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Abstract

Structural and spectral properties of periodic tilings are well understood in the frame-
work of the Bloch theorem. For quasiperiodic tilings generated by the Cut and Project
(C&P) algorithm, we show how to relate structure and spectrum of 1d tilings by means
of topological numbers originated in windings of phases that we define. These winding
numbers are associated with Bragg peak locations in the reciprocal space and with
spectral gap labeling for the structure and spectrum, respectively, suggesting a novel
extension of the Bloch theorem for 1d C&P tilings. We investigate and classify gen-
eral non-C&P tilings using cohomology groups, and implement these ideas with dual
tilings and scattering theory. We analyze the diffraction spectrum of 1d tilings, and
illustrate how to establish structural features based on these groups. We then present
an extension of the Bloch theorem based on certain groups in dimensions < 3, and
discuss its application in both C&P and non-C&P cases.

Furthermore, we apply ideas from tiling theory to fractals embedded in a 2d space,
and suggest a gap labeling formula in fractal systems. Immersing fractals into a non-
uniform magnetic flux, we demonstrate topological phase transitions using the flux as
an order parameter. Finally, we present and analyze topological phase transitions inside
randomized substitution tilings adapting the aforementioned cohomology groups.
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Chapter 1

Introduction

1.1 Context and Motivation

Periodic systems are of utmost significance in physics. They give rise to a plethora of
phenomena in 1, 2 and 3 dimensions. Some are structural, such as crystallographic
arrangement, diffraction, rigidity etc. [1]; others are spectral like bandgap, mobility
and Chern numbers [1-4]. In addition, time periodicity causes Floquet Hamiltonians
or time crystals. Combining structural and spectral properties, one arrives at the cele-
brated Bloch theorem [1] relating structural symmetries with those of the Hamiltonian
wavefunctions.

Departing from periodic systems, one seeks close-to-periodic setups. A common
scheme is a perturbative approach inserting a small disorder to a periodic system;
another is introducing a topological defect such as a vacancy [5, 6], color center [7, 8] or
a fracture; a different concept is hyperuniform materials [9, 10], which are disordered
but sharing many properties with periodic systems. What we seek are almost-periodic
systems that are, on the one hand, deterministic without any disorder or perturbation;
but, on the other hand, are not periodic despite sharing features with them. The answer
to that are aperiodic tilings, on which we focus in this thesis especially in 1d.

Aperiodic tilings appear in many fields in condensed matter physics, dynamical
systems, statistical mechanics, material science and optics among others. They answer
the question: “is there a deterministic but non-periodic tiling of the plane using a
finite set of tiles?”. Initially conjectured positively by Wang [11] and confirmed by
Berger using Wang tiles [12], this scheme was later generalized into Local Matching
Rules. Soon many more tilings were found. Penrose [13, 14] showed a 5-fold rotational
symmetry tiling of the plane known today as Penrose tiling using substitution rules. In
1d, substitution rules of tilings are equivalent to spatial arrangements of letters above
an alphabet [15, 16]. Later, de Bruijn explained how to obtain an aperiodic tiling by
projecting from a higher-dimensional space [17, 18] established nowadays as the Cut
and Project (C&P) scheme [15, 19]. To this day, these three methods, Local Matching
Rules, Substitutions and C&P, are the main techniques to create aperiodic tilings.

A celebrated family of aperiodic tilings is that of quasiperiodic tilings being the
closest (almost) periodic [20-22]. Tilings of this family exhibit Bragg peak diffraction;
their spectral characteristics (of propagating waves, tight-binding Hamiltonians, etc.)
display highly lacunar fractal energy spectrum with infinitely many gaps [23-26].
The Gap Labeling Theorem (GLT) [27, 28] makes it possible to classify these gaps
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with integer numbers different from the usual Chern number classification of periodic
tilings expressed in terms of Berry curvature [4, 29-31]. Those integer numbers
cannot be represented in curvature terms of commutative geometries [27, 32]. These
numbers can be given both a topological character and invariance properties via Cech
cohomology. However, most of these features remain uncharted and inaccessible to
experimental verification save notable exceptions [33-38]. Therefore, the topological
content of aperiodic tilings, namely, the aforementioned integer numbers, has not been
considered to be of physical relevance [39-41]. We demonstrate how to characterize
these topological numbers in quasiperiodic tilings using winding numbers and connect
them to known experiments.

Strolling outside the quasiperiodic realm, tilings become more exotic. Quasiperiodic
tilings exhibit Bragg peaks that can be enumerated in the reciprocal space similar to
Miller indices of periodic tilings. However, general aperiodic tilings have different
combinatorics and thus cannot be enumerated in this manner. Additional physical
properties, such as the spectrum of Hamiltonians defined on aperiodic tilings, are also
affected by this change in combinatorics. We present the main mathematical tools
required to identify and describe aperiodic tilings emphasizing Cech cohomology. We
then show the physical consequences and present new calculations arising by using
this description.

One main attribute of tilings is their diffraction spectrum characterizing their
structural properties. A diffraction experiment on periodic tilings yields a picture
consisting of Bragg peaks only in the reciprocal space implying a long-range correlation.
Likewise, quasiperiodic tilings produce Bragg peaks in the reciprocal space, but have
a dense diffraction spectrum and no Brillouin zone. From a physical point of view,
the existence of Bragg peaks is a necessary (but not sufficient) trait for a tiling to
be quasiperiodic. In general, however, the diffraction spectrum may be Lebesgue
decomposed into Bragg, absolutely continuous and singularly continuous components.
Notable examples are the Rudin-Shapiro tiling with an absolutely continuous diffraction
spectrum, and the Thue-Morse tiling with a singularly continuous one. We analyze
these diffraction components and show how to calculate the diffraction in some cases
using methods derived from the calculation of the Cech cohomology.

If Bloch theorem is the central aspect of periodic tilings connecting the location
of Bragg diffraction peaks to spectral gaps, then how does it manifest in aperiodic
tilings? In quasiperiodic tilings, Bloch theorem is known to hold similarly to periodic
tilings. In aperiodic tilings, however, it is typically not the case. We first formulate
Bloch theorem in quasiperiodic tilings. Furthermore, we show that in 1d quasiperiodic
tilings, there is an additional relation between structural windings over the phase
of Bragg peaks and spectral windings over the chiral phase of the scattering matrix.
We then show that in the more general case of finite local complexity (FLC) tilings
in dimensions d < 3, only traces over the Cech cohomology and K, group keep the
equivalence between structural and spectral properties, respectively.

We have established the integral Cech cohomology as the major topological invari-
ant in aperiodic tilings in low dimensions. Therefore, a transition between two tilings
with different Cech cohomologies infers a topological phase transition. To show it,
however, is not a simple matter. In a first approach, we detour via fractals to show that
for the Sierpinski gasket immersed in a magnetic flux, a topological phase transition
occurs. We then present additional transport properties and analyze several index
theorems on these fractals. In a second approach, we use randomized substitution
rules to derive topological phase transitions between regular aperiodic tilings and
demonstrate analogous thermodynamic properties therein.
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1.2 Organization

This thesis is organized as follows.

In Chapter 2, we show simple quasiperiodic tilings created with the Cut and Project
procedure and some of their characteristics using continued fractions. We inves-
tigate winding numbers, diffraction spectrum and Wannier diagrams. Finally,
we show affinity with other quasiperiodic tilings created with substitution pro-
cedure.

In Chapter 3, we introduce the mathematical background used to describe general
aperiodic tilings with an emphasis on substitution tilings. We then discuss
physical topological features of aperiodic tilings using tools from scattering
theory.

In Chapter 4, we analyze the diffraction spectrum using the Thue-Morse tiling as
an example. We then show how to calculate diffraction in some cases with new
mathematical tools.

In Chapter 5, we present the generalized Bloch theorem to quasiperiodic and aperi-
odic tilings.

In Chapter 6, we demonstrate fractals as an extension of tilings using L-systems.
Adding magnetic flux, we indicate the gap labeling theorem and topological
phase transitions. We finish with topological numbers and index formulae
defined in such systems.

In Chapter 7, we illustrate topological phase transitions made between aperiodic
tilings linked with random-rule order parameter, and shows analogous thermo-
dynamic relations thereby derived.

In Chapter 8, we summarize the thesis and outline future prospects.
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CHAPTER 1. INTRODUCTION



Chapter 2

Cut and Project Tilings and
Windings

Aperiodic tilings contain topological information. Yet, at times, it is difficult to extract
these topological attributes and connect them to physical features that can be measured
in the laboratory. In the following, we show that winding numbers are a manifestation
of the topological attributes.

2.1 Introduction

In this section, we introduce the main tools for the remainder of the chapter.

2.1.1 Cut and Project Scheme
The canonical Cut and Project (C&P) 2d — 1d procedure is defined as follows [42].

Cut.

1. Start with a 2-dimensional space R = R?.
2. Insert “atoms” on the integer lattice Z = Z2.

3. Divide R into a physical space (line) E|| and an internal space (line) E, such
that E; ® E;, = Rand Ej N E; = {c} with ¢ € R defined below.

4. To resolve ambiguity for E), choose an initial location ¢ € R such that E|
passes through c. There is no such requirement for E .

Project.

. Inspect the square I, = [-0.5,0.5)°.
. The window is its projection on the internal space W = ; (I).

. The strip is the product with the physical space S = W ® E|.

BN W N

. Choose only the points inside the strip S N Z, and project them onto the
physical space, Y =, (SN Z).

5. The atomic density is given by p (x) = p¢ (x) = Xyey 0 (x — y) with x € E.
Note the implicit dependence of Y on c.

13
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Figure 2.1: The Cut and Project (C&P) scheme. The red line is the cut line E}| with
y = xtan a + c. Additionally E,, W and S, as well as the points Z can the projections
are indicated within.

The C&P scheme for 2d — 1d is depicted in Figure 2.1. Here, there are only 2 possible
distances between neighboring atoms, L4, L. This gives us the notion of a tiling of the
letters A and B. Another way to create this tiling is by moving in a stairway fashion
on the atoms inside the strip: we assign A to a rightwards movement and B to the
upward one.

This scheme is naturally generalized to any n-dimensional tiling as presented in
Section 5.2.1.

2.1.2 Substitutions

For completion, we describe the substitution process in 1d [15, 43, 44]. Let I} =
{A,B,C,...} = {li,l,...} be a set of letters and w = [(V]?) (M) ¢ I be a word
of size m made by concatenation. We define a substitution o : Iy — I' by replacing
a letter [; € I} by some word. The action of ¢ on some word w is also made by
concatenation o (w) = ¢ (l(l)) o (l(z)) ... (l(m)). Consecutive applications of o are
denoted by ¢” (w). We denote by we, = ¢* () the infinite word, where o =
lim,,_,o o™ assuming the limit exists.

The occurrence matrix M is defined by counting the number of letters in o, namely,
M;; = {# ofljino (li)}. For example, a binary substitution o with o (A) = ABf and
o (B) = AYB? has an occurrence matrix M = )Of g .

We typically demand that o be:

Primitive. There exists some N such that all elements of M™ are strictly positive.

« It also means that o™ (I;) 3 [; for all I;, [;.

« The infinite word w, are the same for all [; [45].
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Pisot. Forspec M = {11, A3, ...} the eigenvalues of M have A, = A; > 1and |1, < 1.

+ The right eigenvector u, of M has strictly positive elements, which denote the
tile lengths u} = L; for all [; € I3 [43].

« The left eigenvector v, of M has strictly positive elements and normalized by
2;v; = 1. It corresponds to tile densities (probabilities) v} = p; in we, for all
lj e Ty [43].

Using M, we set t = TrM and p = detM, and define the sequence Fy for binary
substitutions by
FN+1 = tFN _pFN—l’ FO =0, F1 =1. (21)

Example. For the Fibonacci substitution op, (A) = AB and o (B) = A, we obtain
Mgy, = (} (1)) so that Aypp = 7 = (\/§+ 1) /2, tmp = 1, pmb = —1 and Fy are the
Fibonacci numbers.

2.1.3 Windings

In the following, we shall use C&P tilings. More details are in Section 2.4 and Ap-
pendix 2.A.1. Consider a characteristic function [37, 38]

x (n, @) = sign [cos (2nns + ¢) — cos (7s)], (2.2)

taking n = 0...dx — 1 (where dy are the denominators of the continued fraction of
s, as explained in Section 2.4), and ¢ € [0, 2] being the phason. This characteristic
function is equivalent to C&P (see Appendix 2.A.1). We make ¢ discrete by taking
o = 27Td;]1 ¢ =A¢ptfort =0...dy— 1. In this case, only two neighboring letters
change each A¢. This is in comparison with the C&P picture: as we move in the
¢ direction, namely in E;, we hit a single “atom” each A¢ for a rational slope sy.
Therefore a single pair of letters changes: AB < BA.
We take the discrete Fourier transform of y (n, ¢) with respect to n,

dn-1 )
g(Ed) = > 0™y (), w=em. (23)
n=0
The normalized structure factor is given by
S(Ed) =19 (&P (2.4)
It is ¢-independent as will be shown later (see Figure 2.2), and its phase of g is given by
0(&¢) =argg (§7). (2.5)
Here, one can define the winding number at some &, by
1 [P 00(8=4.9)
W, = — ————d¢. 2.6

All the numerical results are given in Figure 2.2.

Claim. The winding W = 1 lies at position & = cy with cy the numerators of the
continued fraction of s (see Section 2.4). This results from the formula of the Bragg
peak locations for quasiperiodic sequences,

kpg=p+gs (mod1). (2.7)
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Figure 2.2: Characteristic function (top left) and its Fourier transform (top right) for
the Fibonacci sequence. The phase 6 is shown on the bottom panel. The winding
numbers for |W| < 13 are indicated by red numbers. Here, dy = 89 points were taken.

For the discrete case with a word of size dy, one has

&pq = dnkpg ~ pdy +qcn  (mod dy)
=gqcn  (mod dy), (2.8)

and identifying q with the winding. The details are in the following sections.

2.2 Analytic Calculation of Windings

In the following, we show how to define and calculate the winding numbers. We
investigate the structural properties and show that the Fourier transform contains
additional information with regard to these topological features.

2.2.1 Calculation of the Structural Phase

Let so (n) = y (n,0) be the first row of y of size dn. Let 7 be a translation operator
such that 7 [sg (n)] = so (n + 1). Let X be a vertical concatenation of such words,

S0
T [s0]
Yo = : = Yy (n,t) = gt [so (M)]. (2.9)
T[]

Note that 3 is a dy X dny matrix (see Figure 2.3).
Consider now the matrices 3,, which are row-permuted X:

ir = U2, Ur(m,¢) = 5f,mrcN- (2.10)



2.2. ANALYTIC CALCULATION OF WINDINGS 17
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Figure 2.3: Shift matrices X and X; for the Fibonacci sequence. Here, dy = 89 points
were taken.

Equivalently, )
S (n ) =7 [s (n)], (2.11)

with m (¢,r) = €r~" ¢ (mod dy). Henceforth, we shall remove the tilde 3, >3, to
simplify notations. We are interested in % (see Figure 2.3).

Claim. For ¢ = 2nt/dy with n,£ = 0...dy — 1 one has y (n,¢) = 21 (n, ). This is
shown in Appendix 2.A.2.

Building on this equivalence, we take the discrete Fourier transform of %; with
respect to n to have

dn-—1 dn-—1

GN(ED) = > 0 (n )= >, 0" T™ [s (n)]
n=0 n=0

dn—1

= Z 0 s (n+m(0))
n=0

dn-1
= uM¢ Z 0 s (n)

n=0

=™ g (8). (2.12)

Here, ¢y (£) is the discrete Fourier transform of sy (n).

Next, we identify |y (£)|* with the structure factor S (£, ¢), since it holds the
absolute-value information of G (¢, ¢). It is ¢-independent as expected—its phase is
constant with ¢—and thus does not contribute to the windings.

To analyze the phase of G (&, £), we inspect the w™ ("¢ part:

O (£,0) = arg ™D = 2—” m(6) & (mod 27)
N

205 (mod 21). (2.13)
dN CN
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Figure 2.4: The double Fourier transform of ¥; for the Fibonacci sequence. Here,
dn = 89 points were taken. The images are in a logarithmic scale. (Left) The Shift
matrix diffraction; (Right) same but with axes of (ky, ky) with a = 1. Note that the last
column in (b) is repeated for convenience.

Now, for & =1 ¢y one has © (£1,¢) = 27rd;]1 £ X (+1), which leads to Wy, = +1. This
is our initialization condition. Generally, for any £, = gcx one has

2
Oy (£5.0) = d—” tq (mod2m) = W, =q. (2.14)
N
The result for the entire ¢ axis is taken by the limit of N, namely,
00 = I\}im On (&1). (2.15)

2.2.2 Fourier Transform of X4

In the diffraction experiments of [38], a laser beam was shined through a mask having
the shape of 2; (see Figure 2.3), where a yellow pixel means a solid wall, and a blue
one — a vacancy. Then, its diffraction pattern was inspected.

We inspect the discrete Fourier transform of 3 (n, £) with respect to both n and ¢.
Note that it is the discrete Fourier transform of G (&, £) with respect to ¢:

7o | F2 (31 (001 &) | () = 72 [ G (.01 (). (216)
Thus,

E(£n) = Fon [31 (0] (£,1)
= 77 |dn 0 (&) 0™ %] ()
= 72 [dw 0 (9) /| ()
=d3 o (§) 8 (n—&cy), (2.17)

where the argument of § () is taken modulo dy.

Note that the strength is only dependent on ¢, (¢). Additionally, one has Bragg
peaks at £ = ey (mod dy) (see Figure 2.4a). To normalize to the results of [38],
transform the axes such that k, = —£/dy and k, =  — [dn/2] (see Figure 2.4b).
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Claim. We use cy and dy of the continued fraction, as explained in Section 2.4, but
for substitution systems, we may use instead Fn_; and Fy. The latter case works only
for quasiperiodic tilings, and specifically for the Fibonacci substitution. In the general
quasiperiodic metallic or alloy case, compare to the results of Section 2.5.

Remark. Henceforth, we shall omit the subscript N in ®y and Gy for simplicity, as
we are dealing with finite sequences.

2.3 Diffraction Spectrum of an Atomic Chain
Thus far, we have only examined the diffraction of a tiling, namely, assigning different
values for tiles A/B. Next, we put atoms on the boundaries between the tiles and

inspect their Fourier transform. This corresponds to two different possible diffraction
experiments: the former was using a mask, and the latter is from a lattice.

2.3.1 Diffraction Spectrum

Consider atoms put on boundaries between tiles. We assign widths l4/p for layers A/B,
respe