied both experimentally and theoretically for 50 years, but still has
many unexplained aspects, two of which are studied in this work:

1) One is to follow the conventional hydrodynamic definition of the superfluid
as it appears in the response to external perturbations using linear-response theory
[1], [2]. In this description there are some unresolved question as to the relation
between the definitions of the superfluid-component density (p,) and the condensate-
fraction (ng). We find that there is an overlooked property of the superfluid which
follows from the above definitions and is that in a infinitely long tube there is off-
diagonal momentum-momentum response even in the thermodynamic limit. We
point out that this can be physically interpreted as signaling the occurance of a
spontaneous circulation (quantized-vortex) along the tube’s axis. Using an analogy
with the commutation relations of a charged particle in a magnetic field we are
led to the conclusion that the superfluid is a ’'coherent-ferromagnet’ phase where:

ps/p= (L) [h,ng = %ﬁﬁ (L;,L_ = L, —1iL, are the angular momentum operators
where the tube axis is in the z-direction, p is the total density). Both p; and ng
are needed to define the superfluid phase. We also find a Schrodinger-like equation
for the excitation modes of the quantized-vortex and relate the condensate-fraction
to the internal structure of the fluid and of the vortex-core. Finally, using the
vortex-modes’ excitation spectrum that we have found we define a Thouless-like
dimensionless parameter that controls the transition from superfluid to insulator due
to disorder. We find a critical dimension of zero and give some physical comments
on its relation to numerical and exprimental results.

2) The elementary excitation spectrum (phonon-roton branch) of the superlfuid
4He has been a long-standing theoretical problem. This spectrum allows the cal-
culation of the thermodynamic properties of the superfluid [3] and is measured by
neutron-scattering experiments [52]. Since the pioneering work of Feynman [5] which
proposed that the excitations are simple density fluctuations, there has been many
improvements [6], [7], but at the price that the physical nature of the excitation is
lost in the complicated variational wavefunction used. We propose a new description
of the energy spectrum based on the assumption that in addition to the Feynman
density excitations, there exist localized modes for which quantum statistical ef-
fects are importnat. These two modes are hybridized in a way reminiscent of the
case of excitons in dielectric crystals [8]. This analogy allows us to write an effective
Hamiltonian which we diagonalise using a Bogoliubov transformation. The resulting

1



spectrum of the phonon-roton branch comes out as half the energy of the Feynman
excitation and compares well with the experimental results at S.V.P. and high pres-
sure. We are also able to give an analytic expression for the scattering-intensity of
the excitation as a function of the wavevector k, which agrees very well wuth the
experimental results. We also predict another type of excitation which we interpret
as the intrinsic vortex-loop excitation of the superfluid whose energy agrees with
both critical-velocity and Raman scattering experiments. Finally we extend this
theory to include a Fermi-Dirac excitation to describe the ‘multiparticle’-excitation
branch at higher energy.
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Symbol | Meaning

Ps Superfiuid density

Ng Condensate fraction

L; Angular momentum in direction ¢

p Total density
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D Momentum

Ny Condensate number

T Temperature

m Atomic mass

Y Wavefunction
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e(k) Feynman energy-spectrum

Ey,hwy | Localized mode bare energy
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Magnetic velocity components

Radial length scale
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Vector potential
Particle number operator
Superfluid to condensate ratio

Total longitudinal current density
Viscosity tensor

Vortex displacement

Average number of nearest-neighbors
Vortex core radius

Pressure
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Vortex density
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Hamiltonian
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Chapter 1

Introduction

1.1 Hydrodynamic description of superfluid ‘He

The superfluid phase of “He is achieved by cooling the normal-liquid phase below a
transition temperature Ty = 2.17°K at saturated-vapor-pressure (SVP). The phase
diagram is shown in Fig.1.1. This phase is distinguished from the normal-liquid
phase by having no apparent viscosity and having infinite thermal conductivity.
A first theoretical description of the superfluid was proposed by Landau (1941).
This hydrodynamic description of superfluid “He (known as the "Two Fluid Model’
(TFM)) is summarized in several reviews [9], [1], [2], [10], and was developed by
Landau and Khalatnikov [3]. In this model the liquid consists of two interpenetrating
liquids, a normal fluid and a superfluid, each with its own density and velocity fields.
The superfluid fraction of the fluid does not contain any entropy and its mass density
is ps. This part of the fluid can have only irrotational flow with velocity 7.. The
normal component contains all the entropy of the liquid and has velocity 7y and

density p, such that the local density and momentum current density are:

P = pn+ps 7 = pnTn + PsTa (1.1)

where p is the total density.

The normal component is due entirely to the low-lying excitations or quasiparti-
cles of the superfluid. It goes to zero at T=0 and becomes the entire density at T},
with the superfluid component having oposite behavior. Landau was able to express
the normal component density p, in terms of the thermally excited quasiparticles:

() = [ 255 |- 12

where N(g,) = (esr/ kT _ 1)—1 is the Bose distribution function and ¢, is the
excitation spectrum. Similarly he obtained the other thermodynamic quantities of
the superfluid and by fitting to the experimental results was able to predict the
approximate shape of the excitation spectrum even before it was directly measured.
The response of the superfluid to an external perturbation is therefore different
from that of a normal fluid. In fact there appear long-range momentum-momentum
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correlations in the superfluid, which are absent in the normal phase. The superfluid
therefore has two additional thermodynamic quant1t1es that describe its equilibrium
state (1.1): the superfluid density and velocity p;, T.. The free energy F depends

on the relative internal velocity between the two components: W =7, — T, in the
form: 8°F/0w?® = ps/p. In particular there can be metastable equilibrium states
where the superfluid and the normal components have different velocities.

Since the superfluid velocity is irrotational it can be written as:

7= —?a (1.3)

where 6(r) is some single-valued function which describes the phase of the com-
plex order parameter at each point. The free energy therefore depends on the phase
gradients, and a global phase relation between different points in the fluid describes
the superfluid state. Due to the single-valued condition the phase can change by an
integral number of 27 when going around a line-defect (vortex-core) where p, = 0
and the phase 6(r) is undefined. This leads to vortices with quantized circulation
around them, which are a unique feature of the superfluid.

1.2 Superfluid-insulator transition due to disorder

The problem of the superfluid transition in the presence of disorder has been treated
previously [11]. It is concerned with the effects of a static random (disorder) poten-
tial which can lead, if sufficiently strong, to the localization of the atoms thereby
destroying the superfluidity. Upon localization the atoms become randomly trapped
and form a random solid called a Bose-glass.

The typical Hamiltonian studied in this respect is of the Hubbard form (see for
example [11]):

H= Zt,] (a a; +cc) + = ZU,Jn, —8ij) = > wing (1.4)

)

where the anihilation/creation operators a;‘ ,a; are of an atom at site 1, t;; are

the hopping amplitudes (which maybe random but always positive), U;; is the inter-
atomic potential with the condition of hard-core repulsion built into the n;(n; — 6;;)
factor (n; = ala;). The last term is the random on-site disorder potential usu-
ally taken as uniformly distributed in the interval [—pgis, ftais] - This Hamiltonian
describes lattice bosons that can move from site to (unoccupied) site and feel a pair-
wise interaction between them. This is a reasonable approximation of the superfluid
where it is believed usually that the atomic interaction is weak and can be taken as
a summation of pair interaction.

This Hubbard model is different from the continuum superfiuid as even at zero-
disorder it can become a Mott-insulator (solid) for strong enough interaction U and
commensurate filling of the lattice. This insulator has the atoms in some periodic
crystal solid. We are not interested in this transition but in the disorder-induced
transition so we will concentrate on incommensurate filling where this problem is
absent.



Calculating numerically the superfluid fraction from models like (1.4) in d=1,2
dimensions it was found that [12] (at T=0):

a) The value of p, is reduced due to disorder so that it is less than the total
density p. '

b) There is a critical disorder pg4, where the superfluid component goes to zero.
It is not clear what are the critical exponents of this transition, and it has no physical
realization at the moment.

c) This transition occurs for all dimensions d > 1.

In the above treatment it is still not clear as to the role of the superfluid
quantized-vortices in the disorder driven transition and their possible effects on
the critical exponents.

We shall go beyond the above mentioned numerical work and shall consider these
questions using the approach of Thouless [40] on the problem of electron localization
in disordered metals. The idea is to compare the energy change of an electronic level
in response to changing the system size, to the energy gap between levels. If this
ratio is such that it decreases with the system size then we can conclude that in the
thermodynamic limit the electron is most likely in a localized state. The problem is
to find such a dimensionless ratio that captures the physics of the energy levels of
the system. For the metal-insulator transition this is the dimensionless conductance
g = G/(e*/h), where G is the conductance.

1.3 Microscopic description of superfluid *He

The microscopic theory of superfluid He starts with the works of Boguliubov [14]
and Pitaevski [15] for the Weakly Interacting Bose Gas (WIBG). It is assumed
there that the interactions between the atoms can be described by summation over
pairwise interactions only:

p 1
HPair = Z[:%*’Egv(r!_’r])

2
1
2 <;_m - “) CiCo+ 5 2 V(Q)CLoCl4gCiCr (1.5)

4 qkk’

where (in the plane-wave representation) C;, C, are Bose creation/anihilation
operators of “He atoms, u is the chemical potential and the interaction V(r) is
taken to be of the Lennard-Jones form for the hard-core part and a r~% van der
Waals attraction. The assumption now is that the interactions are weak so that we
are close to the Ideal Bose Gas situation where at T=0 all the atoms occupy the
zero-momentum energy level (the condensate) Ny = C}Cy. The effect of creating or
anihilating an atom from the condensate makes a negligible change to the eigenstate
and is approximated by:

CHINo) = (No+1)2|No+1) = (No)/? | No)
ColNo) = (No)'/?|No— 1) = (No)'/? | No) (1.6)
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The next step is to isolate the £ = 0 terms in the Hamiltonian so we finally get
the Bogoliubov Hamiltonian:

Hp =S (6, + NoV(0)) CIC, + %Ng SV (Cl+Co) (Cly+C) ()

p

This Hamiltonian can be diagonalized by using the mean field approximation and
shows that the elementary excitation spectrum changes from the quadratic form of
the Ideal Bose Gas (IBG) to a linear sound-like form in the long wavelength limit
(k = 0). This qualitative change is important since the excitation spectrum of the
superfluid “He does have a linear (phonon) form with a sound velocity given by the
slope, but there is no quantitative agreement with experiment. The limitation of the
WIBG approach is that it treats the atomic interaction as a weak perturbation of the
gas, while “He is a dense liquid with strong interactions (hard-core). In particular
this theory is valid as long as the depletion of the condensate fraction due to the
interactions is small: ng = No/N ~ 1 (N is the total number of particles), while in
the superfluid “He it is ~ 0.1 at T=0.

The Bogoliubov theory emphasizes the importance of the Bose-Einstein conden-
sate in the superfluid as it affects the excitation spectrum. It also introduces the con-
cept of broken symmetry (1.6) and Off-Diagonal-Long-Range-Order (ODLRO) {16}
which appears in the single-particle (reduced) density matrix p;(r, ') = (¥(r)|p|¥(r)):

(Chr) = T #0,  (Co)y=(r) #0
= lim py(rr) = ¥ (N¥(r) #0 (1.8)

where () is the ground-state wavefunction of the liquid and p = X, |v:(r)) (v:(r)|
is the density matrix. We introduce the expectation value ¥(r) to distinguish from
the operator for creation and anihilation of the *He atoms ¥(r).

This means that the broken symmetry of the superfluid state can be identified
with a complex scalar function W(r) = |¥(r)| €™, with the properties of the parti-
cle annihilation operator: ¥(r) = (¢(r)). In such a system there is a Bose-Einstein
condensation of particles into the zero-momentum state (when there is zero super-
fluid velocity), with the condensate-fraction given by: ng = |\IJ|2 The phase 6(r) is
identified as that given in the definition of the irrotational superfluid velocity (1.3).
Even though the Bogoliubov theory is not correct for “He we assume that there
exists an order-parameter ¥(r) with the above properties in the real superfluid.

Another approach was provided by Feynman [5] who assumes from symmetry
requirements a simple variational wavefunction for the excited states of the super-
fluid. This wavefunction represents a single pure density fluctuation of wavevector
k (a phonon):

_)
URFy =S R = (1.9

where R; is the position of atom : , @ is the ground-state wavefunction and pL
is the Fourier transform of the density operator. The guiding idea is that all the
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complicated short-range correlations between the atoms due to their strong hard-
core interactions are unchanged by the excitation and remain as in the ground-state
¥o-

Using a minimum energy calculation and translational invariance the excitation
spectrum 1is: \

R%k?

e(k) = 3mS(F) (1.10)
where m is the atomic mass and S(k) is the static form factor at wavevec-
tor k measured by neutron scattering experiments. The relation (1.10) reproduces
the qualitative features of the phonon-roton excitation branch (Fig.1.2): the linear
phonon spectrum at k — 0 and the roton minimum around k =~ 1.9A4~!. Quan-
titatively it gives approximately twice the value of the experimentally measured
spectrum. In order to improve the agreement there have been various attempts
using increasingly involved variational wavefunctions that have been suggested over
the years [6], [7]. The most recent works manage to reproduce quite closely the
experimental spectrum but at the price that the excitation does not represent any-
more a pure density fluctuation. All these elaborate wavefunctions have in common

a more localized structure in the excitation.

It has also been pointed out [17] that the role of the condensate fraction and
therefore of the Bose-Einstein condensation is not crucial for the development of
the Feynman result. In particular it has been noted [18] that the Feynman density
fluctuation is similar to zero-sound in a normal (non-superfluid) system like *He. In
fact above the transition temperature Ty the Feynman expression fits quite well the
broad excitation peak found in neutron scattering experiments {17]. We therefore
conclude that the Feynman excitation does not capture the essence of the superfluid
order.

Another shortcoming of the above treatments is that the quantized vortex ex-
citations that are unique to the superfluid state are not explicitly described, only
the sound-like density fluctuations. These vortices have cores of microscopic size
and should therefore appear in any microscopic description of the superfluid. It
is therefore still an open problem to give a quantitative theoretical description of
the excitation spectrum of superfluid *He, its condensate fraction, quantized vortex
excitations etc.

The excitation spectrum has also a high-energy 'multiparticle’ branch which has
much lower intensity than the phonon-roton branch (Fig.1.2). The usual treatment
is to describe it as multiple excitations such as roton-pair, roton-maxon pair (maxon
is the excitation at the first maximum of the single excitation spectrum) etc. This
analysis does not give the continuous shape of this higher branch or its intensity.

Another approach to describing superfluid He is through Path-Integral Monte-
Carlo (PIMC) calculations [19]. This numerical procedure calculates for a finite
number of atoms (up to 128) and finite temperature the many-body density matrix:

p(R,R;B) = (R|e™P| R) = 3 e #5y,(R)n(R)) (1.11)
where 8 = 1/kgT, H is the total hamiltonian, and |R) stands for some spacial

9



arrangement of the atoms. This can be rewritten in terms of Path-Integrals where
the inter-atomic interaction is taken as a simple two-body potential and the Bose
permutations are taken over the atomic indices. The resulting calculation gives the
specific heat c,, the superfluid fraction p, and reduction in zero-point-energy as func-
tions of temperature with a good accuracy. From these calculations came a direct
theoretical indication that the condensate-fraction at T — 0 is ~ 10%, and that
there are long-range off-diagonal momentum-momentum correlations proportional
to ps (see 1.1).

The superfluid phase is distinguished in these calculations from the normal phase
by having macroscopic permutation-cycles of the atoms that span the entire sys-
tem. These amount to a non-zero expectation value of the winding-number squared
(Fig.1.3):

(W?)
ps/p =3
T

where (W?) is the expectation value of the square of the length of paths that
wind around the entire system (periodic boundary conditions) and A2 = h?/2mkgT
is the thermal de-Brogli wavelength of the atoms.

Due to the hard-core interactions these permutation cycles cause long-range co-
herence in the fluid, that is the paths with the largest statistical weight in the
calculation are those with straight parallel winding paths. The broken-symmetry
appears when a particular direction of permutations is selected, which occurs in re-
ality due to some external infinitesimal symmetry-breaking field. It is therefore seen
from these calculations that the Bose statistics in ‘He is essential for the appearance
of superfluidity, as are the short-range hard-core-induced correlations.

In the above work [19] using the PIMC approach it was not possible to calculate
the excitation spectrum of the elementary quasiparticles in the superfluid.

1.4 The research subject

This work is divided into two main sections:
1) There are some points in the hydrodynamic description which we aim to
clarify:

a) The connection between the superfluid fraction p, and the condensate fraction no = |¥|* :

A possibleidentification [9]: ¥(r) = {/ps(r)e®®™, with ¥(r) obeying Schrodinger’s
equation leads to the following hydrodynamic equations:

at +V(psvs) = O
v, n V2. /5,
G o O = 9 (g L) (12

These equations cannot be right, since from (1.12) follows that the superfluid
density is conserved seperately from the total density. The true mass conservation

equation of the TFM is (see (1.1)):
op

e + V(psvs + patn) =0 (1.13)
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Further, there are systems of low dimensionality (d < 3) where there is a su-
perfluid fraction (p; > 0) but appparently no condensate fraction (ng = 0). It is
therefore not entirely clear how are these two quantities related and which is the
essential one for the superfluid phenomenon.

b) Disappearance of superfluidity due to disorder :

We are particularly interested in the possibility of defining a scaling dimen-
sionless parameter from which we can find the critical dimensionality below which
any amount of disorder will destroy the superfluid phase. This is along the same
lines as the Thouless treatment of the conductor-insulator transition in metals.
There this is the dimensionless conductance which serves as the scaling parame-
ter: g = 0L9%/(e?/h), where o is the conductivity, L is the system length, d is the
dimensionality and e the electron’s charge. In that case that the critical dimension-
ality above which there is an insulator-conductor transition is 2.

To answer those questions in the first section we analyze the hydrodynamic
description of superfluidity as summarized in [2],[1]. We start our analysis with
the usual operational definition of the superfluid component density p, and show
by analogy with the two-dimensional motion of a charged particle in a magnetic
field, that it describes spontaneous circulation in a cylindrical geometry. Using this
we propose a natural definition of the 'macroscopic-wavefunction’ or complex-order-
parameter ¥ (where: ng = |(¥)|?) in terms of angular momentum-like operators. We
find that the order-parameter ¥ obeys the Schrodinger equation of a free particle.
The equation is that of spin-wave modes of the vortex which are quadratic in the

- e
wavevector k . We therefore obtain a description where:

_ _ L
ps/p <Lz> /h’ L 5 <Lz) (114)

(where: L_ = L, —iL,, L; is the angular-momentum operator in the 7 direction
and p the mass density) for a cylinder along the z-axis. Both (ps,nq) are needed to
describe the superfluid state and are related to each other. The situation is that
of a coherent-ferromagnet, with a spontaneous circulation in the z-axis, but also a
finite circulation in the zy-plane.

We give a physical interpretation for this spontaneous circulation by identifying
it with the bosonic permutation-cycles of the path-integral calculation of Ceperley
[19). The superfluid lowers its kinetic zero-point-energy (z.p.e.) in this way, and
we give a quantitative estimate for the change in the ground state energy. The
superfluid is shown to correspond to an XY-model which is known to describe the
superfluid transition. We further relate the condensate fraction ng to the internal
structure of the superfluid and to the vortex-core size.

We give some experimental and numerical evidence for the spontaneous circula-
tion in “He, especially in cylindrical geometries.

From the above description of the superfluid and considering essentially the vor-
tex modes, we write a Thouless-like criterion for the superfluid-insulator transition
due to disorder. Using the vortex-modes’ excitation spectrum, we get that the crit-
ical dimensionality for the transition is zero, unlike for metal-insulator transition
where it is two.
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2) In the second section we develope a phenomenological theory that incorpo-
rates the hydrodynamic density fluctuations with vortex-core excitations into a mi-
croscopic Hamiltonian. This is done by proposing an effective Hamiltonian for the
hybridization of the F evnman-phonon and a localized excitation (representing a mi-
croscopic vortex-core element). Within the dipolar approximation like the exciton-
photon treatment [3], we find that the resulting excitation spectrum is very close to
the experiment and given by the simple result:

E=¢(k)/2

where (k) is the Feynman spectrum (1.10). The calculation uses as a free
parameter the constant energy level of the localized excitation Ep. It turns out
that the energy of the resulting spectrum is independent of the choice of Ey. This
description allows us to calculate the condensate fraction and the reduction in the
ground-state energy at zero temperature. Both quantities compare well with the
experimental results at saturated-vapor-pressure (S.V.P.) and high pressure.

In addition we predict a new excitation branch of constant energy which we
identify as the intrinsic vortex-loop excitation of the superfluid with energy 2Ej.
We find experimental indications for this excitation in Raman scattering {20] and -
critical-velocity experiments [21].

Finally, we propose a new approach for the calculation of the high-energy 'mul-
tiparticle’ spectrum of the superfiuid “He by treating it as an elementary excitation
of a free vortex-core, which behaves like a fermion. We use a Dirac Hamiltonian
to describe it, and its mean-field solutions give the spectrum and the scattering
intensity. Both compare favorably with the experimental results.
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Chapter 2

Hydrodynamic description of
superfluid 4He

2.1 Introduction

We start with the conventional description of the superfluid through its linear re-
sponse to external motion. In particular we want to investigate the momentum
response of the superfluid to the motion of the walls of a long tube with velocity «.
We begin by introducing the hydrodynamic definitions of the superfluid state [2],
and then the contents of the section.

- We define the superfluid state by the fact that the momentum density current
sets up in the fluid as a response to the moving tube such that it is less than the
entire fluid mass:

T=p®  pa<p (2.1)

where the normal component density p, is defined in the two-fluid-model de-
scribed in the introduction and ¥ is the velocity of the tube along its axis. Alter-
natively the expectation value of the momentum density is given by (2]:

<J(T > _ tre—B[H—?-7+%Mu2—yN]m

[H—?~?+%Mu2—uN]

(2.2)

-8
tre

where the mometum density operator is:
70 = 5 [0 {Fem} - {(Fote)} w00

~with 9(r),¥!(r) the anihilation/creation operators of the *He atoms, and 8 =
1/kgT. (), means the expectation value in the moving-tube condition, and using
the equilibrium Hamiltonian given by:

p? 1
H=S"Z_ - .
. om + 5 ?_‘j‘v(r2 T;)
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where v(r; — r;) is the interatomic potential which is independent of the velocity
of the tube.

The total momentum is given by: P = ) mdr,‘ and if we expand (2.2) to first
order in u we get:

(Jo(r))y = (J(r) + B{(J(r) P:) = (J:(r)) (P:)] u (2:3)

where the tube axis defines the z-direction, and the expectation values on the
r.h.s. are in the equilibrium system at rest (u = 0) where (J,(r)) = 0. Using linear
response theory we get from (2.3):

/dr dwxzz rr w)u (2.4)
w
where ,
Xi(rr'w) = [ dee 0 (200, 35 (2.
By comparing (2.1) with (2.4) we get:
dw X (k, w)
Pn = ,lllcf,n 01c],£n>o o w & lllcnimkhm Xes(k,0) (26)

where we used: , (k )
dw x;;(kw
- (kw) = / oW Xii\FW)
Xij(kw) P
In addition there is in the superfluid a broken gauge-symmetry due to the Bose-
Einstein condensation. This occurs when:

(B(r)) = Vrge® #0 28)

which means that there is fluctuating number of particles but a well defined
global phase. This is identical to the case of a coherent-state in a quantum system.
The definition (2.8) is the superfluid 'macroscopic wavefunction’ or order-parameter.
This is a complex scalar which is non-zero in the superfluid, except on the boundaries
or along linear defects called vortex-cores. The superfluid velocity is non-rotational
and given by the gradient:

2.7)

= (h/m)Vo(r)

The vortices in a superfluid are quantized so that around a vortex-core the phase
8(r) changes by an integral number of 27, which causes a circulating superfluid.

In this chapter we shall develop the above definitions of the superfluid state. Our
alm is to investigate the consistency of the above definitions of the superfluid and
find their physical consequences. In particular we are interested in the phenomena
of quantized vortices, effects of boundaries and destruction of superfluidity due to
disorder.

In section 2.2 we find that in a long tube the superfluid has off-diagonal momentum-
momentum response indicating the occurance of a spontaneous vortex along the tube
axis. We propose a mapping of the superfluid to a ’coherent-ferromagnet’. From
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this we develop the hydrodynamic susceptibilities of the superfluid (2.3) and show
that it corresponds to broken time-reversal symmetry (2.4). Further results are the
spectrum of the excitation modes of the vortex in a superfluid (2.5). We give some
qualitative arguments for the physics behind the spontaneous vortex in a tube (2.6)
and suggest a connection between the condensate-fraction (at T=0) and the spacial
packing of the atoms (2.7). We then map this problem to an XY-spin model (2.8),
compare with the results of Path-Integral Monte Carlo calculations (2.9) and vortex-
ring theory (2.10). Some experimental and numerical evidence for such spontaneous
vortex in a tube is presented in section 2.11.

Finally we define a Thouless-like criterion for the occurance of superfluidity as a
localization problem (2.12,2.13).

We summarize the results in section 2.14.

2.2 The superfluid in a long cylinder - a coherent-ferromagnet

The phenomenological characterization of superfluidity is summarized in several
reviews [2],[1]. It is still not clear though what is the connection between the
operational definition of the superfluid-component p, and the condensate fraction
ng. While the superfluid fraction is obtained from the off-diagonal momentum-
momentum correlation function, the condensate is usually defined as the expectation
value of the atomic annihilation /creation operator %: no = |(¥)|?, or the magnitude
of the 'condensate wavefunction’ (order-parameter): [¥| = ,/mig. It gives the macro-
scopic occupation of the lowest energy state, which in the thermodynamic limit (at
T=0) is the zero momentum (k = 0) state.

The superfluid is usually defined operationally by the following physical circum-
stance:

The response of the fluid to an external velocity field (induced by moving the
walls of the container) is dependant on the geometry. The susceptibility of the

momentum density 7 to the external perturbation, i.e. the momentum-density
correlation function, can be divided into longitudinal and transverse parts [1]:

— ~a~ -~
Xij( k‘ w) = kiijI(kw) + ((S,'j - kikj) xt(kw) (29)

>

where: E; = ﬁ This results from the three tensors that can be formed by

8

=

- .
the vector k: é;;, k:k; and €;1ki, where J;; is the Kronecker-delta and ¢;;; is the
Levi-Civita tensor. Thus we can most generally write:

—
Xij( k ) = A(k)&u -+ B(k)k,kJ + C(k)e,-jkkk

_+
but C(k) = 0 since x;;( k ) is even under parity, so we are left with the first two

terms as in (2.9). The longitudinal component is parallel to k while the transverse
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component is perpendicular [2]:
Z k,‘ (E,E]) = kj,z ki ((5,‘1' - EiEj) - 0

We now observe two different physical ways to take the (hydrodynamic) limit

_)
k — 0 (Fig.2.1):

1) In a closed tube the entire fluid moves with the container, by mass conserva-
tion. This situation is achieved by taking the ’plane’-limit:

. . -
kl,l-r-?o Lﬁf&o xis( k )J
If we look at the component: ¢ = 7 = 2, then we have:

. . - _
i [k,%gaonM >] =Xk =e (210)

where we used:

k.k,
lim lim k

=1
k: =0k ky—0 k2

This result (2.10) corresponds to the mass conservation and follows from the
usual f-sum rule.
2) The open tube, in the z-direction is achieved by taking the ’wire’-limit:

. . —_
i Jim, i (F)]

If we consider motion along the tube axis, only the normal component is dragged
with the walls so we have:

lim | lim xer(F)] = xu(k) = g

k2 ky—0 [k, =0
where we used:
b 1 KR g
k,,llc?i)o P k2
The susceptibility matrix is therefore:
_) o~ o~
Xij( k) = pnbij + pskik; (2.11)

where: p; = p— p,. The result (2.11) should be contrasted with the normal fluid
behavior where both the longitudinal and transverse components of the susceptibility
equal to p.
We summarize the response in the two limits and in the different directions:
Wire limit Plane limit

1=7: .i=_j=z Pn P

i=j=uxy p P
1E Y t=2,]=1,y 0 0
‘ 1=2z,j=y Ps 0
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The top two rows in the table are the usual characteristics of a superfluid which
we have demanded. In addition we find that the superfluid displays the other pecu-
liarity:

. . -
k,%llcirio [khglo Xey( K )] =P (212)

To get (2.12) the limit of k,,k, = 0 can be taken as:

k. = ok, = lim [lim X,y("l?)] = pu7 20 (2.13)

ke ky—0 Lk, —0 m
with the maximum given by a = %1, i.e. when the z and y limits are isotropic,
which gives (2.12). This result is unexpected because it means that a perturbation
in the z-direction produces a response in the y-direction. The sign of a is the sign of
the vorticity of the response, or spontaneous vortex which we shall now introduce.
What is the physical meaning of the off-diagonal response (2.12) in the wire-
limit ? We interpret this as pointing out the underlying vortex structure of the
superfluid in this geometry. We shall explore now the consequences of (2.12) and its

interpretation.
We shall be using [1]:

/ -dﬁﬂ———xgyikw) = Xzy(kw) (2.14)

~ where ng is the imaginary part of the susceptibility given by the Fourier-
transform of:

X7, 7 Y) = <2ih [J,.( ; t),Jj(7t')]> (2.15)

l.e.

-21—ﬁ<[J,-(_r)t),Jj(7t')]> (k,w) = / dére=r / dte™ ([J:(7't), 73(0,0)] )

and the bra-ket is the expectation value:

tr [e=BUH=-4M) ]
< ) = tr [e—ﬂ(H_I‘N)]
with H the grand-canonical ensemble Hamiltonian and p the chemical potential.
The () (k,w) means the time and space Fourier transform of the the expectation
value. .
Assuming that only one frequency (wp) gives the dominant contribution to the

integral (2.14) at a certain radius from the central axis of the tube, we get from
(2.14) and (2.15):

(k) = Wé(w—wo)%([Jz,Jy]) (kw)
> (Ve J) (1) = ifop, = (2.16)
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where we use: [d*%k = p/m = V! (V - specific volume), and take the equal
time and place commutation. We shall take the commutators of operators to be
non-zero only on equal sites so that the space Fourier-transform will only multiply
or divide the expression by the specific volume. The above assumption of a single
dominant frequency means that we consider the case where there is a vortex-like
structure in the superfluid such that at each radius from the central core the atoms
circulate with a definite angular velocity wy (Fig.2.2). We take the time correlations
of the rotational motion as the only important momentum-momentum correlation
in the fluid, i.e. only the superfluid circulation.

It might be interesting to compare this with the case of a ferromagnet where:
Xzy(kw) = 0 for the magnetization susceptibility, although there is also: x:y(kw) #
0. The ferromagnet is the wy = 0 limit of the superfluid case, since a domain of
ordered spins in the z-direction have no natural frequency (or vortex structure). The
antisymmetric response of the magnetization averages over time (¢ — 00) to zero.

This result highlights that the momentum-density operators J, , in the two per-
pendicular directions do not commute. This is reminiscent of the results for a two-
dimensional charged particle in a perpendicular magnetic field [22]. In that case the
components of the particle velocity in the plane obey:

[‘/xa ‘/y] = _ihwc/m (217)

where w, = gB./m, B, the magnetic field perpendicular to the plane and gq is
the charge of the particle. The velocity associted with the particle is given by:

V = %(? _qA) (2.18)

where Z} is the vector potential such that: B = ?7) X X

By comparison with (2.16) we see that in the superfluid case the role of the
external magnetic field is played by the superfluid-fraction p,/p with the sign of the
magnetic field played by the sign of @ in (2.13). So we can make the identifications:

We = %s-wo, 7 = pv (2.19)

where wp will be shown to be independent of p;. Using (2.19) we can equate
(2.17) with (2.16). As we shall see due to the vortex structure in the superfluid
the frequency wy depends on the radius from the vortex-core. The superfluid at
each radius is therefore mapped to a two-dimensional charged particle moving in a
different uniform perpendicular field. The non-zero superfluid fraction behaves as a
spontaneous magnetic field, again similar to a ferromagnet. Further, this magnetic
problem can be solved using a mapping to a two-dimensional harmonic oscillator

(in the gauge 1_4)(1") =17 x B)

W, We
Vo m oy )Yy = o ) (220)
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where a4, a), are anihilation and creation operators of right (or left) circulation
quanta (the direction depends on the sign of B,), and v = \/52‘);’-9_ . These operators
obey Bose commutation relations. The z-component of the angular momentum in
this case is given by: L, = A(alay).

It is customary to define for the superfluid a complex-scalar order-parameter,
which corresponds to the condensate-wavefunction, ¥. Since in the two-dimensional
magnetic problem there is a mapping to an harmonic oscillator which has Bose
creation/anihilation operators and the “He is a Boson we are led to the following
assumption: The superfluid wavefunction or order-parameter creation and annihi-
lation operators are to be identified with the Bose-circulation operators:

ag = ¥,a} = ¥t (2.21)

where it is understood that the magnetic field of the equivalent charged-particle
problem depends on the radius from the vortex-core axis.

We shall now use the mapping (2.21) to write the superfluid wavefunction in
terms of the dynamical quantities of the circulation. The operators aq, afi are given
in terms of the velocity associated with the 2d particle in the magnetic field:

ag = z'wlv_,a; =—iLly, (2.22)
where V, =V, £V,
If we now define wy = %/2mb?, where b is a length of the order of the tube radius,
we get from (2.21) and (2.22):

= ,wf=mbv+—L (2.23)
hy/ps/p R/ ps/p

¥ = mbV_

We see that mbV, has units of angular-momentum, so that the result (2.16) can
be recast in terms angular momentum operators:

L= JiVb= (L, L,] = ih22 2.24)
Y p

We therefore get that in the wire-limit there is a spontaneous angular momentum
in the z-direction per atom given by:

(L., Ly = —iL, = (L,) = n%ﬁ (2.25)

where the bra-ket means the expectation value in the ground-state.
We can then rewrite (2.23) as:

1
a‘I}T = L+ L
hy/ps/p hy/os/p

This identification is similar to the Holstein-Primakof transformation done in a
ferromagnetic system from the spin to Bose operators. This transformation is valid

v,ot = 1,¥=L_ (2.26)
v, v]
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as long as the total system spin (here angular momentum) is large, that is a macro-
scopic number of ordered spins. Here this restriction translates to a macroscopic
condensate or superfluid fraction. We see that the Bose commutation relation of
the superfluid wavefunction (2.26) is to be identified with the 'ferromagnetic’ order
(2.25).

The usual definition of the superfluid condensate is that of a coherent state:

([n, ) = — (¥) = — || )

where: n = U1V is the particle number operator which is here normalized to one,
and |Wo| is a real number, so that the condensate fraction is: ng/n = ng = |¥|%.
The operators in (2.26) are taken per atom and dividing by V we obtain density
operators.

Egs. (2.27) and (2.26) give:

(E4) = (L) =Rl [ (2.28)

We therefore arrive to the relations:

pS/p = <LZ) /h’ g = '}(.fzi)l

)
= (ps/p) [0 = (L) | KL-)f?

The situation in the wire-limit of a spontaneous single-quantized vortex along
the z-direction allows therefore to define the superfluid and condensate fractions in
terms of the expectation values of the angular-momentum operators.

This case is different from a usual ferromagnet in that we have a ’coherent-
ferromagnet’ (2.28):

(2.29)

L_ja)=ala)#0 (2.30)

where the eigenvalue o depends on time as: a(t) = a(0) exp (£iwt), hw = (H).

This means that the ’superfluid atoms’ behave as a coherent-state of a two-
dimensional harmonic oscillator. Each ’superfluid-atom’ is like a wave-packet of
mass mp,/p, with a time-dependent position along the circular trajectory. The
coherent-ferromagnet has a macroscopic magnetization vector that has a constant
z-component and an zy-component that precesses with constant (r-dependent) an-
gular velocity. Both components (p,,n¢) are therefore needed to define the superfluid
state.

We can compare the Complete-Set-of-Commuting-Observables (CSCO) of a usual
ferromagnet and of our superfluid ’coherent ferromagnet’:

Ferromagnet: (L,,L? H), Superfluid: (L,,L? L.), where the commutation of
(L;, L+) is satisfied only approximately. These two cases of ferromagnets are due
to the fact that the operators (L,,L?) that just describe the angular coordinates
do not constitute a CSCO and have to be complemented by an additional operator
that will remove the radial degeneracy [22].
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2.3 Hydrodynamic susceptibilities

The spontaneous circulating currents J,, J, are superfluid currents since they are
non-zero in an equilibrium state. These currents can be defined as:

Toy =00 (2.31)

with the superfluid velocity defined as:

T, =gk T (2.32)
m m [Py
where the condensate wave-function is: ¥(r,t) = |¥o|exp(:8(r,t)) , and we

performed a Fourier transform where k is the wavevector of the velocity of the
circulating current.

Due to the circulating superfluid currents around the vortex, each atom has a

kinetic energy: 2o

R7k* ps

(Hiin) = Sm

where k is the wavevector of the momentum of the superfluid in its motion around

the vortex.
From (2.24),(2.26),(2.31) we see that the definition (2.32) of the superfluid ve-

locity operator follows:

(2.33)

_ PY_R_ 1 4
o= L) (mb) = 2 =T/ (/) (2.3

where V_ is the velocity operator in the equivalent magnetic problem as defined in
(2.23). Comparing with (2.32) we have arrive at the relation between the superfluid
and condensate fractions:

_ P, _ 1
I=701m= G
We find that f is some finite numerical factor, we know its value at T=0 when
£ =1: f(T = 0) = 10 for *He.
In the usual quantum mechanical treatment we get for the probability current
density and velocity:

7 = % (zb?zﬁ* - w*?;&) -7 = 2—;—1 (zﬁw - z/z*Vw) [ (2.36)

which is different from (2.32). We see explicitly that the superfluid velocity
(2.32) is undefined if (¥) = |¥y| = 0, while the usual quantum-probability velocity
(2.36) is still well-defined.

We now rewrite down the kinetic energy Hamiltonian per atom around the vortex

(2.33):

(2.35)

_lps o, 1 a1, R ;
_2pmvs——2%m(Vny) = W=fa (vte +wet)  (2.37)
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where: Lf.y =L2+L2=(LyL.+L_Ly)/2, and we used the definitions (2.26)
and (2.35), V being the specific volume.

From (2.37) we write down the energy spectrum of the ’spin-waves’ (magnon)
that arise due to the 'ferromagnetic’ structure (2.25):

7 = tiw(k) Ly, w(k) = VL)
where:
— vV _V ps B?
R = j oV [ Zei, p ) = oz (Lo, H), L)) = oo 2%
s B
= Vit (2.39)
where we used:
dw n M : 1 ’
X, () = (5 [ [A(0), BB HYR), A 1)
We therefore get:
w(k) = hsz w (2.40
" 2m 0 40)
The equation of motion for the angular momentum (and V) is therefore:
dLs hk? dv hik?
o =g Ly = — = —ig—fU (2.41)

Equation (2.41) is just the Schrodinger equation up to the factor f. It is impor-
tant to notice that we obtained a Schrodinger-like equation due to the ferromagnetic
nature of the superfluid state. We also notice that for the Ideal-Bose-Gas f = 1 and
the equation is just the Schrodinger equation for a free non-interacting particle, as
it should be.

The susceptibilities can now be calculated using the definition (2.14) and (2.38)
using the Bogoliubov inequality for the ferromagnetic case [1]:

[l 52z, o (k)|

T o, (k) (242)

We can make this into an equality by calculating the bound on the denominator,
which is given by (2.38):

UL 2mVA2(p,/p)°  2mV |2
(K2R/V) — BR2fpfp k2

= XL_L. = (2.43)

Similar results follow for the susceptabilities: xz,r,,Xr._r., XL,L,- We see that
the susceptibility d1verges in the thermodynamic limit ¥ — 0, meaning that the
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spontaneous vortex can flip its axis in any direction without resistance in the infinite
system. Without a boundary and pinning this is expected for a superfluid vortex.
Using the identities: (2.26),(2.24),(2.31) and (2.32) we obtain from (2.43):

ol (m/h)?

e (2.44)

XJsJs = Ps Xvsvs = ps—l’ Xovy =

where we used: JZ = JZ = JZ+ J? etc. so that the factor 2 from (2.43) cancels
out.
* Alternatively, we can derive these identities directly from the Hamiltonian (2.37).
For example, for the last identity in (2.44):
From the Bogoliubov inequality:

v |2
> |f%Xn\Il
XV = T
we have:
dw « |\IIO|2 9 dw I\I/Ol t ps
.I/?Xn\lﬂ hzva /—7?‘ n=V— [[\PH]\I/] V— #45
Wol2 (m/h)?
IR 710

where we again change the inequality to an equality by calculating the bound
on the denominator.

Now the definitions of p, in (2.12) and (2.35) are consistent if we can find that
the superfluid current couples with the total longitudinal current in a form:

him x5, = ps (2.46)

where J; is the total longitudinal current and J; is the superfluid current density
(which in the zy plane is just Jg,). If this follows from the relation (2.35) then
the relation (2.12) is consistent with there being only one variable with long-range
correlations in the superfluid. We write the longitudinal and transverse momentum-
momentum susceptibility [1] as

xik) = Xas X Xdwn F D e
xi(k) = 0+Z .....

where the sum ¥ ..... is the part that contributes equally to x;(k) and x.(k) as
k — 0. From (2.44) we know that: stle = p;}. The longitudinal excess is therefore
given by (from (2.12)):

= lim ;1
pS k=0 XJlJaXJ,J,XJaJI

which is our desired result if (2.46) is true, as we shall now prove.
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We use (2.41) for the field ¥ , to get the following modified continuity equation:

mg—;’ +V. 7 =0 (2.47)

where: 7; = fjo),jg = 51; (\P?\Iﬁ - \Il"?\ll)
If we use (2.47) and the definition of J;, we get:

1 [ dwXyy, m [dw .
X = [ FEE = = g [ e

where J; is now a current density. Using the definitions (2.31) and (2.32) gives:

N 1 h/dw "o
XHJ, = psv% - Xnw = Ps

where we used (2.27), i.e. [ %y, 4 =V ¥/ h. This is the required result (2.46).
We see that while the superfluid current becomes a zero-operator at T , the total
current remains a constant (assuming that as T — T}, f — const., see Fig.2.3):

J, = nkﬂ;’- 00 Jy= fhk —e o Bk(xconst)

Let us examine the definition of the number operator. If written in terms of the

angular momentum operators we have:
n=U= L+L_Ez,lz (2.48)
P

In (2.25) we saw that the superfluid fraction can be interpreted as the fraction
of atoms with (L.) = & (|l = 1,m = 1)) while the rest have zero angular momentum
(|l = 0,m = 0)). We count using L.L_ only the fraction with (L.) = #, so that
divided by % we will get the total density.

From the mean-field treatment of ferromagnetism we get that the susceptibility
in the magnetized direction diverges at the critical temperature like:

1
X5;5; X ﬁ (249)

By analogy we expect for the superfluid that the angular momentum in the
7-direction will have a divergent susceptibility too, at the transition temperature.
This corresponds to divergent density of vortices, which is expected at the superfluid
transition according to vortex-loop models of the transition [23]. In particular, in
two dimensions there is the result [24], that the vortex density p, diverges below the
transition like (2.49). We therefore have:

1
T-T,

This Curie-type behavior (2.50) comes from mean-field but is found to be gen-
erally true in experiments on ferromagnetic systems.

XLsz ~ XPsPs x p’v x (2-50)
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2.4 Broken time-reversal symmetry

The commutation relations we have found for the superfluid transverse currents,
and the dynamical equation (2.41), result in the following anti-symmetric relations:

dJ,  h’k? dJ, R2k?
i T @ T (251)

These are the set of equations that occurs for the coordinates of a vortex with
zero core size in an incompressible liquid [25]. This can also be written in the form
of an anti-symmetrical viscosity tensor 7;; [26]:

2
ot

= —nijV]"ij

where: 7;; = —7;;. In [26] such a situation is identified with broken time-reversal
symmetry (TRS). It occurs in the Quantum Hall effect, the Magnus force in a
superconductor etc. Just as in the QHE the anti-symmetric response (2.12) implies
no-dissipasion, which in the superfluid means that only the superfluid component
circulates with zero viscosity and quantized circulation.

We shall now see that in the coherent-ferromagnet /superfluid the TRS is broken:

The broken rotational symmetry in the z,y-axes is produced by: (L) # 0. In
addition we demand the coherence criterion: (L.) # 0. This further breaks the
rotational symmetry around the z-axis, leaving the system with no rotational sym-
metry. The precession of the circulation in the zy-plane now has a time-dependent
angle, and together with the sign of (L,) defines an imaginary motion along a screw
in space. Such a motion is unique and is different from the motion along the same
screw in the opposite direction, if time is reversed.

As seen in (2.30) the time dependence of (L. ) has a specific sign in the exponent.
This time dependence is reversed under time-reversal.

We see therefore the connection between the superfluid density p, and the con-
densate fraction ng. The non-zero superfluid density p, causes off-diagonal momentum-
momentum correlations (2.12). This means broken TRS and such a state can be
choosen as a coherent-state for the system, which leads to Off-Diagonal-Long-Range-
Order (ODLRO) [27] and therefore a finite ny. :

2.5 Vortex modes

In ferromagnets it is known that the spin-wave excitations (2.40) have a spectrum
which is quadratic in k. The result (2.41) is similar to that of Hall [28], where he
finds that for the vortex displacement (¢ = z + 7y is the vortex displacement vector
if the vortex axis is along the z-direction ) in an incompressible liquid:

= — _-_ti—mpf (2.52)

where p = In(d/a), a is the core radius and d is related to the average vortex
spacing from neighboring vortices or boundaries. There is some confusion as to
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the meaning of d in u, but the experimental results for oscillating vortices between
parallel plates in superfluid *He give [28]: p ~ 9.5+ 0.5.
If we compare (2.52) and (2.41) we find that:
1) At the temperatures of the experiments in [28] we have: p,/p ~ 1, so that we
predict from (2.35):
f~ 1/77,0 =u=>ny~105+ 0.5%

This value agrees with the experimental result for ny [29], so that our relation
(2.41) is supported.

2) We can identify the ’macroscopic wavefunction’ ¥ with the vortex core dis-
placement &.

The result (2.40) is a mode of the vortex in the superfluid, distinct from the
other hydrodynamic modes of the first and second sounds. In particular only the
vortex-mode frequency (2.40) depends explicitly on the condensate fraction through
the factor f, unlike the case of first and second sounds

| 1/2 ps T \'
wy = ke¢y = k(dP/dp)'*, we =key =k <__8(1/s))

where P is the pressure, T the temperature and s the specific entropy. In none
of these thermodynamic quantities does the condensate fraction appear explicitly.
In [30] it is stated that there is no experimental property of the superfluid that is
directly dependent on the value of ng. The vortex modes are therefore a prediction
of an experimental observation directly dependent on ny.

We can plot the function f(T') using the experimental measurements of ps(T)/p
and no(T) [29], in Fig.2.3. We see that f(T') is approximately constant up to ~ 2°K.
Close to the transition the lack of accurate measurements prohibits the calculation.
We also plot the result of the formula of [31]:

A1) = - 1-p.(T)/p 1
— pa(T)T/pTs o
where n is taken at T=0. This formula gives also an approximately constant
f(T), and at the transition temperature it gives f(Ty) = f(0).
In [28] it is mentioned that the factor g in (2.52) does not change much with
temperature, just as we expect if we equate it with f(T).

(2.53)

2.6 Spontaneous circulation in a cylinder

Our interpretation is that the superfluid in the wire-limit has a remnant vortex
structure in the thermodynamic limit. This means that there is a non-zero circu-
lation in the ground-state. We now give a qualitative argument why the superfluid
develops such a spontaneous circulation in a cylinder when the thermodynamic limit
is taken (wire-limit).

In the normal fluid (and superfluid) the kinetic energy of the atoms at low T is
predominantly the zero-point-energy (z.p.e.) given by:

R
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where V is the specific volume of an atom.

In order to reduce their z.p.e. the *He atoms become delocalized below the su-
perfluid transition temperature. Due to their hard-core repulsion this delocalization
is not homogeneous but the atoms form ’permutation’ paths with their neighboring
atoms. This appears clearly in the Path Integral Monte-Carlo (PIMC) calculations
of Ceperley et al. [19]. In these calculations the atoms are taken as point particles
with the true inter-atomic potential and Bose permutations. It is found that below
the superfluid transition the atoms tend to form longer permutation-cycles that re-
duce their z.p.e.. Due to the hard-core repulsion the largest weight will be given to
paths that are straight, i.e. where the atoms in neighboring paths are at constant
distance from each other.

In a finite volume these permutation-loops span the system, with the largest
weight given to a configuration of loops where the atoms take part in the straightest
loops possible. In a closed cylinder there are two extreme cases (Fig.2.4): 1) straight
paths along the axis, not including the end surfaces or 2) circular paths leaving out
a central 'vortex-core’. Since the loops have to be closed the first option of axial-
paths cannot occur, unlike the case of a torus. We are left with the spontaneous
axial-vortex that will remain if we now extend the cylinder to infinity along its axis.
As mentioned in [19] the superfluid order parameter is due to spontaneous breaking
of the symmetry of the motion along these paths. This means that an infinitesimal
external force selects the sign of the spontaneous vortex, and the Bose exchanges
occur in one particular direction.

The z.p.e. of an atom along such a circular path is less then (2.54) since in one
particular direction it is delocalized with kinetic energy proportional to the path’s
radius, i.e. given by (2.37). If there are z nearest-neighbors then the energy per
superfluid atom, taking part in such a permutation cycle, is given by:

P e 1 R opl B pl
k= Iy

, - Nl _ 2.55
mV2B3 " 2m” TGP mV23 pz_)k_)0 mV2/3 > (2:39)

where the first term is the zero-point-energy of the normal liquid, the second
term is the kinetic energy due to the superfluid circulation and the last term is the
part of the original z.p.e. now replaced by the circulation.

Since in the thermodynamic limit the second term vanishes (k — 0), we are left
with the first and last terms. The reduction in the ground-state energy per ‘He
atom can therefore be approximated as (T=0, z ~ 8.0 £ 1 [32]):

2

h o o
AB~ By 1)z —5m 1/ 2 15°K 0125 = 1.88 £ 0.1°K (2.56)

which is of the order of the measured result [29]: ~ 2.5 £ 0.5°K. The average
number of nearest-neighbors is found from neutron scattering where the spacial
correlation function g(r) is calculated as the Fourier transform of the static structure
factor S(k).

The total change in kinetic energy due to the presence of a straight vortex at
T=0, in a cylinder of radius R and length L is:

1
Er = /—psv3d3r—/lEk&d3r - (2.57)
2 z ' m :
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2
= 72 (h— In(R/a) — lE’kR2>
m\m z
where v, = h/mr, a is the vortex-core radius which is equal to the atomic
separation and we take p; = p (T=0). The first term is the additional kinetic
energy of the circulation while the second term is the z.p.e. reduction. The change
in total kinetic energy (2.57) is negative if:

lpr s o (R/0)
A k m e

which for the values at saturated-vapor-pressure is always the case for all R > 4A
(we take: a =~ 2.9;1). So we conclude that for all macroscopic cylinders the kinetic
energy is reduced due to the presence of a vortex.

An additional argument for the spontaneous vortex along the axis of a long
cylinder is based on the symmetry of the superfluid order-parameter ¥, which is
a complex scalar. The zeros or defects of such an order-parameter of the lowest
dimension are vortex-cores, which are one-dimensional lines of either infinite length
or curled-up into vortex-loops.

Now the walls of the container are surfaces where the superfluid order-parameter
vanishes. They are therefore ’vortex-sheets’ made up of a dense arrangement of
parallel vortex-cores with uniform vorticity. In a cylinder there are two different
possibilities: straight parrallel vortices along the z axis, and circular vortex-loops
along the circumference. The first possibility induces a vortex along the axis, while
. the second causes a linear current along the axis. The second possibility is ruled out
by mass conservation in a cylinder with closed ends. The single axial vortex seems
therefore to be a more natural possibility in an infinite cylinder.

By comparison, in a slab geometry any vortex-structure of the permutation cycles
can first be transported to infinity when k;, — 0, leaving a uniform fluid in the
thermodynamic limit.

We point out that the argument based on the PIMC calculations shows the im-
portant effect of the hard-core interactions between the atoms. In a non-interacting
Ideal Bose Gas (IBG) the weights of the paths have no advantage for straight paths,
so the atoms are homogeneously spread-out throughout the volume, and no vortex
arises.

2.7 Condensate fraction and vortex-core structure

We have shown in section II that the reduction in z.p.e. in the superfluid depends
on 1/z where z is the average number of nearest-neighbors ((2.55),(2.56)). But at
T=0 a fraction ng of atoms are in the ¥ = 0 state, that is with zero z.p.e.. We
therefore have the relation

ng~1/z (2.58)

Therefore at s.v.p. and T=0 we have (using z ~ 8 £ 1) ny = 12.5 £ 1%, which
is in the range of the measured values [29]. We thus propose that the condensate
fraction at T=0 is determined by the short-range structure of the superfluid.
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A longitudinal current J; = fJy (2.47) along the axis of the cylinder is produced
by the circulation (condensate wave-function):

U= Ae¥ = T = AR (2.59)

where A is some constant. This is the form of a wavefunction of a free particle of
momentum k in the z-direction. The circulation is thus constant along the tube but
the vortex line has the shape of a helix since we saw in (2.52) that the condensate
wavefunction can be identified with the vortex-core displacement. This means that
the phase of the circulation changes linearly along the z-axis. We therefore see that
a 'wiggling’ vortex produces a net mass flow along its axis.

We see from (2.47) that the larger the factor f is the larger is the mass moved
along the cylinder axis by the screw-like motion of the vortex-core. From (2.58)
we find that the vortex-core contains approximately z atoms, that is a cluster of
nearest-neighbors, and the mass flow is proportional to the vortex-core size, since
(T=0):

no=|Po|*=1/f~1/z2= fz (2.60)

This can be understood if we assume that the same mechanism that depletes ng
also causes the vortex core to become larger, that is stronger inter-atomic interac-
tions and denser atomic packing. The vortex now has a ’'thicker’ core and causes
more mass flow than a thin, straight vortex.

We are now in a position compare (2.58) with [33] where the following form of
the condensate fraction for a hard-core gas is proposed:

v
vV

where v is the volume from which a particle is not excluded by the presence of
the other particles, and V is the total volume. It is clear that the number of nearest
neighbors is proportional to the density of the packing in a hard-core gas, so that
z « V/v which agrees with (2.58).

From the identification (2.58) we see that the condensate fraction at zero tem-
perature is dependent on the internal geometry of the fluid. It has been found that
at high pressure there is a rearrangement of the atoms in the liquid and not just a
simple dilation. We can therefore estimate the condensate fraction at high pressure
by assuming that just below the solidification pressure the number of nearest neigh-
bors approaches the close-pack value of 12 (In [32] it is found that at high densities
the number of neighbors approaches this value). We therefore get:

ng = (261)

2(P = 24atm) ~ 12+ 1 = no(T = 0, P = 24atm) ~ 8+ 1% (2.62)
The experimental result is [29]:
no(T = 0, P = 24atm) ~ 5.5+ 1% (2.63)

The comparison to the experimental ratio gives:

no(P = 24atm)  0.055

no(s.v.p.) ~ 0.10 =0.55£01
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while from (2.62) and (2.56) we predict a ratio of: 0.67+0.15, in rough agreement.

Further, it is found theoretically [34] that in the surface region of a superfluid
droplet the condensate fraction approaches one. This is in accordance with our
identification (2.58) since on the surface the density is very much reduced from its
bulk value, and so should be the parameter z. A decrease in z will translate to an
increase in ng, approaching the limiting value of one.

2.8 Mapping to an XY-model

Superfluid “He and 3d XY ferromagnet are in the same universality class and have
therefore the same critical exponents. We shall now describe a mapping of the super-
fluid to an XY-spin problem using the angular-momentum formalism we developed
for the cylindrical case.

From (2.55) the reduction of the energy with respect to the superfluid order is:

1

o = = o E)

where: (L) = \/§ [Wo| k. If the length of the spins is normalized to 1 then the
XY Hamiltonian is: . .
ny = -']Z (S;:y ) Siy)
1,7 -

where 7,7 are the indices of the nearest-neighbor atomic sites, and the spins of
the X'Y-model map to the vectors of the superfluid velocity times the 'radius’ b, with
the interaction constant

R ps
mVeRz p

Taking into account the z neighbors we get the energy reduction for a perfect
ferromagnetic state

J= (2.64)

R 1
mV?2/3 ;2

If we take z = 8, we get for the “He (using the experimental energy reduction)

AE=—%J2=>J=2

J ~0.62+0.1°K
This gives in the 3D-XY model a critical temperature of
T,=J/K, ~22+0.5°K

where we have taken K. = 0.277 , which is the value at the critical point of a
vortex-loop model of the XY-transition [23]. This is in rough agreement with the
experimental value of: T ~ 2.17°K.

We note also that in the 3D spin-1/2 XY-model the state of uniform magneti-
zation is not the ground state of the Hamiltonian since the magnetization in the
XY-plane does not commute with the Hamiltonian. The ground state has there-
fore a non-uniform configuration of the spins, which in the superfluid corresponds
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to superfluid velocity. The spontaneous circulation in the cylinder is therefore in
accordance with the situation in the XY-model.

In the superfluid the atoms synchronize their zero-point-motion in order to re-
duce the zero-point-energy, and in the presence of some symmetry-breaking external
field will spontaneously produce a macroscopic circulation. The symmetry-breaking
external field is provided in the wire-limit by the boundary of the container, which is
an infinitely long cylinder of finite radius. The geometry of this situation provides a
prefered direction (%), and the circulation is azimuthal. In the equivalent XY-model
this condition means that the spins have to be tangent to the boundary since there
cannot be a superfluid velocity normal to the walls.

2.9 Path-integral calculations

We have already mentioned the results of the PIMC calculations in section IV.
Here we want to compare the expression found by Ceperley [36] with our expres-

sions for the superfluid component and the condensate fraction. In a Bose system

near zero temperature, the ground-state occupation of the zero-energy excitations

18!
1 1
ng = ——————— =, 0 —— = p =~ —kgT/ng
°7 exp(—Bu) -1 M7 B /

The energy due to this occupation is therefore:

AFE = —ung=kgT = %nohwo (2.65)
b? '

=>~n0=)\—%

where the thermal de-Broglie wavelength is: A% = #2/2mkpT, and we used the
definition wg = A/mb%. From (2.65) we find for the superfluid fraction (using (2.35))

s 1
% = oo (2.66)

This result is compared to that derived in [36]

ps _ (W3

PN

(2.67)

where (W?) is the expectation value per atom of the 'winding-length’ squared
of the path in a periodic system. From (2.66) and (2.65) it appears that at finite
temperature the infinite superfluid will spontaneously break-up into finite domains,
or vortices, such that the largest k for the calculation of the velocity or vortex
excitations (2.40,2.32) is finite. This is seen in the real superfluid, especially near
T, where the density of the vortices diverges [23],[37] such that

Ty k= oo, (W) 5022 50
0
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Indeéd, if the vortex density is given by
n, o k3

then using (2.66) we have

x
p

Using the result of [24] for the vortex density in 2D, and assuming that it also
pertains to 3D, we have:

Ps n;2/3

n,oxt™! = %s o 23 (2.68)

where t = |T'— T)| /7). This result is close to the measured critical exponent
for the superfluid fraction at T) : ~ 0.674 £ 0.005.

It is clear from comparing (2.66) and (2.67), that the paths winding around the
system in the path-integral treatment just trace the spontaneous circulation around
the vortex.

2.10 Vortex-ring theory of the A-transition

The theory of the vortex-ring transition provides a natural additional motivation for
our proposed spontaneous circulation. In this theory the fluid is filled by a dense
collection of vortex-rings at the transition temperature. As the temperature lowers
their density diminishes, similar to the density of free vortices in the Kosterlitz-
Thouless (KT) transition in two dimensions. It is therefore not unreasonable that
in a cylinder there will be a remaining vortex at low temperature. We shall now
compare some features of this theory with our treatment.

In the vortex-ring theory of the superfluid transition as proposed by Williams
[23], there is a definition of an effective core radius of a vortex ring. This effective
core radius is shown to diverge at the transition temperature with the exponent
which controls the divergence of the vortex diameter: v ~ 0.67. The superfluid
fraction and the condensate fraction both vanish near the transition as

ps/pymo ox €1 ae_flf o t¥ (2.69)

where: t = |T — T)| /T, & is the vortex diameter (coherence length), and a.;; is
the effective core radius. The individual vortex-core in this model performs a self-
avoiding-random-walk in 3D so that it is entangled into an effective core of radius
Qeff- | ,

We shall now present an aspect of the Vortex-loop model that may is related
to our description of the modes of a quantized vortex. In a finite volume [23] the
superfluid fraction scales at the transition temperature as

m
ps = 0.484-——>‘2CL
where: /\25 = h? /2mkpT,, and L is the system size. On the other hand when

looking at the response of the vortex-rings to a superfluid-velocity perturbation of
the kind:

(2.70)

’ —
vy =vsgexp(i( k - T — wt))
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it was found that
ps = 0.046—— (2.71)

The response function of the vortex ring is taken as a square function, falling
to zero at: ka = 8.6 (a is the atomic radius). We therefore conclude by comparing
(2.70) with (2.71) that:

k= %10.52 (2.72)

The energy of a vortex ring with wavevector k is proportional to f according to
(2.40), while here this energy is given by:

E ~ hkv,

To get a match with the finite-size effect of L the wavevector needs to be multi-
plied by f, which is the meaning of the factor in (2.72). From (2.72) we therefore
obtain

f= PslP ., 10.52
no

If the factor f is constant at all temperatures then we conclude that at zero
temperature the condensate fraction is: ng ~ 9.5%. This value is consistent with
accepted estimates [29).

2.11 Experimental evidence for spontaneous circulation in
a cylinder

There has been some experimental evidence that remanent vorticity exists in all -

samples of superfluid *He [37]. It was found that in a planar geometry there is an
equilibrium density of vortices that connects the lower and upper plates (Fig.2.5).
This density is independent of the surface quality of the plates and of the rate of
passing through the superfluid transition temperature. It is given approximately as:

L ~ 2In(D/a)/D?

where D is the distance between the plates and a ~ 1.4 x 10~8cm is the vortex-
core radius. In the plane geometry this equilibrium vortex density is a metastable
equibrium since at this density the vortices exert no forces on each other, and are
loosly pinned to the plates. Any superfluid velocity between the plates will 'wash’
them away. They prove, though, that vorticity is spontaneously created at the
superfluid transition.

There is an indirect indication that in experiments with long cylinders a more
persistent type of remnant vorticity exists. These are critical-velocity or superfluid-
turbulence experiments [38] in long capillaries where the superfluid flow becomes
resistive at a critical velocity which is temperature-independent but size-dependent.
It has been suggested [39] that an initial vortex running along the capillary, but
pinned away from it (in a low velocity region) can be a mechanism for the turbulence
transition. It is not known at present where this long vortex comes from. We
therefore see this calculation as an indication that in cylinders there is a spontaneous
vortex along its axis.
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2.12 The effect of disorder on the superfluid transition

Following the ideas first discussed by Thouless {40] concerning electron localization
in a disordered metal, we are now looking for the critical dimension for the occurance
of superfluidity. The critical dimension is understood as the dimension above which
there is a well defined transition point from superfluid to some other non-superfluid
phase at zero-temperature as a function of the strength of the disorder. We look for
the conditions of localization of the superfluid current (velocity) i.e. such that the
long-range coherence and superfluid order are destroyed.

Let us rewrite the relation (2.45) as a diffusion equation by rewriting the original
Josephson relation:

_ | %ol? (m/m)? _ | %of* (m/h)?
xwy (k,w) = P = Ps = PV (2.73)
We write the equation of motion of the superfluid velocity as
dvs, . AVEY _F _
6t = Z(UETII: = m =A (274)

The force A represents random fluctuations in space and time in the field W.
These random fluctuations result in an effective force on the superfluid component.
By analogy with Brownian motion we can add to (2.74) a viscosity term of the form:
m~yv,, where 7 is the viscosity constant. The results are standard

m <v§> =mC/[2y= v = s (A(0)A(2)) dt (2.75)

where C = (A(0)A(t)) (w)/27, and we have assumed that the average kinetic
energy is iw. The diffusion constant follows

() =2(D) 2 =Dt =D, =2(?) jy= (%‘”)2 ( [ (A0 A@) dt)_l

Y m

Using (2.74) we finally get:

D, = (‘%’-')2 ( [ dt) - (2.76)
which in the k,w — 0 limit is: '
D, = (I\I;c0l>2 nxw"(k,w) (2.77)

where V is the molar volume.
From (2.73) and (2.77) we finally obtain for the superfluid fraction:

D;
Bps_ =5 (2.78)
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where Dy = ii/m. We note from (2.78) that large fluctuations in ¥ cause large
xwyw and therefore small diffusion coeflicient. The ’superfluid-diffusion’ described
by D, represents the ordered superfluid circulation, and therefore decreases if the
field is not uniform. From (2.25), p,/p represents the ordered circulation around

the 2-axis so if the superfluid velocity becomes more random then the circulation is
decreased (2.44):

X'Us'Us = ps—l = <Lz> /h X l/X'vsvs

According to Thouless [41] if an eigenstate of a system of size L is extended, i.e.
delocalized, then it will broaden upon enlarging the system to infinity. The energy
width AF of this broadening is given by the curvature of the energy levels when
changing the boundary conditions {42]. On the other hand a localized eigenstate will
remain localized inside the original box of size L, and in the infinite system will be
unaffacted by a change of boundary conditions at infinity. Thouless assumed that
there is a single parameter that describes the behavior of the eigenstates and it is the
ratio of the energy broadening to the typical level spacing in the original system. If
there is localization this ratio should vanish in the thermodynamic limit, otherwise
it signals delocalization. For the case of electron conductivity this dimensionless
parameter is the conductance written in units of ?/A.

The dimensionless parameter in our case is:

_ Rt

where %/t is the diffusion energy of the superfluid current over the system (¢ here
is the time), and 0 F the level spacing for the excitations of the superfluid current.
The superfluid-diffusion energy is a measure of the effects of the boundaries on
the fluid by creating superfluid currents through the system, while the excitation
spectrum is just the level spacing in the system.

Then )

Bt =hD, L2 =Pl 2
pm

We assume that the superfluid transition is driven by the proliferation of vortices
both at zero-disorder and finite temperature [23], and at zero-temperature and finite
disorder (see the end of this section). The excitations which are therefore dominant
near the transition are the natural modes of the vortex (2.40)

h?
6E = hw(k) = — fL72 (2.80)

where k ~ L~1.
Then .
gs = TNyg (281)

By comparison, for the electron conductivity we have:

De? Dé?
7= 5(dE/dn) " 2(dEJAN)V (2.82)
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And therefore the criterion for metal-insulator transition is:

§E = dE/IN, hft=hD/L? (2.83)
_hft _ 2\ rd-2
= g..ﬁ_a(h/e)L

In order to learn about the critical dimensionality in the metal-insulator tran-
sition we must take into account that the conductivity ¢ might depend on the size
L too. If there is no such dependence (when there is no spin-orbit coupling) then
the critical dimensionality for conductivity with disorder is found to be 2, since at
two or lower dimensions g will vanish in the thermodynamic limit. In this case this
critical dimension can be read directly from (2.83). For dimension large enough to
have a metal-insulator transition it is found that at the transition point itself the
dimensionless parameter g is independent on the system size L.

Similarly from (2.81) we conclude that disorder (of any strength) will prohibit
superfluid currents only at zero-dimensions (’dot’ geometry), i.e. in a closed geom-
etry. This is since at any dimension large enough to hold a vortex-structure (d > 1)
the ratio g, does not vanish in the thermodynamic limit and there is therefore no
localization (as long as ng is non-zero). We note the appearance of the condensate
fraction ng in (2.81) so it is thus possible to distinguish between different superfluids
using the Thouless-like parameter g,. This would not be possible if instead of ng
we would get p,/p in (2.81), which is always 1 at T=0. By comparing with the
metal-insulator transition we find that the superfluid is always at the critical point
since g, is independent of the system size L. We are not sure of the meaning of this
specific point at the moment. '

By comparing (2.78) with (2.67) we arrive to [36]:

D, = (W?) /rr (2.84)

where: 7p = h/2kgT. We see that for the superfluid diffusion-coefficient only
macroscopic, winding paths contribute.

Let us compare the localization transitions for superfluids and metals. Both
transitions are signaled by the vanishing of the diffusion constant:

0 = D/Dy=0=D—=0
Ps D,/Dy 0= D, >0

The essential difference is the following:
Metal-insulator: The electron becomes localized when, even for infinite time, its
average diffusion distance squared is finite:

D= <x2> /T—=0: <x2> — const., T — 00

Superfluid-normal fluid: The superfluid 'phase’ diffusion ceases when the average
winding distance squared is zero, even for finite time:

D, = <W2> /= 0: <W2> — 0, 7r = const.
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Although in both cases the diffusion constant vanishes, we see that the mecha-
nisms are ‘complementary’.

The critical dimension for disappearance of superfluidity due to any amount of
disorder is found from (2.81) to be 0, i.e. this is the dimension at which there is
strictly no superfluidity. We understand this result by assuming that the vortex
excitations are dominant near the transition, or alternatively that the important
disorder is related to vortex creation.

We note that in a recent experiment it was shown that in a quasi-1D system there
is superfluidity at finite temperature [43]. This is in accordance with our finding
that there is superfluidity in all d;0 at both finite temperature and disorder.

There is further support for our treatment of the disorder through the spectrum
of vortices in the experiments of [44]. In these experiments superfluid “He fully

penetrates an ultralight silica aerogel. It is found that the excitation spectrum is -

affected by the static disorder in a way that can be explained through the introduc-
tion of vortices. The disorder is therefore mainly manifested through the vortices it
induces in the superfluid, justifying our treatment.

In the calculations of [45] it is shown that the static disorder potential reduces the
superfluid density (or ’stiffness’) by allowing large local twists in the phase. These
large twists are localized around the ’impurities’ (large disorder potential), where
they mean localized momentum correlations. This is just the situation around a
vortex-core. This is further supports the idea that vortices are driving the superfluid
transition both through temperature and disorder.

2.13 Superfluids films and lines

We now consider with the relation between the critical dimension for disorder- and
temperature-transition and the absence of condensation in dimension lower than 2
for finite temperature (Hohenberg-Mermin Theorem (HMT)[46]). We note [24] that
in the derivation of the HMT we need to use the Boguliubov inequality and the
continuity equation. The velocity field of a vortex satisfies, in two dimensions

V. T.,=0

The vortices are therefore not taken into account in the HMT, only the phonon(densiu,

fluctuations) excitations. We therefore assume that the vortex excitations allow a
finite condensation in two dimensions and in one dimension at finite temperature,
using the following picture:

A ’two dimensional’ system with finite condensation and superfluidity needs to
have some finite thickness. This is needed to support a vortex of some minimum
length. Similarly in a ’'one dimensional’ configuration. Such a minimum thickness
L in (or radius of the cylindrical-pore) changes the system to an effectively three
dimensional on the atomic scale, allowing a finite condensate fraction. The mini-
mum thickness has to be at least larger than the zero-temperature coherence length
which is of the order of a few angstroms in “He. This minimum thickness means
that the integrals in k-space that diverge in low dimensions and lead to the con-
clusion of no-condensation, may have a natural lower cut-off that prevents their
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divergence: kmin ~ 1/Lmin. The conclusion of zero condensate-fraction is therefore
not valid anymore, but we now have a 'generalized’ condensate fraction which gives
the macroscopic occupation of the lowest kn;, state (the k£ = 0 state is not available
anymore). The superfluid phase was shown to be a 'coherent-ferromagnet’ in section
I1, so that it always needs the two quantities p,/p,no.

This minimum thickness for the superfluid is found in experiments in thin layers
and in microscopic cylindrical pores: In two-dimensional films [47] at least two layers
of “He atoms (above the solid first layer) are needed to show a finite superfluid-
fraction. In linear microscopic-pores [43] it is found that below a critical radius of
~ 104, there is no sign of a superfluid fraction. In both these systems the long
wave-length phonon modes are two- and one-dimensional respectively [43].

In addition it is found in experiments on thin films that the effective core-size of
the vortices changes with the thickness [48] by a factor of ~ 40 from the thick layer
to the thinest (critical) layer. We therefore get that the condensate fraction in the
thinest layer is (2.58): no(film) ~ zzno(bulk), and is therefore unobservable. In
the limit where the thickness is reduced to the critical thickness the superfluidity
disappears, the core radius diverges and the condensate fraction goes to zero.

2.14 Summary

Let us summarize the results of this chapter:

1) We have shown that from the operational definition of the superfluid results
a situation (wire-limit) where there is an off-diagonal momentum-momentum re-
sponse in the thermodynamic limit. This situation is interpreted as the occurance
of a spontaneous quantized-vortex (superfluid circulation) along the axis of a long
cylinder. By comparing with the case of a two-dimensional charged particle in a
magnetic field, we were able to map the condensate-wavefunction (or superfluid
order—parameter) to the creation and anihilation operators of c1rculat1on We found
that the superfluid fraction p, and the condensate fraction |o|* = ng can be written
in terms of the angular momentum expectation values. Moreover they are propor-
tional to each other and both are needed to define umquely the superfluid state.
Both vanish at the superfluid transition.

2) We have given physical motivation in favor of a spontaneous circulation relying
on the PIMC calculations of Ceperley. The superfluid phase has lower z.p.e. due to
macroscopic permutation-cycles of the atoms. The symmetry is broken when they
occur along one direction only, which means a specific circulation and broken TRS.
We also described the circulating superfluid in terms of an XY-spin problem, and
estimated the transition temperature 7).

3) Some measurements and numerical calculations do support the possibility of
spontaneous circulation along the length of long cylinders. We suggest that ion-
motion experiments may be able to check if a spontaneous axial vortex is a feature
of long cylinders, especially in the recent microscopic pores of diameter ~ 254 [43].

4) We showed that the vortex has an excitation spectrum similar to the magnon
in a ferromagnet (2.40), which compares very well with the spectrum found exper-
imentally. It is shown that this excitation spectrum is directly dependent on the
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condensate fraction, unlike the other hydrodynamic modes of the superfluid (first
and second sounds).

5) We related the condensate fraction to the internal structure of the fluid (at
T=0), showing that it may be simply proportional to the vortex-core cross-section
or the number of nearest-neighbors. The short-range correlations in the fluid there-
fore seem to determine the condensate fraction, similar to what is found from the
hybridization scheme of the next chapter. A vortex performing a screw-like motion
is shown to produce a longitudinal mass current along the axis, proportional to the
vortex-core cross-section. In addition the superfluid wavefunction (order-parameter)
¥ is mapped to the transverse displacement of the spontaneous vortex.

6) Finaly we did show that assuming the vortices’ excitations as being dominant
near the transition we get the lower critical dimension for the superfluid-normal fluid
transition to be zero. We predict this as the critical dimensionality for the zero-
temperature disorder-driven transition and for the temperature-driven transition,
without disorder. These results are corroborated by experimental and numerical
results, where it is found that in one-dimensional (and higher) systems there is still
superfluidity, which is destroyed at a finite critical temperature and/or disorder.

7) To explain the discrepancy with the usual treatment where there is a superfluid
transition without condensation for dimensions less than 3, we propose that the
vortex structure needs a minimum thickness of fluid in order to exist, and the system
is therefore an effective three-dimensional one (at least locally). This condition of
minimum thickness for superfludity is absent from the phonon (density fluctuation)
treatments and is found in experiment. This minimum length introduces a lower cut-
off in k-space and allows a finite 'generalized’ condensate fraction. This prediction
has to be checked experimentally, though we show that the values of ng for the
thinest films are probably too small to detected.
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Figure 2.1: The two physically different ways to take the thermodynamic limit
k — 0: The plane-limit and the wire-limit.
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Vortex axis: Cylinder boundary

Figure 2.2: The rotational frequency of the superfluid circulation around the axial
vortex in a long cylinder. ’
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Chapter 3

A hybrid phonon-exciton model
for the spectrum of superfluid
4He

3.1 Introduction

In this section we shall develope a new theoretical approach to the excitation spec-
trum of superfluid *He. In spite of the success obtained with the original wavefunc-
tion proposed by Feynman [49], a quantitative agreement with the experimental
results has not yet been achieved. Subsequent refinements using more complicated
variational wavefunctions were at the expenses of a simple interpretation as a pure
density fluctuation. The experimental data compared with the Feynman and later
calculations is shown in Fig.3.1.

More recently, new experimental results [50] obtained in high resolution neutron
scattering did show puzzling features. One of them is the persistence of the phonon
peak which describes the density fluctuations up to temperatures higher than T} 1.e.
in the normal phase. On the other hand, the peaks associated respectively to the
maxon and roton excitations sharply decrease at 7. Those features tend to indicate
that the low momentum phonon mode is marginally related to superfluidity or even
to the Bose-Einstein statistics. This point was already noticed by Pines [18] who
proposed that this mode is a collective zero sound just like in 3He and therefore
independent of the statistical effects. In contrast, the decrease at the transition of
the other modes suggests a connection with quantum exchange effects.

In this section we will show a new way to interpret these features. To that
purpose,. we assume the existence of two kinds of excitations in the system. At
large scales, there are the usual delocalized density fluctuations while at scales of a
few interatomic distances, there exist localized excitations associated with exchange
rings of atoms [19]. These two kinds of excitations are not independent but instead
are hybridized in a way very reminiscent of the case of excitons in dielectric crystals
[8]. This analogy will guide us in order to build a phenomenological Hamiltonian.
A related point of view has been presented [51. 17] using an effective dielectric
formalism. We prefer instead to make directly approximations on the nature of the
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localized excitations and to write an effective Hamiltonian we shall subsequently
diagonalize. This may be helpful in understanding some of the basic features of the
spectrum.

The physical motivation in considering the existence of localized excitations
stems from the following remarks. In any attempt to reproduce quantitatively the
spectrum, we need to take into account the liquid nature of * He. But the interatomic
potential responsible for the (short range) nature of the liquid does not account for
superfluidity. To that purpose, it is important to consider exchange effects which
might be described [19] by localized and closed exchange rings of atoms. Therefore,
we view the system as being a liquid at large distances while locally, on the scale
of some interatomic distances, there are localized quantum clusters interpreted as
the vortex-core elements. Since the helium atoms are all identical, we cannot split
them into two such classes (i.e. either embedded in a long range density mode or
in a localized cluster) but we suppose instead that each atom retains both char-
acteristics. Then, we assume that these two kinds of excitations are coupled and
the spectrum results from this hybridization. From a methodological point of view,
our approach is close to that of Hopfield [8] who described excitons in dielectric
crystals as localized excitations which interact between themselves via the photons
of the electromagnetic field. Here, along the same line, the interaction between the
localized excitations is mediated by the density fluctuations. The need for more
localized structure to describe the experimental spectrum was already realized by
Feynman and Cohen [6]. Recently increasingly elaborate variational expressions
are being used in order to reproduce the spectrum [7]. The localized structure in
our approach is being introduced in the Hamiltonian and not in the wavefunction
directly. This way we do not loose the physical interpretation of the wavefunction
as a well defined excitation.

Finally there is the question of the 'multiparticle’ excitation spectrum at higher
energy (and lower intensity) of the superfluid (see Fig.1.2). This branch is usually
interpreted in terms of multi-particle excitations of the phonon-roton quasiparti-
cles. This interpretation, though, does not accurately describe the shape of this
high-energy excitation spectrum and it’s intensity. The high-energy spectrum has
a complicated structure of several higher-energy branches, and disappears above
the superfluid transition temperature, signaling its intimate connection with the
superfluid order.

We begin by introducing the effective Hamiltonian description of the hybridiza-
tion scheme in section 3.2. In section 3.3 we compare the resulting spectrum and
structure-factor to the experimental data. In section 3.4 we obtain the scattering
intensity of the single-excitation branch. In section 3.5 we discuss the new vortex-
loop branch. In section 3.6 we calculate the reduction in the ground-state energy
of the superfluid and in section 3.7 we calculate the condensate fraction. In section
3.8 we discuss the effect of vortices on the total density due to the effective mass of
the vortex-core. In sections 3.9-3.11 we develope a Fermi-Dirac description for the
'multiparticle’-excitation branch at higher energy which is present in the superfluid.
We conclude 1n section 3.12.

50



3.2 The effective Hamiltonian

The starting point is the Feynman phonon [5], whose spectrum is given by:

h2k?/2m
k) = —— 3.1
<) = 505 (3.1)

where: S(k) is the static structure factor, k is the wavevector and A%k?/2m is
the free atom energy. The wavefunction that describes this single phonon is:

Y= Z etkRigp (3.2)

where R; is the position of atom ¢ and ¢ is the ground-state wavefunction. This
wavefunction describes a single pure density excitation:

= plp (3.3)

If we compare the experimental spectrum [52] at T=0.5°K with the result of
(3.1) we get only qualitative agreement at both saturated-vapor-pressure (s.v.p.)
and high pressure (Fig.3.1). The linear phonon-like spectrum at £ — 0 at superfluid
temperatures is due to the behavior S(k) o« k. According to the Landau criterion,
a linear spectrum is the characteristic that gives the superfluid its finite critical
velocity, i.e. the velocity below which a moving object will not create any excitations
in the superfluid. This critical velocity is zero in the normal fluid where the quadratic
dispersion of free a free particle has zero slope at k£ — 0.

In order to improve the agreement between the Feynman spectrum and the
experimental result, an increasingly elaborate expression for ¥ (3.2) is usually used.
This is given some physical motivation as "backflow’ effects, but is at the price that
the excitation does not describe anymore a pure density fluctuation (3.3).

We first consider the Hamiltonian Hy describing the pure density modes obtained
using the Feynman ansatz. It is given by Hy = ¥, €(k)arfax. The energy e(k) is
obtained from the Feynman expression (3.1). Then, we consider the Hamiltonian
Hj,. of the localized excitations and assume that they can be approximated by two-
level systems of energy fiwg, such that the corresponding free Hamiltonian is H%,. =
>k (by by, + %) The operators a and b obey bosonic commutation relations.
But the bosonic character of the b operators is only approximate and holds in the
limit of a low density of localized modes [53]. To write down the part describing
interactions between the two sets of excitations, we follow the approach of Hopfield
and Anderson {8, 53] and assume that the role of the density fluctuations is to induce
an effective interaction between the localized modes and as a result to modify their
spectrum as well as the spectrum of the Feynman density modes. Using the dipolar
approximation, we obtain [53] for the local excitations the effective Hamiltonian

Hoo = 3 (o + X ())(b'be + %) (3.4)
k
+3 "X (k) (001, + brb_y)
k

-

o1
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where X (k) is a (real and negative) matrix element which depends on the microscopic
details of the dipolar interaction. As we shall see later, its exact expression is
not important at this stage. Finally, the part describing the coupling between the
phonons and the localized modes is (8]

He = Y (A(k,wo)br + p(k,wo)ar) (ar' + a) (3.5)
k

- (/\(k‘,wo)ka — ,u(k,wo)akT) (ak -+ aT_k)

where, in the dipolar approximation the two functions A and y are given by A(k) =
ifwo(—32 )% and p(k) = —hwe3ZE. The total Hamiltonian is then H = Ho +
H%,.+ H,. The part H,,. which describes the effective interaction between localized

modes can be diagonalized using the Bogoliubov transformation 8, = u(k)by +-
v(k)b! _x. This gives the spectrum

E = \/two(hwo + 2X (k) (3.6)
The two functions u(k) and v(k) are given by:

_ 1 hwo + X(k)

2 = Ry 1wy + X (k)

+1),0%(k) = 5(_E(T)- —-1)

(3-7)

We now compare the localized excitation Hamiltonian (3.4) with the usual ap-
roximation of the superfluid *He as a Weakly Interacting Bose Gas (WIBG) due
o Bogoliubov [14]. The WIBG Hamiltonian is given by

 Hwipe =Y (ex + NoVi) blbe + Y NoVi (bLbT_k + bkb_k) (3.8)
P k

where No = |(bo)|? is the condensate fraction, &, = h2k?/2m, and V, is the effec-
tive potential between the bosons at wave vector k. The operators bL, by represent
creation/anihilation of a *He atom, not a localized-mode as in (3.4). The approxi-
mation is that the condensate fraction is almost unchanged by the weak interaction
from the Ideal Bose Gas (IBG) value of one.

The excitation spectrum of (3.8) is the well-known Bogoliubov linear spectrum
in the limit £ — 0:

E = \Jex (ex + 2NoVi) = hike (3.9)

where the velocity f sound is defined by ¢ = /NoVp/m such that NoVy = mc2.

The physics of the ‘e two Hamiltonians is very different.- The WIBG has as
a non-interacting lim" the IBG which at T=0 describes a fully Bose condensed
system and has a br« ¢en gauge symmetry. The interaction slightly depletes the
condensate fraction and changes the spectrum from quadric spectrum to linear at
low momentum.

On the other hand the localized excitation Hamiltonian describes in the non-
ineracting limit(X (k) = 0) a (non-condensed) collection of independent localized
modes. This state has no broken symmetry. In order to obtain a linear spectrum
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at low momentum, condensation and broken-symmetry the interaction needs to be
large (X(k — 0) = —(fiwp)/2), which shows that this is not a small perturbation
to the non-interacting case. In that sense it is a strong-coupling description of the
superfluid.

The total Hamiltonian H is quadratic and can be diagonalized using the canon-
ical transformation: ‘

Qr = Aak 4 Bbk + C’at_k + DbT_k
ar = Bap+ Aby + DaT_k + Cbt_k (310)

where these operators describe the lower and upper branch of the energy spectrum
respectively.
The corresponding dispersion relation is

k) . 6 X(k)
E*(k) w1 — (ER)2

huwo

(3.11)

We first notice that taking the coupling X (k) between the two sets of modes to zero,
we obtain, as expected, the two solutions E(k) = e(k) describing the pure density
mode and E = hwy for the localized two-levels. A non zero coupling hybridizes
the two sets of excitations. We choose now for the energy hwy the highest value
of the phonon-roton spectrum namely Awy = 2A where the energy A corresponds
to the roton minimum (at this energy the phonon-roton spectrum terminates). To
solve the dispersion relation we use (3.6) into (3.11). This procedure means that we
demand a self-consistent interaction: the direct dipole-dipole interaction Hj,, gives
the same spectrum as the phonon-mediated interaction appearing in H. The sources
of the field are the localized dipole moments, and their interaction is through the
dipole-field.

This gives E(k) = -;-e(k) i.e. an expression independent of the matrix element
X (k). Using now this latter expression into (3.11), we obtain the other solution
describing the energy of the hybridized local modes as E = 2fuw, which is as well
independent of X (k). Therefore, as a result of the hybridization, the energy spec-
trum of the delocalized density fluctuations is shifted by a factor two towards the
lower energies and the localized modes still have a constant energy but equals to
four times the roton minimum A.

The transformation functions u(k),v(k) and A(k), B(k),C(k), D(k) can be cal-
culated using the spectrum we derive from the self-consistent procedure. We point
out that the roles of the phonons and localized-modes are interchanged between the
two branches.

The ground state of the total hamiltonian H is defined by

ar|0) = 0,60 =0 (3.12)
We write the ground state as:
|0) = |01) |02),|012) = Hf1,2(ak,aik)gl,2(bkabT—k) |vac)
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where the index 1,2 stands for the two branches and rewrite (3.12) for each
component:

d d
o [0) = 0: (AT + Ca_k) filag,aly) =0, (Bﬁ + DbT—k) 91(bx, b)) = 0
k

. d d
(672 |0> = 0 : (Bzi—- + Da k) f2(ak, —k) = 0 (A%{ + CbT—k) gz(bk, bT_k) - 0
k

The final result is:
Bt
101) Hexp a a k) exp (Dbkb_k) lvac) (3.13)
At
|02) = | [Texp ( aka_k) exp (Ebkb-k> lvac)

where the ratios of the coefficients can be written in a simple form:

A  ¢k)+E B Fhuwy+E

C~ e(k)—E'D hw-E (3.14)
The hybridization coefficients can be written as well
o 9(1— (e(k)/2hw)?)
IAI - 2
8 (4 — ((k) /2huw,)?)
2 3 (E(k) + 27:1,(4)0)
|BI" =
- 8huwoe(k) (4 — (e(k)/2hwo)?)
|C|2 — 1( - (8( )/2hw0)2) _ l |Al2
8 (4 — (e(k)/2hw)?) 9
1D = 3 (c(k) — 2hwo)” (3.15)

8hoe(k) (4 — (e(k)/2hwo)?)

The values of the coefficients at various special momenta can be calculated:
k—0:

2 9 2 1
hwgy 3
B2 IDE = 0
BPLIDP 22
Roton minimum (E = A = hwy/2):
1 9 1
A 2 -_ B 2 = — 2 = — .



3.3 Comparison with experimental results

The above results are quite appealing since we know that the Feynman ansatz alone
gives a spectrum for the density fluctuations which is too high in energy by about
a factor two. To compare our results with the experimental data we shall consider
two independent sets of results namely the measurements of the energy spectrum
and of the structure factor S(k). We obtain from (4) the relation

h2k?
= 4mS(k)

E(k) (3.18)
for the lower branch which we compare to the experimental results [72, 73, 52, 71)
obtained at two different pressures (Fig.3.2). The main discrepancy is obtained at
the saturation vapor pressure in the low momentum region (k < 1.21_1). In the same
way (Fig.3.3), comparing for S(k) our results agree with the experimental structure
factor to within the experimental uncertainty, in the above range of momentum.
Our calculations become meaningless when the phonon-roton branch terminates i.e.
for k ~ 2.547" where the spectrum becomes that of a free particle. In the low
momentum limit £k — 0, the structure factor is linear with the momentum %, and
the expression (3.18) gives

i hk
'101_1)1(1) S(k,w) = 4—mc5(hw — 2Fkc) (3.19)

where ¢ is the sound velocity. The experimental data are not accurate enough in
order to prove this conclusively. Nevertheless, for a neutral system, we expect both
from the f-sum rule and the compressibility sum rule that:

Lm0 S (k, w) = 2_7:%5(7“" — 2hke) (3.20)

instead of (3.19). The discrepancy comes from the effective long range interactions

which result from the dipolar coupling in the hybridized system. We can therefore

define, just like in a dielectric medium [18], an effective dielectric constant given
2

here by (g(%) = 4. In a dielectric medium, the ratio of the density-density response

function over its bare (unscreened) value is given by the dielectric constant. Then,
the compressibility sum rule is modified into

N
2mc?

) dw
lim 4 / =S (k,w) = (3.21)

Using (3.21) and the f-sum rule we recover our result (3.19).
The experimental data at small momenta is shown in Fig.3.4. The structure
factor tends to a constant as k — 0 given by [54]

lim §(k,w) = ksT/mc? . (3.22)

We find that our expression seems to agree with the slope of the experimental
o —1
structure-factor above k ~ 0.54 .
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3.4 Scattering intensity

The neutron scattering intensity is a direct measure of the density fluctuations in
the liquid and may be described in terms of the dynamic structure factor S(k,w).
It is usually accepted since the work of Miller, Pines and Nozieres [55] that we can
split the total contribution to S(k,w) into two parts,

S(k,w) = NZ(k)6(hw — €) + SV (k, w) (3.23)

where the first term accounts for single quasi-particle excitations while the second
describes multiparticle excitations. This separation is quite easy to justify at low
temperature and low momentum, typically for & < 0.547". In this regime, integrat-
ing (3.23) over the energy and noticing that S (k, w) vanishes in the low momentum
limit we obtain Z (k) = S(k), which results also from the Feynman theory. The com-
parison with the experimental data [52] shows that although it works in the low
momentum regime mentionned above, it fails to describe the non linear portion of
the spectrum, except perhaps for the position of the maximum.

In contrast to this approach, we do not consider here a precise decomposition of
the structure factor. But, since the density fluctuations result from the hybridiza-
tion with the localized modes, we expect the differential cross-section Z(k) for the
excitation of a single quasi-particle to be proportional to the expectation value of
the localized modes calculated in the ground state of the Bogoliubov pairs namely,
(bt ,) = upvy. This result follows from looking at the ground-state wavefunction
of the hybridized Hamiltonian (3.4) [56]:

|To) = [ exp (Z—ibktbtk) |vac) (3.24)
P ,

The ground-state contains pairs of localized modes and the creation or anihilation
of an excitation is the destruction of such a pair. The probability of the neutron
scattering is therefore proportional to the occupation density of these pairs, and we
have:

Z(k) = Amk®Iyupvy

where [y is a normalization constant. Using our previous expression for u; and

v, (3.7) we obtain ugy, = %]—LM}E((Z) which gives:
fiwg | E(k) 2
= k2], 0 -
2(k) = Iy g ( ﬁwo) 1 (3.25)

From the two independent measures of E(k) and S(k) we obtain using (3.25) a
theoretical expression of the differential cross-section which fits well the experimental
results as shown in Fig.3.5. Moreover, in the low momentum limit, we recover the
Feynman result namely the proportionality between S(k) and Z(k). It is important
to emphasize that the shift by a factor two between the Feynman and hybridized
spectra determines both the maximum of the Z(k)-curve and the momentum k,
at which Z(k) vanishes. In the framework of our approach it is not an adjustable
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parameter, i.e. in order to describe quantitatively the scattering intensity curves,
€

the ratio 7}(% cannot be adjusted independently Indeed by choosing any good

fitting parameter A (# 2) such that E(k) = +€(k) we do not obtain a solution of the
dispersion relation (3.11).

3.5 Vortex loops

We found a second branch of excitations at the constant energy £ = 4A. It describes
localized excitations of energies which are twice the bare vortex core energy. It
is suggestive to interpret this mode as a single vortex loop which is made of a
vortex-core pair. In support of this interpretation we notice that for this branch the
Feynman-phonons condense at & — 0 in pairs, just as the localized-modes do for
the lower-branch (section I). Such a macroscopic occupation by opposite-momentum
phonons is expected for the dipolar velocity field around a vortex-loop.

The vortex-loop radius can be calculated using a Feynman-type formula for the
energy of the circulating current of a vortex-loop [49]

2
E,ortez = 27r2p%§ln( Ij) (3.26)

where at T = 0, we take the density of the superfluid i.e. p = p; and a is the
core size equal to the atomic radius namely a ~ 2.84. The radius R is obtained
taking Eyorre: = 44 = 34. 4K. This gives R ~ 7. 1A which is the expected size
for the smallest vortex-loop i.e. about twice the size of the vortex core. A further
experimental evidence for our interpretation of the hybridized localized state at F =
4A as an intrinsic excitation of the fluid is provided by critical velocity experiments
[21]. In phase-slippage studies of the critical velocity through an orifice, the critical
velocity is driven by the thermal nucleation of vortex-loops. The corresponding
energy E, is determined by the nucleation rate ' which using a Arrhenius law
can be written I' = Toezp(F2 w=%). It is found [21] that E, ~ 33 & 5K which is
indeed very close to our result 4A = 34.4K. Moreover, the upper critical velocity
v, may be estimated as being given by the velocity of the vortex-loop itself [49] i.e.
Ve = gagin(&) =~ 20m/s, a value close to the largest measured critical velocity [21)].

Another relevant set of experiments we consider is provided by the Raman scat-
tering around k = 0 (Fig.3.6). It has been found that besides a peak at E = 24,
there is an additional contribution at E = 4A [57] which we associate to the vortex-
loop. The peak at 2A is usually interpreted as a two-roton excitation and therefore
the additional contribution is viewed as a four-roton excitation. This interpretation
suffers nevertheless from the fact that there is no three-roton peak. In our model,
the lowest excitation energy of a vortex-core is given by 2A and not by A so that
we do not expect any contribution at 3A. The peak at 2A which does not appear
in the hybridized spectrum will be discussed in the last subsections of this chapter
[58]. :

We also point-out that at high-energy and momentum transfer where the scat-
tering peak is along the free-atom spectrum [17], there is a marked broadening of
the width of this peak where the free-atom spectrum crosses the second branch,
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i.e. around energy 34.4°K (Fig.1.2). If a neutron scatters a free-atom then at the
crossing point the free-atom can create a vortex-loop and loose the corresponding
energy and momentum:

h?

Enew (k) om

——(k — ky)?, fork > ky (3.27)

where k. is the momentum of the free-atom at the crossing point of the vortex-
loop level: k, = v4mA/h. The remaining energy of the free-atom will therefore be
below the original free-atom spectrum and the scattering peak will broaden (Fig.1.2).
This result is a possible further indication for the existence of the second branch
with energy 2A.

3.6 Ground-state energy

Following [53] we can calculate the reduction in the ground-state energy of the
hybridized system compared with the non-hybridized one:

k2dk
AR = 2 (B — (o + X(0) =V [ 255 (B(E) = (wo + X(K))  (3:28)

where V is the specific volume. The results at s.v.p. and at P=24atm are:
AFE(s.wv.p.) ~5°K £ 1.0°K, AE(P = 24atm) ~ 3.0°K £ 1.0°K (3.29)

where we used V (s.v.p.) ~ 45.843, V(P = 24atm) ~ 38.6A3. The integration is
done numerically for momenta 0 < k& < k(= 2.5;4‘I). The calculations were done
using the experimental phonon-roton spectrum. These values can be compared with
the experimental data [29]:

AFg(sv.p.) ~28+2.0°K, AE,, (P = 24atm) ~ 1.3+ 3.0°K (3.30)

The large experimental uncertainty makes exact comparison difficult but we see
that the theory predicts well the difference between the two pressures. The theoret-
ical values are consistently larger than the experiment, but they do not include a
small increase in the potential energy due to the reduced density of the superfluid
compared with the normal fluid. This increase of approximately ~ 2°K will lower
the total reduction in the ground-state energy and make the theory agree more
with the experiment. This calculation (3.28) is the first analytic calculation of the
reduction in the ground-state energy of the superfluid.

As explained in [53] this reduction of the zero-point-energy (z.p.e.) of the atomsis
due to the interaction between them. Compared with the path-integral calculations
[19] we find that in both cases it is the kinetic z.p.e. which is reduced, compared
with the normal fluid, and drives the superfluid transition.

58



3.7 Condensate fraction

When the occupation diverges at a certain k there is a condensation. From (3.7) we
find that at k — 0 the occupation by the localized modes diverges:
lhwy momc  my  lhwy A

2 —
Uy k0= 5;'(?5 = —';L—Eﬁ_k = e 2%2' = ;{g (331)
where we used: £(k)|r—0 = 2hkc and the definition of the condensate fraction-
from the usual treatment [17]. We point out that (3.31) gives the condensate frac-
tion in terms of the parameters of the phonon-roton spectrum. We also find that
the order-parameter which is usually identified with the condensate-fraction is here
identified with the value of the matrix-element function |X (k)| at k = 0, i.e. A.

From (3.31) we get:

SV.P: 0~ 30+ 1%, P = 24atm : =2 ~ 11.8 4+ 0.3%

n n

These values are higher than the experimental results [29] by a factor of ~ 2. This
factor may be explained by noting that we have a condensation of localized-modes.
These excitations may have an effective mass: my,. ~ 2mpg.. This effective mass
is in accord with the results of path-integral Monte-Carlo (PIMC) calculations of
the effective mass of a *He atom that is not participating in the Bose-permutation
(19]. This atom therefore represents a localised excitation similar to our vortex-core
element and has a similar effective mass.

We can plot the condensate fractions at different pressures and compare with
the experimental values for ng/n [29](Fig.3.7). We use eq. (3.31) and renormalize
the result to fit with the experiment (we use experimental values for A and c at
different pressures [10]). The agreement with experiment is reasonable, considering
the small number of points, and experimental uncertainty.

3.8 Vortex-core density

As proposed in the last section it is possible that the vortex-core (localized-mode)
can be treated as having an effective mass twice that of the bare ‘He atom. This
may be the explanation of the result that a rotating *He when cooled below T}, has a
jump in its density [59]. It is known that in a rotating fluid the superfluid will form
a dense array of vortices so as to move with the normal solid-body rotation. We
propose that these vortices will cause an increase in the density due to the higher
density of the cores. If we treat the vortex core of radius a as having twice the mass
of the surrounding fluid then the change in density is:

Ap = pn,a? (3.32)

where n, is the vortex areal density. In order to get the measured change in
density: Ap ~ 3 x 107%gr/cm? (at rotation velocity: w = 30sec™!) we need: n, =
2.5 x 101 ¢m™2. This value is much higher than that needed to create a solid-body

rotation: m
My & w— = 1.9 x 10%cm™2 (3.33)
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but it is closer to the density of vortices that are spontaneously created on passing
through the transition [60]. This is estimated form experiments as: n, > 10%cm™2.
This density usually quickly decays in a non-rotating superfluid, and this estimate is
therefore a lower limit on the vortex density created at the transition. It is possible
that in a rotating superfluid the initial vortex density created at the tramsition is
stabilized and becomes the array that maintains the superfluid solid-body rotation.
We predict that the density of vortices created at the transition is therefore of the
order of: n, ~ 10em=2. This density means an average distance between vortices
of: L, ~ 200A. This is the order of magnitude of the distance between elementary
vortex-loops thermally activated at the transition temperature:

_Vk 1
~ 472 3 exp(E,/ksTy) —1

N, ~13%x10% =V, ~V/N,=L3 = L, ~ 3284

where: V ~ 45.84% is the atomic volume, E, = 34.4°K is our vortex-loop
excitation energy and k., ~ 25471 is the maximum wave-vector for which the
hybridized Hamiltonian is applicable. This is of the same order of magnitude as
the estimate from the density jump. Vortex-loop models of the superfluid transition
[23] predict that at the transition temperature the superfluid is filled with thermally
excited vortices.

The increase in the density due to superfluid turbulence (’vortex-tangle’) was
also confirmed experimentally in [61].

We therefore conclude that it is possible that the vortex-cores have a higher
density then the surrounding superfluid, even up to twice the normal density. This
is in contrast to most description that use a non-linear Schrodinger equation to
describe the vortex, and find a reduced (even zero) density at the core [62].

3.9 Dirac Hamiltonian for the ’'multiparticle’-branch of su-
perfluid ‘He

Following the previous sections on the phonon-roton spectrum we propose here a
new treatment of the high-energy branch. We showed that the phonon-roton branch
results from the resonant hybridization of localized-modes (vortex-cores) and delo-
calized density fluctuations (Feynman). Here we propose that the elementary, non-
hybridized vortex-core can be treated as a fermion described by a many-body Dirac
Hamiltonian. We show that the 'multiparticle’-branch is therefore an excitation
of free non-hybridized vortex-cores, moving in a back-ground of vortex-antivortex
core pairs. To calculate the high-energy spectrum we only need the phonon-roton
spectrum and the bare vortex-core energy as inputs.

The ground-state of the superfluid was shown before to have a condensate of
localized-modes which are treated as bosons and condense in pairs of opposite mo-
mentum. The localized-modes have a bare non-hybridized energy of Ey = 2A,
where A is the roton energy. The quantum statistics of the localized-modes is
determined by their local phase with respect to the global superfluid-phase. The
localized-modes are treated as localized oscillating dipoles which are whose indi-
vidual oscillations are synchronized by the dipolar interaction into a coherent-state
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(the superfluid phase) with uniform phase. Every localized-mode is symmetric with
respect to the others and Bose-Einstein statistics result. It is possible though to
excite a localized-mode which is in anti-phase (phase difference 7) with respect to
the global phase of the coherent ground-state. In this case it is anti-symmetric with
respect to the localized-modes which are in the coherent ground-state and Fermi-
Dirac statistics are appropriate. The statistics of the localized-modes is therefore
defined in the superfluid state depending on their phase relative to the global phase
(broken gauge-symmetry).

An anti-phase localized-mode (a fermion) will not be hybridized into the coherent
field of the ground-state, but nevertheless will feel the effect of the Bose excitations
(phonon-roton) as they interact with it and cause interactions between the localized
fermions. The effective Hamiltonian should therefore contain a term describing the
creation and anihilation of pairs of fermions from the ground-state by a phonon. This
is an off-diagonal term that describes the fluctuation caused by a phonon-roton of
energy ¢x: it changes a fermion ’particle’ into a ’hole’ and vice versa. In addition
there should be a term that describes the energy of the free unpaired fermion, that
is Ey. The many-body ’Dirac’ Hamiltonian that we therefore propose is

Hp = Z €k (chT_k + ckc_k) - Z Vi (c};ckct_kc_k) (3.34)
k k

where cl, ¢ are the creation and annihilation operators of the anti-phase (Fermi)
localized mode (vortex-core element). The first term in (3.34) is the ’kinetic’ term
due to the phonon-roton branch, where the localized-modes come in pairs. The
energy € is just the phonon-roton spectrum. In addition there is finite ’potential’
energy if there is a finite density of unpaired fermions, which we take as Ey.

We linearize the equations of motion that follow from (3.34), similar to the BCS
method:

ih oo —erch, + Apce iR e = —epce — Atchy (3.35)
where we used:
{ck,c;’c} =1 {ck,ct_k} =0 (3.36)
and where
A=A =Eo=Y Vi(da) (3.37)
k

and we normalize the density as:
3 <c};ck> =1 (3.38)
k

and take the potential as a constant for all wavevector k:
Vi = FEy ' (3.39)

The equations (3.35) are identical to Dirac’s equation for a single particle, if we
insert: €, = hkc, Eg = mc®> (m particle mass, ¢ velocity of light). We can write.
the equations of motion (3.35) in matrix form and compare them with the Dirac
equations where we disregard the spin degree of freedom:
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$(2)-(13)(2) (3 2)(5) e
(D)= (232wl 2)(3) oo

where @, x are the particle/antiparticle two-component spinors, and 7 = (0z,04,0;).
In order to get rid of the extra dimensions in the Dirac equation in 3 dimensions we
can write the 2x2 Dirac equation in 2 dimensions, with momentum in the Z-direction:

Dirac 2D:

ih%<§>=c(—i2¢6, —i86,>(§>+mc2((1) _01)<‘;) (3.42)

where now the ¢, x are the particle/antiparticle scalar wavefunctions. There is
now complete identity between (3.40) and (3.42). This identity has implications on
the kind of symmetry-breaking described by the (3.34) hamiltonian, which we shall
describe later.

The equations of motion have the following eigenvalues:

=0=> B, = +1/E2 +¢2 (3.43)

The above spectrum is identical to the BCS spectrum but originates from a
completely different Hamiltonian. We can solve the equations using the Bogoliubov-
Valatin transformation for superconductivity [63]:

Ei—Ey —¢
—cr Er+ Ep

= upap +ual, o= v +upal, (3.44)

The condition that the operators (a,fc, ak) are fermions gives:

w+vi=1 (3.45)
Using (3.44) in (3.35) we get:
? Erug = —€,vr + Egur = 2Equty = & (vi - u,zc) (3.46)
We now substitute: |
' U = COS (0/2) , U = 8in(6/2) = tan = &,/ Ey (3.47)
to obtain L1 E, 1 E,
uk=—2-(1+fk),vk=§<l—§k-) (3.48)



The ground state is the same as for BCS:
ax [0) = 0= [0) = ] a—rax [vac) =[] (uk + vkclc‘:k) |vac) (3.49)
And the diagonalized Hamiltonian is:
H=Y Eoj (3.50)

We see from (3.48) that when there is no free-fermion present (i.e. if we put o =
Oin (3.37)) the ground state has equal numbers of fermions and holes, that is vortex
and anti-vortex core pairs. The symmetry between particles and holes is broken
by the free fermion (or hole), and the sign of the symmetry-breaking parameter
E, determines which kind is present. The hole is with respect to the equilibrium
occupation by pairs of fermions in the ground-state as we describe previously for
the phonon-roton branch. The symmetry-breaking parameter E, is identical to the
mc? parameter in the 2D Dirac equations-of-motion (3.42). The symmetry that is
broken by choosing a non-zero mc? in two-dimensions is the time-reversal symmetry
(TRS) [64]. This is in agreement of our interpretation of the free fermion as a free
element of a vortex-core. A vortex core has a defined sense of vorticity which is
reversed under time-reversal, therefore breaking TRS.

We again mention the fact that had we used Bose operators in the Hamiltonian
(3.34) the energy spectrum would be: :

Ei=+yE2—¢} (3.51)

which has energy reduced compared with the bare energy Ej, unlike the experi-
mental spectrum and again justifying our choice of fermi-statistics.

In Fig.(4.1) we plot the functions u},v? using the experimental phonon-roton
spectrum for €, and: Eq = 2A. We see that for all momenta the excitation is
almost a pure fermion (or hole) with the maximum mixing at the termination of the
phonon-roton branch, where we have:

o 1
km ~ 2.5A7 &y, ~Ey=>vp_ =< (1 - i) = 0.146

2 V2

At low momenta the fermion will behave like a relativistic particle with the
sound-velocity as the limiting velocity.
The excited state can be written as:

1) = o} |0) (3.52)

A single excitation of a state k is therefore just a destroyed fermion-pair and a

free fermion. This has energy Ej (3.43), unlike the case of BCS where the excitation
has twice this energy.

The excited states can form a wavepacket:

[Wer) = > Beal |0) (3.53)
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where (i are general coefficients. The resulting density fluctuation caused by
the wave-packet (3.53) is:

(Vez| p(r) |¥ez) = D, <ch,¢> e =Y e [21),2c + (ui - vﬁ) a;‘cak] (3.54)
T ()

The first term of (3.54) is just the uniform background density (which we nor-
malized to 1). The second term is due to the excitation. We can plot the function
(u? — v?) to see the nature of the excitation at each wavevector k (Fig.4.1). We see
that at k£ = 0 the excitation is a single fermion but that at higher wavevectors the
excitation is slightly mixed and the density is reduced from 1.

In the absence of symmetry-breaking we have u2 = v? = 1/2 and the excitation

causes no density fluctuation.

3.10 Comparison with experimental results

In Fig.4.2 we plot the spectrum of (3.43) using for €, the experimental phonon-
roton spectrum [52] and: Ep = 2A. We also plot the position of the peaks in the
experimental scattering profile, collected from various sources [65]. There is a large
uncertainty in the results due to insufficient resolution. We see that in the range of
momenta k < 1.2A~! the calculated and experimental spectrums agree extremely
well. At high pressure there is less data, but the agreement is also very good, even
up to k ~ 1.5A~!. At higher momenta the isolated peaks in the scattering tend to
disappear and change to broad distributions. It is possible that the disappearance
of the sharp peak above k ~ 1.5A47! is due to the crossing of the spectrum by the
free-particle spectrum, which becomes the dominant feature at high momenta.

It is noticable that there is a second distinct line of peaks above our calculated
spectrum. We can estimate this spectrum by assuming it to be two free-vortex-cores,
superimposed or a twice excited vortex-core. The energy of this excitation can be
approximated as:

By~ 2E — E, (3.55)

where we substracted the energy of a bare-core since it is included twice in the
first term. In fig. (2) this spectrum is also plotted, and is seen to correspond very
well to the second peak in the experimental results.

In Fig.4.3 we show the results of [66] for the structure-factor S(k,w) at s.v.p. and
compare them with the theoretical expressions of (3.43) and (3.55). The agreement
between the peaks’ position in the experimental contours and the theory is very
good except at momenta approaching the crossing of the free-particle spectrum,
which dominates at high momentum transfers.

As for the phonon-roton branch we took the density of fermion-pairs at each
momentum as proportional to the scattering intensity of neutrons:

I = IgnP"i? (3.56)
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where I, is a normalization factor. This is due to the ground-state having a finite
population of fermion-pairs (3.49). The pair-number density is given by:

ir 1 Ek 1 1
nh = c;fcct_k S WU = o T T (3.57)
< > 2E., 2 (EO/sk)2+1

Putting (3.57) in (3.56) we plot in Fig.4.4 the theoretical intensity compared
with the experimental results [52]. The theoretical calculation was normalized to
agree with the experiments by having in (3.56): Jo =~ 0.7 . The agreement is
very good except at momenta higher than the termination point of the phonon-
roton spectrum: K, = 9.5A-1 . It must also be remembered that the experimental
results give the strength of the entire high-energy spectrum and not just the distinct
‘multiparticle’-branch. For. most momenta there appears to be good correlation
between the strength of the sharp peak and the entire high-energy tail, but they are
not identical.

3.11 Equivalent magnetic Hamiltonian

In comparison with the BCS problem we see that here the symmetry-breaking pa-
rameter is a finite density of unpaired fermions: <c;'cck> # 0. The ground-state
without unpaired fermions is a ’vaccum’ of pairs of particle-holes in equal num-
bers. In the BCS problem the symmetry-breaking parameter is a finite pair-density:
Sc}ccf_k> # 0. The ground-state in the absence of electron pairing is just a finite
ensity of electrons below the fermi-energy and zero above. In this respect the two
problems are ’complementary’. -
Similar to the Anderson [67] transformation of the BCS problem to a magnetic
Hamiltonian we can transform (3.34) using:

e = cee  cc=05/2  ack=07/2

10 | - <
= NEN_gp = ( 00 ) =3 (o +1) cldl . + e = 0f  (3.58)
where the o are Pauli spin-1/2 operators. The basis is such that an up-spin in
the Z-direction represents an empty pair, while a down-spin represents an occupied
pair.
The resulting Hamiltonian is:

1
Hog =) €x0% — 5 Y Vi(op+1) (3.59)
This Hamiltonian describes a fictitious magnetic field acting on the spin 7
I Y
B=ci- W2 (3.60)

We can replace the potential energy with the constant: Vi = Ey, for all k < k.
The magnetic field (3.60) can be compared with the BCS result:

5, 1 ~ ~
?BCS =&z + §VZ (o,fx + 019) (3.61)
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The alignment of the spins in the ground-state is shown for the two cases in
Fig.4.5.

In the BCS problem the sign of the symmetry-breaking field in (3.61) has to
be positive and to induce a ferro-magnetic interaction between the spins, otherwise
there will not be any rotation of the spins. Only when the spins rotate do they go
through the point where the spin is entirely in the zy-plane. At this point the state
has no defined occupation number but a well defined phase, while on both sides of
the domain-wall there is well defined occupation and no phase. The phase is just
the angle of the spin in the zy-plane, and the broken-symmetry is therefore U(1).

In the Dirac case the symmetry-breaking field in (3.60) is a constant external
field. It can have both signs, which control the direction along the z-axis that the
rotated spin has in the middle of the domain-wall. This spin describes if a particle
or a hole is occupied, while away from the ¢, = 0 point the spins are more in the
zy-plane, with well defined phase. The symmetry that is broken is therefore the
binary + symmetry.

This again shows the complementary nature of the two Hamiltonians.

3.12 Conclusion

We have shown that the excitation spectrum of superfluid “He can be described
quantitatively by assuming the existence of two kinds of excitations. A first one
is provided by the delocalized density fluctuations whose energies are given by the
Feynman variational ansatz. Those excitations describe the long range properties
of the liquid and depend weakly on the quantum statistics. There are in that sense
analogous to the zero sound in normal ®*He as emphasized by Pines [18]. In contrast,
the second set of excitations describes the short range order in the system resulting
from the exchange of atoms, a situation where the Bose-Einstein quantum statistics
is relevant. We have assumed that these excitations instead of being independent
are coupled in a way reminiscent from the case of excitons in dielectric systems. By
writing a phenomenological Hamiltonian together with the dipolar approximation
to describe this coupling, we obtained as a result of the diagonalization of the total
Hamiltonian an excitation spectrum which involves two sets of hybridized modes.
One corresponds to renormalized phonons of energy given by the Feynman result
shifted by a factor of two to lower energies. The second set can be interpreted as
vortex-loop modes which as a result of the coupling to the phonons do have a dipolar
interaction. This picture describes quantitatively the experimental results obtained
either from the energy spectrum, the neutron or Raman scattering data or critical
velocity experiments. In addition, it may help understanding the persistence of the
phonon peak above Ty which appears to be shifted upwards in energy together with
a sharp drop of both the maxon and roton peaks. Since the localized excitations
depend on the superfluid order, they will vanish at the transition to the normal
state, while the Feynman density modes will remain unaffected and only shifted
upwards in energy in the abscence of dipolar coupling X (k).

We propose therefore that the superfluid state is characterized by the appear-
ance of a coherent-state of localized modes due to the dipolar coupling X (k). The
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order parameter which is usually taken as the condensate fraction can therefore
be identified with this function as we showed. This function is reminiscent of the
superconducting gap-function A(k), which in both cases indicate an interaction
that reduces the ground-state energy, leading to the phase-transition and symmetry
breaking. At the transition temperature T) the coupling X (k) vanishes along with
the condensate-fraction. We therefore predict that the roton minimum A should
vanish at the transition. There are indications that this is indeed the case [68].

In comparison with the description of the excitation spectrum put forth by Griffin
and Glyde [17], we treat the spectrum not as a combination of two distinct exci-
tations that replace each other at a certain momentum, but as a continuous single
excitation. In this respect we support the position that the spectrum is describable
as a single excitation-mode along its entire length.

We shall now comment on the connection with the PIMC calculations of the
superfluid done by Ceperley et. al [19]. In those calculations a small number of
atoms are calculated using path-integral method, taking into account the real inter-
atomic potential between two Helium atoms. The results for the specific heat,
superfluid fraction and internal energy are very close to the experimental values.
What is the relation between our work and the PIMC calculations ?

The superfluid phase in our picture is a phase where we have a coherent field of
dipoles which oscillate in resonsnce. Such a coherent state has a specific phase at
each point in space, and in the ground-state the phase is everywhere the same.

In the path-integral calculations it is found that the superfluid phase is char-
acterized by having long-range permutation cycles. Due to the repulsive hard-core
interaction the lowest energy (and largest weight) configuration is such that the per-
mutation cycles are parrallel straight lines. In these configurations the atoms in the
same time-slice’ can always be in the minimum of their inter-atomic potntial so that
the energy is minimized. The direction of the lines is arbitrary in a homogeneous
system, but once chosen by some external field it breaks the gauge invariance. It
is these macroscopic cycles which span the entire system that define the superfluid
fraction and condensate fraction. We therefore find that both pictures assign the
superfluid state with a coherent field in a particular direction in space. In one case
the coherence is of vortex-core pairs which condense at k = 0, while in the second
case it is the Helium atoms themselves. We see that the permutation-cycles is the
necessary ingredient in the PIMC calculation, analogous to the synchronous dipole
interaction X (k) in the localized-mode case.

We also give analytical expressions for the reduction in the ground-state energy
and the condensate fraction. Both compare well with the experimental results.
These results show that the superfluid order is the coherent state of the fluid where
there is a long-range dipolar hybridization of the localized motion of the atoms. This
allows the reduction in the zero-point energy of the fluid through the macroscopic
condensation of the atoms, leading to superfluidity.

In addition we have shown that a Fermi-like anti-phase vortex-core excitation can
describe the high-energy 'multiparticle’-branch of the spectrum of superfluid “He.
The comparison with experiments for both the energy spectrum and the scattering-
intensity is very good and we also describe the multi-peak structure seen in the
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spectrum. Our work departs from the usual interpretations of this spectrum which
ascribe it to multi-particle excitations of the phonon-roton branch. These inter-
pretations cannot describe the shape of the excitation spectrum or it’s scattering
intensity. We treat it is a continuos branch of elementary excitations unique to the
superfluid phase. The anti-phase localized-mode is treated as a fermion, while in
the begining of this section it was treated as a boson . The statistical description
of this excitation depends on its phase relation with the coherent superfluid back-
ground. The resulting effective Hamiltonian produces Dirac’s equations of motion
for a single particle. This Hamiltonian is diagonalized using the mean-field tech-
nique and compared to the BCS result for superconductivity. It is shown that the
two Hamiltonians are complementary.

The free vortex-core has therefore some of the properties of a free massive fermion
in a vacuum. At small momenta where the phonon spectrum is linear it behaves
like a sound-relativistic particle, i.e. the sound velocity replaces the velocity of light
in the relativistic expression for the energy.
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Figure 3.1: The experimental spectrum compared with the Feynman spectrum (eq.
(3.1)) and more elaborate calculations [70].
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Figure 3.2: Comparison between the experimental energy spectrum [52,71](points)
and the theoretical expression (3.18)(solid line) where the structure factor S(k) is
obtained from independent measurements [72,73]. (a) and (b) correspond respec-
tively to the saturation vapor pressure and to P= 24 atm. The dashed line at 4A
indicates the position of the branch of the vortex-loop excitations.
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Figure 3.3: Comparison between the experimental structure factor S(k)
[72,73,54](points) and the expression (3.18) (solid line) for the same two pressures
as in fig.(3.2) where the energy E(k) is obtained from independent measurements
52,71).
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Figure 3.4: Comparison between the experimental structure factor S(k) [54] (points)
and the expression (3.18) (solid line) at k — 0 for T = 1.38°K and T = 1.1°K.
The dashed line is from the Feynman relation (3.1) using the experimental energy
spectrum [52]. The star and X mark the theoretical S(k = 0) at the respective
temperatures according to (3.22).
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Figure 3.5: Comparison between the experimental scattering cross-section [52] Z (k)
of single quasi-particle excitations (points) at 1.1 K and the theoretical expression

(3.25). The two curves are obtained using respectively in (3.25) the experimental
results for S(k) [54](solid line) and for the energy E(k) [71](dashed line).
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Figure 3.7: Comparison between the experimental condensate fraction at different
pressures [29] and the relation (3.31) suitably normalized.
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Figure 3.8: The Bogoliubov factors of the diagonalization u(k)?,v(k)? (3.48), and
the density of an excited state u(k)? — v(k)? (3.54).
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Figure 3.9: Theoretical spectrum compared with experimental peak position [65]:
(a) S.V.P. (b) P=24atm. Solid line: eq.(3.51), dashed line: eq.(3.55), short-dashed:
free particle.
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Figure 3.10: Contours of the experimental scattering intensity [67] compared with
theoretical calculations. Solid line: eq. (3.51),long dashed: eq.(3.55),dash-dot:
phonon-roton spectrum, short dashed: free particle.
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Figure 3.11: Scattering-intensity of the ’multiparticle’-branch. Theory (solid line)
from eq.(3.56,3.57) compared with experiment [52]. ¢
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Figure 3.12: Arrangement of the spins in the magnetic-analogue-Hamiltonian. BCS:
(a) without pairing, (b) with pairing. Dirac: (c¢) without unpaired fermion, (d) with
unpaired fermion.
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Appendix A: Comparison with the Klein-Gordon
Hamiltonian

We would like to point out that the Hamiltonian describing excitons (localized-
modes (3.4)) is actually the same as the Klein-Gordon (KG) Hamiltonian for a single
spinless boson, written in its first-order form [69):

Klein-Gordon:

Hygc =€k (O’z +i0y) +mc20z+e(§i (Al)

Localized-mode (3.4):
Hioe = X (k) (0, +10y) + hwoo, (A.2)

where o; is the Pauli matrices, &, = p*/2m, e is the electric charge, @ is the
electrostatic potential. The two-component wavefunction of the KG Hamiltonian is:

wo=(9)o=b (v )=z (9- 2] 49

where 1 is the original wavefunction of the second-order KG equation, and Y0 =
(% + %@) 1. The two-component ”wavefunction” of the localized-mode is: Vo =

t
( cck ) The definition (A.3) is the same as the Bogoliubov transformation (3.7),
—k

as we now show (for the simple case ® = 0):
Klein-Gordon:

= 0-Eea-e )
=i = 5(1475) =30 -7a)
= % -9 =E/mc (A.4)

We see that the KG density is not normalized to 1 but to: {p) = E/mc?, de-
scribing the relativistic increase in the density with velocity. In order to compare
with (3.7) we will normalize the KG density to 1, and identify from (A.1) and (A.2):
hwy < mc?, z(k) < €. The result is:

0 1 {hwo + z(k) 1 (mc®+p?/2m mc2 21
- ln._02_+__E_+}_—mcz(]_+ E) ,&-2ﬁ
2E  4mc2 2 4AE mc2) ~ ~ E

The peculiarities of the KG equation appear when there is a potential V = e®

(the Klein paradox for example). The equation for the momentum in the KG case:

omde, = B2OK = (E—V)? = (md)’ = k = V(B - V;QC_ (me?)’ (A.5)
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becomes the equation for z(k) in the exciton case:

_ (B=V)® = (hwp)?
1‘(/6) - 2th

(A.6)

We see from (A.6) that there is a region of energies where the interaction pa-
rameter z(k) is positive and a region where it is negative, depending on the po-
tential V. We saw in section I that the superfluid is characterized by a negative
z(k) which enables the localized-modes to condense and causes the reduction in
the ground-state energy which drives the transition to superfluidity. The excita-
tions with F > V + hwp, E < V — huwp have a positive z(k) and are therefore not
contributing to the superfluid order. Such a destruction of the superfluid order
is expected in the core of a vortex. A free non-hybridized vortex-core is such an
excitation, and we see that it indeed costs at least |fiwq| to create [58].

Just as in the KG case the destruction of the vacuum occurs when there are
particle-antiparticle pairs created with energy 2mc?. In the superfluid case this is
2hwy which is the energy of the second branch in (3.5) identified as the intrinsic
vortex-loop excitation of the superfluid.

The density of the KG equation is identified as charge density with the particle
and antiparticle having opposite charge. If we look at the density for the excitons
we get:

E-V FE-V
...)

PKG = me2 (A7)

hwo

What is the meaning of the different signs of the density (A.7) in the superfluid
case ? A possible meaning is that the field of resonating dipoles (excitons) can have
two configurations shifted by m. These two configurations are identical with respect
to the energy spectrum. We can therefore identify two ”charges” for the superfiuid
to distinguish between the two shifted phases.

If we compare the KG Hamiltonian (A.1) and the WIBG Hamiltonian (3.8) we
have simply that the roles of mc? and ¢, are interchanged. In this sense these two
Hamiltonians are complementary.
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