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MOIYN YV WHONND MANNN LY IpNn NNHn i ImMay
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ANN WD XYY .(Quantum Hall Effect) YOMpn 970 OPIN DV
MOV ONIN YV NINN IN N NPNIAD MXON NIN NNIN DTV
TPIIND NPN NOYA ININ TPYIAY DML DX . NINPONN mwbn
DPYP Y932 MPY NHNYUN NN NV 1NN KD TYUNI NDOPON
I9PID YN 0N IN DMVNNND

TPOMP NPOIINP DY MYMN IPNY DN DODON TN
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D91 DN DNIOPINY PONYTRN DHON SV 1MI0PN HNOKILIDL
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Abstract

Various problems dealing with the magnetic response of mesoscopic quantum
systems of degenerate electrons confined in a domain are considered. A mesoscopic
quantum system is a system which keeps its full quantum coherence over the whole
domain. It is argued that important characteristics of such a system does not
presuppose the knowledge of the exact energy spectrum for two reasons. Although
the system is finite and has therefore a discrete spectrum, the level spacing is so
small that any finite temperature in a realistic range although keeping the quantum
phase coherence, will always smooth the spectrum, so that the individual levels
will not be resolvable. The second reason is connected with our limited knowledge
of the exact spectrum. Indeed, due to inherent bulk disorder, to the shape of the
boundaries among other factors, the exact spectrum is not known in principle except
perhaps in a limited number of so called integrable systems. For those reasons, only
gross features of those spectra are measured. Asymptotic methods are developed
in this thesis in order to describe this smoothed response due either to a uniform
magnetic field or, an Aharonov-Bohm vector potential. '

We consider the problem of persistent current (magnetization) flowing in clean
or disordered rings. We observe that the disorder average of the persistent current is
equivalent to smoothing of the current over the spectrum of a clean ring. This leads
us to consider the smooth current in models with impurities, like the Kronig-Penney
model. The results show that the smooth quantities are sensitive to such properties
of the spectra as gaps and degeneracies. They are also sensitive to an approxima-
tion of the genuine Aharonov-Bohm field by a global gauge transformation, as a
calculation in an open system shows.

The random walk description of quantum localization as an asymptotic method
is presented. The self-consistent diagrammatic approach to calculate the critical
exponent of the localization length is shown to be equivalent to the random walk
picture, proposed by Allen. The critical exponent is obtained by an asymptotic-
properties of the random walk. Since the asymptotic limit of random walk is the
diffusion equation, we formulated the quantum localization as a boundary value
problem.

Then, we study the magnetic response of bounded systems in a uniform mag-
netic field (magnetic billiards). The spectral properties of such magnetic billiards

‘reflecting the interplay between the magnetic field and the boundary of these do-

mains are calculated. The necessity to distinguish between smooth contribution and
oscillations is emphasized. In particular the smooth part of the density of states for
the semi-infinite cylinder is found by two different methods. On the other hand the
classical picture of the edge and bulk states in the strong magnetic field is examined
from the point of view of quantum mechanics. To this aim we use semi-classical

1



methods to calculate the energies of the lowest Landau level in two separable bil-
liards - semi-infinite plane and disc. The method of asymptotic matching of the
WKB wavefunctions and the comparison equation method are applied respectively,
working surprisingly well even for the lowest energies.

The smooth part of the spectrum yielding the Landau diamagnetic susceptibility
is a paradigm to deepen our understanding of the notion of smoothing over the
energy of some thermodynamic quantity. The connection between smoothing and
approximating the exact quantity by the least squares procedure is raised. It is
shown that the smooth diamagnetic response of the electron gas on the sphere
and on the hyperbolic plane are identical to those of the plane, being therefore
independent of the curvature of the surface.

Finally, the question “how to choose boundary conditions?” is raised. We de-
velop the point of view that the boundary conditions should serve as an effective
theory in problems that are either too difficult to solve as they stand, or with in-
sufficient information about the system. In particular in the Quantum Hall regime
boundary conditions are desirable, which reflect edge-bulk duality inherent in this
problem. This requirement is shown to be satisfied by non-local boundary con-
ditions. Two choices of non-local boundary conditions are studied, the so-called
Atiyah-Patodi-Singer and the chiral boundary conditions. The former choice guar-
antees the existence of Index theorems, which we use to propose a new relation for
the Hall conductance. However there the energies are not continuous functions of ex-
ternal parameters (like an Aharonov-Bohm flux), thus obstructing the discussion of
adiabatic transport. On the other hand, the chiral boundary conditions give a con-
tinuous spectrum, which preserves the bulk-edge separation, and provide appealing
physical properties to bulk and edge.
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symbol meaning

A vector potential;

Ai Airy function of the first kind;

Bi Airy function of the second kind;

B inverse temperature,

c annihilation operator;

ct creation operator;

d dimension;

D(q,w) diffusion coefficient;

D annihilation operator in the Landau level;
Dt creation operator in the Landau level;
D, parabolic cylinder function;

A energy level spacing;

E energy;

e reduced energy;

f(E) Fermi-Dirac distribution;
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Chapter 1

Introduction;

We consider in this thesis various problems dealing with the magnetic response of
mesoscopic quantum systems of degenerate electrons confined in a domain. By meso-
scopic quantum system, we mean a system which keeps its full quantum coherence
all over the domain, i.e. such that the so-called phase coherence length is larger than
the size of the system (at low enough temperature). The fact that the system keeps
its full quantum coherence seems to indicate that in order to calculate its character-
istics, either thermodynamical or transport properties, we need to know the exact
energy spectrum, like for instance in related problems in atomic physics. It is not
the case here and for two reasons. The first one is related to the characteristic energy
scales of those systems. Although the system is finite and has therefore a discrete
spectrum, the level spacing A is so small that any finite temperature in a realistic
range although keeping the quantum phase coherence, will always be larger than A
and therefore will smooth the spectrum. The second reason is connected with our
limited knowledge of the exact spectrum. Indeed, due to inherent bulk disorder, to
the shape of the boundaries among other factors, we do not know in principle the
exact spectrum except perhaps in a limited number of so called integrable systems.
For those reasons, we measure usually only gross features of those spectra. And
the theoretical challenge is to develop methods in order to describe this smoothed
response. This is precisely the aim of this thesis.

Well known and successful methods have already been applied to this problem.
We may mention, among others the Random Matrix theory, perturbation expansion
for weak disorder (the so-called diffusive regime), non-perturbative field-theoretic
approaches like supersymmetry, or semi-classical expansions essentially based on
the Gutzwiller formula for the density of states. Each of those methods has its
limitations. Some of them do ignore microscopic features of the spectrum which
might still be relevant after smoothing (like RMT, or diffusion), or that it may
loose important spectral information by artificially truncating infinite series, or more
prosaically that some may give precise answer but are difficult to evaluate other than
numerically.

Here we focus our attention on the development of another point of view based
on asymptotic methods to the study of the magnetic thermodynamic response of

those systems. This is the guideline of all this work. Although we believe that it
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has a larger field of application, we shall mostly restrict ourselves to the case of
non-interacting systems (including Fermi liquids). Only in the last chapter, we shall
make a brief incursion in the physics of Fractional Quantum Hall effect.

Another theme of this thesis is the motives of choosing one or another boundary
condition in an idealized problem of quantum-mechanical motion in the mesoscopic
regime. In particular we suggest to widen the usual physicist’s choice of boundary
conditions in allowing for non-local ones, which are shown to be legitimate from the
mathematical point of view and could also be physically motivated.

An efficient tool to investigate quantum coherence effects in electronic systems
is the phase sensitivity of the electronic wave functions to the magnetic field. The
magnetic response of isolated finite-size systems is the main subject of research in
this work. The electron gas can be acted upon by a uniform magnetic field or, con-
versely, by the vector potential due to an ideal magnetic coil, which is impenetrable
for the electrons (an Aharonov-Bohm field). The main effect of the magnetic vector
potential is to break the time-reversal invariance causing thus a phase difference in
time-reversed quantum amplitudes. Because of quantum coherence, this gives rise
to magnetic field dependence of physical quantities. In the following we present the
outline of the thesis.

The next two chapters are devoted to the study of the magnetic response in a
setup peculiar to the Aharonov-Bohm effect. We start our discussion by formulating
the problem of finding the persistent current (or the magnetization) flowing in clean
or disordered rings. To observe these thermodynamic currents, originating from
the phase coherence of the electronic wave function, the temperature should be
sufficiently low to keep the coherence length of the order of the circumference of
the ring. At these sub-Kelvin temperatures the statistics of the particles becomes
important. We work within the grand-canonical ensemble, and therefore use the
Fermi-Dirac distribution.

Considering the persistent current, which is the magnetic flux derivative of the
grand-canonical potential, we immediately encounter the following problem - the
current fluctuates both as a function of flux and chemical potential. We expand
this function for small flux, and argue that as a function of the chemical potential,
the persistent current possesses two parts, a smooth one and oscillations (this point
of view seems to be accepted in quantum chaology, when the density of states is
considered). This remark, no matter how trivial it may seem is in our opinion very
important. It seems that several authors are not sufficiently aware of which part of
a thermodynamic quantity they are dealing with. We limit ourselves to the smooth
magnetic response. The smooth quantities are generally supposed to reflect only
macroscopic properties of a system, therefore it is important to notice that they are
also sensitive to the subtle effects of quantum coherence.

First the clean ring is considered, then we critically review the existing calcula-
tions of the current in disordered rings. It is surprising to find that all known to
us works on disordered rings do nothing else but smoothing out the clean system
current. However it is clear that the spectrum of the disordered ring is very different
from that of a clean system. Therefore we calculate the smooth persistent currents
in two models of one-dimensional systems, Kronig-Penney and Scarf, possessing cer-
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tain features of their spectra that distinguishes them from the clean one-dimensional
ring (like gaps opening instead of degeneracies of a clean system). Indeed we find
that the current is sensitive to those properties of the spectrum. It is much more dif-
ficult to deal with three-dimensional rings, because their spectrum is not available.
We show that problems arise when the weak disorder perturbation theory is applied
to calculate the persistent current. Since the statistical properties of the disordered
system spectrum is well described in terms of Random Matrix theory, it should be
of some help to this problem. We also discuss the smooth magnetic response in the
canonical ensemble as opposed to the grand-canonical calculation. ’

The vector potential of an ideal coil (Aharonov-Bohm flux line) is assumed to
be coordinate independent in the above calculations (it is equivalent to a global
gauge transformation). It is however important to understand how realistic is this
approximation if the ring has many transverse channels. Having this in mind, we
consider in the third chapter the magnetic response to an ideal coil piercing the
infinite plane, the vector potential being inversely proportional to the distance from
the coil. It should be noted that in this case the magnetization is not simply related
to the current and should be calculated separately. The results show marked differ-
ence from those in the coordinate independent vector potential case. Whereas the
smooth current in a clean system was zero, for the infinite plane we find non-zero
currents. Furthermore our calculation clearly shows the asymptotic character of the
persistent current, a point which was not clear before.

The fourth chapter is devoted to the random walk description of quantum lo-
calization. First we review the self-consistent diagrammatic approach to calculate
the critical exponent of the localization length. It is shown to be equivalent to the
localization criterion formulated by Allen, based on the random walk picture, from
which the critical exponent follows using the asymptotic properties of the random
walk. The asymptotic limit of random walk being the diffusion equation, we again
make contact with the main theme of the thesis, formulating the quantum local-
ization as a boundary value problem. The connection to the large n limit of the
n-component classical Heisenberg model with O(n) symmetry is mentioned.

Then, we study the magnetic response of bounded systems in a uniform magnetic
field (magnetic billiards). In chapters 5 and 6 we calculate the spectral properties
of such magnetic billiards due to the interplay between the magnetic field and the
boundary of these domains. On one hand we stress again the necessity to distin-
guish between smooth contribution and oscillations. On the other hand the classical
picture of the edge and bulk states in the strong magnetic field is examined from
the point of view of quantum mechanics. To this end we use semi-classical meth-
ods to calculate the energies of the lowest Landau level in two separable billiards
- semi-infinite plane and disc. The method of asymptotic matching of the WKB
wavefunctions and the comparison equation method are applied respectively, work-
ing surprisingly well even for the lowest energies.

In the sixth chapter we calculate the smooth part of the density of states for the
semi-infinite cylinder. We propose two different methods to perform the calculation,
both giving the same result. Our main interest is in the term proportional to the
length of the boundary which has in addition a magnetic field dependence. This
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term gives a perimeter correction to the Landau diamagnetism, an expression which
corrects a result obtained by Robnik.

The smooth part of the spectrum yielding the Landau diamagnetic susceptibility
is studied in chapter 7, where we try to deepen our understanding of the notion of
smoothing over the energy of some thermodynamic quantity. Taking as an example
the thermodynamic potential, we show that the calculation of a smoothed quantity
is equivalent to approximating the exact quantity by the least squares procedure.
In the sequel of this chapter we show that the smooth diamagnetic response of the
electron gas on the sphere and on the hyperbolic plane are identical to those of the
plane, being therefore independent of the curvature of the surface.

In the last chapter we try to answer the question “how to choose boundary
conditions?”. We feel that not enough thought is devoted to the question of physical
motivation for a particular choice of boundary conditions. We develop the point of
view that the boundary conditions should serve as an effective theory in problems
that are either too difficult to solve as they stand, or with insufficient information
about the system. After some general arguments, we turn to the Quantum Hall
regime (strong magnetic field) and argue that if one is willing to use non-local
boundary conditions, the possibility arises to define precisely the edge and the bulk
of a Quantum Hall system. Those definitions should shed some light on the edge
versus bulk controversy of the theory of the Quantum Hall effects. Two choices of
non-local boundary conditions are studied, the so-called Atiyah-Patodi-Singer and
the chiral boundary conditions. The former choice guarantees the existence of Index
theorems, which we use to propose a new relation for the Hall conductance. However
there the energies are not continuous functions of an external parameter (like an
Aharonov-Bohm flux), thus obstructing the discussion of adiabatic transport. On
the other hand, the chiral boundary conditions give a continuous spectrum, which
preserves the bulk-edge separation, and provide appealing physical properties to
bulk and edge.



Chapter 2

The average persistent current in
a small metallic ring.

2.1 Generalities.

To define the problem, consider a small weakly disordered metallic ring (the prop-
erly defined phase coherence length should exceed the circumference of the ring 27 R,
where R is the radius) placed in a weak magnetic field and we measure its magnetic
response. In the limit of a thin ring, of width w much less than R, electrons can
be assumed to move in a field free medium, all magnetic field contained in the hole
(Figure 2.1). This approximation seems quite natural in the semi-classical picture,
which should hold for electrons moving with Fermi velocity vp. The information nec-
essary to calculate the semi-classical thermodynamic quantities is related to classical
periodic orbits, more precisely, their stability properties and the actions associated
with them are needed. The only modification in the presence of a weak magnetic
field is the additional term in the action equal to the magnetic flux, encircled by
the periodic orbit {1]. In a thin ring, there are two classes of orbits - those that
wind around the hole and those that do not. The first class subtends the area, pro-
portional approximately to an integer times the cross-section of the hole, the area
subtended by the second class loops is smaller and negligible. Since the magnetic
flux is proportional to the area encircled, this justifies our approximation.

Hence the setup characteristic of the Aharonov-Bohm (A-B) effect [2] is elec-
trons moving in a field-free domain, subjected to the vector potential of a thin coil
threading the ring, the magnetic field contained perfectly inside the coil. This vector
potential is an azimuthal field taken usually equal to

]
Ag = o (2.1)

where ® is the magnetic flux in the coil. The one-electron Schrodinger equation to
be solved is most conveniently written down in the cylindrical coordinates

h? 8, 8 ?
S gy g i+ ) VG =B (22)
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here V(r) is the random potential, ¢ = &/®, is the magnetic flux, measured in
units of elementary flux quantum &, = hc/e. The following assumptions are made
about the disorder potential: it has a vanishing average (V(r)) = 0, it is §-correlated
(V(r)V(x')) = v6(r — '), with 4 = 1/2w7p(n), here 7 is the transport elastic scat-
tering time, p(y) is the density of states at the Fermi energy. It is important to note
that the gauge transformation A9 — Ag—®/27r (which for the wave-function means
P — e7*%9) reduces (2.2) to the magnetic flux independent equation. However as
it should be, ® does not dJsappear from the problem, modifying periodic boundary
condition in the following way

P(r,0 + 2m) = e2™g(r, 9). (2.3)

The electrons motion in the ring due to the magnetic field gives a finite magnetiza-
tion. In the limit of a very thin ring, this magnetization equals the current flowing
along the circumference times the area subtended by the ring. This current is purely
thermodynamic, non-dissipative, and usually named "persistent current” [3]. The
current density in the n’th quantum state is from the continuity equation

o= Tt — i) (24)

On the other hand, using perturbation expansion in the reduced flux ¢, we obtain
from the first order term of the energy:

dE = i / o ¢* —ip),. (2.5)

The current is by symmetry the radial integral of the current density I,, = [ drjs.
Substituting (2.4) in this equation and comparing with (2.5), we get the following
formula for the persistent current flowing in the n’th state

cOF,
n=—— . 2.6
g e 0% (2:6)

Due to the presence of V(r) equation (2.2) still poses a difficult problem (with the
exception of the clean ring to be treated later), therefore an additional approximation
is made. The ring is cut and straightened up to a rod. The rod is then copied an
infinite number of times along the « direction to give a lattice with the initial rod
as the unit cell. An electron in the lattice moves according to the usual Schrodinger
equation with the periodic potential V(z,y,2) = V(z + 2x R, y, z). Within the unit
cell this potential is random with previously stated properties. Bloch theorem [4]
holds for this periodic Hamiltonian, so that to each eigenstate i a wave vector k
is associated ¥(z + 27 R, y, z) = e?™’*y(z,y, z). Using ¢ — €*29), the Schrddinger
equation acquires the form

h2

2 (2 itk + —"32— + L+ View = By, (27)

The wave vector k is therefore parallel to the reduced magnetic flux ¢. The analogy
goes as far as the connection of the current with the derivative of the energy. As is
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Figure 2.1: Schematic drawing of the problem setup.

well known, the mean velocity of the Bloch electrons is given by v, = 9E,[/d(kk),
a relation equivalent to (2.6). Equation (2.7) is what we will consider from now on,
using the notation @/R for hk (mention has to be made that equations (2.2) and
(2.7) are equivalent in the case of one spatial dimension).

Finally we would like to list three general properties, common to both A-B and
Bloch problems. These are known as Byers-Yang theorems (5]

1. The energy levels are periodic functions of ¢ with period 1 (this follows from
the formulation, where the flux enters only through the boundary conditions

(2.3)).

2. The energy levels are even functions of ¢ (this follows when taking the complex
conjugate of the Schrodinger equation).

3. The partition function is an even periodic function of ¢ with period 1.

2.2 The clean one-dimensional ring.

A very useful exercise to do before getting to more complicated calculations in the
disordered ring is to conmsider a one-dimensional clean ring, threaded by the flux
carrying coil. In this simple system the persistent currents can easily be found
explicitly [6]. The one-electron Schrédinger equation is just (2.2) or (2.7) adapted
for one-dimension. The conserved angular momentum will be denoted by . The
energies of the eigenstates are

K2 5
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The persistent current in this eigenstate is according to (2.6)

k

The total current I is equal to the sum of I; over occupied eigenstates. Suppose
for simplicity that the temperature is zero and there are N electrons in the ring.
Ignoring the spin, we have to populate the N lowest energy eigenstates as required
by the Fermi principle. Because of Byers-Yang theorems the persistent current is a
periodic odd function of ¢ with the period 1. If the number of electrons N is odd,
the total current is

Nhp

T 2rmR?
therefore it is a discontinuous function at the half-integer values of . We call this
current diamagnetic, because it is negative when the reduced flux is a small positive
number. If on the other hand N is even, the current turns out to be

I

—0.5< 9 <0.5, (2.10)

I=—Nh(p—1/2)/2rmR* 0<p<1. (2.11)

The discontinuities in this case occur at the integer ¢’s. This current is paramag-
netic, being positive for small positive reduced flux. Instead of keeping the number
of particles fixed, we could attach the ring to a reservoir of electrons, thus imposing
a constant chemical potential x in the ring. Then, as ¢ is varied, the number of
electrons can change - an electron can escape to the reservoir or alternatively it
can flow from the reservoir into the ring. This happens, when the energy of the
electronic eigenstate coincides with the chemical potential u at some value * of
flux. Because of Byers-Yang theorems, for the flux 1 — ¢*, the number of electrons
changes again, so that at ¢ = 2 it is identical to N(¢ = 0) (in the one-dimensional
ring N can change discontinuously only twice in the interval 0 < ¢ < 27). The per-
sistent current will have discontinuities at ¢ = ¢* and ¢ = 1 — ¢*, otherwise being
similar to the constant N cases. This discontinuous nature of the total current in
the grand canonical ensemble (constant p) is quite general, requiring only a discrete
spectrum, and therefore also true for the disordered rings. It is of certain interest
to calculate the average of the persistent current over the chemical potential, hence
over the energy, because this could give some indication about the average over the
disorder in the dirty rings. We should do the calculation for a non-zero temperature
T in order to smooth out the singularities of the total current as a function of .
For the finite T' case, the correct formula for the total grand canonical persistent

current is
1

eﬁ(z_—l-l)_l_—l, (2.12)

I= 3 Lf(E),  f(z)=
l=—00

with E; and I; given by (2.8) and (2.9) respectively, f(z) - the Fermi-Dirac distri-
bution. The current for the one-dimensional ring has been calculated before in the
form of Fourier series [6], but we would like here to present another line of argument,

which in our opinion can be generalized easier for more complicated cases.
Our argument is based on the use of the Euler-Maclaurin summation formula
to sum (2.14). It is important to realize that when used to evaluate an oscillating
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quantity, the Euler-Maclaurin formula smoothes out the oscillations, therefore when
applied to calculate the persistent current, it should directly yield an average over
the chemical potential. A reminder seems to be in place for the Euler-Maclaurin
summation formula, which is to be understood in the asymptotic sense [7]

ECE /F(k) B-FO+FO}+ S F@-FO) (1)
720 {Fm (n) J (0)} Foe (_1)9- @ {F(Zp—l) (n) — F(2p-1) (0)} + e

here B, are the Bernoullian numbers.
The quantity to evaluate is, according to (2.12)

I= f: io (1 — ) (2.14)

W= eBeo(l-¢)~Bu 1 1’

here 1o = h/27mR? and ¢ = h*/2mR?. Bis 1/kpT. We suggest to expand (2.14) in
the reduced flux ¢, and to use the Euler-Maclaurin formula separately at each order
of this perturbation theory. Of course the temperature should be kept finite to have
a well-defined perturbation theory at all - the current is a discontinuous function of
¢ at T = 0. Now, according to the Byers-Yang theorems, the persistent current,
being the ¢ derivative of the grand canonical potential, is an odd function of the
reduced flux. Hence the perturbation expansion of I will only contain terms with
odd powers of ¢: I = I1p + I3® + ... The first order in ¢ is found to be

o= 3 (<gms (B) - g B (B)

-0

=y Pesfol? e (2.15)
- ;_:w eﬂ‘°” -ﬂu +1 (eBeol~Bu 4 1) '
and the third order is
haid 1 i
L= 3~ (B (B) = 5o BB " (B) = p~(BD'f " (B, (216)

l=—o00

here E;, Ej|, E{' are the energy, its first and second derivatives with respect to the
reduced flux ¢, evaluated at ¢ = 0. We start with the first order, which can be
rewritten in a form suitable for the application of the Euler-Maclaurin formula

—1 —~219 4Begiol2eleol’ —Bu
I e=Bu + 1 Z ﬁfolz—ﬂ# + 1 Z ( Begld-Bu + 1)

(2.17)

Using now (2.14) to calculate the first sum in this formula, we will find that the
term —(1/2)F(0) is exactly canceled by the first term of (2.17), where F(z) =
1/ exp(Beoz? — Bu). All the other terms in the series, except the one given by the
integral, vanish. The only non-zero contribution to the second sum in (2.17) may
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also result from the first term of the Euler-Maclaurin series. Therefore to first order
in @, the persistent current in the one-dimensional ring is asymptotically equal to

—9, < ;2 Beoz? ~Bu
29 /dz4ﬂeozom e (2.18)

T |
1 / zieﬂeoz —Bu + 1 + (eﬂéozz-ﬂ# + 1)2

It is sufficient to calculate the first integral, since the second one is proportional to
the derivative of the first with respect to ¢o. We will digress now to evaluate it.
Remember that a = Bpu is a very large parameter, hence the expansion of the first
integral in 1/a would suffice. The integral is separated into two parts

oo va oo ’
1 1 1
/dwzz—_a—'— = /d:cz,—_a——-—+ /dw—:,—:a_ (219)
. € +1 , e | +1 Ja e +1
The first term is transformed expanding the integrand into the geometric series
va 1 Va
/ dz——— = / dz(1 - e~ 4 ez("n"") — )
eTma 41
0 0
va 1 V2a
2 2
= JVa—-e™® e'dz+—e'2°’/ Tdy — ...
[T

The resulting expression is the series of the error functions, for which asymptotic
expansions for large arguments exist and can be found among others in [8]. Using
these asymptotic formulas, the large a behavior of the first term turns out to be

Vo 2
™

1 1
dp——— - ——— 4., 2.20
o/ z Vva zﬁmz waE T (2.20)

ex’-a 41 ~

The second part in (2.19) is transformed multiplying and dividing the integrand by
exp(—z? + a). Afterwards it is also expanded into geometric series, now involving
only the complementary error functions

) oo 2
1 e—z.+a
dz——— = / de—S——
[t = [

x

NZY
= / dm(e—=’+a _ e—Z(zz—a) + e—3(::2—cx) - ')
Va

[ -] 1 (=]
= e“/dze’“2 - 7§e2°‘ / dze™ + ...
va V2a
Once more using the asymptotic expansion of the large argument complementary

error function, the second term is asymptotically equivalent to

7 1 1 w2
\//_dzec’-a 17 2\/3(1112 " 2a

+oe0). (2.21)
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Adding (2.20) and (2.21), the leading asymptotic term of the whole integral is seen
to be

o 2

1 T
d o~ S I 2.
o/ a1~ Ve T aan (222)

Coming back now to the two integrals in the expression of the persistent current
(2.18), the first one is easily found to behave as

7 R 2ig, |2 4 — 00 (2.23)
Beadd—Br L 1D TAA T T T U172 ase .
, ePeos’-Pu 4 1 €0 12,326(1,/211.3/2

The second integral, as was already mentioned is proportional to the derivative with
respect to € of the first one. Therefore its asymptotic form is readily derived from
(2.23)

iy s 2 _Begx?— 2,;
/dz4ﬂ6020z eBeo ﬁzp ~ 2, £'. _ _mhy b (2.24)
(eBeo=*—Bu 1) € 1282 *ud/?
As a result, first order in ¢, the total current, Iy is asymptotically zero - the two
terms forming it are large, but have opposite signs.
In the third order (2.16) all three terms can be computed according to the same
pattern. Consider for instance the first term

oo : Btol.z-ﬁ#
Z (Ell) f (El)- E Beotoe

1=—oo ¢ 12 o0 (80P ~B1 + 1)

It is not difficult to get convinced that from all the Euler-Maclaurin series only the
first term is non-zero (here again we separate | = 0 from the rest of the sum, and
this term is canceled out by the second term in the summation formula). Therefore
we are left with

— — %0 " 2 T 2ﬂ€0ioem°zz-p"
X B (B 0/ o7 et 11 (2.25)

This integral is also a close relative of (2.19). Namely, it is proportional to the
derivative of (2.23) with respect to p. More precisely

12 €0 3r ioéll
_’_X—:w ENf!(B) ~ \/; 24 5/z+"'- (2.26)
Another two terms are of the same order, the second twice as large as the first with
the opposite sign, the third one equal to the first, and all three together give zero
average persistent current again. Our conclusion is hence that the persistent current
averaged over the different values of chemical potential is zero up to third order in
perturbation in the reduced flux. '

To further substantiate these conclusions, we would like to show that the leading
behavior of different orders of the perturbation can be inferred from few very simple,
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though less rigorous arguments. We know a posteriori that the leading asymptotic
expressions to be found are temperature independent. Therefore we assume that
T = 0. The first order of the persistent current consists of the two parts (2.15) -
diamagnetic and paramagnetic, I¢ and I? respectively. The diamagnetic part, to
remind, is
B= 3 —Hf (B). (2.27
I=-00
The Fermi-Dirac distribution for T' = 0 allows only for states with energies less than
the chemical potential in the sum (2.27). At zero flux and zero temperature the
chemical potential fixes the number of particles N. Let Ir be the "Fermi level”,
defined by g = €gl%. Then because of degeneracy N = 2lp. Since E/' = 2¢p, the sum
of the Fermi-Dirac distribution is equal to the number of particles and the previous
result (2.23) follows
IF ~ —igN = —2ig, [ £
€o
The paramagnetic term involves the derivative of the Fermi-Dirac distribution
) iO
== 3 o (E}f(E). (2.28)
I=—00 “€0

Strictly speaking, because this derivative is proportional to a delta function, the
expression (2.28) is not well defined. We claim that instead of a sum over the
discrete states, an integral over the continuous spectrum appears. This integral is
then equal to the integrand evaluated at the chemical potential times the density of
states there. The density of states can be approximated by the degeneracy divided
by the level spacing A at the chemical potential. Because E! = —2leg and A = 2lreo

I} ~ digeol3/A = iy | 2.
€o

Indeed the paramagnetic current is of the same magnitude as the diamagnetic one,
but of opposite sign. The diamagnetic part of the persistent current is the sum of
the small second derivative of the energy over all the occupied states, whereas the
paramagnetic part is proportional to the square of the large first derivative of the
energy taken only at the chemical potential (only the level that crosses the Fermi
surface contributes).

The cancelation of diamagnetic and paramagnetic parts of the current has two
different causes: the first is the averaging over the energies itself, as before doing it
the current was evidently finite; the second one is the special form of the energies, for
it is probable that if the energles would have a different ¢ dependence, the current
would not cancel out.

2.3 A one-dimensional ring with impurities.

It seems to be a matter of consensus that the grand-canonical persistent current
vanishes after disorder averaging. One possible calculation demonstrating this is
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given in [9], where the authors starting from (2.12) transform it to the following

form
— —c.C. ). 2.29
21r,¥ f(E ( eo(l—c,o)z-i-;—’,i ¢ (2:29)

This would be the current in a one-dimensional clean ring, if the poles of the inte-
grand in (2.29) were placed on the real axis in the complex E plane. However, the
poles in this case are removed by /2 from the real axis, thus smearing the states
over this energy scale. Such a smoothing of the spectrum gives smooth, averaged
quantities and is a well-known method to calculate the asymptotic expansion of the
density of states for the large energies [10]. Therefore the method to find the aver-
age grand-canonical persistent current suggested in [9] is nothing but another way
of smoothing the current in the clean ring over the energy. This is exactly what we
did in the previous section. However is the average all what the disorder does? Are
the properties of the spectrum itself unimportant? This could hardly be the case,
because as is clear the disorder affects the energy levels by removing the degenera-
cies and inducing a level statistics which substantially differs from that of the clean
system. We suggest then to consider a one-dimensional ring with impurities, still an
integrable system, but possessing a spectrum different from (2.8), to find its average
current and check if it is also zero.

The simplest thing that comes to mind is a ring with one impurity represented by
a Dirac delta-function, in other words the Kronig-Penney model. The corresponding
Schrodinger equation is

S (%_;) b+(es(6)-E)p=0. (230)

This model is the simplest possessing a conduction band and forbidden gap structure.
In our case the bands correspond to the energy levels depending on the reduced flux
(note that the reduced flux here is defined with %, instead of A, therefore its unit is
21). The equation can be derived that leads to those energy levels [11]

gsinz\ + cos A = cos ¢, (2.31)

here A2 = E/¢o and P = Vy/2¢. This is a transcendental equation and it can not
be solved to give an analytic expression for the energy. However to do the required
smoothing of the persistent current to the leading order, only very large energies are
relevant. Our goal now is to do the perturbation in ¢ for the total persistent current
up to the third order and then smooth over the energy the exact expressions. To
that purpose, we need the expansion of the energies up to the fourth order in the
reduced flux with the sufficient accuracy.

The left-hand side of (2.31) is an even function of X, therefore we can consider
only positive A’s. First take ¢ = 0. Immediately we see that A; = 2xl, I # 0 solve
(2.31). In addition to these, there is another set of solutions, given asymptotically
by

3 p? P\ P p p
3 = 2rl+ P l———(l —) i 0 2.3
= ol Pl s (145 +4(ﬂ)5( + o+ )+ (17) (2.32)
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here we think of I being the large parameter and solve (2.31) order by order. For
the sake of consistency, P should be taken as a small number. The first derivatives
at ¢ = 0 of both ); and ); are seen to vanish (in fact all odd derivatives at ¢ = 0
are zero). For our purposes we will need the second and fourth derivatives of both
sets of energies. For the first set, both derivatives can be calculated exactly

N = —2rl/P,

iv 2rl 271\
’\l = ?(3(—5—) +6/P+1),

here the derivatives are taken at zero flux. For the second set both derivatives can
be found again expanding the equation (2.31) for large I’s, order by order. After a
somewhat lengthy calculation, using (2.32), we obtain

< P

A 3+ P+ P%/20) + O(1/1%),

, Tl 3T P+ P/20) +0(1/1)

i 2nl [ [(2x1\® 6 6 (6 3P

M= ‘?(3(?) +F+1)"H(P+2+%)+O(zs)

The corresponding energies up to the fourth order in ¢ are then

o ot BB () )
Bela = Caf+ap— (B) 014 D)y O
— %’2— (3 (2%’) +%+1) <p4—(75+2+%)904+---,(2-33)

here the energies of the second set contain also lower powers of 1/I, not relevant
to this discussion. The total persistent current in the grand-canonical ensemble is
according to (2.12)

———Z(f(E (22O 4 (5o >)3E‘(“’)) (2.34)

The first order term in the small ¢ expansion of the persistent current is
1& - =
h=-+ > (F(E)E] + f(E)EY), (2.35)
=1 ’

here again the energies and their derivatives are to be taken at zero flux, from (2.33).
The problem however is that the second equation in (2.33) is only valid for large
energies (large I’s), hence we do not possess the analytic expression even for the first
term in ¢ expansion, I;. This prevents us from using the Euler-Maclaurin formula to
smooth the current over the spectrum. We are left with somewhat loose arguments
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to evaluate the leading term of the total persistent current, which we used in the
previous section for the case of the clean ring. Substituting the actual energies and
derivatives into (2.35), we have for the large energies

RS 2—§-7r2—iow €0 xl)® —8—7r2
Lo~ e} f (wGa)) () 3£ (co (2r1)* +47)) (5w +4)
S 2Y 4 _ ' (e (21)? 60-8—1r2.' .
~ —zolz:;f(eo(21rl))4 £ (eo(2ml)?) 4P (P( l)) | (2.36)

The two terms in (2.36) can be evaluated taking the temperature to be zero. The
first term is proportional to the number of particles in the ring, the second one
should be treated exactly like (2.28) - considering the integral over the energies
instead of the sum. These arguments give the following result for the leading term
in the asymptotic expansion of the first order in ¢ of the total persistent current in
the one-impurity ring

€o T €0

Therefore as in the case of the clean one-dimensional ring, the first order in the flux
contribution to the current vanishes. We go to the third order now, which for this
model is according to (2.34)

o B _ Fiv Iy _ (B
Ii=—7 > (f(pz)T‘ + f(B) - + f ’(El)(—Eél +f '(E‘)( ;) ) '

Substituting the actual energies (2.33) into this equation, we find the following,
quite tedious expression for I, involving terms with different powers of the large
parameter [

Is ~ —ig zé f (e (211 (—23711’;)1 (3 (-2%’)2 + % 4+ 1)
+iogf (eo ((21rl)2 + 4P — <£)z (1'+ —}32))) %’D—)z (3 (g;r?l)’ + % + 1)

+ioi (f (eo (21rl)2) (% +2+ %)4 —f (60 ((21rl)2 n 4P)) 2(2;12) eo)

=1
- 8 (27l)’ €0 2(2rl)* e
! 2 ! 2
_1012:; (f (60 (27('1) ) ————?—- + f (60 (27!'1) ) —}—)-2—‘ .
This expression can be simplified by expanding the arguments of the Fermi-Dirac

functions in 1/I, then quite a few cancelations occur ‘and a simple formula remains

= 2y, 6 3P , 2 42r)’ e (9
I3 ~ zog(f(eo(21rl))(;+2+—23)4+f (60(27rl))—?——(-}-5+1))
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—%oz ( ( (2n) ) -(2—7;)—2(1 + g) + £ (60 (27rl)2) 8(27;5) €o>

= zoz f (eo (2m) )( +2+ )4 (2.37)

The asymptotic analysis using the Euler-Maclaurin summation formula now can
be applied on the expression in (2.37). Using the expansion (2.22), the following
asymptotic result is obtained for I3

% [E 6 ior 6
I~ B2 W 0, 2.38
T €0P 12,326(1)/2[113/2}) + ( )

The result (2.38) is non-perturbative, in the sense that taking the strength of the
delta-like impurity P to be zero gives a diverging expression. This is due to the
nature of the curvature at zero flux, which becomes greater, when P is reduced. An
interesting temperature dependence of (2.38) should be noted - the leading term is
temperature independent, the correction increases with the temperature, reducing
the current quadratically. The two terms become comparable at an enormous tem-
perature Bu = 1 (practically this temperature is not relevant, being higher than the
melting temperature of the ring).

We obtained here a non-zero (in fact paramagnetic) contribution in the third
order term of the reduced flux expansion of the current, illustrating the point that the
smoothed persistent current is definitely sensitive to the properties of the spectrum.
Thus by smoothing the current over the spectrum of a clean system one could miss
the important effect the disorder has on the energy levels, which at the end could
give rise to a non-zero average current. Under the impression of these arguments one
would be tempted to think that each time the degeneracy of the clean spectrum is
removed by opening gaps, a finite average current should turn out as a result of the
smoothing. Things are however more subtle than that as we show now considering
a model system possessing finite gaps in its spectrum, but for which the average
current nevertheless vanishes.

Consider a particle moving in a one-dimensional ring with a singular potential
which obeys the following Schrodinger equation

B2 (8 e\’ Vo
 2mR? (% - 1517) V- (sm 2(0/2) + E) v= (2:39)

This model was solved by F. L. Scarf [12] in the context of periodic potential theory.
It is more convenient to represent the equation (2.39) in different variables

8 .o 1/4 ~
(F-i2) o (Bt n)omo. ow

where 6, = 6/2, o1 = 2p, Ay = 2) and 1/4 — s? = 4V, /. In the sequel we shall
drop the subscripts in the notations, hoping that this will not lead to confusion. The
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energies as functions of the reduced flux are found from the equation first deduced
in [12]
A = arccos (sin 78 cos p). (2.41)

Inverse cosine is a multivalued function, its different branches giving rise to energy
levels. At ¢ = 0 these are \; = m(1/2 — s+ 2I), when [ here is allowed to be any
integer (positive or negative), in contrast with the Kronig-Penney model, where it
had to be positive. As for the Kronig-Penney model, the odd derivatives of A in
the reduced flux at ¢ = 0 vanish. The second and fourth derivatives are easily
calculated from (2.41) and turn out to be l-independent o

A = tanmws A
A= - (tanws + 3tan® 1r3) . (2.42)

The corresponding energies up to the fourth order in ¢ follow from (2.42)
Ei(p) = Z—O(ﬂ'2 (1/2—s+20)* +m(1/2—s+20) (tanws)p?
+i—(ta.n 7)ot — —l%(tan xs+3tan®ws)(1/2 — s + 21) p*). (2.43)

We are ready now to calculate the first and third orders of the persistent current in
¢, which are given by ’

L = —%l_i f(B)E!, (2.44)
=33 (f(E:)iEg'—Wf'(E,)@;"—)). (2.45)

The explicit expression for the first order term is obtained inserting the relevant
information from (2.43) to the general equation (2.44)
iO b 601I'2 . 2
I = ~3 > f vy (1/2 = s +21)*| w(1/2 — s + 21) (tanms). (2.46)

l=—00

We have a closed and simple enough function of I in the sum (2.46) to smooth
it over the spectrum and to apply the Euler-Maclaurin summation formula will be
applicable. The calculation is very similar to that performed for the one-dimensional
clean ring. We split the sum into three parts - positive, zero and negative I’s, and
after an inspection of the general formula (2.14), only two integrals corresponding
to positive and negative [ parts are seen to give substantial contributions

eﬁ%(1/2—1+2z)3—ﬂu +1 eﬁ:‘,(l/z—a—zc)z—ﬁy +1 ’
(2.47)

here €, = eom?/4. However it is easy to get convinced that the expression in the
brackets of the left-hand side of (2.47) is zero. Hence as for the free ring and for the

I~ _% (b/‘ d31r(1/2 — 8+ 2z)(tanms) 4 b/dzw(l/z — 8 —2z)(tan7s)
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Kronig-Penney model, the first order in the reduced flux of the persistent current
vanishes.

It is convenient to separate the third order term of the persistent current (2.45)
into two parts in the following way

Ig) = -;% Z f ('e'o (1/2-s+ 21)2) 7(1/2 — s + 21) (tan s + 3tan® xs),

19 = z° > f(eo(1/2—s+2l) )tan 78

l——oo

Z ! (60(1/2—s+21) ) 28, ((1/2 — s+ 21) (tanws))?,  (2.48)

l——-oo

where the third order current I3 = Igl) + I,E”. The first part is proportional to
the first order contribution (2.46) and therefore is zero asymptotically. The second
part after a similar line of arguments as the one that led to (2.47), is seen to be
asymptotically equal to

I:EZ) ~ _i_o/.dz ﬂ(ta;n_;rs)z /d 2ﬂ€o$2(tanﬂ'3) Beom —ﬁ/.l (2.49)
4 eBeoz?—Bu ]_ eﬁeo”z—ﬁ“ + 1)

The first integral is proportional to the integral in (2.19). Using its asymptotic
expansion valid for large Sy (2.22), we obtain for the leading term

i—o d:c-g—azntfz— ~ z.—0(1;an7r.‘;)2 ,_ﬁ
1) Copeian 1" 2

The second integral in (2.49) is proportional to the derivative of the first one with
respect to €, and has the following asymptotic form

., oo
_0/‘ 2Béz*(tan ws)? eﬁeoz pu _ o (ta.n 7rs)2 #
4 2 eﬁeozz—ﬁp + 1) 4 €o

As a result the third order in ¢ of the persistent current is zero in the Scarf’s
potential, thus providing an example of a system with a non-degenerate spectrum,
but vanishing smoothed current. The situation here is unlike that in the Kronig-
Penney model, where the current was finite due to repulsion of the neighboring
levels. It would be extremely desirable to understand the general principles causing
the smoothed persistent current to be zero or finite.

2.4 Disordered many-channel ring.

A one-dimensional ring is not a particularly relevant system experimentally (though
an experiment was reported on almost one-dimensional ring, fabricated in semicon-
ductor based structures [13]). The two important experiments [14, 15], where the
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persistent current was measured, were performed on thick metallic rings. For exam-
ple in the experiments of the IBM group [15], the magnetization of three different
gold loops was measured. Two of the loops were rings of diameter 2.4 and 4.0 pm,
the linewidths of the loops was ~ 90 nm and the thickness of the Au films ~ 60 nm.
The number of transverse channels in such a ring can be estimated to be approx-
imately 23000. An oscillatory component in the magnetic response was measured,
oscillating with a fundamental period ®,. The amplitude of this oscillatory current
was found to correspond to a persistent current at T' = 0 of order (0.3—2.0)evr/27R

(in our notation this current corresponds to o4/p/€0). Such a value proved to be a
theoretical challenge, and our work is another attempt in that direction.

We suggest continuing the study of the persistent current along similar lines as
in the case of one-dimensional systems. Namely, we expand the persistent current in
the reduced flux, and smooth the result at each order over the energies. Since the ring
has a width, which is large compared to the Fermi wavelength of the electrons, one is
tempted to use the diagrammatic technique [16, 17] to average over the impurities,
based on the Green’s functions formalism. As we hope to show later in this section,
this route has its perils, because the method is only applicable for extended systems,
whereas it is crucial in calculating the smoothed current to take into account the
statistics of the energy spectrum, which is possible only by considering a truly finite-
size system. In fact the calculations giving zero disorder average of the current, are
found to be equivalent to the smoothing over the spectrum of the clean ring presented
in the second section.

Nevertheless, we will present now the perturbation theory for the persistent
current in terms of Green's functions. We shall work with the Hamiltonian (2.7),
which represents the periodic (and disordered) potential problem. The Hamiltonian
H can be separated into two parts - an unperturbed one, Hp , which does not depend
on the reduced flux, and the perturbation Hj, containing all the dependence on ¢

K 8 o2 6%
mas T oy T o) T V)

Ho=-

h
H, = Rp._,,cp + eop?. (2.50)

We define the retarded and advanced Green’s operators, G? and G respectively, in
the usual way

1
R,A
G*(E) = AL T (2.51)
Then, the persistent current is given by
7 dE OH
I= | 2o =Tt f(E) (GA(B) - GR(E)) L (2.52)

where the integration is in the complex E plane, along the contour closed in the
upper halfplane. The formal perturbation series in ¢ is obtained, by expanding the
Green’s function with respect to the perturbed part H; of the Hamiltonian

G4 (E) = G A(E) + Go*(E)H\ Gy *(E) + -+, (2.53)
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here Gg*4(E) is the unperturbed Green’s operator, G4 (E) = 1/(E — H, + in).
Using the expansion (2.53 ) it is a simple matter to write down the different orders
of the perturbation theory in the reduced flux for the current. For example, the first
order term is

o0

L = —io/%’l‘rf(E) (Ga‘(E)—G{,*(E))
_%/ @rﬁf (B) (Go(E )sza‘(E)p,—c.c.), (2.54)

In this form, we can average (2.54) over the disorder. To this end, the plane wave
basis is used, and the disorder averaged Green’s functions can be shown to be [16, 17]

1
GHA(E)) = ———, | (2.55)
R ey

the brackets here indicate the average over the disorder, and p is the momentum.
We insert now these Green’s functions into (2.54 ), obtaining the disorder averaged

current (I;)
. T dE [ Vdp 1/2
_zo—[o — (27rh)3f( ) (——-—-——-———‘_h_ ~ c.c.)

27

. T dE [ Vdp p/2m
—1g / — (2nh)’ f(E) ((E o i!.i.)z - c.c.)

- [ e ()

. dE r Vdp ., pi/2m
_zo_[o (27rh)3f (E) (—-—: — c.c.) (2.56)

(h)

2m

The second term here has been integrated by parts; V is the volume of the system.
This result should be compared with the first order of the persistent current in
the one-dimensional clean ring (2.15), the similarity between these two formulas
is clear. Now we will calculate the integrals in (2.56) and show that smoothing
over the spectrum in the clean one-dimensional ring and doing the disorder average
in this extended three-dimensional system yield the same results and are basically
equivalent, i.e. (I) = 0. The integration of (2.56) is particularly simple for T = 0.
The first, diamagnetic term in (I;) is equal to —2oN, where N is the total number
of the electrons in the system. The paramagnetic term is evaluated recalling that at
T = 0 the derivative of the Fermi-Dirac distribution is up to a sign a delta function
at the Fermi energy Ep

. 1
(h)F = 210VP(#)#§-
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Here p(p) is the density of levels at the Fermi energy, which according to [4] is con-
nected to the density of the particles in the system via p(p) = 3N/2V . Therefore
the paramagnetic part is equal in magnitude to the diamagnetic part of the current,
but opposite in sign, thus cancelling the first order in ¢ contribution of the persis-
tent current in the extended system (this was also the result in [18]). This is exactly
what was obtained for the one-dimensional clean ring. To remind, the magnitude of
both diamagnetic and paramagnetic terms in that calculation was ioy/p /€0, which in
one-dimensional case is precisely ioN. Then it is clear, that the disorder averaging
in the extended system is nothing but a smoothing of the relevant quantity over the
spectrum of the clean system, and since the spectra of the one-dimensional clean
ring and our extended system defined by (2.7) with zero potential are similar (the
reduced flux acting only along one axis), it is not surprising after all to obtain the
same results.

All what has been said remains true for the third order term in ¢ of the persistent
current, Averaging over the disorder is very much alike smoothing the third order
contribution of the current in the clean one-dimensional ring. Indeed consider the
expression for I3 in terms of Green'’s functions, which can be derived by substituting
the expansion (2.53) into (2.52),

o0

e — é’%’n F(E) (GA(B)GA(E) - c)
%%ipeo [ dE
= —Tx f(E) (Gg(E)szg(E)p,Gg(E)—c.c.) (2.57)
icko [ dE
e [ 0 (5) (GBI I GAEIR Bpn ).

After the disorder averaged Green's functions (2.55) are inserted into (2.58), the
integrals over the momenta p (the traces) can be performed, and each term which
appears has the form of one of the terms in (2.16), except that the sum over discrete
index [ there should be substituted by an integral over the energies including the
three-dimensional density of states. We then obtain

Iy = —icto [ dE £(E)(E) - 222 [ 4B "(B)p(E)E
_4"105“_/ dE §"(E)p(E)E?. (2:58)

In fact would we have used the one-dimensional density of states, and one-
dimensional momenta to integrate (2.58), the result would have been exactly equiv-
alent to the smoothing of the current in the one-dimensional ring. This once again
makes the point that the so called disorder averaging is nothing but one among
many other ways to smooth the physical quantities over the energies (another way
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for instance is the use of the Euler-Maclaurin summation formula). The factors ap-
pearing in (2.58) because of the angle integration of the three-dimensional momenta
combine with the three-dimensional density of states (one has to keep in mind that
the three-dimensional density of states is proportional to the square root of the
chemical potential, whereas in one-dimensional it is inversely proportional to Vi)
to give again a zero result for the smoothed I;. This was not unexpected, as we said
earlier, because of the similar nature of the spectrum in the one-dimensional and
the three-dimensional systems.

Of course, we would like now to consider the real spectrum of the wide disor-
dered ring and to calculate the smoothed persistent current to various orders of the
perturbation theory in the flux. This is a very difficult problem for the following
reasons: we have to know the exact distribution of the energy levels in our ring;
even if we knew this distribution, it is highly probable that it would turn out to be
a function so complex, that any formal manipulations needed to do the smoothing
would be impossible to perform. Bearing this in mind, we would like in the rest of
this section to present few arguments, that lack the rigor, therefore their validity is
questionable. Nevertheless, in our opinion they do indicate the limitations of the
currently accepted approaches as well as hopefully suggest the ways to progress.

First we would like to understand if vanishing of the smoothed first order in the
perturbation series of the current is a general phenomenon, and not simply a mere
coincidence that the smoothed I, came out to be zero in three different models. We
return to the general expression (2.54) of I;. It is clear that the first, diamagnetic
term is always equal to —io/N. The second, paramagnetic term can be expressed in
terms of the eigenstates of Hy, |n), having an energy E,, in the following way (by
writing out the trace explicitly and then performing the integral over E)

lo Z f(En) f(Em) |(pz)nm|2’ (2.59)

here (pz)nm = (n |p.| m) is the matrix element of the operator p,; in the case where
n = m instead of the fraction in (2.59) one should take the derivative of the Fermi-
Dirac distribution f’(E,). It is reasonable to think that the main contribution
to (2.59) will come from the pairs of levels with almost the same energies. Those
terms to a very good approximation involve the derivative f'(E,), which at T =0
is proportional to the delta function §(E, — u). If now the paramagnetic term in
(2.54) has a delta function as a factor in the integrand, it is justified to substitute
p2/2m, which also appears in the integrand, by x#/3. Then, doing the integral over
E , we obtain

21 Mmoo, Em
= _'3L ey W E A 7, 2( . (2.60)

The sum in (2.60) is the static density-density response function in the long wave-
length limit for a non-interacting system [19]

E.) - f(En
3%X(q’“=°)=E}‘3‘}am,§f(Ez—{E,(,, ), (2.61)
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In the long wavelength limit the density-density response function is known to sat-
isfy the compressibility sum rule, which can be derived from certain macroscopic
arguments [19]

. ON
lim x (q,w=0)= - (5’7)" - (2-§2)

The derivative of the particle number with respect to the chemical potential in (2.62)
is equal to the inverse mean level spacing at the Fermi energy (this is true in the
leading order of the weak disorder perturbation theory). Since, according to the
Byers-Yang theorems the energy is an even function of ¢, the correction due to
the magnetic flux to the mean level spacing begins with the second order term and
therefore is not relevant to the calculation of I. Hence

(%) = Vo(u) .(2-63)

and substituting (2.62) into (2.61) and then into (2.60) we obtain that the param-
agnetic term is equal to 1N, thus exactly cancelling the diamagnetic contribution.
This argument is not rigorous, because it is unclear to what extent the ratio in (2.59)
can be substituted by the derivative of the Fermi-Dirac distribution.

An interesting observation is appropriate here about the third order term of
the persistent current I3. Before starting the discussion, we would like to make few
assumptions about the Hamiltonian Ho. First, assume that there are no degeneracies
in the spectrum of Hp. This should hold reasonably well if the system is disordered.
Second, the expectation value of the operator p, in the eigenstate of Ho equals
to zero. This statement follows from the first assumption, if the Hamiltonian is
invariant under time reversal. The third assumption is that the energy levels are
sufﬁaentlg smooth functions of the reduced flux. Now consider the third term in

(2.58), I 3>, which contains the fourth power of the momentum. Performing the trace
over the exact eigenstates of the Hamiltonian Hp, then integrating over the complex
energy along the contour in the upper halfplane, the following exact expression is
obtained (true under the above assumptions)

(3) _ _41:060 ! pz)ﬂml pz nrrll I(pz)nkl
= -5 E(f (En) (E ) B Ek))

n

82060
—5 2 f(En)

(p“)"m(Pz)mk(Pz)kz(Pa)zn
ka:, E, — Ev)(En — Ex)(En — E1)’ (2.64)

here n, m, k and [ are indices labeling the eigenstates of Hp; the sumsin (2.64) do not
contain those combinations of indices, that make any of the denominators to vanish.
Of course (2.64) can be checked doing the usual non-degenerate perturbation theory
in ¢ for the energy levels of the total Hamiltonian H (recall our first assumption)
and then substituting the resulting second and fourth order expressions into the
formula for the total current - for instance into (2.45).

Perhaps somewhat unexpectedly formula (2.64) can be obtained from an integral
over different combination of Green’s functions than that in (2.58). Indeed making
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use of our assumptions, one can convince him/herself that the following expression,
when integrated over the complex energy along the contour in the upper halfplane,
yields exactly (2.64)

I = —2:;—? / & f(B) (GA(B)p.GE(E)p.GA(E)p.GR(E)ps — c.c.) . (2.65)
A natural next step to do is to average this expression over the disorder, making
use of the average Green’s functions given in (2.55), and neglecting the correlations
between different Green’s functions due to disorder. This should give the leading
contribution in weak disorder for I;,(, Surprisingly enough the result we obtain is
not equal to 7p60/A, the contribution of the third term in (2.58) (A is the mean
level spacing at the Fermi level, equal to 1/Vp(u)). Instead, we find integrating
(first over the energy (2.65) by parts, then the remaining integral over the momenta
is easy) that

Igs) — 321'2?:060/1,2

5h*A

This is a much larger contribution than previously obtained igeo/A. In fact it is
proportional to E}/RA, where Ec = RD/R? is the Thouless (correlation) energy
(D is the diffusion constant). We end up here with a paradox. Two exact expressions
(2.58) and (2.65), which are equal under very reasonable assumptions, lead us to two
different results after the conventional disorder average is performed. We feel that
the resolution of this paradox is necessary to achieve real progress on the problem
of the average grand-canonical persistent currents. However the lesson which this
discussion teaches us is that the third order in the flux of the smooth persistent
current is apparently sensitive to the properties of the energy spectrum - the same
conclusion as was reached studying one-dimensional models.

At last the following remark is in order. The thick disordered ring threaded by the
solenoid can be modeled using Random Matrix Theory (RMT). The most suitable
approach to describe the transition between the Gaussian Orthogonal Ensemble
(GOE) and the Gaussian Unitary Ensemble (GUE), was obtained analytically by
Pandey and Mehta [20], where the statistics of an N x N matrix Hamiltonian of the
form

(2.66)

H = H(S) +iaH(A), (2.67)
was studied; here H(S) is a real symmetric matrix, H(A) is a real antisymmetric
matrix, and a is a parameter, which interpolates between the two ensembles. The
statistics of the levels of (2.67) was shown by Dupuis and Montambaux [21] to agree
very well with that in a real metallic ring, turning on the magnetic flux in the
solenoid. They also mapped the parameters of the RMT to the physical quantities,
characterizing the spectrum of the metallic ring. Thus for instance the parameter a
was shown to correspond to the reduced flux ¢.

We could in principle find the smoothed persistent current within the RMT. For
the first order in the reduced flux, we would start from

= _—Zf )E!, - (2.68)
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where the summation index n is over all the eigenvalues of the Hamiltonian (2.67).
The most intuitive way to smooth this expression is to calculate its average in the
RMT. It would be enough to smooth I; at zero temperature and then only the
average curvature at ¢ = 0 is needed. However the exact curvature distribution
function is not known for (2.67), the only available results are for the two by two
N = 2 matrices [22]. In this case the distribution function of the curvature at a
small reduced flux is symmetric, therefore the average vanishes. Aga.m it means no
first order persistent current. For the third order, the general expression is

- o (e

To find the smoothed I; we need the second moment of the curvature and the average
of the fourth derivative at ¢ = 0. Surprisingly enough, the second moment of the
curvature was found [22] to diverge at zero reduced flux. However the distribution
function for the fourth derivative was not calculated. Yet it would be important
and interesting thing to do, checking if the singularity of the second moment of the '
curvature is not cancelled by the average of the fourth derivative.

Ew Ln f'(E,,)( n)’ ) (2.69)

2.5 The average canonical persistent current.

Up to now, we considered the grand-canonical persistent current, i.e. keeping the
chemical potential fixed, independent of the flux. We would like now to study the
behavior of the current in the canonical ensemble, when the total particle number
is kept constant instead. We can preserve the constancy of the particle number by
making the chemical potential flux dependent.

The definitions of the grand-canonical and canonical currents are respectively

lee = —3 S (Bale) 3E"(fj°), (2.10)

le = ~3 TEeu) 2o, (2.11)

here the index n runs over the exact eigenstates of the Hamiltonian; the dependence
of the Fermi-Dirac distribution on the chemical potential is displayed explicitly. We
will look now for the difference between the persistent currents Igc — I¢ in these
two ensembles, expanded in powers of the reduced flux ¢. The demonstration here
will essentially follow the work of Altshuler, Gefen and Imry [23] (see also [24]).

We assume that the energy for all eigenstates is an even and sufficiently smooth
function of ¢, so that the expansion in the reduced flux for the n’th energy level
begins with E,(¢) = E, + Elp?/2. At small flux the chemical potential changes by
a small amount &u(y), and we now expand (2.71) in this small quantity. As a result
we obtain to the lowest order in the expansion of Igc — I¢

Igc —Ic = ——Ef ©), 1) Enbu(p)e + o(9®). (2.72)
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The small §u(p) in its turn can be found from the requirement that in the canoni-
cal ensemble the total particle number should be independent of the reduced flux.
Expanding thus the right-hand side of

N = ; f(Ea(#), (),

we find to lowest order (both the energy and the chemical potential are functions of
®)

L )
2 £ (Bny B 2= = 3 £/(Bny w)Su(ip) = 0. (2.73)
The small variation of the chemical potential can be inferred from (2.73). We see
that it is proportional to the second power of the reduced flux - in agreement with the

Byers-Yang theorems. Inserting (2.73) into the expression for the current difference
(2.72) finally yields

(S (Bn i) ED?
foo = de = = S ) ¢

(2.74)

The denominator of this expression is just minus the derivative of the particle num-
ber with the chemical potential, which is equal to the inverse mean level spacing
at the Fermi energy, 1/A. However the sum Y f/(E,, u)E” when smoothed over

the spectrum vanishes as was shown by E. Akkermans in {25]. In the case of thick
ring, its square does not vanish, because the disorder couples the two sums in a
nontrivial way. In fact the non vanishing part of (3 f/(E,,#)E”)? can be shown

to be proportional to the expression for the fluctuations of the conductance. This
quantity was calculated in [26] and found to be constant of order of unity. Therefore
the difference Igc — I¢ is non-zero at the third and higher orders of the ¢ expansion;
it is paramagnetic and of the order of A/h (small compared to the experimentally
found value).

We summarize here the main results of this chapter. The smooth persistent
current was found to vanish in the clean one-dimensional ring. Introducing one delta-
like impurity (Kronig-Penney model) results in a finite smooth magnetic response.
The smooth current is therefore sensitive to level repulsion in the spectrum. On
the other hand the zero magnetic response was obtained in Scarf’s model, which
at zero flux has a non-degenerate spectrum. For three-dimensional (thick) ring the
disorder average of the current is shown to be equivalent to the smoothing over the
spectrum of a clean system. The possibility of the smoothing over the spectrum of
a disordered system is discussed. Finally we find that the grand-canonical current
is larger than its canonical counterpart by a quantity of magnitude A/h.
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Chapter 3

The magnetic response in the
Aharonov-Bohm problem.

3.1 General remarks.

Though in the previous chapter we set out to solve the Schrodinger equation char-
acteristic to Aharonov-Bohm (A-B) setup, we never treated the equation (2.2) as
it is written. Instead, we took up the Bloch problem, described by the equation
(2.7). The vector potential entering this equation does not depend on r, being much
simpler than the original A-B vector potential, which is inversely proportional to the
distance from the magnetic coil. Now we consider the problem of the response to
the A-B vector potential in its full generality, though neglecting the disorder. This
should be compared with the problem of the magnetic response considered in the
previous chapter - current in a two-dimensional cylinder with a magnetic solenoid
threading it along its axis.

We recall the scattering problem considered by Aharonov and Bohm. We con-
sider a free electron confined to the plane. The plane is pierced through its origin
by an infinitely thin solenoid of magnetic flux ®. The vector potential due to the
solenoid (in the following we shall call it the Aharonov-Bohm (A-B) flux line) is
given by the equation (2.1). The motion of an electron in this A-B potential is
governed by the Schr6dinger equation

18, 8 ,
20Dy LS ey = B, (3.1)

here the reduced flux is as previously ¢ = ®/®y. The question we are formulating is
to find the total persistent current (all current due to the ideal solenoid is persistent,
non-dissipative) and the magnetic moment at zero temperature of the electron gas
due to the A-B flux line. There have been few related calculations in the recent years.
The second virial coefficient for the free anyon gas has been found [27], connected
to the total persistent current; M. V. Berry calculated the total charge pushed to
infinity by the A-B flux line in the semi-classical limit [28]. The question as it is
formulated here was posed for the first time at the Technion [29] (incidentally the
work of Aharonov and Bohm was initiated there too) and solved using the scattering
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theory. The subtle point of correctly regularizing the diverging expression for the
total persistent current within the scattering approach was later discussed in [30].

We propose a different method to find the persistent current, which is flexible
enough for the calculation of the magnetic moment. Our strategy will be to start
from the quantum mechanical definition of the current density through the wave
functions, and to perform the required sums and integrals.

First we need the wave functions that solve the Schrodinger equation (3.1). De-
noting the conserved angular momentum by I, the general solution is

B(r,0) = (A (kr) + BiT_y_y| (kr)) €, (3.2)

here A; and B are normalization constants, and we will assume 0 < ¢ < 1. We will
require that B; = 0, because the particle density should not diverge at the origin
of the coordinates, where the solenoid is located (Bessel functions with negative
indices diverge for zero argument). This argument is not as innocuous as it seems.
Strictly speaking the mode with the angular momentum ! = —1 would not yield a
diverging density. A deeper discussion of these issues would lead us to the theory of
self-adjoint extensions of the Hamiltonian [31]. We will fix now the constant A; by
choosing the following normalization of the wave function

A2 / (dk . (kr) J, (kr') = —5(1‘ —), (3.3)
here E = h*k?/2m; p is an arbitrary index. Using an identity
[ dk ki (kr) g, (k') = 26 (r =),
r
0

we obtain A7 = 1. We will check if this normalization in the case of free particles
(p = 0) gives the correct density of states. The Green’s function can be expressed
in terms of the wave functions (the normalization A; = 1 is meant)

G(r,r,E) = (2 2 EJ’( ) h,k,

o0 o0

1 dk k ;n dk k
— E;/E_Lel’=7rn2/q2—k2' (3.4)
2m 0

0

The density of states for the free particles is (using the definition of the density of
states through the Green'’s function)

1. S T dkk
O
7 s 7 K2k? Sm
- i = — - = 3.5
'1713362”2/‘"”“ ) L 0/ kk‘s( om ) = 2ant 3%

where S the area of the doma.ln with the particles. We obtain the well-known result
for the two-dimensional density of states, therefore our normalization is correct.
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3.2 The persistent current.

Having determined the wave functions of the problem, we can use the quantum-
mechanical definition of the current density of an 3

k ze
j(r) = —1 ( (V-—A )
() = —Im ($7(V = AN
To find the total current density, one has to sum over all the occupied states (in our
case the sum is over the angular momentum [/, and the integral should be taken over

the momentum k, which is a continuous variable). From symmetry considerations
it is clear that the current density has the azimuthal direction

= o )2 ,_i( 10 ) = e 225 ()
_f 3 mi L— @) T2 (Rr). (36)

For any finite kr the sum in Eq. (3.6) converges absolutely, due to the large !
asymptotic behavior of the Bessel function [8]

H(hr) ~ 2= (—;“7) (3.7

(we are grateful to J. Avron for this remark). The integral over the momentum k is
taken up to the Fermi momentum - the largest occupied one, kp. The total current
is the radial integral of the total current density (3.6)

BB ko 5 ]
I=‘/dr]a=6/dr!W;;;(l—¢)Jl,_vl(kr). (3.8)

We take here a disc of (large) radius R to be the domain where our system is defined.
The radius of the disc will be later taken to infinity. In fact a large parameter in
our problem is kp R = A. Basically in the following we shall look for an expansion
of the total persistent current in powers of 1/A.

We start therefore simplifying the expression in (3.8). To this end advantage
is taken of the Lommel’s formula. Since this identity is at the very base of our
approach we feel that its derivation would be desirable here [32]. The following
recurrence formulas are true for the Bessel functions

Tpr (2) + Jpia (2) = 2, (2)

dJ,
Tyt (8) = Jpea (2) = 222 2] (3.9)
z
Multiplying these two identities, we obtain
2p dJ} (2)
J:-1 (=) - J:+1 (z) = ?—%;— (3.10)
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Consider now this formula substituting p + 2 for p,

Ty (2) = ya (o) = 202D D)

then p + 4, etc. ad infinitum. Then sum up all these equations. The following
identity will result

dJz,,.
T (@)= 3 2o am) ),
. n=0 T
or, after an integration, -
) - 1 f
> =( ; (p+20)J7, 2, (2) = 5/ p-1(t) dt. (3.11)
n=0 0

We will apply now the Lommel’s formula (3.11) for the sum entering the expres-
sion of the total persistent current (3.8)

I_Z (1= @) Ji_y (kr) = g (1= ) Ji_g) (k7) Z (1 + ) ity (kr)
= Z (1 - + 277') J12—1p+2n (k'l") + Z (2 —p + 2n) Jl’z—¢+2n (k?‘)

n=0 n=0
- E ‘P + 2n) J2+2n k?") E (1 + p + Zn) J 14+p+4+2n (kr)

n=0 n=0

kr

=% [t @)= 2@+, ) - 72y ) de (3.12)

0

We succeeded hence to convert the difficult sum into a relatively simple integral.
Inserting relationship (3.12) into (3.8), a closed formula for the total current follows

R
[=— / ‘i—" / dk k / (72, (0) = T2 + 2, (8) = T2, (1) dt. (3.13)

The rest of this section is devoted to the evaluation of this expression (all four terms
here have clearly the same structure).

We begin by transforming the general integral entering (3.13) (we denote it by
I,) by more or less elementary operations, involving no more than integration by
parts. This leaves us with the two double integrals

Rdr kp kr Rdr kp" Y
I, = /-;/dkk/w;(t)dt=/r—3/dyy/tfﬁ(t)dt
0
R b7}
dr yz 2 kp 1 3 72
= - — - d J,
o/ra(za/tj t)dt | 2/ yy* J2(y)




0

R dr kpr kpr

/ﬁ (kpr)2 / thz (t)dt — / dyys.]g(y)

0

2 dy v 2 F y Y

= _F_ hat 2 _F 4 [ 872

= 0/ yb/tJ () dt - = / 30/ J2(t)d (3.14)

There are now two terms. We take the second one and transform it in the same
spirit as previously

k2 kpR 1 "'y . kpR |

ZF — 8 y2 — 3 72 kpR _ 2

; O/d(yz)o/t J2(8) dt /t J2 t)dt| /tJ (t) dt
kR kpR

= 4R2 f dtt“ﬁ(t)— / tJ2(t)dt.  (3.15)

Before going to the first term of (3.14), we quote few indefinite integrals over the
powers of the Bessel function, which will be useful in the following (these identities
can be checked by differentiating them)

[ro@ = L(2w+7 0 - 250 ), 616)

v
2
[er@a = %(ﬁ(m +l(y))——(p—l)J,,(t)J,m(t)

+§-(p ~1) / 0, () Tpa(t)dt, (3.17)
/ t2Jp(t) Jpsa(t)dt = (sz (¥)+ (p+1)J2, @)

—p(P + 1)y Jp(y)pr1(¥); (3.18)
f T () Tppa(t)dt = p / it(tldt - %(i) (3.19)

Returning now to the first term in (3.14), we integrate it using (3.16) and (3.19)

k kde krR
T2 / 20yt = / dyy () + 7))
]
kg J:(y) k¥ 20 \|kpR
4P o/ ” dy + 81DJ,,(y)|o (3.20)

Substituting the two terms (3.20) and (3.15) into the expression for the general
integral I, (3.14), we obtain

krpR krR kpR

1 k2 k2
=1 / dttaJ:(t)-}—-f/ J2, (t)dt - £ 2/
0 (]

0

z(y)d 4+ °F F Jz y)lk,}z
(3.21)
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Using three identities (3.16), (3.17) and (3.19), I, can be expressed entirely in terms
of products of Bessel functions and powers, evaluated at A = krR and 0, and one
integral, whose asymptotic behavior as A — oo is

7 J2(y) 1 1
[ 2w o) (8:22)

As a last step of this calculation we should find the asymptotic expansion of I,, when
as already mentioned, A is the large parameter. It is not difficult to do in principle,
because we need only the well-known asymptotic expansion of the Bessel function
for large arguments [32]. However in practice it is a messy calculation, because
to be consistent, the leading term in the Bessel function expansion is insufficient,
one has to take into account also the sub-leading term. Introducing the notation
Xp = A — (p/2+1/4)m and using the asymptotics of the Bessel functions, we obtain
3 2 2

4RI, ~ %\; (1 - 24p8A - COS Xp 51N Xp — 24_(p_:_|-§t\)___];
4pt+1)2 -1

8A

COS Xp+1 Sin Xp+1)

A3 +1 i
+7 (1 - 2p A COS Xp+1 COS Xp42 — 2 COS Xp+1 SIN Xp+1)

pPA? A% (4(p+2)2 -1 ,
T w \T aA COSXp+25IMXp+a

2p T
243 |
—g(p — 1) cos xp CO8 Xpt+1 = —-%Az + O(A). ~(3.23)

The asymptotic expansion of I, contains terms, which behave as A%. However we
have to go to the next order, A%, because all leading order terms cancel out. The
result in (3.23) has to be understood in the sense of the leading asymptotic behavior
of I,.

Finally, the total persistent current can be reconstructed from the integral I,,
since according to (3.13)

h

= m(.{_q;. - I(p + Il_g, _'I‘P"l)’ (324)
Using the asymptotic result (3.23), the total persistent current is found to behave
as
2

~ :::';(go _ %), 0<p<l. (3.25)
To determine the persistent current for all values of the reduced flux, we recall that
I is a periodic function of the reduced flux ¢. As a result, the functional dependence
of the persistent current on ¢ is singular - I is discontinuous at integer ¢’s. Our
result disagrees with the conclusions in [29]. The discrepancy was shown in [30]
to arise from the different regularizations of diverging sums. The expression (3.25)
coincides with the result of the regularization by means of the zeta function. We
would like to stress again that contrary to [30], we interpret (3.25) in an asymptotic
sense. Namely it is the leading term in the large A asymptotic expansion of the

total persistent current.

I
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3.3 The magnetic moment.

The magnetic moment of the electron gas due to the A-B flux line can be calculated
essentially repeating the scheme used to find the leading term in the asymptotic
expansion of the total persistent current. The magnetic moment of the circular area
(disc) of radius R is found by using the Biot-Savart law:

R
1 i .
M= %.‘g/'ds jryxr= %‘o/drr]o(r)r

R kp
B = 4
== / drr / dkk S (14 @) pgi(RT)- (3.26)
0 0

{=-—00

The sum in (3.26) was already calculated in the previous section. Substituting the
identity (3.12) into the formula for the magnetic moment, we find an expression,
reminiscent of the persistent current (3.13)

2mece

R kp kp ler
M= / drr / dkk / dk k / t(J2, (8) = T2 () + T, () — T (£)) dt. (3.27)
0 0 0 0 :

We would have now to integrate the integral M, of the form

kp kr
R kp 2
M, = /o drr A dkk 0/ dk k 0/ tJ2 (£) dt. (3.28)

After an integration by parts, M, is transformed into two double integrals

kpr

Far 1
/—r—/dyy/u:(t)dt
0 0

0

Rd’r yz * k 1 kar
hatel A 2 Pr _ 3 72
[Z|L [l -3 [ @v)
0 0 V]

kpR ' kpR

Yy Y
d
/ dyy / tJ? (t)dt—% / ?y / £J2 (t) dt. (3.29)
0 0 o [\)

The first term in (3.29) can be transformed further

My

N =

krR kpR

1 f 2 _1 zy 2 kpR 3 72
= / dyyo/th(t)dt_z(y O/th(t)dt|o - o/th(t)dt . (3.30)

0

The second term can be integrated using formulas (3.17) and (3.18)
kpR , y kpR
1 [ dy 1 t3
-5 / > / 572 (1) dt = -5 / &t = (J20) + T2 (®))
0 0 0
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( o= DB pialt) = 2o — 1) (p2(0) + (0 + 1) +1(t>))

kR
1

+5 / & 208" ~ 1)1p(8) Tpua(8). (3.31)

Lastly the remaining integrals in (3.30) and (3.31) can be performed using all quoted
integrals (3.16), (3.17), (3.18) and (3.19). The asymptotic formula (3 22) is used and
everything is substituted into the expression for M,.

Again considering A as the large parameter, we look for the asymptotic expansion
of the integral M,. The expansion of the Bessel function for the large argument is
useful. With the same notations as in the previous section, we expand the two terms

of (3.29)

A3 _4p2—1 ) 4(p+1)2—1
4r

M, ~ — aA SOsXpsinXp — —aa SOSXph sin xp+1)

A? A3 P
~Tom ——(cos Xp SiD Xp + €OS Xp4+1 8in Xp+1) + - (1 — 7 COSs Xp COS xp+1)

2A
AZ(2p+1 3
- (15:' ) COS Xp Sin Xp — g—(p — 1) cos xpsinx, = 0+ O(A). (3.32)
T

Therefore the leading order term (proportlona.l to A®) and the sub-leading one (pro-
portional to A?) in the asymptotic expansion of the magnetic momentum are zero. It
would be desirable to continue this expansion to lower powers of A until a non-zero
result is obtained. However the calculation becomes more and more time consuming.

We return to the question asked at the beginning of this chapter about the
difference of the magnetic responses to a genuine A-B flux line and to a r-independent
vector potential. To this end, the main result of this chapter, the leading asymptotic
term of the persistent current, should be compared with the persistent current in a
hollow cylinder threaded by the flux line. In the latter case, as was shown in the
previous chapter, the smoothed persistent current (with which as we believe (3.25)
should be compared) vanishes. In the former case, the persistent current is non-zero
and furthermore has a non-trivial unexpected ¢ dependence.
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Chapter 4

Random walk description of
quantum localization.

In this chapter we investigate the problem of quantum localization of a particle in
a random potential. This is a huge subject in its own (for a review see (33, 34]),
of which we will touch only one aspect. We shall be motivated in our discussion
by a model of random walk, which mimics the motion in a random potential. The
asymptotic large time properties of the random walk turn out to be useful to justify
this model. For instance the mean time spent by the random walker at a given
site can be shown to be equivalent in the asymptotic limit to the heat kernel of the
diffusion equation, a quantity to which we will return later.

As a paradigm of the problem of quantum localization it is worth to have in -
mind the Anderson model [35] given by

H =Y Vide+ ¥ Wiclos (4.)
H iJ

where W;; = W for nearest neighbors i, j, and V; is chosen randomly from the
interval [—V/2,V/2]. For V/W larger than some critical value, Anderson proposed
that all states are localized (in three dimensions), below this value there is a mobility
edge and all states are extended. On the localized side of the mobility edge the
insulating regime is entered, where the conductance g decays exponentially with the
length of the system L. This decay is governed by the localization length ¢

g x et _ (4.2)

When the mobility edge is approached from the localized side, the localization length
diverges with a critical exponent v [36].

Variety of techniques have been developed to determine v, ranging from numer-
ical finite size scaling [37], perturbation expansion in weak disorder [38], to field-
theoretical calculations [39). Among them one approach to find the critical exponent
of the localization length is the self-consistent diagrammatic method developed by
Vollhardt and Wolfle [40], see also [41]. The starting point is the perturbation
expansion of the disorder average of the conductivity (o) in the limit of a weak
random potential (1/kp! is the small parameter, where kr is the Fermi wavevector,
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! the elastic mean free path). The perturbation theory for the Green’s functions
is formulated in the language of Feynman diagrams. The average conductivity is
related to the Green’s functions through the Kubo-Greenwood formula (EF is the
Fermi energy)

kizkze (GR(k1, ks, Er)GA(ks, k1, Er + w)).  (4.3)

e*h*L® ¢ dk, dk,
(o)) = G |

2r)® (2)°
The Green’s operators are defined in (2.51). Replacing in a first approximation

the disorder average of the product of two Green’s functions by the product of the
average Green'’s functions, the classical Drude formula is obtained

2rm?

nez'r

(oo(w)) = m(l = wr)’

wr) (4.4)

where 7 = l/vp, and n is the particle density. The first-order correction of the
expansion in powers of 1/krl can be obtained by comsidering a summable class
of irreducible diagrams, namely the maximally crossed diagrams. It is the weak
localization correction to (o)

(o(w)) = (o) wh/(27r) pe _w/D (4.5)

The weak localization correction to the diffusion coefficient D (w) can be derived
from (4.5) using the relation o(w)/oo = D (w) /Dy, which follows from the hydro-
dynamic form of the density response function in the limit of long wavelength and
low frequency [40, 41] (it can also be obtained from Einstein relation). Then in d
dimensions we obtain

D(w) _ 2-d ki
B = 1= Mk} O/dk(_iw/Donz.

(4.6)

Here ko is a momentum cutoff of the order of the inverse mean free path, and X is
the weak scattering coupling constant A = i/2wr Epr. The self-consistent equation
of Vollhardt and Wélfle is obtained by replacing in the right-hand side of (4.6) Do by
D (w). The diffusion coefficient is assumed to be momentum independent in order
for the integrand in (4.6) to preserve the structure of the Green’s function of the
ordinary diffusion equation. Assuming the momentum dependence of the diffusion
coefficient would lead us to consider anomalous diffusion [42)].

On the localized side of the mobility edge, the static diffusion coefficient is zero,
})i_% (—iw/D(w)) = €72, and the self-consistent equation in this limit reduces to the

transcendental equation for £,

kot d-1

1= d\(kp€)*™ / dy
1]

et (4.7)
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The critical exponent v can be found from this equation. We will illustrate how
the method works for dimensions 2 < d < 4 [40]. The right hand side of (4.7) is
expanded in the inverse of the parameter ko, which is very large in the immediate
vicinity of the mobility edge

1 = d\ (kpt)?™ (%’%——2 - / dy% + O((koé)"”“)) . (4.8)

Retaining only two explicitly written terms in the expansion, we obtain that the
localization length diverges for 2 < d < 4 as
-1/(d-2)
) , (4.9)

L (d-2 1 A
¢=kr ( D T(d/2TE - d)2) ‘1 .

where d :
d—2 (ko \"™
A== (E) : (4.10)

The localization length ¢ diverges with the critical exponent v = 1/(d — 2).

On the other hand the same critical exponents can be obtained using a heuris-
tic argument due to Allen [43] based on a random walk model of the quantum
localization. We review here Allen’s criterion to determine when the localization
of a quantum particle occurs. The particle is assumed to be a random walker in
a d dimensional cubic lattice. It hops with a rate W/2h, in time ¢ making thus
n(t) = Wt/2k steps. Lattice sites are labeled by energies ¢; which are distributed
randomly with a uniform probability density of width V. During the time ¢ the
random walker visits S (n) distinct sites, therefore the mean level spacing could be
estimated as being approximately equal to V/S (n). The random walk terminates
and the particle gets localized when the individual energy levels can be resolved,
that is when v

———t = k. 4.1
| S (411)
‘Before stopping the particle moves diffusively, therefore asymptotically n = £2/a?,
a is the lattice constant. Substituting the number of hops for the time in (4.11), we

obtain
S(n) =un, (4.12)

here u = 2V/W is a disorder dependent parameter. Making use of the first terms in
the asymptotic expansion of S (n) for large n for d dimensional lattice, (4.12) gives
the critical behavior of the localization length £, which as was already mentioned,
coincides with that derived from the self-consistent equation of Vollhardt and Wolfle
(4.7). The formal similarity of these two approaches seems to indicate that a con-
nection exists between them. Our purpose here is to demonstrate explicitly this
connection, starting with Allen’s equation (4.12) and deriving (4.7) from it.

In other words, we will provide a link between the heuristic argument due to
Allen to determine the critical exponent of the localization length and the self-
consistent diagrammatic method of Vollhardt and Wolfle describing the vicinity of
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the Anderson metal-insulator transition. This work therefore on one hand side gives
a rigorous justification of Allen’s model, on the other hand it helps to appreciate
the intuitive content of the self-consistent theory using the random walk analogy.

With this in mind, we return to the random walk description of the localization,
concentrating on S (n) - the mean number of distinct sites visited in a n step random
walk. Consider the generating function, defined by

S(z)= 3 28 (n) (2] < 1). (4.13)

n=0
In terms of the generating function, equation (4.12) transforms to

S(z) = u(—1—z—z)2’ (4.14)

o0
where the identity Y z"n = z/ (1 — 2)® was used. It is still more convenient to use
n=0 :

the generating function for the probabilities

G (x1 —X0,2) = 2 ) 2"P (x1,%o; 1), (4.15)

n=0

P (x1,%o;n) being the conditional probability for the walker to be at the site x;
after n hops, knowing that it started at xo. When z = 1, this generating function
measures the mean time spent at the site x;. When |z| < 1, the sum in (4.15)
always converges and has an integral representation [44]

x/a

G (x1 — Xo,2) = a* /

-nfa

ddk eik(x1 —Xop)

(2r)? 2z~ — 1% cosak,’

(4.16)

here k, are the Cartesian coordinates of the vector k. The generating functions
S (z) and G (0, z) can be shown to be connected through the following relation [44]:

z

S = . 4.17
)= a5 cwm.9) (4.17)
Now inserting equation (4.17) into (4.14), we obtain
1
G(0,z) = —. (4.18)
u

This equation is a discrete Laplace transform of the main Allen’s criterion (4.12)
and as such should contain the same information. As we already mentioned, near
the mobility edge (4.12) has to be understood as an asymptotic relation, valid in
the large n limit. The corresponding limit for the equation (4.18) is provided by a
Tauberian theorem for power series [45]. Its importance in our discussion seems to
justify a short reminder, where we will follow the reference [45).
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Tauberian theorem: Let f(z) be a power series in z, z being a real variable,
defined by
f (z) = Z fn2®
n=0
and let the f, be strictly positive. Suppose that in the limit z — 1 the behavior of
f (2) is singular in the sense that

Fe~a-9"L(1)

where L (z) is a slowly varying function and B(z) = z*L(z) is a positive, mono-
tonically increasing function of z for sufficiently large z. Then, in the limit n — oo,
the partial sums of the f, are approximated by

- B(n) _ n*L(n)
Jz:;,f" “Tl+a) T(+a)

If moreover f, is a monotonic function of n, at least from some value of N onwards,

hen
f N B'(n) _ an® L (n) +n*L' (n)
I'(l+a) I'(l1+«a) )

Jn

A function L (z) is slowly varying at @ = oo, if, for every constant ¢ > 0, it satisfies
the condition

L(cz)
h =
We will go on applying this theorem to study the asymptotic limits of random
walk. Suppose that the leading term of the characteristic function for the probabil-
ities G (0, z) in the limit z — 1 is of the form (this in fact is true in all dimensions
4 [44])

1.

G(O,z)~(1—z)°"2L‘1( - ) (4.19)

1-2
Then the leading asymptotic behavior of S (z) is

S(z)~(1—z)'°‘.L( ! ) (4.20)

1—2

because S (z) is related to G (0, 2) through (4.17). The mean number of distinct
sites visited in n steps S(n) is a function that fulfills the restrictions needed in
order to apply the Tauberian theorem, that is, it is positive monotonic function of
n. Therefore in the limit n — oo, S (n) is approximated by

n* 1L (n)
F(a)

Near the mobility edge the localization criterion (4.12) should be thought of in an
asymptotic sense. In the limit n — oo it assumes the following form

n*~2L(n) _
I'(a)
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The corresponding limit for the equation (4.18) is, according to (4.19),

(1-2)"""L ( ! ) =, (4.23)

1—-=2

here z — 1. This equation coincides with (4.22) after n is substituted by 1/(1 — 2)
and the disorder dependent parameter u is redefined. Consequently, the solution of
the equation (4.18) in its asymptotic limit, would lead to the same critical behavior
of the localization length as that found by Allen, taking z equal to 1 — a2/¢2.

The last part of our demonstration- is then to show that equation (4.18) with
z=1-—a%/¢? and a/¢ < 1, is equivalent to the self-consistent equation (4.7) under
a similar condition I/§ < 1, where [ is the mean free path of the electron. It is
helpful to bring these two together here in the form, indicating how close they are.
First we rewrite the discrete Laplace transform of Allen’s criterion, using the integral
representation of the generating function G(0,z =1 — a?/¢?), given in (4.16),

~/a
d’k 1 1
[ =1, (42¢)
L. @nY1+ %~ T, cosak,

where 27! was expanded in the small parameter a/¢. The equation of Vollhardt and

Wolfle in its turn can be written as a similar expression

g £ KU1
dk / dk——— = <. 4.25

F g —2 + k2 Y ( )
A connection between these two equations should come as no surprise, because (4.25)
is the diffusion imit of (4.24), which holds for the random walker on a discrete lattice.
The diffusion approximation yields results basically equivalent to those obtained in
the limit of large number of hops [46]. This diffusion approximation of the generating
function G (0,2 = 1 — a?/£?) is most easily derived in the limit ¢ — 0:

1 2/¢2) T k1
‘; —_ pry . . 6
¢lzl—v0 2dad-2 (0 z=1- /6 [o ) E_g+k2 (4.2 )

Substituting (4.26) to (4.24), we obtain finally

pd-1
s,,d( ) 0/ dhg s = ﬁ, (4.27)

here Sy = 2742 /T'(d/2) is the area of the unit sphere in d-dimensional space. The
upper integration limit should be taken equal to the finite cutoff when the integral
diverges. Clearly, up to some minor modifications, equation (4.27) is identical to
the self-consistent equation. The difference is in the smallest scale used to regularize
the integral: whereas in Allen’s approach it is the small, but finite lattice constant,
there are two small lengths in the diagrammatic self-consistent theory - the mean
free path and the inverse Fermi wave number.
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We would like now to illustrate how the diffusion approximation leads to the
asymptotic expression of the generating function, given for example in [44] and
usually derived within the saddle point approximation [45]. Returning to (4.26), we
transform its right-hand side, performing exactly the resulting integral (assuming
that 2 < d < 4 all integrals converge)

]"ddk 1 _7_ddk_1__ A
J e+ T el ) @n)f (kK

Tdk1 s .7, v
— — K™ dy—— =
I (e K (2m)" 0/ 1+y?
7 d?k —1-J+ iz “21(1-d/2)
(2r)* k2 7 2d '

—00

here k = 2d/¢2. This indeed coincides with [44].

Allen’s approach is seen then to be closely related to the heuristic picture of
the weak localization phenomenon. The transport of an electron in a disordered
conductor is assumed to be diffusive. The diffusion coeflicient is reduced from its
classical value by a quantum correction, proportional to the probability of self-
intersection of the diffusion path [47] (the so-called “return probability”, related
to the asymptotic limit of the heat kernel). Having now diffusion on a discrete
lattice, it is not unreasonable to consider the diffusion path to be localized when the
number of self-intersections is as large as the number of hops in the large time limit.
However the number of self-intersections for the random walk can be estimated to
be the difference of the number of steps and the number of distinct visited sites.
Therefore this localization criterion is basically equivalent to Allen’s one.

To conclude, we established that the criterion of Allen (4.12) and the self-
consistent equation of Vollhardt and Wolfle (4.7) are related through Laplace trans-
form. As a remark we mention that the same equation determines the critical
behavior of the correlation length in the large n limit of the classical n-component
vector Heisenberg model with an orthogonal O(n) symmetry group. This relation-
ship has to be further investigated, in particular it might give rise to the universal
conductance fluctuations.

Another direction to extend this work is to consider the quantum localization
problem when a (not necessarily uniform) magnetic field is applied to the system.
In this case the Green's function (4.26), entering the localization criterion (4.7) (or
equivalently (4.27)), no longer satisfies a simple diffusion equation. Instead the
vector potential should be included in this equation by a usual minimal coupling
scheme (this is only true in the semi-classical approximation, when the cyclotron
radius exceeds the Fermi wavelength [48, 49]).
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Chapter 5

Semi-classical spectrum of
integrable systems in a uniform
magnetic field.

5.1 Introduction.

With this chapter we begin the study of the response of finite-size quantum sys-
tems to a uniform magnetic field. With high fields in mind, we present here a
semi-classical approach to calculate the energy spectrum of non-interacting elec-
trons constrained to a finite two-dimensional domain and submitted to a uniform
magnetic field (magnetic billiard). We limit ourselves to the integrable cases (i.e.
systems, which in addition to the energy have another constant of motion). In the
limit of high magnetic fields, determined by the inequality ® >> ®, (here ® is the
total magnetic flux through the system and @ = ke js the normal flux quantum), we
are in the so called Integer Quantum Hall effect regime (IQHE) where the edge states
associated with the boundary play a prominent role [50]. It is therefore important
to have the spectrum of the magnetic billiard to a sufficient precision. Moreover the
semi-classical methods allow us to appreciate more deeply the peculiarities of the
spectra in presence of the magnetic field. Here we shall concentrate on the problem
of non-interacting electrons in a semi-infinite plane, later presenting the results for
the disc. ,

The classical dynamics of a magnetic billiard, allows for a natural separation
between bulk and edge states which we are using in order to calculate the semi-
classical spectrum. A first, least exact approximation is based on the Einstein-
Brillouin-Keller quantization, which preserves this classical bulk-edge distinction by
giving different quantization rules for each of them. This approximation is further
improved by constructing the asymptotically matched WKB function and then find-
ing its zeros corresponding to the energy levels. This matching of the different parts
of the wave-function smoothes out the singularity between bulk and edge energies,
resulting in a very good approximation for the exact spectrum. Finally we shortly
discuss the method to calculate the spectrum of a disc in a magnetic field.
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5.2 The classical dynamics

We consider a particle of positive charge e and mass m constrained to move in the
semi-infinite plane. A uniform magnetic field B is applied perpendicular to the
plane. Cartesian coordinates are defined such that the z axis is perpendicular to
the boundary and the motion is confined to positive values of z. It is convenient
to consider the boundary having a finite length L and therefore we impose periodic
boundary conditions in the y direction ending with a semi-infinite cylinder geometry
(fig.5.1). o
. In the Landau gauge A = (0, Bz), the Hamiltonian of the particle is

H = %ﬁ; <p,,-2 + (py — EBm)2> (5.1)

and the momentum is p = (mz,my + £Bz). The total energy E and the y com-
ponent p, of the momentum are constants of motion, therefore the problem is in-
tegrable. In the four-dimensional phase space of the Cartesian coordinates and
the corresponding momenta, each family of classical trajectories are winding on an
invariant torus, defined by the two constants of motion.

The ensemble of trajectories splits naturally into two families: those that do not
touch the boundary (bulk states) and others (edge states). Particles with the energy
E = mv?/2 (velocity v = (m&,mg)) go clockwise in circles of radius 7, = 2, where
w = fn—li is the cyclotron frequency. If the center of the orbit gets closer than 7. to
the edge, the particle undergoes specular reflections and the cyclotron orbit center
begins drifting along the edge (fig. 5.1). These are edge trajectories. The constant
of motion p, distinguishes between the edge and the bulk states: p, > p for the bulk
trajectories, p, < p for the edge.

5.3 The EBK quantization.

We consider now the quantum-mechanical version of the same problem. Dirichlet
boundary conditions are imposed on the wave function:

$(0,y)=0. (5.2)
This, together with the Schrodinger equation
(B — Eyp(z,y) = 0 (5.3)

defines the quantum-mechanical motion (H is the quantum-mechanical version of
the Hamiltonian H defined in (5.1)).

We begin by applying the semiclassical methods available for integrable systems.
Since the problem is separable the application of the semiclassical EBK (Einstein,
Brillouin, Keller) quantization [51] is straightforward. The problem reduces to two
one-dimensional problems, and the action corresponding to each of them is quan-
tized. For the motion along the y axis (parallel to the boundary) the action I,
is

| 1 L
I, = g}{p,, dy = B2 = n, (5.4)
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Figure 5.1: Semi-infinite cylinder in the magnetic field B.

The motion along the z axis (perpendicular to the boundary) is different for the
bulk and the edge states, therefore their quantization is different too. In particular
the energy of the bulk states is obtained from

2re

1 1 €
_ _ = —(p— EBz)2
I, = 27r.7{p° dz 7"'0/\/sz (p cB:::) dz

= K(net3) (55)

The integral can be calculated, and gives the usual Landau levels for the unrestricted
motion E = hw(n, + 3). For the edge states the EBK condition is

Tc+£l'
1 ) S 3
— == — _Z 2
o fpc dz 0/ \/ZmE (py cBa:) dz
3

I,

3

The two differences between (5.5) and (5.6) are apparent: first the integration range
is restricted because of the boundary for the edge integral, second the Maslov index
for the edge is 2 instead of } for the bulk. This means that the bulk states do not
feel the boundary and therefore their energies are degenerate Landau levels. The
energies of the edge states are implicit solutions of (5.6), and are non-degenerate.
Therefore there is a singularity in the EBK spectrum separating the bulk and edge
energies.

5.4 Matching the WKB wavefunctions.

Since the motion in the y direction is trivial, the Schrédinger equation (5.3) together
with the boundary condition (5.2) reduces to a one-dimensional Sturm-Liouville
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problem. A systematic WKB method is well-developed for those kind of problems
and improves the EBK quantization. In particular a WKB function is obtained
from several branches each of them being valid in a domain determined by the
turning points. These branches are asymptotically matched. The resulting WKB
wavefunction is then required to satisfy the boundary condition (5.2), which gives
the WKB energies.

Once the variables are separated in the Schrodinger equation (5.3), the one-

dimensional Sturm-Liouville problem for the function p(z) = e~ "% 9(z,y) is de-
fined by

h? 02 1 eB
(2m 507 5 (B = Tz)z E) o(z) =0, (5.7)
(z) satisfying the boundary conditions:
o(0) = 0, (53)
lim o(z) = 0. (5.9)

Introducing the dimensionless variable £ = /2 z, equation (5.7) rewrites

d? E 1 2

- —_—— (-2 r) = 5.10

oo+ (o — 7 (5= 30)) p(8) = 0, (5.10)
where zo = EL=. The subsequent transformation using the variable { = \/—%— (z -
Zo) — 1 gives

€ f'(6) — (£ +26) f(¢) = 0, (5.11)

where € = % and f(¢) = ¢(2).

For small values of ¢, this is a standard example of equation where the WKB
method is applicable. It has two turning points at {; = 0 and ¢; = —2. Sufficiently
far from them, the WKB function is given by the following asymptotic expression
[52]

fwxs(€) = (6 +26)7% (616 PffaevEEE o ot €"“‘/‘1“*_2> (5.12)

In the vicinity of the turning points this approximation breaks down. The potential
(€% + 2¢) is then linearized and the resulting Airy equation can be solved exactly.
The domains of validity of the different branches (5.12) and of the Airy functions
overlap, at points where one can match (5.12) with the first term in the asymptotic
expansion of the Airy functions [52].

From these matched WKB wavefunctions fwxp(§) we can calculate the spectrum
by requiring this function to satisfy the boundary condition (5.8). Those energies
are solutions of the following implicit equation written in terms of the variable
fo = \/: o

fwxp(—€o~1)=0. (5.13)

For convenience, we shall consider from now on the energies as functions of &p.
The function fwgp(£) is built out of five branches, related to the different inter-
vals of {. We start from large £’s.
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Figure 5.2: The energy spectrum: the full line is the exact spectrum, triangles are
the zeros of the second branch and pluses - the zeros of the third branch.

i. The first branch has a domain defined by { > €3 where the expression (5.12)
holds. The unknown constants are determined by using the boundary condi-
tion at infinity (5.9). This fixes c; = 0. We set arbitrarily ¢; = 1, and we
obtain for the first branch of the WKB function

Fhe(6) = (€ +26) ket i VTR, (5.14)

This function is always nonzero , and therefore does not give any energy solu-
tion of (5.13).

ii. The second branch is a solution of the linearized equation (5.11) near the first
turning point & = 0:

& F1(£) — 2 fioks(€) = 0. (5.15)

It is therefore valid for [{| < 1. The genera.l solution of the linearized equation
(5.15) is a linear comblnatlon of the two independent Airy functions. When
¢ belongs to the interval €3 < ¢ < €t, the arguments of the Airy functions
are large so that their a.symptotlc approximations can be used. On the other
hand the first branch fWKB(f) is still valid in this interval. We match here
these two functions, and determine the unknown coefficients by multiplying
the Airy functions. This gives for the second branch

FZen(6) = f‘)f (——e) (5.16)

and the energies

E = hu( )%, (5.17)

250-2
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Figure 5.3: The energy spectrum: circles are the zeros of the fourth branch, other-
wise notations as previously.

1ii.

v.

where a; is the i’th zero of the Airy function. This zero gives the 7’th energy
branch corresponding to the :’th Landau level for the free particle case. An-
other thing to be noted from Eq.(5.17) is that there are no energies for & > 1,
since the real zeros of the Airy function are negative.

Between the two turning points & and £, the expression (5.12) holds again
and to ﬁx it precisely we do the matching with fw %xp(€) in the interval —et K
¢ <« —es which gives .

-L]r-

Fkp(€) = 2(—€ — 26)"

ml)—d

/t\/ T2+ 7). (5.18)
¢

The argument of the sine is non-negative, therefore only non-negative zeros
will give energies. After integration we obtain using (5.13) an implicit equation
for the energies

l(7r —arcsm éo + 60\/1 — )= — + nw, (5.19)

where n is a positive integer. We note that this condition is exactly the EBK
quantization rule for the edge states (5.6). The comparison of the energies
derived within the WKB approximation with the exa.ct ones is shown in fig.
5.2.

This branch represents the function in the vicinity of the second turning point
§2 = —2. Repeating the scheme of matching with the previous third branch,
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Figure 5.4: The energy spectrum: tnangles are the zeros of the fifth branch, other-
wise notations as previously.

we obtain:

Hal®) = 5 ‘f (sin —Al(——(e +2))

+ cos —;%Bi(——(f +2))). (5.20)

Inserting it in (5.13) gives the energies due to the fourth branch. They are
shown together with the solutions of (5.19) and the exact energies in fig. 5.3.

v. The fifth branch fég}w(f) is derived in a similar way, i.e. for { < —€3 —2:

Fen(€) = (€ +26)7F (sin(g)e™H I 4VFH

P
+2cos(§7ie)ef e dVEFIy (5.21)
The equation to be solved for the energies is
Lian I = eh-aresosh(=o)=to /E-T), (5.22)

2 2¢

When |£| is large the right-hand side of this equation is also a large number.
The energies are given to a good approximation by the arguments of tangent
at points where it diverges. The energies thus obtained are
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Figure 5.5: The energy spectrum of the disc as function of the kinetic momentum
(Ng = 20): circles are the zeros of the third branch, pluses - the zeros of the fourth
branch and triangles are the zeros of the fifth branch.

l.e. are exactly the energies of the bulk states within the EBK quantization.
The solutions of the energy equations for the fourth and the fifth branches and
their comparison with exact energies is shown in fig. 5.4.

On the figures 5.2, 5.3 and 5.4 we notice the very good agreement between
the exact calculation and the matched WKB approximation even for the lowest
energies. The distinction between the bulk and the edge states disappears within this
approximation, and the spectrum rises smoothly from "—2‘,"— (from above) to infinitely
large energies.

5.5 Semiclassical spectrum of the disc in the
magnetic field.

It is possible to generalize the previous analysis to the study of another integrable
billiard: the disc in a uniform magnetic field (the full account of this work is pre-
sented in [53]).

The Schrodinger equation is written in polar coordinates, and the conserved
angular momentum will be denoted by I. Therefore the non-trivial problem is to
solve the radial equation which in convenient units is

d? d 2 2
(g r i -Sri-t-£)wo=0 (529)

here { = -, € = hw/2E and I, = le. The radial part of the wavefunction is p(¢).
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Because of the singularity at the origin due to the centrifugal potential I2/¢?
in equation (5.23), the WKB method can not be applied directly. We go around
this obstacle by making the following change of variable, ¢ = —In(¢?/a) [54], where
a = 2(1 —1,). The resulting equation for the function f(z) = ¢(§) is:

2
Epil o), Q@) =~z (2R 629
This equation can be solved using a WKB analysis similar to that of the previous
section. The two turning points are z; = —In(1l F c), where ¢ = /1 — (21;/a)?.
However another problem arises - for certain values of the parameter I, the two
turning points get so close one to another, that the method does not really work.
We use therefore a better method, the so-called comparison equation method [55].
The idea is to start with the matched WKB function, which we constructed in the
previous section, then to multiply it by a slowly varying amplitude and to stretch
or contract its argument (by introducing a mapping function). Substituting the
modified wavefunction into (5.24), an equation for the mapping function is obtained,
which can be solved by a semi-classical approximation.
The five branches of the WKB approximation to the function f(z) are given by

fwrs(z)

= Q(z)‘% er @) if —eT41-c>7q

—( —\/:)L(Se)- ((4:(?/—)) = _z+1—C)) el e
=2(—Q(z))‘* sin (W_Lh(i)-FZ)’ fe®=14+ec>n —e“+1+c>y

= 2@t a2 e -1-9) +

(c+ c?)s 4¢(1 + )
+ COs(zla) Bi ((;;T%)g(e" -1- c)) } ifle®—1—c|<Kec

= Q(z)¢ {sin(%%) e~ ki (=) 4 2cos(-22%) ei"l'(”)} , if e —=1—c> n(5.25)

Here 7 is a small parameter, and € satisfies

1
== 52 —~ 16(1), (5.26)

(where 0(1) =0if ! < 0 and 1if I > 0). The classical radial action I.(z) is

I(=) =

amwr2

)—V1=¢? a,rccos(1 - -};)(5.27)

The numerical calculation using (5.25) shows a clean agreement with the exact
spectrum - even for the lowest Landau level (see figure 5.5). Indeed we are able

\/c2 — (e —1)2+ a.rccos(1 —

55



to construct the semi-classical spectra of the integrable magnetic billiards to a high

accuracy. The spectrum is composed of several branches, which can be associated
with bulk or edge states.
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Chapter 6

Heat kernel of billiards in a
uniform magnetic field.

6.1 Introduction.

In this chapter we pursue the discussion of the spectral properties of integrable
magnetic billiards. However in contrast to the previous chapter, where the emphasis
was put on a precise calculation of the energies, we shall consider here the smooth,
asymptotic spectral properties. Whereas it is important to know the spectrum with
a sufficient precision in order to describe low-temperature and high magnetic field
phenomena, such as the Quantum Hall effect (as was argued in the previous chapter),
the high temperature and (or) the weak magnetic field response, like for instance
the orbital diamagnetism is often determined by smoothed spectral quantities (we
will have to say more on this in the next chapter). We shall describe them here by
defining and calculating the heat kernel or equivalently its Laplace transform. The
small time asymptotic expansion of the heat kernel is simply related to the smooth
part of the density of states (the so-called Weyl expansion) [56] and to smoothed
thermodynamic quantities like the magnetization [57). This asymptotic expansion
of the heat kernel for the semi-infinite plane gives the perimeter correction to the
Landau diamagnetism as noted by Robnik [58]. We shall expand the heat kernel
in two different ways obtaining the same results which differ however from those
obtained by Robnik. We subsequently compare our results with those obtained by
using the Balian-Bloch [10] expansion. We show in agreement with previous results
[59] that this last method is not very convenient in the presence of a magnetic field
due to the fact that it does not give rise to a well defined expansion since all higher
corrections do not vanish and can not be neglected. Another asymptotic method we
use, following Stewartson and Waechter [60], is powerful enough to give in principle
all the asymptotic series for the semi-infinite plane in a magnetic field. We argue
that all the coefficients in these series are universal in a sense that we shall precise.
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6.2 The resolvént of a bounded system.

Before starting the asymptotic analysis, we need to derive an exact expression for
the resolvent associated to the motion of an electron in a system with a boundary
and in a magnetic field.

6.2.1 An exact expression for the resolvent

The resolvent is defined by:

1 1

G(E)=Trm=2njE+En. (6.1)

It is a central quantity to study the spectral and thermodynamic properties as we
shall see in the following. It was extensively studied for the problem of the Laplacian
on manifolds [61, 62] with boundaries and in particular its Laplace transform (the
heat kernel) gives in the asymptotic limit the Weyl expansion for the density of
states. We consider the semi-infinite plane case in a uniform magnetic field. The
resolvent does not have any singularity in energies for E > 0, except at infinity. To
obtain the asymptotic expansion for large E we shall extend to the magnetic case
the method developed in the work of Stewartson and Waechter [60].
The resolvent G(E) satisfies the equation:

(H + E)G(E,r,x') = §(r—1'). - (6.2)

Since the momentum in the y direction is conserved, this equation can be reduced
to a one-dimensional Sturm-Liouville problem using the Fourier transform

G(E,r,x') = - [ ape™5* (B, z,2") (6.3)
T

which satisfies (compare with (5.7)):

ﬁaz 1

eB
2m azz+%(P——é‘z)z-i—E)Gp(E,a:,m')=5(z—:c') (6.4)

(where we used the identity §(y — y') = = d peﬂ’fﬁl). In the variable %, the

equation is further transformed to (compare with (5.10)

o2 E 1, _, R [2mw . -
gz + (0 — 7 B =8N (—5- | 5 Go(B,8,8')) = 6(3 - 3").  (65)
Finally, defining the variable n = & — &;, we obtain the Weber equation:
1 1 ’
i)+ +5 -7 fn)=8(n—n") (6.6)
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(where v = ——-h% — 1). The two independent solutions are the parabolic cylinder

(Weber) functions D,(n), D,(—n) (with a Wronskian equal to ﬁ(f%) The Green’s
function which satisfies (6.6) and vanishes for a diverging |n| is

2hm h — G (Bmn’) = r\(/;—:)Dv(%)Du(—m)- (6.7)

It gives the Green’s function for the particle in the infinite plane with a uniform
magnetic field.

We need the resolvent for the particle in the semi-infinite plane. To obtain the
Green’s function which satisfies Dirichlet boundary conditions at 7 = —2o, we add
to GP(E,n,n") a solution of the homogeneous Weber’s equation which makes the
sum to vanish on the boundary

zﬁn_; 2TZw_Gp(E,1]’n’) — I‘\(/;_:) (Du(ﬂ>)Dy(—'r]<)
Du(io
" Dy(—zg) DAPIPH1<)) (6.8)

The resolvent is then given by:

G(E) = ]od:c/Ldy G(E,r,r') =

L

/dz [ / o (=) (Dulm)Dul-1) — e s D). (69)

The integrand does not depend on y, therefore the integral over y is equal to L, the
length of the boundary.

It is interesting to extract the infinite plane part of the resolvent, corresponding to
the free electron motion in the magnetic field. In order to work w1th a meromorphic
function, we regularize G=(E) by subtracting its value at the energy E = ’“"

oo

G=(E) - G=(E = )= I? [ P EDnD)-

2( )h2
D(~v = 1)Dyma (1) Dom-i(-1)) = — L2

where ¥(—v) = %'((:v’i)l, and [;° dz is taken to be equal to Q

The boundary term of the resolvent (6.9) is then given by

G(B) - G=(E) = Ll;srhu)\uwhw / an / o o (z:?,) (1)

_LI‘(—V) ™m . u(zo)
- e | oy DA 0

—Du'(-io)"é;Dv(io)) (6.11)

((=v) = T(1)). (6.10)
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(for the integral with respect to 7 see [63]). We finally obtain

w(pm_ Wy ,om mL? . au(DV( o))
G(E) - G=(E = ) = I* 5 9(1) - J r—t /d Y (6.12).

There is another (shorter) way to obtain the relation (6.12). The integrated
density of states (the counting function) in a quantum system can be expressed
through the usual Green'’s operator:

N(B)= S f om0, (6.13)

6—

where g(e) #— is the Green’s operator. The contour encircles the energy poles-
in the complex € pla.ne It is important to emphasize that (6.13) is true only for
meromorphic functions. If Tr § (€) is not a meromorphic function (as in the problem
of unbounded motion in a magnetic field) it should be made such by appropriate
modifications. This can always be done as guaranteed by the theorem of Mittag-
Lefler [64].

Suppose now that we arrived to a formula of the type

N(E) = § 2 £(e), (6.14)

271

where f(e) some function (it appears that such a relation can always be written,

at least formally, for a separable system). Then, comparing equations (6.13) and
(6.14) we obtain that

TrG(e) = —f(e). (6.15)
Our resolvent G(E) is simply the trace of the Green’s operator taken with the
negative argument. Therefore it is given by:

G(B) = —f(~E). (6.16)

Let us illustrate how a relation of the type (6.14) can be obtained for the case
of a semi-infinite plane and a uniform magnetic field.

The energies of the stationary states are obtained requiring that the wave func-
tion satisfies the boundary condition (5.2). Since they are the parabolic cylinder
functions, the equation to be solved to find the energies is

2mw pc)
Di‘;"% (—V—h— . E) =0, (6.17)

where p = 2#-’}7", and n is an integer. The integrated density of states is equal to the
number of zeros of the parabolic cylinder function with the index belonging to the
interval [-1 £ _ 1]. The number of zeros of an analytic function in some region of
the complex plane is given by the following relation from complex analysis [64]:

_./2mw  pc
de dc —U" ( R cB)

N(E) = ZfZ'm D. l(__\/5%—“,.E‘) )

eB

(6.18)

ho
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where the integration contour encircles zeros of the parabolic cylinder function.
Changing the sum into an integral we obtain:

d uDu-—!- - :;_Zm 1
N(E) = /dn 2;"'1) ((\/\(5_;2_;_’{'))% (6.19)

which has the form (6.14) and therefore the relation (6.16) can be applied to find
the resolvent G(E) Again one should keep in mind that the application of the
formula (6.15) is only possible after the resolvent is transformed in order to be a
meromorphic function. Using the regularization as previously and making a change
of the integration variable we rederive the formula (6.12) for the resolvent G(E).

This argument extends to any separable system. As an example we derive here
the resolvents of a particle moving in a disk, with and without magnetic field.

Consider a particle confined to a disc of radius R. Introducing the momentum
k= 2"‘E , the energies are solutions of the equation

Ji(kR) =0, (6.20)

where [ is the angular momentum quantum number. The number of zeros is equal
to the integral of the logarithmic derivative of the Bessel function:

2 Ji(kR) |
N(E) E }( 27 Jz(kR (6:21)
Then according to our method, we obtain the resolvent
d
_ m . d_kIl(kR)
G(E) = ‘; MR TR (6.22)

which gives the result of Stewartson and Waechter [60] after subtracting the resolvent
corresponding to the infinite plane.

In the presence of a magnetic field, the energy of the particle moving in a circular
billiard is given by

I+|l|+1 E
2 '

where Np = SB is the number of flux quanta per total area. The counting function
is now

Fy( .14 |il; Ng) = 0, (6.23)

de £, Fy( (B _ e 4|15 Ne)

E . 6.24
)= Zf{?m F(ﬂ”— i 1+ [I; Na) (6:24)
and the resolvent is
_d_ I+]l]+1 _E__l 1l
G(E) =Y 4E- (5~ + i1+ 1l Na) (6.25)

T R (B By I Ng)

we emphasize again that in order to work with well-defined quantities we must
subtract from this expression the part of the resolvent corresponding to the infinite
plane.
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6.2.2 The asymptotic expansion of the resolvent.

We shall derive now an asymptotic expression for the resolvent which, as we shall see,
provides a convenient description of the thermodynamic response for a smoothed
spectrum. We rewrite the expression (6.12) for the resolvent under the following
form:

m mL?

(1) — a5 / diolnD,(0)).  (6.26)

G(E) - G=(B = 22) = I

For large positive energies (large negative v) and large Zo the Darwin asymptotic
expansmn of the parabolic cylinder function [65, 8] gives:

In2
InD, (%) ~ H - —lnI‘(—u) + (—8(%0, @) + v(%0, a)), (6.27)
with ) | )
- Lo /. . 1-1 Lo
6(Zo,a) = z\/:co + 4a + asinh lm
and

d3a
v(Zo,a) ~ ——ln(at:0 +4a) + Z ) ———,
=1 (‘V io + 40)3'

where a = £ > 0, and 32 +4a > 1.

The coefficients d3, are odd functions of o for odd values of s and even functions
of Zo for even s. Since we integrate in (6.16) over all real g, only even functions of
Zo contribute. We obtain for the first three even-indexed coefficients ds, [65]:

3.
153
dys = —g—mo—186a'0+80a
6381 _ 31232 ~
dis = — o o — 29862az; + 62292472 — a®. (6.28)

Then the asymptotic expansion of the resolvent G(E) is obtained inserting Darwin
expansion (6.27) in the equation (6.26)

o fw m mlL?
G(E) - G*(E = —) ~ L247rh2¢(1) + 1\ 39250 By

mL? mL? 08
\/ _— doln( 4a) E / )(6.29
12872h%w 81/ ./ Foln(Z; + 4a)) 8r2hdw 81/ . ( /-2 + 4a)3‘ )

The first two terms give the infinite plane part of the resolvent G®(E). Differenti-
ating first in the third term gives:

oo ml2 T .. 1
OE) ~ G™(E) ~ gz [ o+

mL?2 8 des
Z 87r2h3w (9a ~°/° ( /:‘ég + 40,)3‘ )
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Performing the integrals order by order in (6.30), we obtain the full asymptotic
expansion:

G(E) ~ G™(B) ~ — || moee =+ \ 3 ooT
32h%w /a 32h3w 256a%

2625 241197
2621440} 3355443245 )= 327‘;2(\/_

9(kw)? 2625(hw)? 241197(kw)®
( “’)5_ ( “’)g_ _ ( ‘”)_ +..) (6.31)
256 F 3 262144 F3 33554432F 3

This expansion could in principle be continued indefinitely, once the coefficients de,
are known.

6.3 Generalities on the heat kernel.
The heat kernel is defined by [61, 62]

P(t) = Tre MR = 3~ ¢ Bst/B, (6.32)
n

The Laplace transform of the heat kernel is the resolvent given by expression (6.1).
This function is more carefully defined by subtracting its divergent part, which
defines the regularized resolvent [56]

1 mS EN )
g(s) = lim_ [32 +E, ok’ log {7}] ' (6:33)

where S is the area of the two-dimensional system. The large-s asymptotic expansion
of g(s) implies the asymptotic expansion for the density of states. By assuming

= Cr
gy~ =, (6.34)
r=1 %

the density of states p(E) is related to the regularized resolvent defined through
(6.33):
p(E) = E S(E-E,)=—F— ;r- lim Im g(iv E — ie). (6.35)
n=1

Then, the large-s asymptotic expansion of the density of states can be obtained
using (6.34)

S 1 . C1 . —C2
B r B Bk
- Imlim — % -
w0 i(E —ie)/E —1ie
mS 1 e 1 & (-1

(6.36)



We note that even powers of s do not contribute to this asymptotic expansion.

As an example we calculate the heat kernel associated to the Landau spectrum
for a particle moving in the two-dimensional plane in a uniform magnetic field. The
energies are Landau levels E,, = hw (n + ) with a degeneracy Nj = SB . The sum

in (6.32) can be performed exactly and we obtain the closed expressmn

Ng
Po(t) = ——. 6.37
(t) - 2sinh £ (6:37)
The small ¢ asymptotic expansion of the heat kernel is given in this case by the

Taylor series of the hyperbolic sine

Mo (o)

Po(t) ~ 2 (1= 24

+...). (6.38)
All the terms except for the first one in the large s expansion of the regularized
resolvent are Laplace transforms of the corresponding terms in (6.38).

For the semi-infinite plane, using the asymptotic expansion of the resolvent, we
can calculate term by term the asymptotic expansion of the heat kernel for small ¢,
by performing an inverse Laplace transform on (6.31)

mL? ( 3t2w? + 25t4wt
32tnh 64 16384

P(t) — Po(t) ~ — — .. (6.39)
For B = 0 (6.39) gives a correct boundary term in the asymptotic expansion of the
heat kernel for the semi-infinite plane. It is more appealing to represent the heat
kernel for the semi-infinite plane in the presence of the magnetlc field as a function of
the two dimensionless parameters: 7 = wt and Ng = B L’ (number of the elementary
flux quanta). Then

N3 ] r? + rt ) - VN ( 3r2 251'4
24 5760 4\/— 64 16384

—..).  (6.40)

It is instructive to compare the expression (6.40) with its counterpart at B = 0.
The heat kernel in the absence of magnetic field is simply obtained from (6.40)
by taking in each parenthesis the analytic function of 7 to be zero. This suggests
that a natural extension of the heat kernel expansion for the two-dimensional shape
given for example in [56, 60] to the case of magnetic billiard is to multiply each
term by an analytic function of r. These functions should be universal for all flat
two-dimensional billiards with smooth boundaries.

6.4 The Balian-Bloch method.

The small time asymptotic expansion of the Heat Kernel can also be found using
a method suggested by Balian and Bloch [10]. It consists in a reformulation of the
problem of solving a partial differential equation of elliptic type with Dirichlet (or
another) boundary condition in terms of an integral equation of the Fredholm type.
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This integral equation is then solved iteratively (Neumann series), and each term in
this multiple reflection expansion corresponds to one term in the asymptotic series
of the heat kernel, as shown by Balian and Bloch [10].

Suppose then that the generalized Dirichlet problem can be solved in a domain
D with a boundary S in the absence of magnetic field:

2mE

= —Zh-';&(r ~r) (6.41)
The Green's function can be represented as a sum of two terms:
G(E,r,r') = G*(E,r,x') + GS(E,r,r'), (6.42)

where G®(E, r,r') is the Green’s function of the infinite plane, and G°(E,r,r') is
the boundary term which satisfies the differential equatlon (6.41) for rin D and the
boundary condition

G5(E,r,r') = -G*(E,r,1'), (6.43)
forr on S. This boundary term is expressed in terms of an unknown density ug(c, r)
as
8G>(E
G°(E,r,v') = /daa——((e;r—’alpg(a,r'), (6.44)
S a

and pp(a,r) is determined by solving the following Fredholm integral equation:
6G°°(E B,a)

(» 1

us(a, '), (6.45)

ue(B,r') = —G2(E,B,r') - / do.

where o, 3, .. are arbitrary points on the boundary S, dog is the boundary differ-
ential element, an is the normal derivative at the point «, with the normal oriented
towards the interior of the domain. Solving iteratively the integral equation (6.45)
for the density pg(a, r) and using equations (6.42) and (6.44), the following multiple
reflection expansion is obtained for the Green’s function:

dG=(E,r, )
! o0 0G=(E,r,a) o
G(E,r,r') = G®(E,r,r') /d O G*(E,a,r') +
hz 2 8G°°(E’r’a) OG“(E,a,’B) oo /
(E) S/d"“d"ﬁ Ona Brg G*(E,B,r')—... (6.46)

This approach was applied in this form to the case with a uniform magnetic field
perpendicular to the domain D [58]. However, at each order of the obtained multiple
reflection expansion we obtain a term which is not gauge invariant. This problem

may be easily corrected by introducing the covariant derivative 5‘3—— 22 A, () instead

of the usual '9 . This substitution is of no importance when the gauge is chosen
such that the vector potential has no component normal to the boundary (as it
happens to be in our problem), but generally should be taken into account.

Let us therefore apply the Balian and Bloch method to the semi-infinite plane
in a uniform magnetic field [58], in order to check our solution obtained by using
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Stewartson and Waechter method. Following Robnik, we calculate the heat kernel
P(t) where P(t) = [drG(t,r,r) and
G(E,r,r') = /e‘%G(t r,r')—

0

dt

6.47
R (6.47)
The multiple expansion for the time-dependent Green’s function is

t—7,ra)

Ong

K? o 8G>(
G(t,r,r') = G®(t,r,v') — — [ do, [ dr G®(7,a,r') +{6.48)
nf o] |

h4 f 7 3G°°(t—1'1,r,a) BGOO(TI _7'2901.3) | !
= Sf doadog o/ dr, o/ dr, o o G=(r3,B,r')—

where the Green's function for the infinite plane is given by

mw mw 113 ut imw '
G=(t.r rI — -2 (r-r')? coth 4t SE4 IR (yy )(z+z) 6.49
( ) 4mh sinh £ ¢ (6:49)
We calculate now the first term (proportional to B?) in the small magnetic field
expansion of the heat kernel. It turns out that the first three boundary-dependent
terms in the multiple reflection expansion do contribute to this order. The small B
expansion of the one-reflection term begins with:

L /Zm L 42
wht 7rh 192 ’

for the two-reflection and three—reﬁectlon terms, it is respectively:

L /2m 3 2,9
sV Rt 192 ¢
and
L (2
_Lfam 1 o,
8 V wht 192

Therefore the small magnetic field expansion of the heat kernel begins as follows:

Do L 2m L [2m 3 ,,

P(t)—P (t)—'s— 7l'_ht-+-§ ;r—h—tawt — e (650)
which agrees with the previously obtained result (6.39). This however disagrees
with Robnik’s calculation [58]. He assumed that in the case of a zero-curvature
boundary, the one-reflection term contains all the correction due to the boundary
(as it is for the problems with zero magnetic field). In fact as already noted by John
and Suttorp [59], higher order terms can not be neglected in calculating physical
quantities in the geometry with straight boundaries in the presence of a magnetic
field. We also remark that in order to calculate the term proportional to w?” in the
asymptotic expansion of the heat kernel, all the multiple reflection terms up to the
2n + 1’th order have to. be taken into account. This result is intuitively appealing.
Indeed as the magnetic field increases, the trajectories of the particles bend more
and more, so that higher and higher terms in the multiple reflection expansion do
contribute.
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6.5 Perimeter corrections to the Landau dia-
magnetism.

The heat kernel previously defined is nothing but the partition function of the elec-
tron and is therefore simply related to the magnetic susceptibility. We shall now
derive the perimeter corrections to the Landau diamagnetic susceptibility using the
expansion (6.50) both for a non-degenerate and a degenerate electron gas, comparing
them with the results obtained in [58].

For the non-degenerate case we obtain:

Nyl l
~ — - 6.
X = T3kT (1 ' 16L) ’ (6.51)
where N is the number of electrons in the system, y = ;'::c is the Bohr magneton

and [ = \/z—fn% is the de Broglie thermal length. Like in [58] the correction is
paramagnetic, but is smaller by one order of magnitude. Our result agrees with
numerical calculations [66].

For a degenerate electron gas, the connection between the susceptibility and the
partition function is different (see [57]). For a two-dimensional system we obtain at
T=0

Se? 9 1
X =~ odrme? (1 - i_ﬁ_m) ’ (6.52)

where kp is the Fermi wavevector. Here again the correction is paramagnetic and
coincides with perturbative calculations [67] at small field.

The perimeter corrections to the Landau diamagnetism (6.51) and (6.52) are
universal, being the largest corrections in a general billiard with a boundary of
length L. For a generic billiard, this correction is not the only one, and smaller
terms related to the curvature of the boundary should be added.

The properties of the heat kernel of manifolds have been extensively investigated
starting (among others) from the work of Kac [61] in order to relate the spectral
and geometrical descriptions [62]. Our results could be seen as an extension of these
works to the case of magnetic billiards. For the case of a straight boundary, the
magnetic field adds an infinite series to the bare perimeter term, which is, in some
sense, equivalent to an effective curvature of the boundary. If the boundary has
a curvature, another length scale enters the problem, coupling with the cyclotron
radius.

A full account of this work is given in [68].
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Chapter 7

The Landau diamagnetism
revisited.

7.1 The Landau diamagnetism as a smooth mag-
netic response.

The problem of the response of the free electron gas to a uniform magnetic field is
almost a century old. The beginning is the pre-quantum era when it was solved in
the framework of classical mechanics. The unexpected (even today) result known
as the Bohr-van Leeuwen theorem states that the magnetic response of the classical
electron gas is zero. It was even a bigger surprise when Landau proved that quantum
mechanics disagrees with this theorem and that a spinless electron gas has a finite
diamagnetic response.

There is a sufficiently large number of different derivations of the orbital mag-
netic susceptibility in the quantum regime and perhaps another one is superfluous.
However we feel that this discussion fits the logic of this thesis, since it emphasizes
the ubiquity of the need to separate a physical quantity into the smooth and oscillat-
ing parts and places the Landau calculation in the realm of the smoothed quantities.
In fact the large number of supposedly different ways to obtain the result of Landau
stems precisely from the large number of possibilities to smooth something oscillat-
ing. Landau himself has derived his formula using the Poisson sum rule [69] (see
also [70]), and the standard textbook derivation [71, 72] is based on the use of the
Euler-Maclaurin summation formula. Our calculation is inspired by the treatment
of this problem by Pippard [73] and should be reducible to it.

Later in this chapter we calculate the Landau diamagnetic response of a free
electron gas on three surfaces with a constant curvature - a plane, a sphere and a
hyperbolic plane. The orbital magnetic susceptibility in all these three cases is the
same.

We start however with a gas of non-interacting electrons moving in an infinite
plane in a perpendicular and uniform magnetic field B. The energy levels instead
of the continuum for a free particle, collapse for the case of a particle moving in the
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magnetic field into the so called Landau levels,
E = hw(n +1/2), | (7.1)

where w = eB/mec, n is a non-negative integer. Each Landau level possesses a
macroscopic degeneracy, usually estimated by the total magnetic flux through the
system, measured in the units of elementary flux quantum Ny = &/, (® = BS,
with S the area of the system; & = hc/e). For the infinite plane the area is
infinite, so is the degeneracy of the Landau level, however one is allowed to consider
a finite domain, assuming the energy levels (7.1) with the finite degeneracy (compare
with the discussion of the hyperbolic plane case). If however one feels uneasy with
these infinities, he/she could have in mind a torus with a magnetic field everywhere
perpendicular to its surface, which has the same spectrum with the degeneracy
exactly equal to [Ng] (the magnetic field is then quantized). The orbital magnetic
response of the electrons is measured by the magnetic susceptibility, a definition of

which is -
.1 Q
x=-fms (ﬁ) (72

where Q(B, ) is the thermodynamic potential, connected to the grand-canonical
partition function @ via @ = —(1/8)In Q. The thermodynamic potential is not a
smooth function of the chemical potential at zero temperature, as we will explicitly
show, but it gets smoother as the temperature is raised. The diamagnetism of
Landau is the smooth part of the magnetic response and most often the temperature
serves as a smoothing agent (for instance in [71]). In this case the magnetic field
should not be too large, more precisely the condition AwB << 1 should be satisfied.
Correspondingly the Landau diamagnetism is sometimes called “the weak magnetic
field response”. However it is not obligatory to smooth by raising the temperature.
Nothing prevents us from smoothing over the chemical potential at zero temperature.
It is possible therefore to measure in principle the Landau diamagnetism even at
T = 0 and strong magnetic field, provided we know how to smooth the actual
response. :

In this section we would like to argue that the smoothing for this particular
problem - calculating the orbital magnetic susceptibility - can be understood as some
kind of average of the exact quantity. This average, as it turns out has to minimize
the mean square deviation from the actual quantity, thus basically corresponding to
the least squares method. ‘

The quantity we consider is the thermodynamic potential Q(u) at zero temper-
ature, related to the total energy E(x) and the particle number N(y)

QUp) = E(p) — pN(p). (7.3)

Using the spectrum of the electrons in the magnetic field moving on the torus,
we would like now to build the function Q(p) explicitly. It is convenient to make a
following rescaling to more natural units: the thermodynamic potential will be mea-
sured in units of Nphw/2 and the chemical potential in units of %iw/2. The rescaled
quantities will be indicated by tilde. Consider then ——ﬁ(ﬁ). Naturally the range of
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the rescaled chemical potential ji splits into the pieces between the Landau levels. At
each Landau level the reduced thermodynamic potential §) changes discontinuously
its slope. Thus if 0 < & < 1, the thermodynamic potential is zero. The next piece is
1 < ji < 3. At the beginning of this interval, i = 1, the first Landau level is filled,
this means the number of electrons is N(1) = N, their total energy E(1) = Nphw/2
and hence the thermodynamic potential is zero. Between the Landau levels, the
electron number and the total energy do not change, therefore —$2(i) is a linear
function. At the end of the interval, i = 3, the particle number is N(3) = 2Ng, the
total energy E(3) = E(1) + 3Nghw/2 and correspondingly —Q(3) = 2. It is easy to
derive generally that for ji in the interval 2n —1 < i < 2n + 1, (here n is a positive
integer) the rescaled thermodynamic potential is given by '

— Q) = nji — n®. (7.4)

This function is shown graphically in figure 7.1 by the solid line. As was already
mentioned, when the chemical potential is exactly equal to the energy of the Landau
level, the curve has a discontinuous slope. Between the Landau levels it is a straight
line.

Now we need to smooth the thermodynamic potential over the chemical po-
tential. Let (€) stand for the smoothed rescaled thermodynamic potential. The
smoothed function has to average in some sense the real curve, their difference
should be as small as possible for all values of rescaled chemical potential. It is
not difficult to notice that there are two curves that have infinitely many common
points with the solid line in figure 7.1 (they are shown as two dashed lines). These
are parabolas, the first is described by /i?/4, and the second i?/4 — 1/4. The first
parabola touches the solid line, representing (i) at points i = 2n, the other one
at points i = 2n + 1. Clearly then —(€Q(i)) has to be a parabola of the following
form

— () = 3~ (75)

here ¢ has to be some constant satisfying 0 < ¢ < 1/4.

In order to find the constant ¢, we need a more precise definition of the average
(Qt). We propose to minimize the mean square deviation between the smoothed and
exact quantities, 1.e.

2n+1 ) . RS 1 c \
[ (@) - 8@)” = g5 - 5 +2¢ (7.6)
2n-1
here it is enough to restrict the integral between two arbitrary adjacent Landau
Jevels, because the integral does not depend on n. Minimizing (7.6), we obtain for
the constant ¢ = 1/12. Hence

— (@) = -:;;12 ~1/12, (7.7)

and restoring the usual units, the smoothed thermodynamic potential is found to

be
Smu?  SB%?

T 4rnh? 487Tme?’

Q) = (7.8)

71



fe}]
N

Figure 7.1: Rescaled thermodynamic potential as a function of rescaled chemical
potential. The solid line is the exact thermodynamic potential; the dashed lines are
two parabolas approximating it.

Using (7.2), we obtain the diamagnetic susceptibility as follows
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= — . 7.9
X 24tmc? (7.9)

This is the usual result of Landau diamagnetism for the two-dimensional system.

The lesson we have learned from this calculation is that the smooth quantity
averages in a certain way the exact function, which is singular. From many different
averages we find that the least squares method gives a correct answer. This indicates
some connection between the asymptotic analysis and the statlstlcal theory to which
the method of least squares belongs.

7.2 The derivation of the Landau diamagnetism
through the heat kernel formalism.

- We would like to present a simple scheme to calculate the smooth part of the chemical
potential (Q2(x)) (at T = 0). It relies on the use of the connection between the
chemical potential at zero temperature and the heat kernel, which was developed
by Sondheimer and Wilson [57]. We will not prove here this relationship.

Consider the heat kernel, P(v), for the one-particle problem with a Hamiltonian

H, defined as follows
P(y) =3 e, (7.10)

here n is the index running over the eigenstates of the Hamiltonian H; E, are
the corresponding energies (in contrast with the definition (6.32), where the time
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variable ¢ is used, we prefer here the variable 4 with the dimension of inverse energy).
As Sondheimer and Wilson show, the thermodynamic potential at zero temperature
is simply related to a function z(E), which is defined by means of

PO _ de 2(E)e™ . (7.11)
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The important result derived in [57] is the following
Qn) = —2(u). (7.12)

As was argued in the previous section, the Landau diamagnetism. has as its origin
the smooth part of the thermodynamic potential, more precisely the magnetic sus-
ceptibility can be read off the second term of the large p asymptotic expansion of
Q(p). Therefore according to (7.12) we have to find the asymptotic behavior of the
function z(E) as E — co. We will find easier however to calculate the asymptotic
expansion of the heat kernel for small v’s. Since the heat kernel is related to z(E)
by (7.11), the required asymptotic series of z(E) can be found by inverting this
equation.

This scheme can be immediately applied to calculate the magnetic susceptibility
for the system considered in the previous section (electrons on the infinite plane in
the magnetic field). Using the Landau spectrum with corresponding energies and
degeneracies, the heat kernel can be summed up as a closed expression

Ns

Py) = 2sinh(yAw/2)" (7.13)
Expanding (7.13) for 4 — 0, we obtain
. _ 1 vyhw
.1,1_% P(y) = Ns ('ﬂiw 51 + ) : (7.14)

The first term in the expansion (7.14) is independent of the magnetic field and
corresponds through (7.11) to the first term in the formula (7.8) for the smoothed
thermodynamic potential. The leading term in the heat kernel expansion which
depends on B is —Ngvhw/24. It is proportional to v, and as explained earlier will
give the magnetic response. The corresponding term in the large E expansion of
~the function z(E) is according to (7.11) —Nghw/24, we have to change the sign
of this expression to obtain the relevant term for the smooth thermodynamic po-
tential. Substituting this expression into (7.2), we again have for the diamagnetic
susceptibility

ez

" 24rmc?’

X = (7.15)

in agreement with (7.9).

Our scheme is not entirely satisfying, because for instance the third term in the
expansion (7.14) when attempted to relate it to a term in the large E expansion of
z(E) through (7.11), will give rise to a diverging expression and therefore has no
meaning. However it seems that if the two sides of the relationship z(E) converge,
they should correctly represent terms in the corresponding asymptotic series. This
point requires further study.
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7.3 The Landau diamagnetism of the sphere.

In this and the next sections we will examine the magnetic response of the electron
gas forming a two-dimensional surface with a constant and finite curvature. First
we consider the sphere of radius R (a surface with a constant positive curvature).
The magnetic field is perpendicular everywhere to the surface of the sphere and is
uniform. It can be associated to a Dirac monopole. We will follow the scheme of the
previous section to calculate the magnetic susceptibility. To this end we need the
eigenstates with their energies for the one-particle problem on the sphere with the
- magnetic field. They were obtained by I. Tamm [74] ([75] is a more recent reference).
As in the case of the flat torus, the energy levels are labeled by a non-negative index
n (called by analogy the Landau levels), and are given by

— hu(n + ;untl), (7.16)
29

where the dimensionless monopole charge g is defined through 2g ®/d,, the total
magnetic flux being equal to the product of the magnetic field and the surface area
of the sphere S = 47 R%. The Dirac quantization condition requires that 2g has to
be an integer [76] (this point is not essential in what follows). There are 2g + 2n + 1
eigenstates with energy E, - the degeneracy of the Landau levels unlike the infinite
plane case depends on the index n.

The heat kernel of the sphere is then

P(")’) _ i(2g+2n+ l)e—hw'y(n+1/2+n(n+1)/2g)

n=0

3 (29 + 2n + 1)e-o@natetn’+n) (7.17)

n=0

where the following notation was introduced € = A*/2mR?. The asymptotic be-
havior of the sum in (7.17) as 4 — 0 should now be found. It turns out that the
application of the Euler-Maclaurin summation formula (2.14) to the heat kernel
yields the asymptotic expansion. To illustrate the calculation, we consider the case
B = 0 (the finite B case is not more complicated in principle, but requires more
work). In this case, the heat kernel is

Po(7) =14 Y (2n 4 1)+, (7.18)
n=1

measuring v in units of 1/¢y. Applying the Euler-Maclaurin summation formula to
the sum in (7.18), we obtain the asymptotic expansion as ¥ — 0

1 1
$ (20 + 1)e=H4m) / dn (2n + 1)) — o — (2 — 1)
n=1
1 2 +«
- =241 ... 19
7.20( 12y +129% =) + - -3t | (7.19)
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We need to go to the third derivative term in the Euler-Maclaurin formula to obtain
consistently the term proportional to v (third is the lowest power of 4 in the fifth
derivative term).

As already mentioned the finite B calculation is similar, though somewhat more
lengthy. The asymptotic behavior of the heat kernel is

€Y _ g'€07
P('y)~—+ +15— s T (7.20)

The important term in the asymptotic expansion (7.20) is the fourth one, propor-
tional to 4 and magnetic field dependent. It is easy to check that it can be rewritten
in the form —Nghwy/24, hence it is manifestly equivalent to the corresponding term
of the torus heat kernel. Therefore it will give rise to the same susceptibility as in
the previous sectlon the Landau diamagnetism of the sphere and of the plane are
identical.

7.4 The Landau diamagnetism of the hyperbolic
plane.

To complete our study of constant curvature surfaces, we take up in this section
the case of the hyperbolic plane - a surface with constant negative curvature. In
three-dimensional Cartesian coordinates (z,y, 2) it can be represented as the upper
sheet (z > R) of the hyperbolic surface

_o?_y? 4 2? = R

The magnetic field B is everywhere orthogonal to the surface. We may call it the
field of the hyperbolic monopole [75]. What is the magnetic response to the field of
the hyperbolic monopole?

As before, we need the spectrum of the one-particle problem on the hyperbolic
plane. It was determined by Comtet and Houston [77, 78] and was found to consist
of two parts, discrete and continuous. Introducing the charge of the hyperbolic
monopole 2g = 4w BR?/®,, in analogy with the case of the sphere the discrete part
of the spectrum was shown to be made of “Landau levels” E, = e(2gn+g—n—n?),
where n is a non-negative integer smaller than g—1/2. Each Landau level is infinitely
degenerate. The continuous spectrum is E(v) = €(1/4 + g* + v*), where v is a
positive continuous variable (the definition of € remains the same).

According to our scheme of calculating the magnetic part of the smooth ther-
modynamic potential, we need the heat kernel of the problem. Considering its
definition, one immediately encounters the following problem. The heat kernel is
the trace of the Green’s function given by

G(v,x,x') = z:}¢{m}(x)¢f,,;}(x’)e”’E{m), (7.21)
{m

here by {m} we mean the set of quantum numbers, which fully specifies the eigen-
state; the sum should be understood as an integral when the quantum number is a
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continuous variable. The trace involves the integration over the area of the hyper-
bolic plane, which is infinite, and strictly speaking the heat kernel diverges. What
saves us is the fortunate circumstance that the Green’s function (7.21) is indepen-
dent of (x,x’), and therefore the area factors out of the trace (exactly what happens
for the Euclidean space also). However we have now to calculate the wave functions
as well to find the Green’s function in (7.21). When this is done [77], the heat kernel
can be worked out to be

= ,
= — _ —veo(2gn+g—n-n?)
P() ywy=D g(Zg 2n —1)e +
S [~} .
= [ dv v tanh(ru)eTali 440, (7.22)
0

here we assumed for simplicity that g is an integer (the difference between this
formula and the expression (3.6) in [77] can be understood taking into account the
following identity, valid for integer g, Im(¥(1/2 + iv — g) + ¥(1/2 + iv + g)) =
wtanh(nv), where ¥ is the logarithmic derivative of the Gamma function [8]); S
is the area of the domain of the hyperbolic plane, defined by the location of the
electron gas.

Now having the expression for the heat kernel at our disposal, we need its asymp-
totic behavior as y — 0. We start with the sum in (7.22). Asin the previous section,
the Euler-Maclaurin summation formula will do the job. The calculation is some-
what more involved than in the case of the sphere, because here the sum is finite.
However as then, it suffices to go to the third derivative term in the Euler-Maclaurin
formula in order to reach the v-proportional part in the asymptotic expansion of
the heat kernel. As a result we have

g-1 2 4
2(29 — M — 1)3—1co(2gn+g—n—n’) ~ gz . 7639 _ 7539 e, (723)
n=0

As for the integral in (7.22), it is convenient to transform it using the identity
tanh(7v) = 1 — exp(—nv)/ cosh(wv). One of the resulting integrals is Gaussian and
can be done exactly, another one, containing the hyperbolic cosine, is first developed
in powers of v, then each term in the series can be integrated, since it is of the form

o pim—lg—o 1 — o1—2m
d = B, |w®™. 7.24
0/ z coshz 2m | B ( )

Collecting the terms with the same powers of v, we obtain

® 2 4
—re(/atgtn) , L L 2 Y6 Yeg”  Ye0g” .. (7.25
20/dx/ vtanh(rv)e w379 tpt g ot (7.25)

The asymptotic expansion of the heat kernel for the hyperbolic plane is the sum of
(7.23) and (7.25)

S 1 1 76  7eod’®
~ — - =t — = XN I8 1.
P(y) (760 T a (7.26)
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Again as it was for the sphere, the term responsible for the diamagnetism can
be rewritten as —Nghw+/24, which would yield the magnetic susceptibility (7.9).
Therefore we finally arrive at the conclusion that the smooth diamagnetic response
(Landau diamagnetism) on all surfaces with constant curvature is the same.

The conjecture that comes in view of our result is that the Landau diamagnetic
response is independent of the surface curvature. It seems that the most appropriate
tools to consider this question are general heat equation methods [79]. Another open
_ problem is to calculate the Pauli (spin) magnetic response on a general surface.
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Chapter 8

Chiral boundary conditions for
Quantum Hall systems.

8.1 Introduction.

In the previous chapters we considered finite-size systems, formulating the quantum-
mechanical problem for them, which in mathematical nomenclature is called the
boundary value problem. We did not devoted much thought to the choice of bound-
ary conditions, assuming them to be Dirichlet. In this chapter we ask for a physical
motivation for certain choice of boundary conditions. This is particular relevant for
mesoscopic systems in the Quantum Hall regime, where right boundary conditions
can naturally define bulk and edge of such system.

One of the main issues in Quantum Mesoscopic Physics is to study the behavior
of many-particle quantum systems in confined geometries. For many purposes the
many-body interactions are negligible and the problem reduces to that of one particle
in a confined geometry. The corresponding Hamiltonian is a sum of a kinetic term
and a one body operator describing either the confining potential or disorder in
the bulk of the system. The expression "Quantum Mesoscopic Billiards” (QMB)
was coined to describe generically this class of problems. The role played by the
boundaries in the behavior of QMB is central. In the absence of bulk disorder, the
shape of the boundary determines the nature of the energy spectrum, i.e. whether
or not the system will show quantum signatures of chaos.

We begin by discussing in general terms what motivates the choice of a given
set of boundary conditions and to see under which conditions this choice is justified
for confined quantum systems in situations other than the QMB defined above, for
instance for a many-body system when the Hamiltonian is not anymore quadratic
or in the presence of a high magnetic field i.e. in the Quantum Hall regime.

8.1.1 How to choose boundary conditions?

Consider the case of a QMB without bulk disorder. It is described by the Hamil-
tonian H = —=A + V(r) where V(r) is a confining potential. It is built up
microscopically from the electrostatic description of two electron gases of different
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dielectric characteristics. For a given ratio of the dielectric constants, the effective
image force is strong enough to keep the electrons localized in a given area (the
billiard). To know exactly the shape of the potential V(r) and to solve for it the
Shrodinger equation is a hopeless task. Then, under the assumption that V(r) has
bound states, it is possible to replace this problem by a simpler one, supposedly
equivalent, defined by H = —%A and | = 0 for the wavefunction, where the
boundary B is obtained from the symmetry and the shape of V(r). This is the so
called Dirichlet choice and it is widely used to describe QMB. A more technical re-
mark is perhaps appropriate at this stage. This kind of "box quantization” obtained
using Dirichlet boundary conditions is also widely used to describe other physical
situations like, for instance, transport in a quantum system.

Although the Dirichlet choice is the most popular for the reasons discussed above,
it is not the only one and may even lead to unpleasant surprises. Consider for
instance the case of a confined Dirac particle (a Dirac billiard) described by:

0 Dt u U
(5 %)(2)-=(%)
instead of a Schrodinger Hamiltonian. Here, D and D! are first order differential

operators (the root of the Laplacian) and the wavefunction ¢ = z is a two-

component spinor. By demanding Dirichlet boundary conditions, the problem is
over-determined and 4 is identically zero not only on the boundary but in the whole
system. It is also known for this problem that other choices of local boundary con-
ditions (e.g. Neumann) lead to difficulties associated with the creation of particle-
hole pairs (Klein paradox) [80]. This problem is not only an academic curiosity,
but might be relevant if one wants to describe mesoscopic superconducting billiards
where the spectrum is obtained from the Bogoliubov-de Gennes Hamiltonian which,
when linearized, belongs to the class of Dirac problems.

8.1.2 Beyond one particle: effective Hamiltonians.

So far we did consider the case of quadratic Hamiltonians i.e. the Laplacian plus
a (one body) confining potential. When many-body effects cannot be neglected
anymore, the situation is far more complicated. A standard form for the (tight
binding) Hamiltonian is

H= Ze;c,-"c; + %E(ileUl}q'ck’ch.
i ikl
The kinetic part is still given (in a second quantized form) by a sum of Laplacian
operators, but the second part associated with the interaction is a quartic term.
Except for some special cases we do not know how to diagonalize such Hamiltonians
no matter whether the system is bounded or not. The main issue underlying the
search of various approximations is precisely to define instead an effective quadratic

Hamiltonian whose parameters depend on the approximation. The well known per-
turbative or variational methods (Hartree Fock, RPA, Bogoliubov...) do fulfill this
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objective. When dealing with confined many-body systems, we need to build an
effective quadratic Hamiltonian whose potential takes into account both the many-
body effects of the confined electrons but also, just like before, the effects of the
electrostatic potentials resulting from the interactions with the surrounding envi-
ronment.

Our choice of boundary conditions for the effective one body (quadratic) Hamil-
tonian is now broader and depends on the nature of the confining potential. If it is
due to image forces as for the QMB case, then the Dirichlet choice will be again jus-
tified. But if the confinement is dominated by the many-body effects in the system
itself, then we might be led to other choices of boundary conditions.

For the benefit of the more pragmatically inclined reader, let us illustrate these
ideas by the example of the Feynman ansatz for N interacting bosons [81]. The
many-body Hamiltonian is

h2
H—Eo—%-E;A;-*-V,

where V = ¥, V(|r;—r;|) is the interaction potential and Eo the ground state energy.
The N bosons wavefunctions describing the excited states is assumed (Feynman
ansatz) to be of the form ¥(ry,...,rv) = F¥o(r1,...,7n), Where F = YV f(r;) and
U, is the exact (but unknown) ground state wavefunction. This form is exact for the
non interacting case, but it assumes for the interacting one that the interactions build
up separately (under an adiabatic switching) in F' and in Wo. This approximation
may be shown to be equivalent (under certain conditions) to the RPA, the generator
coordinate method [82] or the quasi boson approximation. The equation of motion
of the complex function f(r) (it is not the wavefunction) is obtained by minimizing
the energy £ = %%%l. Under the assumption of an incompressible ground state of
density no, §E = 0 implies
h?
——noVf = E/dr'f(r')n(r -7,

2m

‘where n(r — r') is the density correlation function in the ground state ¥o. The
‘effective energy E is now given by the quadratic form

.
E= —no% [ & (92
and to obtain the spectrum, we have to impose boundary conditions on the function
f. Assuming translational invariance, Feynman obtained the well known relation
E= %-S'E—l)-, where S(k) is the structure factor. This gives the one branch phonon
spectrum for small k. For a bounded system, relating f(r) to the order parameter, we
obtain that the fluid velocity is v(r) = iV f so that the natural boundary conditions
are Neumann, n - Vf|g = 0 where n is a unit vector normal to the boundary.
The same kind of approach applies to the case of bounded superconductors where

the natural boundary conditions for the effective quadratic Hamiltonian are now
generalized to [83]

n.(=ikV - %A)ls = iAf
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where X is finite for the boundary between a superconductor and a normal metal
while it is zero for an insulator.

To conclude, it looks to be quite a general result that where the Dirichlet bound-
ary conditions are more appropriate for the case of a QMB (i.e. usual quantum
mechanics), the Neumann (or elastic) boundary conditions appear to be the natural
choice for collective (bosonic) excitations (phonons, plasmons...) which do appear
in the effective quadratic approximations of many-body Hamiltonian. This is inti-
mately related to the semi-classical nature of these approximations. They enable
us, starting with the microscopic description, to reduce the problem to the study
of large-scale modes for which boundary conditions should be formulated, accord-
ing to macroscopic principles (like continuity of the current). This leads usually to
Neumann boundary conditions.

8.1.3 Bounded Quantum Hall systems.

We go over to the application of the previous general remarks to the specific case of
bounded electrons in a strong magnetic field i.e. in the Quantum Hall regime. We
shall focus on the simpler case of non interacting electrons.

The various descriptions of the QHE'’s developed so far belong to two main
categories. One is based on a bulk description, i.e. on the properties of a Landau
like spectrum whose main characteristics are the large degeneracy of the ground
state (proportional to the surface of the system) and its incompressibility, i.e. the
existence of a gap between it and the first excited state. These conditions are enough
to observe the quantization of the Hall conductance [84]. The surprising stability of
these properties with respect to both disorder and interactions are partly responsible
for the richness of this problem. Various points of view were developed in order to
prove the quantization of the Hall conductance and among them a successful and
promising topological approach [85, 86]. There, using periodic boundary conditions,
the system has the topology of a torus so that edge physics does not play any role.

A second line of thought emphasizes the central role played by the edges. It is
based on the idea that a magnetic field dependent incompressibility always leads to
gapless edge excitations. Then, the total current being zero in the bulk (but not the
current density), the currents in a Hall experiment flow along the edges [84, 87].

More recently, these edge states were presented as a possible realization of a
quasi-one dimensional chiral electron gas. Various phenomenological models were
developed to describe it, including a chiral Luttinger liquid [88, 89]. A global de-
scription which would relate these two approaches would be welcome. A microscopic
way based on first principles to handle this question is difficult. To know the exact
spectrum of the system, we first need to solve a classical electrodynamic problem
to obtain the confining potential between two electron gases of different dielectric
functions in a strong and inhomogeneous magnetic field. In the absence of applied
magnetic field, the bulk excitations are plasmons with a dispersion w o« vk. In
the presence of the magnetic field the bulk spectrum acquires a gap (Kohn’s theo-
rem) equal to the cyclotron frequency and chiral edge magnetoplasmons propagating
along the boundary do appear with a linear dispersion. Various descriptions were
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proposed to study these edge excitations using different density profiles [90, 91].
Although these approaches do provide a qualitative description of the experimental
results [92], they do not take into account quantum effects related to the quantiza-
tion of the Hall conductance, a point which seems to be important experimentally
[92].

It would be interesting to know if the microscopic confining potential could be
replaced by an appropriate choice of boundary conditions which contain the same
physics. To go further, we first consider the case of an effective one particle Hamil-
tonian of the form

H= —-hi(v - ie-A)2 + V(r,B)
T 2m fic e
where B = V X A is the inhomogeneous magnetic field and V(r,B) the effective
confining potential, solution of the microscopic electrodynamic problem. To replace
V(r,B) by a set of boundary conditions, we have two main possibilities. The first
one is to assume that it results from the electrostatics interactions and depends
very little on the external magnetic field. This situation is similar to the QMB we
discussed earlier and then we shall choose Dirichlet boundary conditions ¥|s = 0.
If on the other hand, the confining nature of the magnetic field plays a role, which
is expected at high magnetic fields, then the Dirichlet choice might be non correct
in the sense that although it confines the electrons, it will not be able to reproduce
the edge excitations.

We are therefore looking for boundary conditions which connect together the
bulk and edge properties of a confined Quantum Hall system. In other words, is
there for this problem a generalized Poisson principle for which like in electrostatics,
the bulk and edge excitations are a consequence one of the other?

These general considerations are presented in a more complete form in {93].

8.2 Boundary conditions for bulk and edge
states in Quantum Hall systems.

We consider in this section the spectral properties of the magnetic QMB, stressing
that along with the usual local boundary conditions, there is a place for the non-local
boundary conditions in the theory of QHE. These, at first sight purely mathematical,
constructs have a very appealing physical content by providing clear-cut edge and
bulk notions for the Quantum Hall systems.

8.2.1 Motion in the absence of boundaries.

We consider first the problem of non interacting electrons without disorder moving
in two dimensions in a uniform magnetic field B. The Hamiltonian can be expressed
in terms of the two conjugate, first order differential operators D and D! defined by

8 190  br

_ 160 = - -
D=e (6r+r69+ 2)

(8.1)
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and 5 -
Dt =09 , 9 T
e™( 8+r80+2) (8.2)

22H = DD' — b = D'D + b, where b = % and the commutator [D, D] = 2b.
The spectrum of H for the infinite plane limit is

B = hwi(n + ”l“#), (8.3)

where I € ZZ is the angular quantum number, n € IN and w, = £2 is the cyclotron
frequency. The ground state is obtained for n = I = 0 and its degenera.cy is given
by the total magnetic flux. This can be cast in the more general result which states
that the Index defined by:

Index = dimKerD — dimKerDt (8.4)

is equal to the degeneracy of the ground state [79, 94]. KerD (resp. KerD') defines
the zero-modes of D (resp.Dt), i.e. such that D¥ = 0 (resp. D!'¥ = 0) and dimKerD
is the number of such independent solutions (resp. dimKerD'). For the problem
at hand, this result is straightforward. For B > 0, KerD! is empty since D!¥ =0
implies DD'¥ = (2H +hw.)¥ = 0. Since the spectrum of H is non-negative, there is
no non-zero solution. On the other hand, D¥ = 0 implies D!D¥ = (2H — hw,)¥ =
0, which admits as a solution the lowest Landau level of energy 2hw,. The Index is
therefore infinite, as expected, but can be regula.nzed noticing tha.t except for the
zero modes, DD* and DD have the same spectrum. Then, since KerD = KerD!D
and KerD! = KerDD!, the Index in (8.4) is Index = lim,_o Tr(e *P'P? — ¢~tPD"),
Expanding for small ¢ we obtain:

Index = -——-/d2 [D,D!] = gS (8.5)
0

i.e. the degeneracy of the lowest Landau level. This result has been extended by
Aharonov and Casher [95] to the situation of a spin half electron (Pauli Hamiltonian)
in the plane submitted to a magnetic field of finite magnetic flux ®. Since, in that
case, the spectra of the Schrodinger and Pauli Hamiltonians are simply shifted by a
constant %, their result can be immediately extended to the Schrédinger case. The
ground state of energy 1Aw, has a degeneracy given by Index = [®], where [®] is the
integer part of ®. These two examples are realizations of the Atiyah-Singer index
theorem [79].

8.2.2 The Dirichlet boundary conditions.

So far, we have considered the case of open systems, i.e. with boundary condi-
tions at infinity. Let us now return to the problem of electrons constrained to move
in a disc of radius R in a uniform magnetic field (recall the semi-classical analysis of
this system in the fifth chapter). The spectrum of this system has been studied and
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Figure 8.1: Spectrum of an electron in the magnetic field - Dirichlet boundary
conditions. The energy e is plotted against the magnetic flux through the billiard
5.

we recall some of the results. The angular momentum ! is a good quantum number
and the general solution of the Schrédinger equation is given by

3 br2
¥y(r) = CrMe= " Fy(a, U] + 1, =) (8.6)
where a = l’_l% — 5, = 2—;",5— and 1Fi(a,c,z) is the confluent hypergeomet-

ric function. We first study the spectrum obtained by imposing local boundary
conditions. For the sake of simplicity, we consider Dirichlet boundary conditions
(DBC) i.e ¥)(r = R) = 0. The energy spectrum is then obtained from the ze-
ros of 1 Fi(a,|l| + 1,®) which have been studied in detail. We can separate these
zeros into two classes according to the sign of the angular momentum [. For
I > 0, the corresponding energy levels are given by 1Fi(3 — £,0+ 1,8) = 0
where e = Z%EE and & = bR? = %‘f is the total magnetic flux through the
disc in units of the flux quantum ®,. For | < 0, the energy levels are given by
1Fi(-1+3 - &,|1| +1,8) = 0. The equation; Fi(a,c,z) = 0 has solutions only for
a < 0 and in the interval —p < a < —p + 1, it has exactly p real solutions [96].
For instance, for —1 < 2 — £ < 0, there is one solution for each positive I. In the
same interval, —I + 2 — £ > 0, so that there is no root in this interval for I < 0.
Notice that the energy & = § which corresponds to the lowest Landau level is not
an allowed solution for the disc with DBC (Fig. 8.1).

For any finite but large magnetic flux (& >> 1), the ground state is non de-
generate, except in the limit & — oo where the degeneracy is infinite. Therefore,
the conditions to display Quantum Hall Effect [84] are met only qualitatively un-
der DBC. There are also other more formal problems with DBC. The degeneracy
of the ground state is given by the Index which for the infinite plane limit is, the
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Figure 8.2: Spectrum of an electron in the magnetic field - Dirichlet boundary

conditions. The energy e/® — 1/2 is plotted against the angular momentum I. The
total flux through the billiard is = 20. -

total magnetic flux. With DBC, the Index is identically zero for any finite mag-
netic flux and becomes infinite for & — oco. If we view our disc as embedded in
the two-dimensional infinite plane with a magnetic field restricted to the area of
the disc, then there is a contradiction with the Aharonov-Casher result. There is a
continuity property of the Index as & is varied, based on Eq.(8.5) which should give
at any ¢ a non zero value. Moreover, the DBC lead to an ill defined problem for the
calculation of the Index. The null spaces KerD and KerD! are obtained by solving
the first order differential equations D¥ = 0 and D'® = 0. The general solutions of
these equations are always strictly positive and cannot be identically zero on a finite
domain. Therefore, they are incompatible with DBC. This problem has long been
recognized by the mathematicians [97]. They were not motivated by those physical
constraints, but by elliptic boundary value problems, i.e by the ellipticity of linear
partial differential operators just like D and D!. The ellipticity of an operator on a
manifold without boundary is equivalent to the invertibility of its symbol defined as
the Fourier transform of the operator with respect to the momentum. This condition
is fulfilled by D and D!. But if the symbol has a nonzero winding number, which
happens when [D, D!] # 0, then ellipticity is incompatible with any local type of
boundary conditions.

We summarize again the main features of the spectrum under the DBC (these
features are more general though we demonstrated them only for the disc-like bil-
liard). The lowest Landau level is always below the ground state (I = 0), although
exponentially close. For any finite R, the ground state is non-degenerate. Since E;
are analytic functions of [ (described as a continuous variable), there is no natural
splitting in this spectrum between bulk and edge states (see Figure 8.2).
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8.2.3 The Atiyah-Patodi-Singer boundary conditions.

There is another set of boundary conditions [97, 98] more adapted to this problem.
We define the operator
19 br

m=i2. (8.7)
such that D = e""(% + J(r)), as a generalized angular momentum. By projecting
J on the boundary (circle of radius R), the corresponding spectrum is MR) =
—%(I — ®). It has both a positive and a negative part. The positive part contains
all the [ states corresponding to wavefunctions localized inside a radius R while for
A < 0, it gives those states localized outside this radius. Instead of local boundary
conditions of the Dirichlet type, we might then consider the following non-local,
Atiyah-Patodi-Singer (APS) boundary conditions [98]:

P(R)=0 forA<0ie 0<® <, (8.8)
D\I’zl,:a =0 for A\>01ie [ < ®. (8.9)

For wavefunctions localized outside the disc, we use as before the DBC (these are
edge states), but for | < & i.e. for wavefunctions localized inside the disc, we impose
mixed boundary conditions (this is the bulk). Therefore by construction we define
two orthogonal parts of the full Hilbert space, which we call the edge and the bulk.
What is the physical intuition behind such a splitting? As discussed already in
relation with the semi-classical study of the energy spectrum in the fifth chapter,
the Dirichlet boundary conditions do not provide a sharp dichotomy between bulk
and edge states even for idealized situations. It is on the other hand a noticeable fact
that such a dichotomy naturally exists for a classical bounded system in a magnetic
field: for a given direction of the field, orbits that lie in the interior of the billiard '
rotate one way, while those hitting the edge make a skipping orbit and rotate in the
opposite direction. Bulk and edge states are thus distinguished by their chirality
relative to the boundary.

We return to the spectral properties of the APS problem. The APS bound-
ary conditions are equivalent to DBC when B = 0. The solutions with DBC are
Jy(kR) = 0 and the APS rewrites: ¥;(R) =0forl>0and DY|,_.p=0for [ <O0.
But D¥;|,=r = Jjj-1(kR) = 0 for I < 0. The APS and DBC spectra are therefore
identical except for the degeneracy of the | = 0 state.

To compare the energy spectra obtained with each kind of boundary conditions, .
we first notice that the APS spectrum is obtained from the zeros of the same con-
fluent hypergeometric function ;Fi(a,c,z) as the DBC spectrum. This point is
important and not obvious regarding the mixed boundary condition for I < &.

i. For 0 < & <, the boundary conditions are the same which gives:
e =ep, (8.10)
where e (resp. ef) are energy levels for APS (resp. DBC).
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Figure 8.3: Spectrum of an electron in the magnetic field - APS boundary conditions.
The energy e is plotted against the magnetic flux through the billiard &. The inset
illustrates the discontinuity of the energy level I = 2, which occurs when ® = 2.

. For A > 0ie. I < ®, there are two possibilities. For I < 0, D¥|,—.gr = 0
gives 1Fi(a, Ill,%) = 0 with @ = —l 4 7 — £. Therefore this part of the
energy spectrum corresponds to DBC and the exact connection with the DBC
energies for ! < 0 is given by:

ef =ef, + @ (8.11)

Secondly, for 0 < I < [®] the APS give a,Fi(a + 1, |I| + 2,%) = 0 [96] with

a=3-— § since | > 0. This equation has two sets of solutions. First,

1Fi(a+1,|l| +2,8) =0 for a + 1 < 0 gives again Eq. (8.11). Second, a = 0,
ie.

el = %. ' (8.12)

For this value, 1 F3(a+1, |l|+2,®) # 0 since a+1 > 0. Then, unlike for DBC,
the lowest Landau level is now an allowed solution. Moreover, it has a finite
degeneracy given by [®] since there is such a solution for each ! between 0 and
[8] — 1. One could check, as might be anticipated, that these solutions define
precisely the null space KerD (KerD! is empty for & > 0 since the spectrum
of H is non negative). KerD contains the solutions of D¥;(r) = 0. With APS,
this equation has a solution only for 0 < I < [®], whichis a =0 (i.e £ = 3

2
since 1 F1(2 — £,]I| +2,8) #£0fora = 0.

Let us summarize the main features of the APS energy spectrum. The ground state
is given by the lowest Landau level (e = %4’) and it has a finite degeneracy given by
the integer part of the enclosed magnetic flux.
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Figure 8.4: Spectrum of an electron in the magnetic field - APS boundary conditions
(notations - as previously).

This ground state (the bulk) is separated from the ﬁrst excited edge states by
a gap equal to the cyclotron energy fiw,. For 1> (2], ef > 322 (property of the
Dirichlet spectrum), and using Eq. (8.10) ¢f > 3&. For I < [<I>], e > 1o (general
property of the Dirichlet spectrum), and accordmg to (8.11) ¢/ 3<I’ again. The
energies of the excited states of the APS spectrum lie higher than hwc thus forming
a gap with the ground state.

We emphasize again that the energies ¢/ (for fixed I) are not contmuous functions
of the magnetic flux ®. For fluxes 0 < & < I, we have ef = ep. But for @ > [,
the boundary conthlons change and a dlscontxnmty occurs: ef = ef}; + ®. For
I-1< @ <, wehaveej,; = e}, and therefore, the two states of angular momentum
[+ 1 and [ are separated in energy by hw, (Fig. 8.3).

The APS and DBC spectra do present different characteristics (compare Figures
8.2 with 8.4). The APS spectrum has an incompressible degenerate ground state
separated from the first excited states by a gap equal to fiw, i.e. independent of the
size of the system. This result cannot be obtained perturbatively from the weak field
(& — 0) limit since for & < 1([®] = 0) we recover the Dirichlet spectrum. Moreover,
the ground state energy (e = 1&) does not depend on the angular momentum [ so
that it does not carry any current in the presence of an external magnetic flux.
Most importantly however the APS description offers a natural definition of the
edge versus bulk in the Hibert space of the problem.

8.2.4 The chiral boundary conditions.

The discontinuity in the APS spectrum is undesirable for Quantum Hall systems,
invalidating considerations based on adiabatic evolution with an external parameter.
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Figure 8.5: Spectrum of an electron in the magnetic field - chiral boundary conditions

(inset - enlarged box, showing a cusp between bulk and edge states; notations - as
previously).

We can avoid it defining the Chiral Boundary Conditions (CBC), which are close
relatives of the APS and therefore preserves the edge versus bulk dichotomy of the
Hilbert space. The chiral boundary conditions require:

D:/;;(r)'r_n =0, forA<0,
apu(r)| _, =0, forA>0. (8.13)

The first condition (8.13), corresponding to the bulk, remains unchanged. In con-
trast with the APS problem, the second condition (8.13) requires the zero normal
derivative (Neumann boundary conditions) for the edge. It can be checked directly
that this choice preserves gauge invariance and defines a self-adjoint eigenvalue prob-
lem (these questions are discussed in the Appendix, where the CBC are formulated
and applied for the case of the semi-infinite cylinder).

The energy spectrum can be described in terms of special functions as in the
previous cases and is shown on Fig.8.5. The edge energies now join continuously
the bulk, however the slope is discontinuous between them, reflecting the different
boundary conditions we imposed on edge as opposed to bulk. The edge spectrum
is gapless in the thermodynamic limit and has a linear dispersion for low excitation
energies with a "sound velocity” proportional to v/B. Another justification of Neu-
mann boundary conditions for the edge states is this - the Dirichlet original choice
of APS pushes away the edge states from the boundary.
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8.3 The Hall conductance and the non-local
boundary conditions.

In this section we would like to propose a new relation for the Hall conductance for
the APS problem. Before starting to discuss the transport, we need to return to the
calculation of the Index. There is a natural relation between the finite degeneracy
of the ground state obtained with the APS boundary conditions and the Index.
In fact the APS problem was considered in order to give a meaning to the Index
theorem for the case of elliptic boundary problem on manifolds with boundaries. The
demonstration of this general result, known as the Atiyah-Patodi-Singer theorem [98]
is beautiful but far beyond the scope of our dJscuss1on "We shall simply show here
how it works in our case.
First we notice that by definition, the Index should be an integer. This is clear
" for the Aharonov-Casher case, and also for the Index defined on a compact manifold
without boundary like the sphere or the torus. It comes from the quantization of the
magnetic field in these geometries. For the infinite plane, the index is infinite, but
this can be viewed as a limiting case of the previous one. For the disc geometry or
other manifolds with boundaries, the total flux through the system is not quantized
and therefore Eq.(8.5) poses problem. The APS theorem states that there is a cor-
rection to the total magnetic flux because of the boundaries which can be expressed
through the SBC (only) such that the Index theorem rewrites:

Index = & — %(h +7(0)), (8.14)

where h is the number of zero eigenvalues of J(R); and 7(0) is defined by the
difference between the positive and negative X’s:

70)= >, 1- > 1L (8.15)

AMR)>0  A(R)<O

Since the spectrum of J(R) is infinite, 7(0) is ill-defined and needs to be regularized.
This can be done using ‘

7(0) = lim S sgn(\)A| . (8.16)
)«;éo

We shall now calculate explicitly the various quantities which do appear in Eq.(8.14)
and show that in our case they do fulfill the APS theorem. Defining the integer [...]
and fractional < ... > parts of a given number, we write

MB) =~ % (- &) = — (- [B]- <& >)

where 0 << & >< 1. We assume for the sake of simplicity that < & > 0. Then,
MR) # 0 and h = 0. Defining the integer p = [ — [®], we can rewrite

R'n(s) = {(s,1~ <2 >) - ((s,< 2 >),
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where
o0

((s,2) =3 (p+2)”"
=0
with z > 0. The function {(s, ) is analytic in s = 0 and ((s = 0,z) = > —=. This
gives 7(0) = -1+ 2 < & > and

— S +n(0) = - < &> Y

This looks at odd with the expected result, Index = [®], because of the remaining
factor 2. But the divergence o —f + %" at the origin introduces there a new effective
additional boundary where n(r = 0,0) = 0 and h(r = 0) = 1 so that Index = &— <
® >= [®] as expected.

In order to study the Hall transport we need the current response to an applied
voltage. There are two different lines of argument in order to obtain the Hall con-
ductance. The first one based on the Laughlin-Halperin [99, 100] description, gives
the current I as a response to a static AB flux. Since the edge states in the disc
geometry do have a finite angular momentum, their energy levels are obtained by

the replacement [ — [ + ¢. The current of a given level e(n,l + ¢) is

0
in,l) = ——F—— e(nbll+ ¢),

and the total current, for a given chemical potential g, is

I= z;i(n,l)e(y. —e(n,1)). (8.19)

(8.18)

It is, in the mesoscopic terminology, a persistent current i.e. the thermodynamic
response of the system to a static AB flux. The variation of I with p defines the
Hall conductance og = gﬁl B. This approach has been extended by MacDonald [84]
and is equivalent to the Widom-Stieda formula.

In contrast, there is another picture for the Hall conductance based on topological
quantum numbers, which uses also external AB [85, 86] fluxes. There, the system
has the topology of a torus so that edge states are naturally absent. One of the
external fluxes ¢(t) is time-dependent and plays the role of a battery. The induced
Hall current I,4 calculated within the adiabatic limit is I,q = I + Q¢ where Q is the
adiabatic curvature and I the persistent current (discussed above) associated with
the static part of ¢. The adiabatic curvature is by construction a conductance and
is equal to the Hall conductance derived from the Kubo formula [85, 86]. It is a .
topological invariant, namely a Chern number, obtained by averaging the adiabatic
curvature over the torus phase space but this is not enough to guarantee their
stability (as integers) with respect to disorder or interactions.

In order to get rid of the averages over the AB fluxes, Avron et al. [101] following
Bellissard [102], defined an index of projection which can be understood in the
example of the infinite plane as a measure of the charge transfer from the origin to
infinity due to the change of a static AB flux. This index of projection has the same
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physical content as the Laughlin-Halperin description. Moreover, for the infinite
* system, it coincides with the adiabatic curvature [94]. But for a finite size system,
it is identically zero and its relation to the Hall conductance has not yet been put
on a firm physical ground.

We would like to show that these various points of view which may look at odd,
can be accommodated and even related in a quantitative description by using the
non-local APS boundary conditions. The basic underlying mechanism for the trans-
fer of charges is those given by the Laughlin-Halperin picture and can be understood
as well using the DBC. But the APS do provide a natural way to relate the Hall
conductance to the change of the function 7 associated to the boundaries and to the
Index describing the degeneracy of the incompressible ground state.

Let us first discuss in more details the response to a AB flux ¢ piercing the disc
at the origin. This could be understood as a change of boundary conditions where
the disc is cut along a radial direction and €*™® boundary conditions are imposed
across the cut. Therefore the spectrum is ¢-periodic with period one (in units of
& = M) Let us see how this works for the infinite plane. For ¢ = 0, the energy
level n = 0 contains only positive angular momenta [ > 0 states, n = 1 contains
in addition ! = —1 and so forth. When ¢ changes from 0 to 1, the state [ = —1
changes its energy from $Aw, to lhw, and takes the place of the [ = 0 state. This
can be viewed as an overa.ll transfer of charge within the lowest Landau level of an
additional charge at the origin (I = 0) which migrates to infinity. This description
which is easily generalized to the higher Landau levels underlies the definition of
the projection index of Avron et al. [101] as the difference of occupied states in a
given Landau level when ¢ varies from 0 to 1. This number is infinite in both cases
but the difference is finite and equals one. This charge transfer between the "edges”
through a Landau level is precisely those given by the Laughlin-Halperin picture.
For a finite size disc we shall consider first the case of DBC and a chemical potential
2hwe < p < 2fw, so that there are only states | < 0. For ¢ > 0, the corresponding
energy levels depend on | + ¢ and as ¢ is changed from 0 to 1, they move towards
the outer radius of the disc. Consider now the state | = —1. Its energy along the
du'ectlon e= 2% is obta.med from the Laguerre polynomial L;*~#(®) = 0 and for

=1, ¢e(l= —1 ,¢ =1) = 2 and this level has the same energy that the state [ =0
for ¢ =0. The genera.hzatlon of this calculation is straightforward and gives finally
a picture of the charge transfer identical to those obtained for the infinite plane
limit. The total current for a maximum angular momentum L(u) corresponding to
a given chemical potential p < %hwc is

L-1
I= Z‘Z‘; ,n = 0). (8.20)

For the low values of [, gﬁ ~ 0 (Fig.1) and these are the bulk states, while for
higher values of ! (edge states), we may consider [ as a continuous variable so that
I ~ e(L) — ¢(1). The energy e(L(p)) is obtained by projecting this state at fixed
energy onto the direction e = 3®(u). Then,

dl  3d%(p)

't T2 dp =1
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since ®(p) = %p. This defines for p < %hwc, a Hall conductance og = 1 in units

of ‘7:— The generalization to higher energies gives oy = n where n € IN. But this
calculation relies on the approximation obtained by replacing the angular momentum
by a continuous variable and derivatives by differences. Moreover, this cannot be
extended to disordered systems since ! is not a good quantum number anymore.
In that case we see that the projection index is identically zero since for a finite
chemical potential , the number of gained states just compensates the lost states
with final energies (for ¢ = 1) larger than u. We then propose the following scheme.
We define the spectral flow A(¢) due to an external flux ¢ as the change:

A(¢) = 5 (n(¢) — n(0)), (8:21)

where 7(#) is the extension of 7(0) defined by Eq.(8.15). Let us show now that
the spectral flow measures precisely the transfer of charge between the two edges as
described before [103]. The function 7 is defined from the spectrum of the operator
J. For the case of an additional AB flux (for instance ¢ < 0) at the origin, this
spectrum is A(R, ¢) = —%(I — ¢ — ®). The regularity of the wavefunction (ox 7/~%)
at the origin r = 0, imposes [ — ¢ > 0. In order to fulfill the new spectral boundary
conditions, we need N(R,$) > Oie. Il < ¢+ ®. The Index is then given by
Index(®, ¢) = [® + ¢] — [¢] and when ¢ changes from 0 to 1, there is one eigenvalue
Al(R) of J which changes sign, thus describing a state which jumps from the ground
state (e = 3@) with A > 0 to the first excited edge state with A < 0. By definition
A(1) measures this jump and A(1l) = 1, which can be checked directly from the
definition Eq. (8.21). This mechanism, which can be generalized to higher states,
is exactly that described qualitatively above for the case of DBC or for the infinite
plane with the help of the index of projection. Then, we propose for the Hall
conductance the relation: I

og = EL} =A(1) (8.22)
which relates o to the overall spectral flow when the external flux ¢ varies from 0
to 1.

Let us emphasize again that, although the underlying mechanism for the charge
transfer is not specific to the APS problem, but can be understood as well with
DBC, for the latter case Index = 0, while for APS it can be defined safely and oy
can be related to the spectral flow A.

We would like now to extend this approach in order to include disorder. It does
not generalize to any class of disorder potential, because of the assumption that
we can define two operators D and D! in such a way that the total Hamiltonian
H = DD' — V(r) = D'D + V(r). For instance, this might describe the case
of a random magnetic field B(r) with a constant flux through the disc. Or we
could also consider modifying the shape of the boundary, which instead of a circle
might be any smooth but random function of fixed length in order to conserve the
total magnetic lux. We know from the study of ballistic billiards in mesoscopic
physics, that weakly disordered metals share with ballistic chaotic billiards number
of similarities, for instance energy spectra described by the Wigner-Dyson statistics
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(104]. This qualitative relation between a bulk disorder and a modification of the
boundary shape can be checked for instance by considering the case of an elliptic
billiard [105]. There, at low magnetic field, the spectrum is well described by the
Wigner-Dyson statistics and for higher fields, the directions corresponding to Landau
levels are broadened while the edge states with "high angular momentum” look
quite unaffected. These characteristics were already recognized and studied, but a
quantitative description is still missing since the angular momentum ! is not a good
quantum number anymore. _

The main result of this chapter is that particular choice of non-local boundary
conditions can naturally define the bulk and edge of the Quantum Hall systems, by
separating the total Hilbert space of the problem into two orthogonal sub-spaces. In
the case of the Atiyah-Patodi-Singer boundary conditions some Index theorems hold,
useful to calculate the Hall conductance. However the spectrum is discontinuous
as a function of external parameters. The chiral boundary conditions remove the
discontinuities, retaining the clean bulk and edge separation.
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Chapter 9

Conclusion.

In this thesis we developed the point of view that the methods of asymptotic analysis
can be successfully applied to the calculation of smooth thermodynamic quantities.
The main conclusion is that dome of the other methods, currently in use, are less
suited, or even unable to reach comparable achievements. Thus, we show that
disorder averaging of the thermodynamic current (a quantity that in the Green’s
function formalism involves average over one Green's function) is equivalent to the
asymptotic smoothing over the spectrum of a clean system, instead of dealing with
the actual spectrum of the disordered system. However the properties of these two
spectra are essentially different, therefore even intuitively we would expect that if-
the smooth quantities should coincide, this would happen only to the leading order
of the asymptotic expansion. On the other hand, the supersymmetric technique of
averaging over the disorder, when applied to evaluate disorder averages of quantities
given by a single Green’s function (for example the density of states), yields results
that are equivalent to those obtained in the framework of Random Matrix theory.
Yet by considering the magnetic response of mesoscopic systems (magnetization,
persistent currents) within the RMT framework, we certainly miss the effects of the
spectrum characteristics. :

We summarize in a more specific way the main results of this thesis and point
out some developments they may suggest. We follow the order of the chapters.

o The smooth persistent current in a clean ring is zero. This does not generalize
to all disordered systems, as shown for instance by the Kronig-Penney model.
It is important to understand what general properties of the spectrum cause
the vanishing of the current, in other words how much information do we need
about the spectrum to obtain the current. The study of the Scarf’s model is
a first step in that direction. This would help us to shed some light to the
persistent current problem, which is a canonical problem in the description of
thermodynamic properties of mesoscopic systems. In particular we hope to
solve the many-channel ring case, which still seems to be the most interesting
and relevant system experimentally.

e The smooth response to an Aharonov-Bohm vector potential (local gauge
transformation) is non-zero, in contrast with the result obtained previously
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for rings. This means quite interestingly that the properties regarding the
magnetic response of the continuous spectrum differ from those of the dis-
crete one. There is a straightforward but time-consuming thing to do - to
continue the calculation of the magnetization, and to find at which order of
the asymptotic expansion in large kg R the non-zero result is obtained. This is
an interesting question, because in such an open system, the magnetization is
not trivially related to the current. Probably the magnetization reflects other
aspects of the magnetic response not contained in the current.

The random walk asymptotic description of quantum localization was studied
in order to prove its equivalence to the self-consistent diagrammatic method.
This description should be generalized to systems in a magnetic field, since
no conclusive results were obtained so far on the mobility edge in compara-
tively weak magnetic field (there are field-theoretical results in the Quantum
Hall regime). Then, the relation to the classical Heisenberg model should be
studied, since within this model there is a possibility to define and generalize
the Thouless curvature, and probably extend its validity to obtain universal
conductance fluctuations. Finally, our approach should be extended to include
the dependence of the diffusion constant on the wavevector, for which the mul-
tifractal structure of the wavefunctions at the mobility edge can be probed.
This may help to answer questions about the universality of “the gang of four”
description of the localization transition for general spectra.

We have shown how to calculate accurately the energy levels (including the
lowest) of integrable magnetic billiards using a semi-classical approach. These
powerful methods might be generalizable to the case of non-integrable (classi-
cally chaotic) systems.

We have used the method of Stewartson and Waechter to generate the Weyl
asymptotic series for the semi-infinite cylinder in a magnetic field. This
method works as well for the disc. However Stewartson and Waechter have
developed a more general approach to find recursively the terms in the heat ker-
nel expansion, knowing just the curvature (and its derivatives) of the billiard.
Could this method be generalized to the heat kernel expansion of general mag-
netic billiard? Another open question (considered in the recent work of Berry
and Howls) is the relation between the asymptotic heat kernel expansions and
the semi-classical methods like those used previously for the calculation of the
spectrum of integrable systems. This is an interesting mathematical problem,
since basically the shape of the two-dimensional system defines it completely
(we can hear the shape of a two-dimensional singly-connected billiard).

On the example of the Landau diamagnetism calculation we showed that a
relation exists between the smoothing and finding the best approximation
of a quantity using the least squares method. This connection deserves a
further study. We also found that the smooth diamagnetic response is identical
in the case of two-dimensional surfaces of constant curvature (plane, sphere
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and hyperbolic plane). We conjecture that this result should generalize to
any sufficiently smooth two-dimensional surface. We would like to examine a
similar problem for the Pauli paramagnetism. Is the ratio between the Landau
orbital diamagnetism and Pauli spin paramagnetism universal? What makes
this problem interesting are the topological invariants that exist for the Pauli
Hamiltonians.

The main conclusion of this chapter is that although the Dirichlet boundary
condition is a natural choice, it might not be always the best one from a
physical point of view. Those cases pertain to interesting problems, which are
now under current interest in condensed matter physics. One of them is the
spectrum of a superconducting island in a normal substrate, when the Dirichlet
boundary condition is inappropriate since it over-defines the problem. Another
is the Hall liquid droplet (Fractional Hall regime). There, apparently normal to
the boundary component of the current should vanish; in addition we should
preserve the bulk-edge duality (crucial to the physics of the Quantum Hall
Effect). The non-local boundary conditions we introduced and studied, are
tailored exactly in order to fulfill those constraints. They contain both bulk
and edge states with their corresponding physical properties - a degenerate
ground state for the bulk and a gapless excitation spectrum for the edge.
However we did not yet succeed to find a microscopic way, from which the
chiral boundary conditions would be a naturally consequence.
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Boundary Conditions for
Bulk and Edge States
in Quantum Hall Systems

E. Akkermans, J. E. Avron, R. Narevich
Department of Physics, Technion, 32000 Haifa, Israel
and R. Seiler
Fachbereich Mathematik, TU-Berlin, Germany

Abstract.  For two dimensional Schrédinger Hamiltonians we
formulate boundary conditions that split the Hilbert space according
to the chirality of the eigenstates on the boundary. With magnetic
fields, and in particular, for Quantum Hall systems, this splitting
corresponds to edge and bulk states. Applications to the integer and
fractional Hall effect and some open problems are described.
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The theory of the Quantum Hall Effect has been torn between several schools of
thought: one stresses the two dimensional bulk aspects of the interior [1]; another
emphasizes the importance of the one dimensionality of the edge [2] and other points
of view focus on the interplay between bulk and edge [3]. It is therefore remarkable
that in spite of this the notion of bulk and edge of a quantum system is not formu-
lated as a sharp dichotomy even for idealized situations. Classically, there is such a
.dichotomy for billiards in magnetic fields: orbits that lie in the interior rotate one
way, say clockwise, while orbits that hit the edge make a skipping orbit and rotate
counter-clockwise [4]. Bulk and edge are therefore distinguished by the chirality rel-
ative to the boundary. Our purpose here is to formulate a corresponding dichotomy
in quantum mechanics. As we shall explain this can be achieved by imposing certain
chiral boundary conditions for Schrodinger and Pauli operators.

The chiral boundary condition we introduce is sensitive to the direction of the
(tangential) velocity on the boundary. For (separable) quantum billiards this en-
ables us to split the one particle Hilbert space into a direct sum of two orthogonal,
infinite dimensional spaces with positive and negative chirality on the boundary.
In the presence of a magnetic field, this split gives a Hilbert space for edge states,
H., and a Hilbert space for bulk states, Hs, such that the full Hilbert space is
H = H. & H,. Subsequently we shall explain how chiral boundary conditions are
formulated for Schrédinger Hamiltonians which do not necessarily correspond to
separable billiards, i.e. Schrédinger Hamiltonians with background potential and
electron-electron interactions.

The chiral boundary condition we introduce is a relative of a boundary condition
introduced by Atiyah, Patodi and Singer (APS) in their studies of Index theorems
for Dirac operators with boundaries [5]. However, the chiral boundary condition we
shall introduce differs from it in an important way, as we shall explain below.

The splitting of the Hilbert space comes with a splitting of the quantum billiard
Hamiltonian and its spectrum to a bulk piece and an edge piece. As we shall see, it
is a property of the chiral boundary conditions that the bulk spectrum has a ground
state at precisely the energy of the lowest Landau level in the infinite plane, and
a degeneracy which is the total flux through the billiard, (corrected to an integer
number of flux units by a boundary term). The bulk energy spectrum has a gap
above the ground state, which for separable billiards, is the gap between Landau
levels in the infinite plane. This gap survives in the thermodynamic limit of a
billiard of infinite area, the bulk ground state is guaranteed to be incompressible in
this sense.

In contrast, the edge spectrum, in the thermodynamic limit of long boundary is
gapless. In this limit, the edge states have a well defined "sound velocity”, which
reflects the linearity of the dispersion relation at low energies. The sound velocity v

v/c=k(h/mc) \/B/®o, (1)

K

where k is a dimensionless (nonuniversal) constant, c is the velocity of light , - is

the Compton wavelength of the electron and /®¢/B is the magnetic length. This
velocity is very small in all reasonable magnetic fields.
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The splitting of the Hilbert space enables us to describe charge transport in terms
of spectral flow. In particular, (adiabatic) gauge transformations can transfer states
between H, and H;. For the semi-infinite cylinder, such a spectral flow is described
below. This generalizes the Index theory of the Integer quantum Hall effect [6] to
systems with boundaries.

We start with the semi-infinite cylinder for which we shall illustrate the chiral
boundary condition. The Landau Hamiltonian with chiral boundary condition is
separable and a complete spectral analysis can be made. '

Consider the semi-infinite cylinder, M, in R®, whose boundary M is a circle
with a circumference £: M = {(z,y)| —oo < 2 <0, 0 <y < £}. The orientation of
M and the orientation of the boundary, 8M, are linked by requiring that traversing
the boundary in the positive direction keeps M on the left hand side.

A constant magnetic field perpendicular to the surface, of strength B > 0 and
with outward orientation acts on the surface. We take the charge of the electron to
be positive (sic!) so classical (bulk) electrons in the interior of M rotate clockwise.
In addition we assume that a flux tube carrying flux ¢ threads the cylinder. We
shall regard ¢ as a parameter, while B is kept fixed throughout. A gauge field
describing the situation is A(¢) = (0, Bz + ¢/£). The velocity operator, in units
m="Hh =efc =1, is (vgvy) = (-8, —10, — Bx — ¢/f). The classical energy
associated to a particle on a billiard is purely kinetic, E = v*/2. The corresponding
quantum Hamiltonian is the Landau Hamiltonian given formally by the second order
partial differential operator:

2H1(¢) = D'(#)D(¢) + B, (2)

where D(¢) = 1v, — vy(, z) = 8, + (i8y + Bz + ¢/¥).

For this to define a self-adjoint operator in the one particle Hilbert space we need
to specify boundary conditions on OM.

The chiral boundary condition that we introduce requires different things from
the wave function on the boundary depending on the tangential velocity, v (¢, z) at
the boundary = = 0. Since v,(4,0) = —18, — ¢/f commutes with D we separate
variables, and describe the chiral boundary conditions for the resulting ordinary
differential operators on the half line —co < z < 0, parameterized by m € 7 and
¢ €R: '

& (2rm—¢

2H,.(¢) = —5at ( 7 " B:c) . (3)

Let p 2 s

m —
D (¢) = iy Bz. (4)
The chiral boundary condition requires:
Dfm| =0, if v,($,0)= 2—”-’%—_—2 <0;
_ 9 -

(tvs) f"'L:o =0, if wvy(4,0)= —W%——d) > 0. (5)
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Figure 1: Spectrum of Landau Hamiltonians: (a) with chiral boundary conditions

(inset - enlarged box, showing a cusp between bulk and edge states), (b) with Dirich-
let boundary conditions, (c) with APS boundary conditions.

A classical electron in the bulk rotate clockwise, and so its velocity near the boundary
disagrees with the orientation of the boundary. For such an electron we require spec-
tral boundary conditions, (D, f)(0) = 0, which are m-dependent elastic boundary
conditions (an interpolation between Neumann and Dirichlet). A classical skipping
orbit moves in a direction that agrees with the orientation of the boundary, and
for positive velocity on the boundary we impose Neumann boundary condition. We
shall say more on the reasons for choosing spectral and Neumann for the different
chiralities below. .

Since both the differential operator, and the boundary conditions are defined in
terms of velocity, gauge invariance is manifest. Moreover, it can be checked that the
boundary conditions in Eq. (5) define a self-adjoint eigenvalue problem, which we
shall call the chiral Landau Hamiltonian. The spectrum and eigenfunctions can be

described in terms of special functions [7].
The bulk space H; is defined by

@
2rm<¢

Hy = emmultf(z), (6)
where f, are the eigenfunctions of the chiral Landau Hamiltonian that satisfy spec-
tral boundary condition. H,, the space of edge states, is the orthogonal complement.
The spectrum for the chiral Landau Hamiltonian is shown in Fig. 1.a as a collection
of curves plotted as functions of the velocity on the boundary. The bulk spectrum is
determined by the left part of the figure i.e. by negative values of the velocity and
the edge spectrum by the right part (positive values). The ground state of the bulk
spectrum has energy B/2 which corresponds to the lowest Landau level in the plane
(doubly infinite cylinder). Like it, it is infinitely degenerate. This turns out to be a
property of chiral boundary conditions that holds for a large class of billiards: the
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ground state of the bulk spectrum has energy B/2 and the degeneracy is (an integer
close to) the total flux through the billiard. The present case where the total flux is
infinite is an example. The bulk ground state is separated by a gap B from the first
excited bulk state. For the excited bulk states the situation is more complicated,
and one general statement is that the essential bulk spectrum, coincides with the
spectrum of the Landau Hamiltonian in the plane: that is, the bulk spectrum differs
from the Landau spectrum by at most a discrete set of eigenvalues.

The edge spectrum, in contrast, is, for any finite boundary length £, purely
discrete (the essential spectrum is empty). In the thermodynamic limit £ — oo
the edge spectrum becomes gapless. The slope of the curves describing the edge
spectrum give a linear dispersion with a finite sound velocity as v,(¢, 0) 0. In
particular, for the lowest edge branch one has, in the limit £ — oo, a unique sound
velocity for the chiral edge currents: ‘

Oy lo

OF, B
. (7)

This fixes the k in Eq. (1) in this case. It is worth emphasizing the existence of the
discontinuity in derivative between bulk states and the corresponding edge branch
as shown in Fig.1.a.

It is instructive to compare the spectral properties of the Chiral Landau Hamilto- -
nian with the Dirichlet Landau model, where one replaces Eq. (5) by the requirement
fm(0) = 0 for all m. This too can be solved explicitly in terms of special functions
[7] and the spectrum is shown in Fig. 1.b. The corresponding curves are analytic
functions. This has some immediate implications: First, there is no sharp line of
divide between edge and bulk for the single particle Hamiltonians, second, there is
no natural sound velocity because the dispersion law is not linear at small energies,
and finally, there is no macroscopic degeneracy of the ground state (or any other
state). '

The chiral boundary condition Eq. (5) is a close relative of boundary conditions
introduced in [4]. APS boundary condition replaces Eq. (5) by

d -
((-1; - '2—7_‘.'"1[__2) me:o = 0 if 'Uu(d’a 0) <0
fm

That is, the Neumann piece for the edge states is replaced by Dirichlet. Here too
there is a sharp divide of the states according to their chirality. But, in APS the
putative edge states with the good chirality are forced to have vanishing density near
the boundary and tend to be pushed away from the edge. These can not be bona fide
edge states. The APS Landau Hamiltonian can be solved explicitly for the problem
at hand, and the spectrum is shown in Fig. 1.c. The glaring difference with Fig.1.a
is that now the energy curves are discontinuous. This discontinuity has undesirable
features for studying spectral flows and transport in quantum mechanics.

Consider now the spectral flow resulting from the increase of the threading flux
¢ by a unit of quantum flux: ¢ — ¢+ 2. By inspection of Fig.1 one sees that all

= 0 if v,(¢,0)>0. (8)

=0
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states in the diagrams move one notch to the left. In the chiral and APS cases which
have a clear divide between chiralities we see that each branch of the good chirality
looses a state and each branch of the bad chirality gains one. In the chiral case
(Fig.1.a) one can follow continuously each state as its chirality changes. In Fig.1.c
this is not the case. Chiral boundary conditions therefore give a way of counting the
charge being transport from bulk to edge. The same spectral flow takes place for the
Dirichlet spectrum except that here what is edge and what is bulk is a vague notion
which does not allow for counting the states that move from edge to bulk. In the
case of APS the notion of edge and bulk is sharp, but because of the discontinuity
of the curves in Fig.1.c there is no way to identify the flow of bulk to edge.

It is also instructive to examine how chiral boundary conditions are related to
Laughlin states. As we shall see, Laughlin states for filling fraction 1/M, M an odd
integer, are bulk states with maximal density.

To simplify the notation let us take a cylinder of area 27, M = {(z,y)| —1 <
£ <0, 0 <y <27} Weshall take ¢ = 0 in what follows. The Laughlin state of
the (doubly infinite) cylinder for filling fraction 1/M, with M odd is [9]

pr= JI (e%-en)" [ ePebsma, 9)

1<j<k<N 1<k<N

Here z = z + iy and m € Z. Fix a particle, say z = z,. As a function of z, 91, has
the form

(Are M-z 4 gpe=M(N=2)z 1. ) g=Ba/2tm: (10)
where A; are independent of z. The chiral boundary conditions for z need to be
imposed on the two bounding circles at £ = 0 and z = —1 with opposite orientations.

Since 1, is in the kernel of D, (D¢ = 0), the spectral boundary conditions are
automatically satisfied. So, all that needs to be checked is that the velocity on the
two bounding circles is anti-chiral. That is:

m+ B > M(N - j) > m, (11)

forall1 <j < N. j= Nsetsm =0, and j = 1 sets an upper bound on the number
of electron that the Laughlin state may accommodate and still satisfy the chiral
boundary conditions : N < 1+ B/M. Recall that the area of the cylinder is 2,
so that B is the total flux in units of quantum flux. In the (thermodynamic) limit
of large flux the maximal filling is N/B — 1/M, which is what Laughlin plasma
argument gives [8].

The case of other separable billiards, such as a circular disc can be treated in a
similar way. For separable billiard of finite area the degeneracy of the chiral bulk
ground state can be shown to be related to the total flux. These issues will be
described elsewhere [10].

We now turn to the description of the chiral boundary conditions for more gen-
eral Schrodinger operators and give further motivation for them. It turns out that
once chiral boundary conditions have been formulated for the non separable case
further generalization to Schrédinger operators with background potential and to
multielectron systems where electrons are allowed to interact, follow. For the sake
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of simplicity and concreteness we shall stick to one electron billiards. Moreover,
to avoid writing complicated formulas, we shall assume that the two dimensional
manifold M is (metrically) cylindrical near its boundary OM.

It is instructive to formulate the chiral boundary conditions in terms of quadratic
forms, and to compare them with the classical boundary conditions, Dirichlet and
Neumann. A positive quadratic form, Q(¢), on a dense domain, uniquely defines a
self-adjoint operator [11]. The nice thing about quadratic forms is that the boundary
conditions are part of the form and suggest a physical interpretation. Let (-|-)m
stands for the scalar product in L?(M) and (-|-)aps for the scalar product on the
boundary of M. C*®(M) is the space of smooth functions on M. The quadratic
form ‘

Q(p) = (Ve Ve)u + A (ol)onm (12)

with ¢ € C®(M) and 0 < A < oo, describes for A = 0 the Neumann problem and
for A\ — oo the Dirichlet problem for the Laplacian A. For finite A one has elastic
boundary conditions. The Neumann problem says that the boundary term gives no
penalty (in energy) if there is density on the boundary, while, Dirichlet says that
the penalty is large and so finite energies have zero density on the boundary. It is
a consequence of the quadratic form and the variational principle that the Dirichlet
spectrum have energies above the Neumann spectrum.

Dirichlet and Neumann associate a penalty for density at the boundary. Chiral
boundary conditions associate a penalty for a chirality. Since we want edge states
(which have positive chirality) to pay a price and bulk states (which have negative
chirality) not to affected by the boundary, a quadratic form which does that in the
presence of gauge fields is:

Qcp) = (De|Dy)u + A<<p|v+<p>aM
{vy if v, > 0; (13)

0 otherwise,

Uy

where p € C®(M), 0 < ) < oo and v, is the operator of (tangential) velocity on
the boundary. Now, in contrast to the Dirichlet-Neumann case discussed above, A
is dimensionless. To see what Eq. (13) implies for the boundary conditions we need
to go to the operator and its domain. The domain of DD consists of all smooth
functions, such that

(DI DYt + Moot ) gups - (14)
is a L?-bounded linear functional. Integration by parts in the variable z leads to
(DtDpl)ar + (D + dvy)pl - ), (15)

For this to define a linear functional, the term on the boundary must vanish identi-
cally for all ¢ in the domain of D!D. If we write ¢ = @4 + ¢, where @, restricted
to &M belongs to the positive spectral subspace of vy this domain is defined by:
(dz + (A = 1)vy)p+ = 0 and Dp_ = 0. X = 0 gives spectral boundary condition
for both chiralities. A = 1 gives spectral boundary conditions for negative chirali-
ties and Neumann for positive chiralities. This gives the chiral boundary conditions
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Eq. (13). A = oo gives the APS boundary conditions. In principle, one could take A
as a parameter in the theory, fixed by the sound velocity for the edge states. A = 1is
distinguished in tending to maximize the density of the edge states at the boundary.

The quadratic form is gauge invariant, non-negative and defines a non-negative,
gauge invariant Hamiltonian associated to kinetic energy: Hy = DID > 0.

Chiral Schrédinger Hamiltonians define a self-adjoint eigenvalue problem. This
is true irrespective of whether the problem is separable or not; if there is a back-
ground scalar potential or not, and even if one considers a one electron theory or a
multielectron Hamiltonian. However, only in the separable one particle case, (and
slightly more general but still special cases) does one have a clean splitting of the
eigenspaces of the Hamiltonian into two pieces: H. and H,. In general, an eigenstate
¢ will have both a non-zero ¢4 and ¢_ piece, and the spectral subspaces do not
split cleanly. The best one might expect in the non separable case is that in certain
limits eigenstates will have a dichotomy. Namely, either ¢_ or ¢, will be small
in the limit for every eigenstate. Examination of simple examples suggests that in
the limit of large magnetic fields, B — oo, there is such an asymptotic splitting.
It would be interesting to formulate a splitting principle in the multiparticle Fock
space.

In summary: the basic result is that a certain choice of mixed boundary condi-
tions (chiral) gives a clean separation between states identifiable as bulk and edge
states. ‘
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