
Topological Properties of
Aperiodic Tilings and Fractals

Yaroslav Don





Topological Properties of
Aperiodic Tilings and Fractals

Research thesis

In partial ful�llment of the requirements
for the degree of Doctor of Philosophy

Yaroslav Don

Submitted to the Senate of the Technion – Israel Institute of Technology

Adar, 5781 Haifa March, 2021





The Research Thesis was done under the supervision of
Professor Eric Akkermans in the Department of Physics

The generous �nancial help of Irwin and Joan Jacobs Fellowship
and the Technion is gratefully acknowledged



List of Publications
Some results in this thesis have been published as articles by the author and research
collaborators in conferences and journals during the course of the author’s doctoral
research period, the most up-to-date versions of which are listed below.

[i] O. Shpielberg, Y. Don, and E. Akkermans, “Numerical study of continuous
and discontinuous dynamical phase transitions for boundary-driven systems,”
Phys. Rev. E 95, 032137 (2017).

[ii] E. Akkermans, Y. Don, E. Levy and D. Gitelman, “Topological properties of
some quasi-periodic tilings – From structure to spectrum, in Spectral Struc-
tures and Topological Methods” in Mathematical Quasicrystals, Workshop ID:
1740, M. Baake, D. Damanik, J. Kellendonk and D. Lenz (eds.), Mathematisches
Forschungsinstitut Oberwolfach (2017).

[iii] O. Ovdat, Y. Don and E. Akkermans, “Vacancies in graphene: Dirac physics and
fractional vacuum charges,” Phys. Rev. B 102, 075109 (2020).

[iv] E. Akkermans, Y. Don, J. Rosenberg and C. L. Schochet, “Relating Di�raction and
Spectral Data of Aperiodic Tilings: Towards a Bloch theorem,” (accepted, 2021)
arXiv: 2007.15961 [math-ph].

Acknowledgments
I wish to express my sincerest gratitude to my advisor, Prof. Eric Akkermans, for
inspiring me to pursue a clean and precise academic research; for his myriad of ideas
and immeasurable knowledge – an ideal to which I aspire; and for being more than a
mentor and a friend.

I am especially grateful to my collaborators: Ohad Shpielberg, Eli Levi, Dor Gitelman,
Omrie Ovdat, Jonathan Rosenberg, Chaim Schochet and Eric Akkermans, who helped
me to manifest my thoughts and schemes into concrete compositions.

I would also like to thank my colleagues: Ohad Shpielberg, Dor Gitelman, Omrie Ovdat,
Boris Rotstein, Barak Katzir, Tom Shindelman and Ariane Soret for the many hours of
fruitful discussions and the interesting ideas.

Lastly, I salute my family for their in�nite patience and support.

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.95.032137
https://www.mfo.de/occasion/1740/www_view
https://www.mfo.de/occasion/1740/www_view
https://link.aps.org/doi/10.1103/PhysRevB.102.075109
https://arxiv.org/abs/2007.15961


To my late grandfather,
Antsel Fridman





Contents

List of Figures xiii

List of Tables xv

Abstract 1

Abbreviations and Notation 3

1 Introduction 9
1.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Cut and Project Tilings and Windings 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Cut and Project Scheme . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Windings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Analytic Calculation of Windings . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Calculation of the Structural Phase . . . . . . . . . . . . . . . 16
2.2.2 Fourier Transform of 𝚺1 . . . . . . . . . . . . . . . . . . . . . 18

2.3 Di�raction Spectrum of an Atomic Chain . . . . . . . . . . . . . . . . 19
2.3.1 Di�raction Spectrum . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Adding the Phason . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Phase Windings of Bragg Peaks . . . . . . . . . . . . . . . . . 21

2.4 Continued Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 Expansion via Continued Fractions . . . . . . . . . . . . . . . 21

2.5 A�nity between C&P and Substitution Tilings . . . . . . . . . . . . . 23
2.5.1 Quasiperiodic Sequences in C&P . . . . . . . . . . . . . . . . 23
2.5.2 Quasiperiodic Sequences in Substitutions . . . . . . . . . . . 24
2.5.3 Connection between C&P and Substitution Tilings . . . . . . 26

Complement 2.A Equivalence Calculations . . . . . . . . . . . . . . . . . 27
2.A.1 Equivalence between C&P and Characteristic Function . . . . 27
2.A.2 Equivalence between Characteristic Function and 𝚺1 . . . . . 28

ix



x Contents

3 Substitution Tilings 29
3.1 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Tilings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 Gap Labeling Theorem . . . . . . . . . . . . . . . . . . . . . . 30
3.1.3 Bratteli Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.4 Čech Cohomology . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.5 Complexity and Cohomology . . . . . . . . . . . . . . . . . . 38
3.1.6 Lateral Bratteli Diagrams . . . . . . . . . . . . . . . . . . . . 41

3.2 Dual Tilings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.1 De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 One-dimensional Aperiodic Tilings . . . . . . . . . . . . . . . 43
3.2.3 Two-dimensional Aperiodic Tilings . . . . . . . . . . . . . . . 43

3.3 Topological Considerations . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.1 Structural Features . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.2 Spectral Features . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.3 Comparison of Spectral and Structural Properties . . . . . . . 48

3.4 Tight Binding and Scattering Matrix . . . . . . . . . . . . . . . . . . . 50
3.4.1 Essentials of the Wave Equation Transfer Matrix . . . . . . . 50
3.4.2 Essentials of the Wave Equation Scattering Matrix . . . . . . 51
3.4.3 Total Phase Shift . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.4 Asymmetrical Phase . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.5 Comparison between Tight Binding and Transfer Matrix . . 56

4 Di�raction of Tilings 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 Bragg Peak Amplitude Scaling . . . . . . . . . . . . . . . . . . 58
4.2 Di�raction of the Thue-Morse Tiling . . . . . . . . . . . . . . . . . . 59

4.2.1 Analytical Summary . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.3 General Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.4 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.5 The Rudin-Shapiro Tiling . . . . . . . . . . . . . . . . . . . . 65

4.3 Autocorrelation and Di�raction . . . . . . . . . . . . . . . . . . . . . 66
4.3.1 The Model – Edge of Supertiles . . . . . . . . . . . . . . . . . 66
4.3.2 Correspondence between 𝑆 (𝑘) = |𝐺 (𝑘) |2 and 𝑆 (𝑘) = F̂𝑚 [𝐶 (𝑚)] 69

4.4 Di�raction 𝑆 (𝑘) via Cohomology 𝐻̌ 1 (Z) . . . . . . . . . . . . . . . . 69
4.4.1 Di�raction of Period Doubling Tiling . . . . . . . . . . . . . . 69
4.4.2 Di�raction of Periodic Tilings . . . . . . . . . . . . . . . . . . 73
4.4.3 Di�raction of C&P Tilings . . . . . . . . . . . . . . . . . . . . 74
4.4.4 Di�raction of the Thue-Morse Tiling . . . . . . . . . . . . . . 76
4.4.5 Di�raction of Other Tilings . . . . . . . . . . . . . . . . . . . 77

5 Bloch Theorem 79
5.1 Bloch Theorem in Periodic Systems . . . . . . . . . . . . . . . . . . . 79
5.2 Bloch Theorem in Cut and Project Tilings . . . . . . . . . . . . . . . . 79

5.2.1 Cut and Project – Reminder . . . . . . . . . . . . . . . . . . . 79



Contents xi

5.2.2 Bloch at Last . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.3 Quasiperiodic (C&P) Hamiltonian . . . . . . . . . . . . . . . . 81
5.2.4 Periodicity and Pattern Equivariance . . . . . . . . . . . . . . 82
5.2.5 Windings Revisited – Fourier Transform of 𝚺2 . . . . . . . . 83
5.2.6 Manifestation of Topology . . . . . . . . . . . . . . . . . . . . 85

5.3 Numerical Validation of the Bloch Theorem . . . . . . . . . . . . . . 85
5.3.1 The Projected Functions . . . . . . . . . . . . . . . . . . . . . 86
5.3.2 Bloch Phase from 2 to 1 Dimensions . . . . . . . . . . . . . . 87

5.4 Bloch Theorem for General Tilings . . . . . . . . . . . . . . . . . . . 88
5.4.1 The Role of the Čech Cohomology Ȟ 1 . . . . . . . . . . . . . 89
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Abstract

Structural and spectral properties of periodic tilings are well understood in the frame-
work of the Bloch theorem. For quasiperiodic tilings generated by the Cut and Project
(C&P) algorithm, we show how to relate structure and spectrum of 1𝑑 tilings by means
of topological numbers originated in windings of phases that we de�ne. These winding
numbers are associated with Bragg peak locations in the reciprocal space and with
spectral gap labeling for the structure and spectrum, respectively, suggesting a novel
extension of the Bloch theorem for 1𝑑 C&P tilings. We investigate and classify gen-
eral non-C&P tilings using cohomology groups, and implement these ideas with dual
tilings and scattering theory. We analyze the di�raction spectrum of 1𝑑 tilings, and
illustrate how to establish structural features based on these groups. We then present
an extension of the Bloch theorem based on certain groups in dimensions ≤ 3, and
discuss its application in both C&P and non-C&P cases.

Furthermore, we apply ideas from tiling theory to fractals embedded in a 2𝑑 space,
and suggest a gap labeling formula in fractal systems. Immersing fractals into a non-
uniform magnetic �ux, we demonstrate topological phase transitions using the �ux as
an order parameter. Finally, we present and analyze topological phase transitions inside
randomized substitution tilings adapting the aforementioned cohomology groups.

1
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Abbreviations and Notation

Abbreviations
AC Absolutely continuous

Aper Aperiodic

BZ Brillouin zone

C&P Cut and Project

DOM Density of modes

DOS Density of states

Fibo Fibonacci

Fibo2 Fibonacci squared

FLC Finite local complexity

Fr Fractal

GLT Gap Labeling Theorem

IDOS Integrated density of states / modes

PD Period Doubling

PE Pattern Equivariant / Pattern Equivarience

Per Periodic

Pisot Pisot-Vijayaraghavan property

PP Pure-point

RS Rudin-Shapiro

SC Singularly continuous

Sier Sierpiński

TH Top-hat

TM Thue-Morse

TPT Topological Phase Transition
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4 Abbreviations and Notation

const Constant

h.c. Hermitian conjugate

N/A Not applicable

w.r.t. With respect to

Notation
★ Autocorrelation binary operator

∗ Convolution binary operator

⊕ Direct sum binary operator

[· , ·] Commutator binary operator

〈· · · 〉𝑟 Average with respect to 𝑟

|·〉 , 〈·| Ket and Bra brackets

〈· , ·〉 Nearest neighbors

〈〈· , ·〉〉 Next nearest neighbors

· 𝑛∼ · Neighbors of order 𝑛

� “De�ned as” binary relation

↦→ “Maps to” binary relation

D Dyadic numbers

D𝑟 𝑟 -adic numbers

N Natural numbers

Q Rational numbers

R Real numbers

T2 Torus

Z Integer numbers

Z [𝑐] The ring Z with 𝑐 adjoined

4 Upward plaquette (triangle)

O𝑚 Downward plaquette (triangle) of depth𝑚

𝑨 Vector potential
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𝐴, 𝐵, . . . 1𝑑 tiles (letters)

𝛼 Chiral phase

𝛼 Scaling exponent for di�raction measure

𝛼𝑖 𝑗 Magnetic (Peierls) phase

𝐴T∗ In�ation matrices

𝑩 Magnetic �eld

B,B𝑇 Non-commutative Brillouin zone

𝛽𝑛 Betti number of 𝐻𝑛

𝑏 Flux basis of growth

𝐶 Autocorrelation

𝐶 (𝑡) Heat capacity

𝑐†, 𝑐 Creation and annihilation operators

𝐶 Chern number

𝑐𝑁 Slope numerator approximation of order 𝑁

𝑑 Space dimension

𝑑ℎ Hausdor� dimension

𝑑𝑠 Spectral dimension

𝑑𝑤 Walk dimension

∇2 Continuous Laplacian

Δ Discrete Laplacian

𝛿 (𝑘) Total phase shift

𝛿 (𝑥) Delta function

𝑑𝑁 Slope denominator approximation of order 𝑁

𝜕 Boundary operator

𝛿 Coboundary operator

𝐷 (·, ·) Tiling metric

𝐸 Energy

𝐸𝐹 Fermi energy

𝐸 ‖ Physical space

𝐸⊥ Internal space
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𝐹 (𝑡) Free energy

𝐹𝑁 Generalized substitution numbers of order 𝑁

F̂ , F̂𝑥 Fourier transform with respect to 𝑥

Φ Magnetic �ux

Φ0 Magnetic �ux quantum

𝑮 Reciprocal lattice

𝐺 Planar graph

𝐺𝑛 Bratteli graph for length-𝑛 letters

𝛾 Asymmetrical phase

𝛾 Scaling exponent for di�raction peaks

Γ𝑛 Alphabet of length-𝑛 letters

𝛾𝑛 Shift map for length-𝑛 letters

𝛾𝑖 𝑗 Geometric angle

𝛾 Zak phase, Berry phase

𝐺,𝑔 Di�raction amplitude

H Continuous Hamiltonian

𝐻̌ ∗ Integral Čech cohomology

𝐻̌ ∗ (Ω𝑇 ,𝐺) Čech cohomology over Ω𝑇 with coe�cients in 𝐺 = Z,R

𝐻 ∗𝑛 Simplicial cohomology of 𝐺𝑛

𝜂 IDOS as a measure

𝐻 Discrete Hamiltonian

𝐻𝐿, 𝐻𝐴 Linear and Area model Hamiltonians

𝐻𝑃 Peierls Hamiltonian

𝐼 Inverse Participation Ratio

𝑘 Wavevector

𝐾0 The 𝐾0 group.

𝑘0 Singularly continuous peak location in 𝑘-space

𝑘B Bragg (pure-point) peak location in 𝑘-space

𝐿 L-system

𝑙 Letter
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𝐿𝐴, 𝐿𝐵 Tile length

𝚲 Miller indices

𝜆∗, 𝜆1 Leading eigenvalue

𝑀 Occurrence matrix

𝜇 Positive di�raction measure

𝜇PP, 𝜇AC, 𝜇SC Pure-Point, Absolotely Continuous and Singularly Continuous measures

N , 𝜂 Integrated density of states / modes

𝑛 Refraction index

𝜈 Index

𝑃 Band projections

𝜙 Phason

𝜋 L-system rule

𝜋 ‖ Projection onto the physical space

𝜋⊥ Projection onto the internal space

𝜌 Atomic density

𝜚 Density of states / modes

𝜌𝐴, 𝜌𝐵 Tile density (probability)

𝑟 Ratio between the �uxes in 4 and O1

®𝑟 , ®𝑟 Rightwards and Leftwards re�ection coe�cients

S Scattering matrix

𝑆 Di�raction intensity

𝑠 C&P slope

𝑆 (𝑡) Entropy

𝜎, 𝜎𝑇 Substitution rule on tiling 𝑇

Σ0 Default shift matrix

Σ1 Permuted shift matrix

Σ2 Continuous shift matrix

𝜎𝑇1
𝑇2

Random substitution rule between tilings 𝑇1 and 𝑇2

𝜎𝑥 , 𝜎𝑦, 𝜎𝑧 Pauli matrices

𝑠𝑁 Slope approximation of order 𝑁
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S𝒙 C&P permutation operator

T Translation operator

𝑇 Tiling

𝑡 Tile

𝜏 Golden ratio

𝜏𝐻̌∗ Trace on the 𝐻̌ 1 group.

𝜏∗, 𝜏𝐾∗ Trace on the 𝐾0 group.

𝜃 Normalized �ux

Θ, 𝜃 Di�raction argument

𝑡 Transmission coe�cient

𝑇,T Transfer matrix

𝑈 (𝑡) Internal energy

𝒖∗, 𝒖1 Right leading eigenvector

𝒗∗, 𝒗1 Left leading eigenvector

𝑊 Winding number

𝑤 Word

𝑤∞ In�nite word

W𝜙 Winding operator with respect to the phason

Ξ Relative winding

𝜒 Characteristic function

𝑥𝑛, 𝒙𝑛 Atomic positions

𝜓𝑛 Eigenvector

𝜓𝒌 Eigenfunction

𝑢𝒌 Bloch Eigenfunction

𝑍 Neighbor matrix

𝜁 (𝑧) Zeta function

𝜁𝐻 (𝑡) Thermodynamic zeta function

𝜁 (𝑠, 𝛾) Spectral zeta function

𝑍 (𝑡) Heat kernel

Ω,Ω𝑇 Tiling space



Chapter 1

Introduction

1.1 Context and Motivation

Periodic systems are of utmost signi�cance in physics. They give rise to a plethora of
phenomena in 1, 2 and 3 dimensions. Some are structural, such as crystallographic
arrangement, di�raction, rigidity etc. [1]; others are spectral like bandgap, mobility
and Chern numbers [1–4]. In addition, time periodicity causes Floquet Hamiltonians
or time crystals. Combining structural and spectral properties, one arrives at the cele-
brated Bloch theorem [1] relating structural symmetries with those of the Hamiltonian
wavefunctions.

Departing from periodic systems, one seeks close-to-periodic setups. A common
scheme is a perturbative approach inserting a small disorder to a periodic system;
another is introducing a topological defect such as a vacancy [5, 6], color center [7, 8] or
a fracture; a di�erent concept is hyperuniform materials [9, 10], which are disordered
but sharing many properties with periodic systems. What we seek are almost-periodic
systems that are, on the one hand, deterministic without any disorder or perturbation;
but, on the other hand, are not periodic despite sharing features with them. The answer
to that are aperiodic tilings, on which we focus in this thesis especially in 1𝑑 .

Aperiodic tilings appear in many �elds in condensed matter physics, dynamical
systems, statistical mechanics, material science and optics among others. They answer
the question: “is there a deterministic but non-periodic tiling of the plane using a
�nite set of tiles?”. Initially conjectured positively by Wang [11] and con�rmed by
Berger using Wang tiles [12], this scheme was later generalized into Local Matching
Rules. Soon many more tilings were found. Penrose [13, 14] showed a 5-fold rotational
symmetry tiling of the plane known today as Penrose tiling using substitution rules. In
1𝑑 , substitution rules of tilings are equivalent to spatial arrangements of letters above
an alphabet [15, 16]. Later, de Bruijn explained how to obtain an aperiodic tiling by
projecting from a higher-dimensional space [17, 18] established nowadays as the Cut
and Project (C&P) scheme [15, 19]. To this day, these three methods, Local Matching
Rules, Substitutions and C&P, are the main techniques to create aperiodic tilings.

A celebrated family of aperiodic tilings is that of quasiperiodic tilings being the
closest (almost) periodic [20–22]. Tilings of this family exhibit Bragg peak di�raction;
their spectral characteristics (of propagating waves, tight-binding Hamiltonians, etc.)
display highly lacunar fractal energy spectrum with in�nitely many gaps [23–26].
The Gap Labeling Theorem (GLT) [27, 28] makes it possible to classify these gaps

9
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with integer numbers di�erent from the usual Chern number classi�cation of periodic
tilings expressed in terms of Berry curvature [4, 29–31]. Those integer numbers
cannot be represented in curvature terms of commutative geometries [27, 32]. These
numbers can be given both a topological character and invariance properties via Čech
cohomology. However, most of these features remain uncharted and inaccessible to
experimental veri�cation save notable exceptions [33–38]. Therefore, the topological
content of aperiodic tilings, namely, the aforementioned integer numbers, has not been
considered to be of physical relevance [39–41]. We demonstrate how to characterize
these topological numbers in quasiperiodic tilings using winding numbers and connect
them to known experiments.

Strolling outside the quasiperiodic realm, tilings becomemore exotic. Quasiperiodic
tilings exhibit Bragg peaks that can be enumerated in the reciprocal space similar to
Miller indices of periodic tilings. However, general aperiodic tilings have di�erent
combinatorics and thus cannot be enumerated in this manner. Additional physical
properties, such as the spectrum of Hamiltonians de�ned on aperiodic tilings, are also
a�ected by this change in combinatorics. We present the main mathematical tools
required to identify and describe aperiodic tilings emphasizing Čech cohomology. We
then show the physical consequences and present new calculations arising by using
this description.

One main attribute of tilings is their di�raction spectrum characterizing their
structural properties. A di�raction experiment on periodic tilings yields a picture
consisting of Bragg peaks only in the reciprocal space implying a long-range correlation.
Likewise, quasiperiodic tilings produce Bragg peaks in the reciprocal space, but have
a dense di�raction spectrum and no Brillouin zone. From a physical point of view,
the existence of Bragg peaks is a necessary (but not su�cient) trait for a tiling to
be quasiperiodic. In general, however, the di�raction spectrum may be Lebesgue
decomposed into Bragg, absolutely continuous and singularly continuous components.
Notable examples are the Rudin-Shapiro tilingwith an absolutely continuous di�raction
spectrum, and the Thue-Morse tiling with a singularly continuous one. We analyze
these di�raction components and show how to calculate the di�raction in some cases
using methods derived from the calculation of the Čech cohomology.

If Bloch theorem is the central aspect of periodic tilings connecting the location
of Bragg di�raction peaks to spectral gaps, then how does it manifest in aperiodic
tilings? In quasiperiodic tilings, Bloch theorem is known to hold similarly to periodic
tilings. In aperiodic tilings, however, it is typically not the case. We �rst formulate
Bloch theorem in quasiperiodic tilings. Furthermore, we show that in 1𝑑 quasiperiodic
tilings, there is an additional relation between structural windings over the phase
of Bragg peaks and spectral windings over the chiral phase of the scattering matrix.
We then show that in the more general case of �nite local complexity (FLC) tilings
in dimensions 𝑑 ≤ 3, only traces over the Čech cohomology and 𝐾0 group keep the
equivalence between structural and spectral properties, respectively.

We have established the integral Čech cohomology as the major topological invari-
ant in aperiodic tilings in low dimensions. Therefore, a transition between two tilings
with di�erent Čech cohomologies infers a topological phase transition. To show it,
however, is not a simple matter. In a �rst approach, we detour via fractals to show that
for the Sierpiński gasket immersed in a magnetic �ux, a topological phase transition
occurs. We then present additional transport properties and analyze several index
theorems on these fractals. In a second approach, we use randomized substitution
rules to derive topological phase transitions between regular aperiodic tilings and
demonstrate analogous thermodynamic properties therein.
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1.2 Organization
This thesis is organized as follows.

In Chapter 2, we show simple quasiperiodic tilings created with the Cut and Project
procedure and some of their characteristics using continued fractions. We inves-
tigate winding numbers, di�raction spectrum and Wannier diagrams. Finally,
we show a�nity with other quasiperiodic tilings created with substitution pro-
cedure.

In Chapter 3, we introduce the mathematical background used to describe general
aperiodic tilings with an emphasis on substitution tilings. We then discuss
physical topological features of aperiodic tilings using tools from scattering
theory.

In Chapter 4, we analyze the di�raction spectrum using the Thue-Morse tiling as
an example. We then show how to calculate di�raction in some cases with new
mathematical tools.

In Chapter 5, we present the generalized Bloch theorem to quasiperiodic and aperi-
odic tilings.

In Chapter 6, we demonstrate fractals as an extension of tilings using L-systems.
Adding magnetic �ux, we indicate the gap labeling theorem and topological
phase transitions. We �nish with topological numbers and index formulae
de�ned in such systems.

In Chapter 7, we illustrate topological phase transitions made between aperiodic
tilings linked with random-rule order parameter, and shows analogous thermo-
dynamic relations thereby derived.

In Chapter 8, we summarize the thesis and outline future prospects.
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Chapter 2

Cut and Project Tilings and
Windings

Aperiodic tilings contain topological information. Yet, at times, it is di�cult to extract
these topological attributes and connect them to physical features that can be measured
in the laboratory. In the following, we show that winding numbers are a manifestation
of the topological attributes.

2.1 Introduction
In this section, we introduce the main tools for the remainder of the chapter.

2.1.1 Cut and Project Scheme
The canonical Cut and Project (C&P) 2𝑑 → 1𝑑 procedure is de�ned as follows [42].

Cut.

1. Start with a 2-dimensional space 𝑅 = R2.
2. Insert “atoms” on the integer lattice 𝑍 = Z2.
3. Divide 𝑅 into a physical space (line) 𝐸 ‖ and an internal space (line) 𝐸⊥ such

that 𝐸 ‖ ⊕ 𝐸⊥ = 𝑅 and 𝐸 ‖ ∩ 𝐸⊥ = {𝒄} with 𝒄 ∈ 𝑅 de�ned below.
4. To resolve ambiguity for 𝐸 ‖ , choose an initial location 𝒄 ∈ 𝑅 such that 𝐸 ‖

passes through 𝒄 . There is no such requirement for 𝐸⊥.

Project.

1. Inspect the square I2 = [−0.5, 0.5)2.
2. The window is its projection on the internal space𝑊 = 𝜋⊥ (I2).
3. The strip is the product with the physical space 𝑆 =𝑊 ⊗ 𝐸 ‖ .
4. Choose only the points inside the strip 𝑆 ∩ 𝑍 , and project them onto the

physical space, 𝑌 = 𝜋 ‖ (𝑆 ∩ 𝑍 ).
5. The atomic density is given by 𝜌 (𝒙) � 𝜌𝒄 (𝒙) = ∑

𝒚∈𝑌 𝛿 (𝒙 −𝒚) with 𝒙 ∈ 𝐸 ‖ .
Note the implicit dependence of 𝑌 on 𝒄 .

13
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Figure 2.1: The Cut and Project (C&P) scheme. The red line is the cut line 𝐸 ‖ with
𝑦 = 𝑥 tan𝛼 + 𝑐 . Additionally 𝐸⊥,𝑊 and 𝑆 , as well as the points 𝑍 can the projections
are indicated within.

The C&P scheme for 2𝑑 → 1𝑑 is depicted in Figure 2.1. Here, there are only 2 possible
distances between neighboring atoms, 𝐿𝐴, 𝐿𝐵 . This gives us the notion of a tiling of the
letters 𝐴 and 𝐵. Another way to create this tiling is by moving in a stairway fashion
on the atoms inside the strip: we assign 𝐴 to a rightwards movement and 𝐵 to the
upward one.

This scheme is naturally generalized to any 𝑛-dimensional tiling as presented in
Section 5.2.1.

2.1.2 Substitutions
For completion, we describe the substitution process in 1𝑑 [15, 43, 44]. Let Γ1 �
{𝐴, 𝐵,𝐶, . . .} = {𝑙1, 𝑙2, . . .} be a set of letters and 𝑤 = 𝑙 (1)𝑙 (2) . . . 𝑙 (𝑚) ∈ Γ𝑚1 be a word
of size𝑚 made by concatenation. We de�ne a substitution 𝜎 : Γ1 → ΓN1 by replacing
a letter 𝑙𝑖 ∈ Γ1 by some word. The action of 𝜎 on some word 𝑤 is also made by
concatenation 𝜎 (𝑤) = 𝜎 (

𝑙 (1)
)
𝜎
(
𝑙 (2)

)
. . . 𝜎

(
𝑙 (𝑚)

)
. Consecutive applications of 𝜎 are

denoted by 𝜎𝑛 (𝑤). We denote by 𝑤∞ � 𝜎∞ (𝑙) the in�nite word, where 𝜎∞ �
lim𝑛→∞ 𝜎𝑛 assuming the limit exists.

The occurrence matrix𝑀 is de�ned by counting the number of letters in 𝜎 , namely,
𝑀𝑖 𝑗 =

{
# of 𝑙 𝑗 in 𝜎 (𝑙𝑖 )

}
. For example, a binary substitution 𝜎 with 𝜎 (𝐴) = 𝐴𝛼𝐵𝛽 and

𝜎 (𝐵) = 𝐴𝛾𝐵𝛿 has an occurrence matrix𝑀 =

(
𝛼 𝛽

𝛾 𝛿

)
.

We typically demand that 𝜎 be:

Primitive. There exists some 𝑁 such that all elements of𝑀𝑁 are strictly positive.

• It also means that 𝜎𝑁 (𝑙𝑖 ) 3 𝑙 𝑗 for all 𝑙𝑖 , 𝑙 𝑗 .
• The in�nite word𝑤∞ are the same for all 𝑙𝑖 [45].
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Pisot. For spec𝑀 = {𝜆1, 𝜆2, . . .} the eigenvalues of𝑀 have 𝜆∗ � 𝜆1 > 1 and |𝜆𝑛≥2 | < 1.

• The right eigenvector 𝒖∗ of𝑀 has strictly positive elements, which denote the
tile lengths 𝑢∗𝑖 = 𝐿𝑖 for all 𝑙𝑖 ∈ Γ1 [43].

• The left eigenvector 𝒗∗ of𝑀 has strictly positive elements and normalized by∑
𝑖 𝑣
∗
𝑖 = 1. It corresponds to tile densities (probabilities) 𝑣∗𝑗 = 𝜌 𝑗 in𝑤∞ for all

𝑙 𝑗 ∈ Γ1 [43].
Using 𝑀 , we set 𝑡 = Tr𝑀 and 𝑝 = det𝑀 , and de�ne the sequence 𝐹𝑁 for binary
substitutions by

𝐹𝑁+1 = 𝑡𝐹𝑁 − 𝑝𝐹𝑁−1, 𝐹0 = 0, 𝐹1 = 1. (2.1)

Example. For the Fibonacci substitution 𝜎Fib (𝐴) = 𝐴𝐵 and 𝜎Fib (𝐵) = 𝐴, we obtain
𝑀Fib =

( 1 1
1 0

)
so that 𝜆1,Fib = 𝜏 = (√5 + 1) /2, 𝑡Fib = 1, 𝑝Fib = −1 and 𝐹𝑁 are the

Fibonacci numbers.

2.1.3 Windings
In the following, we shall use C&P tilings. More details are in Section 2.4 and Ap-
pendix 2.A.1. Consider a characteristic function [37, 38]

𝜒 (𝑛, 𝜙) = sign [cos (2𝜋𝑛 𝑠 + 𝜙) − cos (𝜋𝑠)] , (2.2)

taking 𝑛 = 0 . . . 𝑑𝑁 − 1 (where 𝑑𝑁 are the denominators of the continued fraction of
𝑠 , as explained in Section 2.4), and 𝜙 ∈ [0, 2𝜋] being the phason. This characteristic
function is equivalent to C&P (see Appendix 2.A.1). We make 𝜙 discrete by taking
𝜙ℓ = 2𝜋𝑑−1

𝑁
ℓ = Δ𝜙 ℓ for ℓ = 0 . . . 𝑑𝑁 − 1. In this case, only two neighboring letters

change each Δ𝜙 . This is in comparison with the C&P picture: as we move in the
𝜙 direction, namely in 𝐸⊥, we hit a single “atom” each Δ𝜙 for a rational slope 𝑠𝑁 .
Therefore a single pair of letters changes: 𝐴𝐵 ↔ 𝐵𝐴.

We take the discrete Fourier transform of 𝜒 (𝑛, 𝜙) with respect to 𝑛,

𝑔 (𝜉, 𝜙) =
𝑑𝑁 −1∑︁
𝑛=0

𝜔−𝜉𝑛𝜒 (𝑛, 𝜙) , 𝜔 = e2𝜋 i/𝑑𝑁 . (2.3)

The normalized structure factor is given by

𝑆 (𝜉, 𝜙) = |𝑔 (𝜉, 𝜙) |2 . (2.4)

It is 𝜙-independent as will be shown later (see Figure 2.2), and its phase of 𝑔 is given by

𝜃 (𝜉, 𝜙) = arg𝑔 (𝜉, 𝜋) . (2.5)

Here, one can de�ne the winding number at some 𝜉0 by

𝑊𝜉0 =
1
2𝜋

∫ 2𝜋

0

𝜕𝜃 (𝜉 = 𝜉0, 𝜙)
𝜕𝜙

d𝜙. (2.6)

All the numerical results are given in Figure 2.2.
Claim. The winding𝑊 = 1 lies at position 𝜉0 = 𝑐𝑁 with 𝑐𝑁 the numerators of the
continued fraction of 𝑠 (see Section 2.4). This results from the formula of the Bragg
peak locations for quasiperiodic sequences,

𝑘𝑝,𝑞 = 𝑝 + 𝑞𝑠 (mod 1). (2.7)
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Figure 2.2: Characteristic function (top left) and its Fourier transform (top right) for
the Fibonacci sequence. The phase 𝜃 is shown on the bottom panel. The winding
numbers for |𝑊 | ≤ 13 are indicated by red numbers. Here, 𝑑𝑁 = 89 points were taken.

For the discrete case with a word of size 𝑑𝑁 , one has

𝜉𝑝,𝑞 = 𝑑𝑁𝑘𝑝,𝑞 ' 𝑝𝑑𝑁 + 𝑞𝑐𝑁 (mod 𝑑𝑁 )
= 𝑞𝑐𝑁 (mod 𝑑𝑁 ), (2.8)

and identifying 𝑞 with the winding. The details are in the following sections.

2.2 Analytic Calculation of Windings
In the following, we show how to de�ne and calculate the winding numbers. We
investigate the structural properties and show that the Fourier transform contains
additional information with regard to these topological features.

2.2.1 Calculation of the Structural Phase
Let 𝑠0 (𝑛) = 𝜒 (𝑛, 0) be the �rst row of 𝜒 of size 𝑑𝑁 . Let T be a translation operator
such that T [𝑠0 (𝑛)] = 𝑠0 (𝑛 + 1). Let Σ0 be a vertical concatenation of such words,

Σ0 =

©­­­­«
𝑠0
T [𝑠0]
...

T𝑑𝑁 −1 [𝑠0]

ª®®®®¬
=⇒ Σ0 (𝑛, ℓ) = T ℓ [𝑠0 (𝑛)] . (2.9)

Note that Σ0 is a 𝑑𝑁 × 𝑑𝑁 matrix (see Figure 2.3).
Consider now the matrices Σ̃𝑟 , which are row-permuted Σ0:

Σ̃𝑟 = 𝑈𝑟Σ0, 𝑈𝑟 (𝑚, ℓ) = 𝛿ℓ,𝑚 𝑟 𝑐𝑁 . (2.10)



2.2. Analytic Calculation of Windings 17

Figure 2.3: Shift matrices Σ0 and Σ1 for the Fibonacci sequence. Here, 𝑑𝑁 = 89 points
were taken.

Equivalently,
Σ̃𝑟 (𝑛, ℓ) = T𝑚 (ℓ,𝑟 ) [𝑠0 (𝑛)] , (2.11)

with𝑚 (ℓ, 𝑟 ) = ℓ 𝑟−1 𝑐−1
𝑁
(mod 𝑑𝑁 ). Henceforth, we shall remove the tilde Σ̃𝑟 → Σ𝑟 to

simplify notations. We are interested in Σ1 (see Figure 2.3).

Claim. For 𝜙 = 2𝜋ℓ/𝑑𝑁 with 𝑛, ℓ = 0 . . . 𝑑𝑁 − 1 one has 𝜒 (𝑛, 𝜙) = Σ1 (𝑛, ℓ). This is
shown in Appendix 2.A.2.

Building on this equivalence, we take the discrete Fourier transform of Σ1 with
respect to 𝑛 to have

𝐺𝑁 (𝜉, ℓ) �
𝑑𝑁 −1∑︁
𝑛=0

𝜔−𝜉𝑛 Σ1 (𝑛, ℓ) =
𝑑𝑁 −1∑︁
𝑛=0

𝜔−𝜉𝑛 T𝑚 (ℓ) [𝑠0 (𝑛)]

=

𝑑𝑁 −1∑︁
𝑛=0

𝜔−𝜉𝑛 𝑠0 (𝑛 +𝑚 (ℓ))

= 𝜔𝑚 (ℓ)𝜉
𝑑𝑁 −1∑︁
𝑛=0

𝜔−𝜉𝑛 𝑠0 (𝑛)

= 𝜔𝑚 (ℓ)𝜉 𝜍0 (𝜉) . (2.12)

Here, 𝜍0 (𝜉) is the discrete Fourier transform of 𝑠0 (𝑛).
Next, we identify |𝜍0 (𝜉) |2 with the structure factor 𝑆 (𝜉, 𝜙), since it holds the

absolute-value information of 𝐺 (𝜉, ℓ). It is 𝜙-independent as expected—its phase is
constant with 𝜙—and thus does not contribute to the windings.

To analyze the phase of 𝐺 (𝜉, ℓ), we inspect the 𝜔𝑚 (ℓ)𝜉 part:

Θ𝑁 (𝜉, ℓ) � arg𝜔𝑚 (ℓ)𝜉 = 2𝜋
𝑑𝑁

𝑚 (ℓ) 𝜉 (mod 2𝜋)

=
2𝜋
𝑑𝑁

ℓ
𝜉

𝑐𝑁
(mod 2𝜋). (2.13)
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Figure 2.4: The double Fourier transform of Σ1 for the Fibonacci sequence. Here,
𝑑𝑁 = 89 points were taken. The images are in a logarithmic scale. (Left) The Shift
matrix di�raction; (Right) same but with axes of

(
𝑘𝑥 , 𝑘𝑦

)
with 𝑎 = 1. Note that the last

column in (b) is repeated for convenience.

Now, for 𝜉1 = 1 · 𝑐𝑁 one has Θ (𝜉1, ℓ) = 2𝜋𝑑−1
𝑁
ℓ × (+1), which leads to𝑊𝜉1 = +1. This

is our initialization condition. Generally, for any 𝜉𝑞 = 𝑞𝑐𝑁 one has

Θ𝑁
(
𝜉𝑞, ℓ

)
=

2𝜋
𝑑𝑁

ℓ 𝑞 (mod 2𝜋) =⇒ 𝑊𝜉𝑞 = 𝑞. (2.14)

The result for the entire 𝜉 axis is taken by the limit of 𝑁 , namely,

Θ (𝜉, ℓ) � lim
𝑁→∞

Θ𝑁 (𝜉, ℓ) . (2.15)

2.2.2 Fourier Transform of 𝚺1

In the di�raction experiments of [38], a laser beam was shined through a mask having
the shape of Σ1 (see Figure 2.3), where a yellow pixel means a solid wall, and a blue
one – a vacancy. Then, its di�raction pattern was inspected.

We inspect the discrete Fourier transform of Σ1 (𝑛, ℓ) with respect to both 𝑛 and ℓ .
Note that it is the discrete Fourier transform of 𝐺 (𝜉, ℓ) with respect to ℓ :

F̂ℓ
[
F̂𝑛 [Σ1 (𝑛, ℓ)] (𝜉)

]
(𝜂) = F̂ℓ [𝑑𝑁 𝐺𝑁 (𝜉, ℓ)] (𝜂) . (2.16)

Thus,

𝐸 (𝜉, 𝜂) � F̂ℓ,𝑛 [Σ1 (𝑛, ℓ)] (𝜉, 𝜂)
= F̂ℓ

[
𝑑𝑁 𝜍0 (𝜉) 𝜔𝑚 (ℓ)𝜉

]
(𝜂)

= F̂ℓ
[
𝑑𝑁 𝜍0 (𝜉) 𝜔 ℓ𝜉/𝐹𝑁−1

]
(𝜂)

= 𝑑2𝑁 𝜍0 (𝜉) 𝛿
(
𝜂 − 𝜉𝑐−1𝑁

)
, (2.17)

where the argument of 𝛿 (·) is taken modulo 𝑑𝑁 .
Note that the strength is only dependent on 𝜍0 (𝜉). Additionally, one has Bragg

peaks at 𝜉 = 𝜂𝑐𝑁 (mod 𝑑𝑁 ) (see Figure 2.4a). To normalize to the results of [38],
transform the axes such that 𝑘𝑥 = −𝜉/𝑑𝑁 and 𝑘𝑦 = 𝜂 − d𝑑𝑁 /2e (see Figure 2.4b).
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Claim. We use 𝑐𝑁 and 𝑑𝑁 of the continued fraction, as explained in Section 2.4, but
for substitution systems, we may use instead 𝐹𝑁−1 and 𝐹𝑁 . The latter case works only
for quasiperiodic tilings, and speci�cally for the Fibonacci substitution. In the general
quasiperiodic metallic or alloy case, compare to the results of Section 2.5.

Remark. Henceforth, we shall omit the subscript 𝑁 in Θ𝑁 and 𝐺𝑁 for simplicity, as
we are dealing with �nite sequences.

2.3 Di�raction Spectrum of an Atomic Chain

Thus far, we have only examined the di�raction of a tiling, namely, assigning di�erent
values for tiles 𝐴/𝐵. Next, we put atoms on the boundaries between the tiles and
inspect their Fourier transform. This corresponds to two di�erent possible di�raction
experiments: the former was using a mask, and the latter is from a lattice.

2.3.1 Di�raction Spectrum

Consider atoms put on boundaries between tiles. We assign widths 𝑙𝐴/𝐵 for layers𝐴/𝐵,
respectively, for a tiling of size 𝑑𝑁 , so that the total distance reads

𝑦𝑛 =
𝑛∑︁

𝑚=0
𝑙𝑚 . (2.18)

Thus, the positions can be written—after proper normalization—as

𝑥𝑛 = 𝑦𝑛 − 𝑦, (2.19)

with

𝑦 =
1
𝑑𝑁

𝑑𝑁 −1∑︁
𝑖=0

𝑦𝑖 =
1
𝑑𝑁

𝑑𝑁 −1∑︁
𝑚=0
(𝑑𝑁 −𝑚) 𝑙𝑚, (2.20)

so that ∑𝑛 𝑥𝑛 = 0.
The atomic density is given by

𝜌 (𝑥) =
∑︁

𝑛
𝛿 (𝑥 − 𝑥𝑛) , (2.21)

and its Fourier transform is

𝑔 (𝑘) = 𝜌 (𝑘) �
∑︁

𝑛
e−i𝑥𝑛𝑘 . (2.22)

Correspondingly to the previous section, the di�raction spectrum reads

𝑆 (𝑘) = 1
𝑑𝑁
|𝑔 (𝑘) |2 , (2.23)

where the factor 1/𝑑𝑁 accounts for the normalization. The structural phase is

𝜗 (𝑘) = arg𝑔 (𝑘) . (2.24)
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Figure 2.5: The atomic Fourier transform for the Fibonacci sequence with {𝑙𝐴, 𝑙𝐵} =
{2, 1} and 𝑑𝑁 = 233. The height represents the structure factor 𝑆/𝑑𝑁 , and the color
the structural phase 𝜗 . The pairs (𝑝, 𝑞) for the �rst few Bragg peaks 𝑘0 = 𝑝 + 𝑞/𝜏 are
shown, and their corresponding winding number 𝑊́ is emphasized in red.

2.3.2 Adding the Phason
In order to make the structural phase 𝜙 dependent 𝜗 (𝑘) → 𝜗 (𝑘, 𝜙), we consider the
widths 𝑙𝑛,ℓ taken from Σ1 above by

𝑙𝑛,ℓ =
1 + Σ1 (𝑛, ℓ)

2 (𝑙𝐴 − 𝑙𝐵) + 𝑙𝐵 . (2.25)

Next, the atomic positions are given by

𝑥𝑛 = 𝑙𝑛 + (𝑙𝐴 − 𝑙𝐵) 𝑢𝑛, 𝑙 = lim
𝑛→∞

𝑥𝑛
𝑛
, (2.26)

with 𝑙 the mean length and 𝑢𝑛 �uctuations. The relation between 𝑢𝑛 and 𝑙𝑛 (for any ℓ)
is given by

𝑙𝑛 = (𝑙𝐴 − 𝑙𝐵) (𝑢𝑛 − 𝑢𝑛−1) � (𝑙𝐴 − 𝑙𝐵) 𝜖𝑛 . (2.27)

We will sometimes consider 𝜖𝑛 instead of 𝑙𝑛 .
Next, we �nd the relations between the Fourier transforms of 𝑢𝑛 and 𝜖𝑛 . Recall

that for a discrete Fourier transform,

F̂ 𝑛 [𝑓 ] (𝜉) � 𝑓 (𝜉) =
∑︁

𝑛
𝜔−𝜉𝑛 𝑓 (𝑛) , (2.28)

with 𝜔 = e2𝜋 i/𝑑𝑁 , one obtains equation for the derivative

F̂ 𝑛 [Δ𝑓 ] (𝜉) �
∑︁

𝑛
𝜔−𝜉𝑛 (𝑓 (𝑛) − 𝑓 (𝑛 − 1)) = (

1 − 𝜔−𝜉 ) 𝑓 (𝜉) . (2.29)

Thus,

𝜖𝜉,ℓ =
𝑙𝜉,ℓ

𝑙𝐴 − 𝑙𝐵 =
(
1 − 𝜔−𝜉 )𝑢𝜉,ℓ . (2.30)
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Table 2.1: Diophantine relations between (𝑙𝐴, 𝑙𝐵) and
(
𝑛𝑝 , 𝑛𝑞

)
in (2.32) for selected

substitution sequences.

Name Rule 𝑀1 𝑛𝑝 𝑛𝑞

Fibonacci 𝐴 ↦→𝐴𝐵
𝐵 ↦→𝐴

( 1 1
1 0

)
𝑙𝐴 − 𝑙𝐵 2𝑙𝐵 − 𝑙𝐴

Fibonacci2 𝐴 ↦→𝐴𝐵𝐴
𝐵 ↦→𝐴𝐵

( 2 1
1 1

)
𝑙𝐵 − 𝑙𝐴 3𝑙𝐵 − 2𝑙𝐴

Silver 𝐴 ↦→𝐴𝐴𝐵
𝐵 ↦→𝐴

( 2 1
1 0

)
𝑙𝐵 − 𝑙𝐴 3𝑙𝐴 − 2𝑙𝐵

2.3.3 Phase Windings of Bragg Peaks
The Fourier transform 𝑢𝜉,ℓ is not equivalent to 𝜌𝑘,ℓ = 𝑔 (𝑘, ℓ) in the limit 𝑁 → ∞.
This is because 𝑢𝑛 represents a step function, whilst 𝜌 (𝑥) are the atomic positions.
Nevertheless, by using simulations, we calculate 𝑔 (𝑥, ℓ) as in (2.22). The winding
number is given, as before, by

𝑊́𝑘0 =
1
2𝜋

∫ 2𝜋

0

𝜕𝜗 (𝑘 = 𝑘0, 𝜙)
𝜕𝜙

d𝜙. (2.31)

Figure 2.5 shows such results for the Fibonacci sequence for {𝑙𝐴, 𝑙𝐵} = {2, 1}. Here, the
winding number 𝑊́𝑝,𝑞 of the Bragg peak 𝑘0 = 𝑝 + 𝑞/𝜏 is given by its 𝑝 value (instead of
𝑞). These results extend beyond the �rst quasi-Brillouin zone shown in Figure 2.5.

A numerical analysis shows that 𝑊́ obeys the following Diophantine equation in
𝑝, 𝑞 for quasiperiodic substitution sequences,

𝑊́ = 𝑛𝑝𝑝 + 𝑛𝑞𝑞, 𝑛𝑝 , 𝑛𝑞 ∈ Z, (2.32)

such that 𝑛𝑝,𝑞 ful�ll a linear Diophantine relation in 𝑙𝐴, 𝑙𝐵 ∈ Z. The results are given
in Table 2.1. Note, however, that it works only for selected pairs of (𝑙𝐴, 𝑙𝐵).
Remark. There cannot be a 𝑞-dependent only winding (that is, 𝑝 = 0). In that case,
𝑙𝐴 = 𝑙𝐵 , as seen in Table 2.1, and there would be no aperiodic di�raction pattern.

2.4 Continued Fractions
The winding numbers obtained by Σ1 do not work for any tiling length 𝐿𝑛 , but only for
the lengths of the tiling approximants𝑇𝑁 by consecutive orders 𝑁 . For a general slope
𝑠 ∈ [0, 1], we inspect the continued fraction of 𝑠 , which consists of the best rational
approximations to 𝑠 . These approximations produce the correct lengths 𝑑𝑁 for Σ1.
This natural expansion is shown below (see also [46, 47]).

2.4.1 Expansion via Continued Fractions
Every number 𝑠 ∈ R can be written in a continued fraction form

𝑠 = 𝑎0 +
1

𝑎1 +
1

𝑎2 +
1

𝑎3 + . . .

� [𝑎0;𝑎1, 𝑎2, 𝑎3, . . .] , (2.33)

where 𝑎0 ∈ Z is an integer and 𝑎𝑖≥1 ∈ N natural numbers.
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• If the expansion is �nite—that is ∃𝑛0 such that ∀𝑛 > 𝑛0 one has 𝑎𝑛 = 0—then
𝑥 ∈ Q is rational.

• If the expansion becomes periodic—that is ∃𝑛0, 𝑑 such that ∀𝑛 > 𝑛0, 𝑎𝑛+𝑑 =

𝑎𝑛—then 𝑠 is algebraic. For example, the golden ratio reads

𝜏−1 =
1

1 + 1

1 + 1
1 + . . .

� [0; 1, 1, 1, . . .] . (2.34)

• If there is no period, then the number 𝑠 is transcendental. For example, for
𝑠 = 1/𝜋 ,

𝜋−1 = [0; 3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, . . .] . (2.35)

Next, we consider the sequence 𝑠𝑁 , the �nite expansion up to the 𝑁 th number 𝑎𝑁 ,

𝑠𝑁 =
1

𝑎1 +
1

𝑎2 +
1

. . . + 1
𝑎𝑁

= [0;𝑎1, 𝑎2, . . . , 𝑎𝑁 ] . (2.36)

It is a rational approximation to 𝑠 (that is 𝑠𝑁 ∈ Q), where

lim
𝑁→∞

𝑠𝑁 = 𝑠 . (2.37)

For example, for 𝑠 = 1/𝜋 ,

{𝑠𝑁 }∞𝑁=0 =

{
0
1 ;

1
3 ,

7
22 ,

106
333 ,

113
355 ,

33102
103993 ,

33215
104348 ,

66317
208341 ,

99532
312689 , . . .

}
. (2.38)

We consider the sequences 𝑐𝑁 the numerators and 𝑑𝑁 denominators of 𝑠𝑁 . For
instance, for 𝑠 = 1/𝜋 ,

𝑐𝑁 = {0; 1, 7, 106, 113, 33102, 33215, 66317, 99532, . . .} ,
𝑑𝑁 = {1; 3, 22, 333, 355, 103993, 104348, 208341, 312689, . . .} . (2.39)

We list below several lemmas and corollaries, proofs of which can be found in standard
textbooks [48].

Lemma. These sequences are minimal in the sense that for any 𝑐 ≤ 𝑑 ≤ 𝑑𝑁 approxi-
mating 𝑠 by 𝑠 ' 𝑐/𝑑 , the distance 𝛿 = |𝑑𝑠 − 𝑐 | is minimal for 𝑐 = 𝑐𝑁 and 𝑑 = 𝑑𝑁 .

Corollary. The sequence 𝑠𝑁 constitutes the best rational approximations to 𝑠 .

Lemma. For the 𝑁 th convergent 𝑠𝑁 = 𝑐𝑁 /𝑑𝑁 , the following holds,

𝑑𝑁𝑐𝑁−1 − 𝑑𝑁−1𝑐𝑁 = (−1)𝑁 . (2.40)
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Figure 2.6: Characteristic function (top left) and its Fourier transform (top right) for
𝑠 = 1/𝜋 . he phase 𝜃 is shown on the bottom panel. The winding numbers for |𝑊 | ≤ 10
are indicated by red numbers. Here, 𝑑𝑁 = 355 is the period and 𝑐𝑁 = 113 the �rst
Bragg peak location.

Corollary. For periodic continued fractions using the lemma above,

𝑐2𝑁 = ±1 (mod 𝑑𝑁 ). (2.41)

Remark. The 𝑠𝑁 numbers in (2.36) can be generalized so that 𝑠𝑁 = [0;𝑎1, 𝑎2, . . . , 𝑎𝑁 − 1]
is also a good approximation. In other words, any partial rational approximation,

𝑠 ( 𝑗)
𝑁

= [0;𝑎1, 𝑎2, . . . , 𝑎𝑁 − 𝑗] , 𝑎𝑁 > 𝑗 ≥ 0, 𝑗 ∈ Z, (2.42)

holds all the properties of 𝑠𝑁 � 𝑠 (0)𝑁 above. For instance, it has generalized 𝑐𝑁 and 𝑑𝑁 .

2.5 A�inity between C&P and Substitution Tilings
Cut and Project and substitution methods usually create incongruous tilings. For
instance, the 𝜋−1 tiling has no substitution counterpart, whereas 𝜎3 (see (3.46)) cannot
be created by a C&P procedure. In the following section, we shall show the di�erences
and similarities between both.

2.5.1 �asiperiodic Sequences in C&P
Cut and Project tilings are the closest to periodic. In fact, in 1𝑑 they are equivalent
to Sturmian sequences [49]. There are uncountably many ones [50], as the slope
𝑠 ∈ [0, 1] ⊂ R. We shall use the following.

Proposition (Quasiperiodic C&P). A quasiperiodic tiling in 1𝑑 made by C&P method
has an irrational slope, namely, 𝑠 ∈ R \Q.
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This excludes all periodic tilings, but does not exclude transcendental ones. The
latter have non-algebraic slopes, e.g., 𝑠 = 𝜋−1. To connect to substitution sequences
we must have algebraic quasiperiodic C&P sequences.

The di�raction (Bragg) spectrum of a 1𝑑 C&P tiling is given by

𝑘0 ∈ Z + 𝑠Z. (2.43)

It is equivalent to the Hamiltonian spectrum by the location of the gaps

N ∈ (Z + 𝑠Z) ∩ [0, 1) . (2.44)

This implies a Bloch theorem for these tilings.

2.5.2 �asiperiodic Sequences in Substitutions
Consider again 2-letter substitution rule 𝜎 and its associated occurrence matrix𝑀1 as in
Section 2. We inspect only primitive, irreducible matrices with Pisot property. The lead-
ing left eigenvector of𝑀 (namely, the one corresponding to the largest—Pisot—eigenvalue
𝜆∗) portrays the tile densities 𝜌𝑖 (in the in�nite word𝑤∞) by

𝒗1 =
(
𝜌𝐴 𝜌𝐵

)
, 𝜌𝐴 + 𝜌𝐵 = 1. (2.45)

For substitutions with det𝑀 = ±1, the Bragg peaks are located at [43],

𝑘0 ∈ Z + 𝜌𝐵Z, (2.46)

with the gaps placed at [27],

N ∈ (Z + 𝜌𝐵Z) ∩ [0, 1) . (2.47)

This is reminiscent of the C&P tilings above implying a connection between both.
The leading right eigenvector𝒘1 =

(
𝑙𝐴 𝑙𝐵

)T expresses the tile lengths. There are
two natural normalizations.

1. One of the tiles is of unit length 1,

min {𝑙𝐴, 𝑙𝐵} = 1. (2.48)

2. The ratio of the tiles converges to a �xed point [43],

𝜉∗ �
𝑙𝐴
𝑙𝐵

=
𝛽

𝜆∗ − 𝑎 =
𝜆∗ − 𝛿
𝛾

. (2.49)

This corresponds to a C&P scheme with slope 𝑠 and angle 𝜃 ,

𝑙C&P
𝐴

𝑙C&P
𝐵

�
1/cos𝜃
1/sin𝜃 = tan𝜃 =

1
𝑠−1 − 1 . (2.50)

Both normalizations can be generalized to higher dimensions or larger tile sets (with
the �rst one simpler to implement).

We consider next the following substitutions.

De�nition (Common unimodular substitution). A substitution 𝜎 is called unimodular
if it is primitive, irreducible, with Pisot property, and unimodular (det𝑀 = ±1). It is
called common unimodular if it additionally has common pre�x (or su�x) [51].
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Theorem. Common unimodular substitution tilings have a pure-point spectrum [43, 51].

We inspect substitutions with common pre�x, that is 𝜎 (𝑙) starts with the same
letter 𝑙0 for all 𝑙 ∈ {𝐴, 𝐵}. We consider metallic and alloy substitutions

𝜎metal
𝑚 : 𝐴 ↦→ 𝐴𝑚𝐵

𝐵 ↦→ 𝐴
𝑚 ≥ 1, (2.51a)

𝜎
alloy
𝑚 : 𝐴 ↦→ 𝐴𝑚−1𝐵𝑚−2

𝐵 ↦→ 𝐴𝐵
𝑚 ≥ 3. (2.51b)

Their occurrence matrices are

𝑀metal
𝑚 =

(
𝑚 1
1 0

)
, (2.52a)

𝑀
alloy
𝑚 =

(
𝑚 − 1 𝑚 − 2
1 1

)
, (2.52b)

having the characteristic polynomials

𝑝metal
𝑚 (𝑧) = 𝑧2 −𝑚𝑧 − 1, (2.53a)

𝑝
alloy
𝑚 (𝑧) = 𝑧2 −𝑚𝑧 + 1, (2.53b)

with the Perron-Frobenius eigenvalues

𝜆metal
𝑚 =

(
𝑚 +
√
𝑚2 + 4 )/2, (2.54a)

𝜆
alloy
𝑚 =

(
𝑚 +
√
𝑚2 − 4 )/2. (2.54b)

Remark. The metallic and alloy substitutions (with internal permutations) span all
quasiperiodic substitutions [51], since all monic quadratic polynomials over the integers
𝑝 (𝑥) = 𝑥2 + 𝑎1𝑥 + 𝑎0 with 𝑎0 = ±1 are either 𝑝metal

𝑚 (±𝑥), 𝑝alloy𝑚 (±𝑥) or 𝑟 (𝑥) = 𝑥2 ± 1.
Proposition. The spectrum of the metallic and alloy substitutions is given by [51]

N ∈ Z [𝒗1] ∩ [0, 1) , (2.55)

so that

Nmetal ∈ 1
𝜆𝑚 + 1 (Z + 𝜆𝑚Z) ∩ [0, 1) , (2.56a)

Nalloy ∈ 𝑚 − 2
𝜆𝑚 +𝑚 − 3

(
Z + 𝜆𝑚 − 1

𝑚 − 2 Z
)
∩ [0, 1) . (2.56b)

These can be rewritten as

Nmetal ∈ 1
𝑚
(Z + 𝜆𝑚Z) ∩ [0, 1) , (2.57a)

Nalloy ∈ 1
𝜆𝑚 +𝑚 − 3 (Z + 𝜆𝑚Z) ∩ [0, 1) . (2.57b)

Remark. The metal and alloy substitutions are not unique in creating the characteristic
polynomials (2.53). Another option may be

𝑀metal*
𝑚 =

(
𝑚 − 2 1
𝑚 − 1 1

)
, (2.58a)

𝑀
alloy*
𝑚 =

(
𝑚 − 1 1
𝑚 − 2 1

)
. (2.58b)
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2.5.3 Connection between C&P and Substitution Tilings
2.5.3.1 Tile Frequencies.

Recall (2.77), where
𝑠 = 𝜌𝐴 or 𝑠 = 𝜌𝐵, (2.59)

where the two options are symmetric. Now,

𝜌metal
𝐵 =

1
𝜆metal
𝑚 + 1 (2.60a)

𝜌
alloy
𝐵

=
𝑚 − 2

𝜆
alloy
𝑚 +𝑚 − 3

, (2.60b)

implying that (2.43) corresponds to (2.56).

2.5.3.2 Atomic Spectra.

Another connection is given by [43]. There the authors claim that only substitutions
of the form

𝜎ore𝑟 : 𝐴 ↦→ (𝐵𝐴𝑟 )𝑟 𝐴
𝐵 ↦→ 𝐵𝐴𝑟 ,

, (2.61)

with
𝑀ore
𝑟 =

(
𝑟 2 + 1 𝑟
𝑟 1

)
, (2.62)

are quasiperiodic. The leading eigenvalue and eigenvector of𝑀ore
𝑟 are

𝜆ore𝑟 =
𝑟 2 + 2 + 𝑟

√
𝑟 2 + 4

2 , (2.63)

𝒗ore𝑟 =
1

𝜆ore𝑟 − 1 + 𝑟
(
𝜆ore𝑟 − 1, 𝑟

)
. (2.64)

After some algebra, one obtains,

Nore ∈ 1
𝑟 4

(
Z + 𝜆ore𝑟 Z

)
∩ [0, 1) . (2.65)

This class, however, excludes the simple Fibonacci substitution (but includes its square).
On top of that, [43] quantify substitutions of the same occurrence matrix by their

�uctuations Δ𝑢 (𝜎), namely, distance from the mean tiling length

Δ𝑢 = lim
𝑛→∞ sup𝑢𝑛 − lim

𝑛→∞ inf 𝑢𝑛, (2.66)

where 𝑢𝑛 = 𝑥𝑛 − 𝑙𝑛 with 𝑥𝑛 atomic positions and 𝑙 = lim𝑛→∞ 𝑥𝑛/𝑛. These substitutions
are thus distributed into families. The quasiperiodic family is given by Δ𝑢 = 1 with
the normalization of 𝑙𝐴, 𝑙𝐵 as in (2.49).

Proposition. Quasiperiodic substitutions are common unimodular substitutions with
Δ𝑢 = 1.

Remark. Quasiperiodic substitutions can be de�ned only by Δ𝑢 = 1. The necessary
common unimodular condition comes to reduce the search space.
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Complement 2.A Equivalence Calculations
We have shown three ways to create quasiperiodic sequences: C&P, characteristic
function and Σ1. In the following Appendix, we shall show that all three are, indeed,
equivalent.

2.A.1 Equivalence between Cut and Project and Characteristic
Function

The quasiperiodic sequence [43]

𝑥𝑘 = 𝑘𝑎 + (𝑙𝐴 − 𝑙𝐵) 𝑢𝑘 , (2.67)

can be identi�ed with Cut and Project [43]

𝑥𝑘 =
1

sin𝛼 + cos𝛼 𝑘 + (cos𝛼 − sin𝛼) 𝑔 (𝑘𝑠) ,

𝑎 = (sin𝛼 + cos𝛼)−1
𝑙𝐴 = cos𝛼
𝑙𝐵 = sin𝛼.

(2.68)

The �uctuations 𝑢𝑘 = 𝑔 (𝑘𝑠) are given by [43]

𝑔 (𝑥) = frac (𝑥) − 1, (2.69)

with frac (𝑥) = 𝑥 (mod 1) = 𝑥 − b𝑥c the fractional part, and

𝑠 � lim
𝑘→∞

𝐿𝑘
𝐵

𝐿𝑘
𝐴
+ 𝐿𝑘

𝐵

=
sin𝛼

sin𝛼 + cos𝛼 =
1

1 + cot𝛼 , (2.70)

is the generalized slope, where 𝐿𝑘
𝐴/𝐵 �

⌊
𝑘 · 𝑙𝐴/𝐵

⌋
the number of 𝐴-s or 𝐵-s up to the

𝑘 th letter. Note that 𝑠 ∈ [0, 1].
Now, we are interested in the di�erence,

𝜖𝑘 = 𝑢𝑘 − 𝑢𝑘−1 = 𝑔 (𝑠𝑘) − 𝑔 (𝑠 (𝑘 − 1)) , (2.71)

which can have only two values (𝑙𝐴 and 𝑙𝐵). This is the tiling. Rephrasing, one has
𝜖𝑘 = 𝑓 (𝑘𝑠) with [43]

𝑓 (𝑥) = 𝑔 (𝑥) − 𝑔 (𝑥 − 𝑠) = frac (𝑥) − frac (𝑥 − 𝑠) =
{
𝑠, 1 > frac (𝑥) > 𝑠;
𝑠 − 1, 𝑠 > frac (𝑥) > 0.

(2.72)

Figure 2.7: The cosine function inside ℎ (𝑥).
Here, the period is 1, where the widths are
indicated above. The constant 𝑎 is indicated
on the left.

Note that 𝑓 (𝑥) is 1-periodic function
that can have only two values

𝑓 (𝑥) :
𝑥 : |0

1−𝑠 |
𝑠

𝑠 |
1
. (2.73)

Another function behaving similarly is

ℎ (𝑥) = sign [cos (2𝜋𝑥) − 𝑎] . (2.74)

It is one periodic and can only have two
values (±1).
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We therefore only need to �nd 𝑎 such that ℎ (𝑥) is weighted appropriately. Looking
at Figure 2.7 it is clear we only need to �nd the �rst zero 𝑥0 = 𝑠/2. It lies at 𝑥0 =

cos−1 (𝑎) /2𝜋 . Thus,
ℎ (𝑥) = sign [cos (2𝜋𝑥) − cos (𝜋𝑠)] . (2.75)

We set 𝑥 = 𝑛𝑠 + 𝜙/2𝜋 to reproduce the characteristic function

𝜒 (𝑛, 𝜙) = ℎ (𝑛𝑠 + 𝜙/2𝜋) = sign [cos (2𝜋𝑛𝑠 + 𝜙) − cos (𝜋𝑠)] . (2.76)

We thus �nish our proof of equivalence between 𝑓 (𝑥) and 𝜒 (𝑛, 𝜙). �

Remark. According to [43]

𝑠 = 𝜌𝐵 =
𝜆1 − 𝛼

𝜆1 − 𝛼 + 𝛾 =
𝛽

𝜆1 + 𝛽 − 𝛿 , (2.77)

with the usual notation 𝑀 =

(
𝛼 𝛽

𝛾 𝛿

)
. The choice of 𝑠 = 𝜆−11 is consistent only for

Fibonacci substitutions. For the general case, read Section 2.5.3.

2.A.2 Equivalence between Characteristic Function and 𝚺1

In the previous section, we showed the equivalence between the C&P 𝑓 (𝑥) function
and the characteristic 𝜒 (𝑛, 𝜙) = ℎ (𝑛𝑠 + 𝜙/2𝜋). To show 𝜒 (𝑛, 𝜙) � Σ1 (𝑛, ℓ), all we
have to show is the equivalence

Σ1 (𝑛, ℓ) � 𝑓𝑛,ℓ (𝑥) = 𝑓 (𝑛𝑠 + 𝜙ℓ/2𝜋) . (2.78)

Now, Σ1 is de�ned by translations T𝑚 , meaning,

rowℓ Σ1 = T𝑚 (ℓ) row0 Σ1. (2.79)

Thus, we need to show that 𝑓 (𝑥) is also invariant under translations by any 𝑥ℓ =

𝜙ℓ/2𝜋 = ℓ𝑑𝑁 such that ∃𝑚, where

𝑓 (𝑛𝑠 + 𝑥ℓ ) = 𝑓 ((𝑛 +𝑚) 𝑠) = 𝑓 (𝑛𝑠 +𝑚𝑠) . (2.80)

The condition above can be rephrased as

frac (𝑥ℓ ) = frac (𝑚𝑠) ⇐⇒ ℓ 𝑑−1𝑁 =𝑚𝑠 (mod 1). (2.81)

In the �nite approximation we use, 𝑠 ' 𝑐𝑁 /𝑑𝑁 (or, 𝐹𝑁−1/𝐹𝑁 for Fibonacci). Hence, we
have

𝑚𝑐𝑁 = ℓ (mod 𝑑𝑁 ), (2.82)

which is the exact de�nition of𝑚 in Σ1. �

Remark. There is a small discrepancy between 𝜒 (𝑛, 𝜙) and Σ1 (𝑛, ℓ). From Section 3.1.5,
we know that there are 𝑑𝑁 + 1 di�erent words of size 𝑑𝑁 . All of these words are seen
in 𝜒 (𝑛, 𝜙), when 𝜙 ∈ [0, 2𝜋) is a continuous parameter. Yet, only 𝑑𝑁 such words
exist in Σ1 (𝑛, ℓ) by de�nition; the extra word lies in the small cycle, as explained in
Section 3.1.6.

The equivalence above between 𝜒 and Σ1 holds only for 𝜙 ↦→ 𝜙ℓ being a discrete
parameter and a proper choice of the initial condition 𝜙0. It does not, however, change
our understanding of the toroidal topology of Σ1.
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Substitution Tilings

In the previous sections, we showed how the C&P scheme can generate winding
numbers for any slope 𝑠 . In this section, we shall investigate substitution sequences,
and how they generate windings.

3.1 Mathematical Background
In this section, we give the mathematical background and tools required for the latter
parts. Mainly, we focus on the Gap Labeling theorem and the Čech cohomology.

3.1.1 Tilings
Tilings are a natural generalization of 1𝑑 sequences to higher dimensions. It is, there-
fore, the main tool we employ throughout this work.

Let us set up the main de�nitions for tilings we use [45, 52, 53].

1. A tiling 𝑇 in R𝑛 is a subdivision of R𝑛 into tiles.

2. A tile 𝑡 is a polytope (interval in 1𝑑 ; polygon in 2𝑑 ; polyhedron in 3𝑑 ; etc.).

3. There are only a �nite number of �le types up to Euclidean translation.

De�nition. A tiling 𝑇 that satis�es the above is called a “simple tiling”.

4. A patch 𝑆 is a �nite subset of tiles in 𝑇 .

5. A patch 𝑆𝑅 is said to be of radius 𝑅 if contains a ball of radius 𝑅 (namely, 𝑆𝑅 ⊇ 𝐵𝑅).
6. A tiling has �nite local complexity (FLC) if for any �xed 𝑅 there can only be a

�nite number of patches of radius 𝑅.

Claim. A simple tiling, whose tiles meet edge-to-edge, is FLC [52].

7. FLC tilings in R𝑛 carry a metric [52, 54]

𝐷 (𝑇,𝑇 ′) � inf
{ 1
𝑟+1 | ∃𝒙, 𝒙 ′ ∈ R𝑛, |𝒙 | , |𝒙 | ≤ 1

𝑟
: 𝐵𝑟 ∩ (𝑇 − 𝒙) = 𝐵𝑟 ∩ (𝑇 ′ − 𝒙 ′)

}
,

(3.1)
where 𝐵𝑟 is a ball of radius 𝑟 around the origin, and 𝐵𝑟 ∩ (𝑇 − 𝒙) a patch of𝑇 −𝒙
containing 𝐵𝑟 . In simple words, two tilings are 1

𝑟+1 -close if they agree on a ball
of radius 𝑟 (up to translations of 1

𝑟
or less) taking the supremum such 𝑟 .

29
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8. The Hull Ω𝑇 is the orbit closure of 𝑇 with respect to the metric (3.1), Ω𝑇 �
{𝑇 − 𝒙 | 𝒙 ∈ R𝑛}. It is compact if 𝑇 is a simple tiling [52].

Remark. Throughout this work, we only deal with FLC tilings. Other tilings, such as
non-edge-to-edge [55] or the Kakutani sequences [56, 57], will not be considered.
In 1𝑑 we can consider tiles as letters, patches as words, and tilings as in�nite words.
We therefore can employ tools from dynamical systems analysis [50].

3.1.2 Gap Labeling Theorem
When the spectrum of an operator contains gaps, they manifest as plateaus in the
IDOS N (𝐸). For certain operators, such as Hamiltonians built using aperiodic tilings,
these plateaus can be labeled by integer numbers. They are called “gap labels”. In this
section, we present succinctly how to calculate the gap labels in aperiodic Hamiltonians
according to the gap labeling theorem.

3.1.2.1 The Gap Labeling Formula

For a 1𝑑 aperiodic substitution 𝜎 with occurrence matrix𝑀 , the possible gaps in the
spectrum are given by [27],

Ngap ∈ 𝜏∗ [𝐾0 (B𝑇 )] , (3.2)

where the 𝐾0 group is taken over the non-commutative Brillouin zone B𝑇 , and 𝜏∗ is its
trace. The gap labeling theorem states that all open gaps must abide (3.2), but it does
not force the existence of such gaps. The non-commutative Brillouin zone is given by

B𝑇 = B (Ω𝑇 ) � 𝐶∗
(
R𝑑 × Ω𝑇

)
� 𝐶 (Ω𝑇 ) oR𝑑 (3.3)

where 𝐶∗ (𝑋 ) and 𝐶 (𝑋 ) are the 𝐶∗-algebra and continuous real functions on 𝑋 , re-
spectively, and o a semidirect product. (see [58] and de�nitions within). Note that B
is a separable 𝐶∗-algebra and hence 𝐾∗ (B) is a countable abelian group.

To put the abstract 𝐾0 (B𝑇 ) group into concrete terms, there exists a direct formula
forNgap. For 1𝑑 substitution tilings, these spectral gaps are explicitly calculated as [27]

Ngap =
1
𝑎

𝑘

𝜆𝑁∗
(mod 1), 𝑘, 𝑁 ∈ N, (3.4)

whereN is the integrated density of states of some tight-binding Hamiltonian or wave
equation built using aperiodic tilings, 𝑎 is the normalization factor and 𝜆∗ is the leading
(largest) eigenvalue of 𝑀 . The calculation of 𝑎 is given in Section 3.1.2.2 below. For
𝑑 = det (𝑀) ≠ 0, (3.4) can be rewritten as

Ngap =
1
𝑎

𝑝 + 𝑞/𝜆∗
𝑑𝑁

(mod 1), 𝑝, 𝑞 ∈ N. (3.5)

We call such tilings “limit-quasiperiodic” [43].
For 1𝑑 C&P tilings with slope 𝑠 , the gaps are given by

Ngap = 𝑝 + 𝑞𝑠 (mod 1), 𝑝, 𝑞 ∈ Z. (3.6)

Let us present some intuition behind the GLT. The possible existence of a gap
at some N requires an in�nite number of appearances of some word𝑤 (similarly to
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periodic tilings). It therefore corresponds to its density N𝑤 = 𝜚𝑤 . For instance, in a 1𝑑
tiling, 𝐴 and 𝐵 tiles imply gaps on N𝐴 = 𝜚𝐴 = 1 − 𝜚𝐵 and N𝐵 = 𝜚𝐵 . For substitution
tilings, one requires an updated rule 𝜎𝑛 : Γ𝑛 → Γ𝑛 with its occurrence matrix𝑀𝑛 for
each 𝑛. For primitive substitutions, the leading eigenvalue 𝜆∗ is the same for all 𝑀𝑛 ,
and the densities are given by the leading eigenvector 𝒗∗,𝑛 . The eigenvectors 𝒗∗ and
𝒗∗,2 together with 𝜆∗ su�ce to span all other densities [50]. Thus, the GLT is given
by (3.4). In 1𝑑 C&P tilings, the densities of all𝑤𝑛 ∈ Γ𝑛 are integral linear combinations
of 1 and 𝑠 thus inferring (3.6).

3.1.2.2 Calculation of the Normalization Factor

Let us introduce letter doublets 𝐿𝑘 = 𝑙𝑖𝑙 𝑗 , where 𝑙𝑖𝑙 𝑗 are all possible neighbors in 𝑤∞.
We then rewrite𝑤∞ in terms of 𝐿𝑘 denoting it𝑤2∞. We denote the set of all doublets
as Γ2 = {𝐿𝑘 } = {𝛼, 𝛽,𝛾, . . .} .

The next step is to de�ne a substitution 𝜎2 : Γ2 → ΓN2 . It is done as follows for
each letter 𝐿 ∈ Γ2 [50].

(a) Translate back to 𝐿 = 𝑙1𝑙2 . . . 𝑙𝑚 where 𝑙𝑖 ∈ Γ1;

(b) Apply 𝜎 (𝐿) = 𝜎 (𝑙1𝑙2 . . . 𝑙𝑚) = ℓ1ℓ2 . . . ℓ𝑛 ;

(c) Calculate the length 𝑑 = |𝜎 (𝑙1) |;

(d) De�ne 𝑆 = ℓ1ℓ2 . . . ℓ𝑑+1;

(e) Translate 𝑆 = 𝐿1 . . . 𝐿𝑑 in terms of Γ2.

Then, the de�nition of 𝜎2 reads

𝜎2 (𝐿) = 𝑆, ∀𝐿 ∈ Γ2. (3.7)

We then de�ne the occurrence matrix𝑀2 similarly to𝑀 . The eigenvalues of𝑀2 contain
all eigenvalues of𝑀 . Speci�cally, they have the same leading eigenvalue 𝜆∗.

Next, we calculate 𝑎 as follows. We take the respective leading left-eigenvectors 𝒗𝐿∗
and 𝒗𝐿∗,2 and inspect all their entries 𝑣𝑖 . The least common multiplier of all 𝑣𝑖 (removing
factors of 𝜆∗) is 𝑎−1.

Example. In the Fibonacci substitution, Γ2 = {𝛼 = 𝐴𝐴, 𝛽 = 𝐴𝐵,𝛾 = 𝐵𝐴}. Using the
algorithm above, we obtain

𝜎Fib2 :


𝛼 ↦→ 𝛽𝛾,

𝛽 ↦→ 𝛽𝛾,

𝛾 ↦→ 𝛼 ;
(3.8)

with the occurrence matrix

𝑀Fib
2 =

©­«
0 1 1
0 1 1
1 0 0

ª®¬ . (3.9)

Additionally, 𝜆Fib∗ = (√5 + 1)/2 � 𝜏 and 𝑎Fib = 1.



32 Chapter 3. Substitution Tilings

3.1.2.3 Primitivity Condition

The primitivity of𝑀 and𝑀2 ensures that

(a) the leading eigenvalue 𝜆∗ is unique, real and positive;

(b) the leading eigenvectors 𝒗𝐿∗ and 𝒗𝐿∗,2 have strictly positive entries 𝑣𝑖 [59, 60].

These 𝑣𝑖 are interpreted as corresponding letter 𝑙𝑖 frequencies in the in�nite word
𝑤∞ [43]. They are used as probability measures in the calculation of GLT [27]. The
Perron-Frobenius theorem above also holds for a general non-strictly-upper-triangular
nonnegative matrix𝑀 (see Thm. 2.20 in [59]) up to the uniqueness of 𝜆∗.

3.1.3 Bra�eli Diagrams
Let us reinspect the simplicial complexes Γ𝑛 created by the 𝑛-letter words of the
substitution 𝜎 . Note that in 1𝑑 , these complexes are also 1𝑑 , namely, graphs. Explicitly,

Γ𝑛 = {𝑤 ∈ 𝑤∞ : |𝑤 | = 𝑛} , 𝑤∞ = 𝜎∞ (𝐴) . (3.10)

We set for completion Γ0 = ∅. Next, we de�ne the shift-map 𝛾𝑛 : Γ𝑛 → Γ𝑛 by

𝛾𝑛 (𝑤𝑖 ) = 𝑤 𝑗 if𝑤 𝑗 follows𝑤𝑖 in𝑤∞. (3.11)

The tuple 𝐺𝑛 = (Γ𝑛, 𝛾𝑛) constitutes the Bratteli diagrams. We may view them as
simplicial complexes 𝑐𝑘 for each 𝑛 .

Next, we de�ne the boundary operators on the simplicial complexes 𝑐𝑘 ,

𝜕0 (𝑎) = 0
𝜕1 (𝑎𝑏) = 𝑏 − 𝑎,

𝑎, 𝑏 ∈ Γ𝑛 (3.12)

with 𝜕𝑘 : 𝐶𝑘 → 𝐶𝑘−1 (here, 𝐶𝑘 is the free abelian group on the set of 𝑘-simplices 𝑐𝑘 ),
and represent them as a matrix in the basis of nodes and edges. The coboundary 𝛿∗ is
given by [53] (

𝛿𝑘𝛼𝑘
)
(𝑐𝑘+1) = 𝛼𝑘 (𝜕𝑘+1𝑐𝑘+1) , (3.13)

for a (𝑘 + 1)-chain 𝑐𝑘+1, and a 𝑘-cochain 𝛼𝑘 . Setting 𝐶𝑘 � Hom (𝐶𝑘 ,Z), the cobound-
ary operator is de�ned on 𝛿𝑘 : 𝐶𝑘 → 𝐶𝑘+1. In the simplices 𝐺𝑛 above, its matrix
representation abides,

𝛿∗ = 𝜕T∗ . (3.14)
The (simplicial) cohomology groups are thus de�ned by

𝐻𝑘𝑛 � 𝐻
𝑘 (Γ𝑛) = ker𝛿𝑘

im𝛿𝑘+1
=

coker 𝜕𝑘
coim 𝜕𝑘+1

, (3.15)

where their Betti numbers are given by

𝛽𝑘𝑛 � 𝛽𝑘 (Γ𝑛) = dimR
(
𝐻𝑘 (Γ𝑛,R)

)
(3.16)

where 𝐻𝑘 (𝑋,R) is de�ned just like 𝐻𝑘 (𝑋,Z) except we use real coe�cients. The
Betti numbers of the Thue-Morse substitution are shown in Figure 3.1.
Remark. If the complex 𝑋 is 1-dimensional, then 𝐻𝑘 (Γ𝑛,Z) ⊗R � 𝐻𝑘 (Γ𝑛,R) but this
fails if 𝑋 is of higher dimension.
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Figure 3.1: The Betti numbers 𝛽∗𝑛 of the Thue-Morse substitution. In blue are 𝛽0𝑛 , and in
red are 𝛽1𝑛 . Inspecting 𝐻̌ 1 (ΩTM) ' Z⊕Z

[ 1
2
]
, the subgroupZ

[ 1
2
]
may be implied from

𝛽1𝑛 = 5: the length of each contiguous sequence grows as 2𝑘 , but a proper calculation
is required to con�rm it.

Example. For the Fibonacci substitution,

ΓFib1 = {𝐴, 𝐵}
ΓFib2 = {𝐴𝐴,𝐴𝐵, 𝐵𝐴}
ΓFib3 = {𝐴𝐴𝐵,𝐴𝐵𝐴, 𝐵𝐴𝐴, 𝐵𝐴𝐵}
. . .

(3.17)

so that
𝐺Fib
0 = ∅𝐴 :: 𝐵dd

𝐺Fib
1 = 𝐴

𝐴𝐵
**

𝐴𝐴 99 𝐵
𝐵𝐴

jj

𝐺Fib
2 =

𝐴𝐴
𝐴𝐴𝐵

��
𝐴𝐵

𝐴𝐵𝐴
,,
𝐵𝐴

𝐵𝐴𝐴
hh

𝐵𝐴𝐵

ll

. . .

(3.18)

Note that each 𝐺Fib
𝑛 as 2 independent cycles, thus 𝛽𝑛 = 2 and 𝐻 1

𝑛 � Z
2 for all 𝑛. Since

𝐻 0
𝑛 counts the connected components, 𝐻 0

𝑛 � Z for all 𝑛.

3.1.4 Čech Cohomology
In the above example, we used a calculation based on the boundary operators, namely,
the homology groups. So long as we are dealing with �nite approximations, the homol-
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ogy and cohomology groups are equivalent up to the distinction that cohomologies
describe functions acting on the Bratteli simplex. However, we do not want to constrict
ourselves to the approximants Γ𝑛 , but rather inspect the entire tiling space Ω and �nd
its topological groups.

The problem arises when we try to take the limit to in�nity, since Ω is connected
but not path-connected, and path components are contractible [52]. Therefore, the
standard candidates for topological groups do not work: (a) homology counts connected
components so that 𝐻0 (Ω) is of in�nite rank, and 𝐻1 (Ω) = {0}; (b) homotopy is
dependent on the initial location so that the limit is non-unique; (c) similarly, simplicial,
singular and cellular cohomology all fail [52]. Simply put, since the tiling space is
compact metric but not a �nite complex that the best-behaved cohomology theory is
Čech theory [61]. Therefore, we use the Čech cohomology.

3.1.4.1 Calculation of the Čech Cohomology

De�ne the Čech cohomology by [45, 52]

𝐻̌ ∗ (Ω) = lim−−→𝐻 ∗ (Γ𝑛) , (3.19)

where lim−−→ is the direct limit [45, 52, 53].

Remark. When the acting group is omitted, the notation of the Čech cohomology reads
𝐻̌ ∗ (Ω) � 𝐻̌ ∗ (Ω,Z), since it is typically de�ned over the integers in tiling spaces Ω.
To calculate the Čech cohomology, we compute how the in�ation map 𝜎★ acts on
𝐻̌ ∗ (Ω),

𝜎 : Ω → Ω,

𝜎★ : 𝐻̌ ∗ (Ω) ← 𝐻̌ ∗ (Ω) . (3.20)

Knowing the Betti numbers 𝛽∗𝑛 is not enough, as we need to know the in�ation rule.
Since Ω is connected, 𝐻̌ 0 (Ω) = Z, but to calculate 𝐻̌ 1 (Ω) we need to work some

more. The easiest way is to inspect the collared complex 𝐺2 [45] and calculate the
action of 𝜎 on its nodes and edges, namely, 𝜎 (𝐺2). It is done as follows.
(1) Apply 𝜎𝑛+1 on the edges of 𝐺𝑛 .

• The calculation of 𝜎𝑛 is a generalization of the procedure in Section (3.1.2.2) from
Γ2 to Γ𝑛 . Explicitly, we rede�ne 𝑆 = ℓ1ℓ2 . . . ℓ𝑑+𝑛−1 in step (d).

• A slightly di�erent version of 𝜎𝑛 appears in [45, 52] based on “collared tiles” (see
the de�nition below). For 𝜎3, we denote 𝑒 = |𝜎 (𝑙2) | and set 𝑆 = ℓ𝑑 ℓ𝑑+1 . . . ℓ𝑑+𝑒+1
in step (d).

(2) Deduce the nodes as the heads and tails of relevant edges in 𝜎 (𝐺𝑛).
(3) Compute the in�ation matrices 𝐴0 : Γ𝑛 → Γ𝑛 and 𝐴1 : Γ𝑛+1 → Γ𝑛+1 by identifying

the transformation of the nodes and edges, respectively.

De�nition. A collared tiling (𝑇 in R𝑛) is a renaming of the tiles in 𝑇 such that each
“renamed” tile contains the original tile with all its neighbors [45, 52]. In 1𝑑 , it is
equivalent to de�ning 𝑇 by Γ3.

To calculate 𝐻̌𝑘 , we compute 𝐴0 and 𝐴1 of𝐺2, whose edges are the collared tiles of the
tiling in 1𝑑 . It is required to obtain the correct Čech cohomology for aperiodic tilings.
Although 𝐺0 (whose edges are the regular tiles in Γ1) may also work in some cases,
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such as quasiperiodic tilings, in general it misses some of the structure. For example,
the Thue-Morse tiling has 𝐻̌ 1 � Z ⊕ Z [ 1

2
]
for the full tiling, but only the Z

[ 1
2
]
part

if calculated with 𝐺0 only [52] (cf. Section 3.1.4.2 below).
The in�ation 𝜎★ on 𝐻̌ ∗ (Ω) is represented by 𝐴T

1 modulo the eigenvalues of 𝐴T
0 .

Thus, we need to inspect the characteristic polynomials

𝑞1 (𝑥)
𝑞0 (𝑥) �

det
(
𝐼𝑥 −𝐴T

1
)

det
(
𝐼𝑥 −𝐴T

0
) . (3.21)

Letting 𝑧 = 𝑥−1 and inverting the last equation, we obtain the 𝜁 -function of [45, 62, 63],

𝜁 (𝑧) = det
(
𝐼 − 𝑧𝐴T

0
)

det
(
𝐼 − 𝑧𝐴T

1
) � 𝑝0 (𝑧)

𝑝1 (𝑧) . (3.22)

with the polynomials 𝑝0 = 1−𝑧, and 𝑝1 reduced so that 1−𝑧 remains in the numerator
of (3.22).

The Čech cohomology can be deduced from 𝑝𝑘 (𝑧) by decomposing it to its irre-
ducible components over the integers. Namely, if

𝑝𝑘 (𝑧) =
𝐼∏
𝑖=1
(1 − 𝑐𝑖𝑧)

𝐽∏
𝑗=1

(
1 − 𝑑 𝑗𝑧 − 𝑒 𝑗𝑧2

)
, (3.23)

with 𝑐𝑖 , 𝑑 𝑗 , 𝑒 𝑗 ∈ Z, then

𝐻̌𝑘 �
𝐼⊕
𝑖=1
Z
[
1/𝑐𝑖

] ⊕ 𝐽⊕
𝑗=1
Z2 [1/𝑒 𝑗 ]

= Z
[
𝑐−11

] ⊕ · · · ⊕ Z[
𝑐−1𝐼

] ⊕ Z2 [𝑒−11 ] ⊕ · · · ⊕ Z[
𝑒−1𝐽

]
,

(3.24)

with Z [1/𝑐] = {𝑛/𝑐𝑚 | 𝑛,𝑚 ∈ Z} the ring Z with 1/𝑐 adjoined. Irreducible polynomi-
als of higher orders are naturally generalized.
Example. In the Fibonacci substitution, 𝐺Fib

2 and 𝜎
(
𝐺Fib
2

)
read,

𝐴𝐴
𝐴𝐴𝐵

��
𝐴𝐵

𝐴𝐵𝐴
,,
𝐵𝐴

𝐵𝐴𝐴
hh

𝐵𝐴𝐵

ll

𝜎↦−→

𝐴𝐵𝐴𝐵𝐴

��
𝐵𝐴

𝐵𝐴𝐵

		
𝐵𝐴

𝐵𝐴𝐴 &&
𝐴𝐵

𝐴𝐵𝐴

//

𝐴𝐴

𝐴𝐴𝐵

ii

𝐴𝐴𝐵

ll

(3.25)

Comparing 𝐺Fib
2 with 𝜎

(
𝐺Fib
2

)
allows us to write the in�ation matrices for edges 𝐴T

1
and nodes 𝐴T

0 [45],

𝐴T
1 =

©­­­«
0 1 0 1
0 1 1 0
1 0 0 0
1 0 0 0

ª®®®¬ , 𝐴T
0 =

©­«
0 1 0
0 1 0
1 0 0

ª®¬ . (3.26)

Therefore,
𝜁Fib (𝑧) = 1 − 𝑧

1 − 𝑧 − 𝑧2 , (3.27)

so that

𝐻̌ 0
Fib � Z (3.28a)

𝐻̌ 1
Fib � Z

2. (3.28b)
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Example. For the Thue-Morse substitution,

𝜁TM (𝑧) = 1 − 𝑧
(1 + 𝑧) (1 − 2𝑧) . (3.29)

Therefore, 𝐻̌ 1 (ΩTM) � Z ⊕ Z
[ 1
2
]
and 𝐻̌ 0 (ΩTM) � Z. Other examples are shown in

Table 3.1.

Remark. If deg𝑝1 < |Γ1 | =𝑚, it implies one of the eigenvalues of 𝑞1 is 0 (equivalently,
𝑐𝑚 = 0 in 𝑝1). Therefore, (3.24) is no longer valid. These are periodic substitutions; we
therefore set 𝐻̌ 1 � Z in this case.
Remark. 𝐻̌ 0 � Z for all substitutions since they are path connected.

Remark. The above procedure is for 1𝑑 tilings. In 2𝑑 tilings, the calculation of 𝐻̌ 0,
𝐻̌ 1 and also 𝐻̌ 2 is more convoluted (due to torsion and other e�ects), and 𝜁 (𝑧) is not
su�cient. The exact details appear in [45, 52].
Remark. There are other, equivalent, ways to calculate 𝜎★ and 𝐻̌ 1, for instance, using
the Barge-Diamond complex [52, 64].

3.1.4.2 Čech Cohomology and Counting

The most straightforward usage for Čech cohomology is for counting tiles on the
in�nite tiling. Let us show how it is done using a simple example [52, 53].

Consider the Thue-Morse tiling 𝐴 ↦→ 𝐴𝐵, 𝐵 ↦→ 𝐵𝐴. Its Čech cohomology is given
by Z ⊕ Z [ 1

2
]
(see [45, 52, 64]). Let us show what exactly Z and Z

[ 1
2
]
count.

First, let us show the origin of Z
[ 1
2
]
. We take a supertile 𝑡𝑁 of size 2𝑁 . We choose

a special (say, the leftmost) tile, and de�ne a 1-cochain 𝛼𝑁 that evaluates 1 on this tile
(edge) as shown in (3.30a). Now we choose its right neighbor and de�ne the 1-cochain
𝛽𝑁 that evaluates 1 on this neighbor as shown in (3.30b). Observe that 𝛼𝑁 and 𝛽𝑁 are
cohomologous, since 𝛼𝑁 − 𝛽𝑁 = 𝜄𝑁 , where 𝜄𝑁 is the 0-cochain that evaluates 1 on the
boundary (node) between these tiles as shown in (3.30c).

𝛼𝑁 =

2𝑁 tiles︷                                             ︸︸                                             ︷
| 1 | 0 | 0 | | 1 | 0 | (3.30a)

𝛽𝑁 = | 0 | 1 | 0 | | 0 | 1 | (3.30b)

𝜄𝑁 = |
0

|
1

|
0

| |
0

|
1

|
0

(3.30c)

Hence, the cohomology class of 𝛼𝑁 does not depend on the choice of the special tile.
Next, we inspect 2𝑁𝛼𝑁 . It is cohomologous to the sum of all 2𝑁 choices of the special
tiles. But it evaluates 1 to the entire tiling, and thus corresponds to 1. Therefore,
𝛼𝑁 represents 1/2𝑁 . Thus the class 𝑎/2𝑁 ∈ Z [ 1

2
]
is generated by a 1-cochain that

evaluates 𝑎 each 2𝑁 tiles and 0 everywhere else.
To see the origin of Z, we inspect the doublets 𝐴𝐵. Let 𝛾 be a 1-cochain that

evaluates 1 on these doublets. Since the density of 𝐴𝐵 is 𝜚𝐴𝐵 = 1
3 , then 𝛾 corresponds

to 1
3 on the entire tiling. However, because 1

3 is not a �nite linear combination of 𝑎/2𝑁 ,
𝛾 cannot be generated by 𝛼𝑁 cochains. Hence, 𝛾 is the generator of Z.

An analogous calculation can be done for Period Doubling substitution, and trivially
implemented on other substitution tilings with integer 𝜆∗. For substitution tilings with



3.1. Mathematical Background 37
Ta

bl
e
3.1

:S
um

m
ar
y
of

va
rio

us
pr
op

er
tie

so
f1
𝑑
su
bs
tit
ut
io
n
til
in
gs
.

N
am

e
Su

bs
ti
tu
ti
on

Su
bs

ti
tu
ti
on

on
D
ou

bl
et
s

Se
lf
Pr

op
er
ti
es

Č
ec
h
C
oh

om
ol
og

y
Z
et
a
Fu

nc
ti
on

G
ap

La
be

lin
g
Th

eo
re
m

Pr
op

er
ti
es

Ru
le
σ
1

O
cc
ur
re
nc
e
M

1
Ru

le
σ
2

O
cc
ur
re
nc
e
M

2
Ei
ge
nv

al
ue
λ
1

Ch
ar
.P

ol
yn

om
ia
l

Ȟ
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non-integer 𝜆∗ or C&P tilings with irrational slope, we must be more careful counting
using the 𝐹𝑁 and 𝑑𝑁 numbers, respectively.

In tilings of higher dimensions, the interpretation of Čech cohomology is more
convoluted. We summarize it succinctly below for dimensions 𝑑 ≥ 1.

• In dimension 0, the Čech cohomology counts connected components. Therefore,
𝐻̌ 0 � Z for all tilings.

• In dimension 1, the Čech cohomology represents the tiling combinatorics. For
example, 𝐻̌ 1

Penrose � Z
5 [45] alluding to its 5-fold rotational symmetry, or to

total dimension dim
(
𝐸 ‖ ⊕ 𝐸⊥

)
in the C&P case.

• In dimension 𝑑 , the invariant transverse measure (or the Ruelle-Sullivan current)
gives a real-valued functional on 𝐻̌𝑑 [58]. This pairing of the current with the
cohomology is important in index theory.

• The role of the Čech cohomology is unclear for dimensions 1 < 𝑑 ′ < 𝑑 .

Note that in 1𝑑 , the Čech cohomology expresses both the combinatorics and the
positive measure making the connection with the GLT natural.

3.1.5 Complexity and Cohomology
We de�ne the complexity by the number of nodes in each complex [65],

𝑐𝑛 � |Γ𝑛 | . (3.31)

Now, we inspect the projection maps 𝜋𝑛 : Γ𝑛+1 → Γ𝑛 between the complexes,

Γ0
𝜋0←−− Γ1

𝜋1←−− Γ2
𝜋2←−− Γ3

𝜋3←−− . . . (3.32)

which act by omitting the last letter in Γ𝑛+1.

Fact. There is a well-de�ned inverse limit [52],

Ω𝑇 = lim←−− Γ𝑛 . (3.33)

Consider the inverse maps 𝜋−1𝑛 , which give the options for the last adjacent letter
to create Γ𝑛+1 from Γ𝑛 . In other words, 𝜋−1𝑛 corresponds to the edges in the Bratteli
diagram; thus

𝜋−1𝑛 = 𝛾𝑛 . (3.34)

Hence, we de�ne the complexity tree 𝑇𝑛 by the sequence

𝑇𝑛 = Γ0
𝛾0−→ Γ1

𝛾1−→ Γ2
𝛾2−→ . . .

𝛾𝑛−1−−−→ Γ𝑛 . (3.35)

This is seen in Figure 3.2. The tree 𝑇𝑛 is also called a dictionary [50].
Consider the splits at each level Γ𝑛 as shown in Figure 3.2. Here, 𝑦𝑛 is the number

of nodes in level 𝑛 that have > 1 outgoing edges, and 𝑠𝑛 is the total number of splits.
Note that for binary substitutions, 𝑦𝑛 = 𝑠𝑛 .

Now, since 𝛽1𝑛 counts the number of cocycles in Γ𝑛 and the Bratteli graphs are
connected (𝛽0𝑛 = 1 for all 𝑛), each split contributes an additional cocycle. Thus

𝛽1𝑛 = 𝑠𝑛 + 1. (3.36)
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  Ø

  A   B

  AA   AB   BA

  AAB   ABA   BAA   BAB

  AABA   ABAA   ABAB   BAAB   BABA

  AABAA   AABAB   ABAAB   ABABA   BAABA   BABAA

  AABAAB   AABABA   ABAABA   ABABAA   BAABAA   BAABAB   BABAAB

Figure 3.2: Complexity graph for the Fibonacci substitution. The arrows represent the
mapping 𝛾𝑛 . In blue, the 𝑛-nodes (𝑛-letter words) for each level (row) 𝑛, and in yellow
– the 𝑛-nodes that split by 𝛾𝑛 into two (𝑛 + 1)-nodes. The total sum of splits at each
row 𝑛 gives 𝑠𝑛 . The �rst few nodes are labeled.

Next, we inspect the complexity 𝑝 (𝑛) � 𝑐𝑛 , the total number of letters at level 𝑛. At
each level 𝑛, 𝑠𝑛−1 letters are added to the letters of level (𝑛 − 1); thus

𝑐𝑛 = 𝑠𝑛−1 + 𝑐𝑛−1, 𝑐0 = 1. (3.37)

Therefore,

𝑐𝑛 = 1 +
𝑛−1∑︁
𝑖=0

𝑠𝑖 . (3.38)

Corollary. For C&P (Sturmian) sequences, where 𝛽1𝑛 = 2 (equally, 𝑠𝑛 = 1) for all 𝑛, one
has 𝑐𝑛 = 𝑛 + 1. For the connection with 𝐻̌ 1, see Proposition 3.2.

Corollary. For primitive substitution tilings, the cohomology is bound, 𝛽1𝑛 ≤ 𝐶 + 1; thus
𝑐𝑛 ≤ 𝐶𝑛 + 1 = 𝑂 (𝑛) [49, 65].

Remark. For periodic tilings, 𝛽1
𝑛>𝑁

= 1 (equally, 𝑠𝑛>𝑁 = 0) for some 𝑁 ∈ Z; thus, the
complexity is constant, 𝑐𝑛>𝑁 = 𝐶 .

Proposition. The group 𝐻̌ 1 (Ω) has typically more information than 𝐾0 (B), since one
considers only the frequency of tiles in 𝐾0 (B) [45], whereas 𝐻̌ 1 (Ω) must also include
their order [52].
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3.1.6 Lateral Bra�eli Diagrams
Inspecting the tree in Figure 3.2, we �nd Bratteli diagrams 𝐺𝑛 at each level 𝑛 of the
tree. An example for the Fibonacci sequence is given in Figure 3.3.

For C&P 2𝑑 → 1𝑑 substitutions with slope 𝑠 , we have the following observations.
1. There are always 2 cycles.

• This is consistent with 𝛽𝑛 = 2 and 𝑠𝑛 = 1 for all 𝑛.
• The cycles are always of the length of generalized 𝑑𝑁 (recall (2.42)).

2. The nodes are divided into 2 families, dependent on 𝐿𝐵 , the number of 𝐵-s in
them (recall (2.70)). They are given by:

𝐿𝐼𝐵 = b𝑛 · 𝑠c , 𝐿𝐼𝐼𝐵 = d𝑛 · 𝑠e . (3.39)

• The nodes in each family 𝐼 or 𝐼𝐼 are cyclic permutations of each other.

3. For each (generalized) 𝑛 = 𝑑𝑁 , the long cycle consists of a single family (see
Figure 3.3).

• Therefore, this family constitutes Σ1 of size 𝑑𝑁 × 𝑑𝑁 .
• Since 𝑐𝑛 = 𝑛 + 1, there is only a single node of the other family (henceforth,
the “rogue sequence”).

• For very small 𝑑𝑁 -s, it might be the short cycle; it is inconsequential for
the rest of the analysis.

The observations above can explain the di�raction spectrum and spectral properties
of C&P sequences, as demonstrated in Section 4.1.1.

3.2 Dual Tilings
A natural question arises dealing with an aperiodic tilings: what is its dual tiling, and
how to de�ne it properly. In periodic tilings (lattices), the dual lattice is given by the
Voronoï tessellation, implying some connection to the Fourier space. In aperiodic
tilings, the same approach leads to some unexpected results.

3.2.1 Definitions
Let𝑇 be some tiling inR𝑛 and𝑉 be its collection of vertices 𝑣𝑘 located on the boundaries
(another de�nition is on the “center of mass” of a tile). The dual lattice is given by the
Voronoï tessellation,

𝑇 ∗ �
⋃
𝑘

𝑡∗ (𝑣𝑘 ) , (3.40)

where
𝑡∗ (𝑣𝑘 ) = {𝒙 ∈ R𝑛 | 𝑑 (𝒙, 𝑣𝑘 ) ≤ 𝑑 (𝒙, 𝑣𝑙 ) ∀𝑙 ≠ 𝑘} , (3.41)

with 𝑑 (𝒙,𝒚) some metric in R𝑛 . We typically take 𝑑 (𝒙,𝒚) = ‖𝒙 −𝒚‖ unless stated
otherwise. This is consistent with the usual dual lattice de�nitions [1] – taking the
closest points to 𝑣𝑘 . We can de�ne the dual of a dual by

𝑇 ∗∗ � (𝑇 ∗)∗ . (3.42)

Note that for periodic lattices,
𝑇 ∗∗per = 𝑇per. (3.43)
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(a) Penrose regular tiling. (b) Penrose dual tiling. (c) Penrose dual2 tiling.

(d) Octanacci regular tiling. (e) Octanacci dual tiling. (f) Octanacci dual2 tiling.

(g) Ammann A2 regular tiling. (h) Ammann A2 dual tiling. (i) Ammann A2 dual2 tiling.

(j) Staircase regular tiling. (k) Staircase dual tiling. (l) Staircase dual2 tiling.

Figure 3.4: Comparison between regular, dual and double-dual 2𝑑 tilings. Di�erent
colors represent di�erent tiles up to rotations and re�ections. (a–c) Penrose regular,
dual and dual2 tilings for order 𝑁 = 5; (d–f) Octanacci regular, dual and dual2 tilings
for order 𝑁 = 2; (g–i) Ammann A2 regular, dual and dual2 tilings for order 𝑁 = 5; (j–l)
Staircase regular, dual and dual2 tilings for order 𝑁 = 4.
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3.2.2 One-dimensional Aperiodic Tilings
Let us consider a tiling 𝑇 with tiles in Γ1 = {𝐴, 𝐵} such that each tile has a length 𝑙𝐴/𝐵
and a density 𝜌𝐴/𝐵 (cf. Section 2.5, for instance). It is easy to see that for a vertex lying
on the boundary between 𝐴 and 𝐵, its dual tile 𝑡∗

𝐴𝐵
has length (𝑙𝐴 + 𝑙𝐵) /2. Hence,

𝑙
(
𝑡∗
𝑘

)
=


𝑙𝐴 𝑘 = 𝐴𝐴,

(𝑙𝐴 + 𝑙𝐵) /2 𝑘 = 𝐴𝐵,

(𝑙𝐴 + 𝑙𝐵) /2 𝑘 = 𝐵𝐴,

𝑙𝐵 𝑘 = 𝐵𝐵.

(3.44)

Notice that 𝑡∗
𝑘
has all its elements coming from Γ2, with 𝐴𝐵 and 𝐵𝐴 indistinguishable

using their length.

Corollary. In 1𝑑 , the dual tiling𝑇 ∗ on Γ1 can be deduced from the regular tiling𝑇 on Γ2.

Continuing further, we suppose one has a vertex between 𝑡∗
𝐴𝐴

and 𝑡∗
𝐴𝐵

, then its
dual tile 𝑡∗∗

𝐴𝐴𝐵
has length (𝑙𝐴𝐴 + 𝑙𝐴𝐵) /2 = (3𝑙𝐴 + 𝑙𝐵) /4. Thus,

𝑙
(
𝑡∗∗
𝑘

)
=



𝑙𝐴 𝑘 = 𝐴𝐴𝐴,

(3𝑙𝐴 + 𝑙𝐵) /4 𝑘 = 𝐴𝐴𝐵, 𝐵𝐴𝐴,

(𝑙𝐴 + 𝑙𝐵) /2 𝑘 = 𝐴𝐵𝐴, 𝐵𝐴𝐵

(𝑙𝐴 + 3𝑙𝐵) /4 𝑘 = 𝐴𝐵𝐵, 𝐵𝐵𝐴,

𝑙𝐵 𝑘 = 𝐵𝐵𝐵.

(3.45)

We see a similar behavior as in the previous case.

Proposition. In 1𝑑 , the dual tiling 𝑇 ∗𝑛 on Γ1 can be deduced from the regular tiling 𝑇
on Γ𝑛+1. Additionally, the dual tiling 𝑇 ∗ on Γ𝑛 can be deduced from the tiling 𝑇 on Γ𝑛+1.

Claim. The substitution 𝜎∗1 : 𝑇 ∗ (Γ1) → 𝑇 ∗ (Γ1) is identi�ed by 𝜎2 : 𝑇 (Γ2) → 𝑇 (Γ2).
Note that, in general, 𝑇 ∗∗ � 𝑇 , since 𝑇 ∗∗ corresponds to the collared tiling (see [45,

52] and Section 3.1.4.1) and contains information about the neighbors. In periodic
lattices, there exist𝑚0 such that Γper𝑚0 � Γ

per
𝑚0+1. Therefore,𝑇

∗∗
per � 𝑇per as expected (using,

without loss of generality,𝑚0 = 1). In aperiodic tilings, such𝑚0 does not exist, and
collaring plays an essential role.

Corollary 3.1. The dual 𝑇 ∗per is periodic itself; the dual 𝑇 ∗aper is aperiodic. Additionally,
𝑇 ∗∗per � 𝑇per whereas 𝑇 ∗∗aper � 𝑇aper.

3.2.3 Two-dimensional Aperiodic Tilings
Using the Voronoï tessellation de�nitions above, we arrive to the same conclusions
(namely, Corollary 3.1). However, the details get messier, and we do not reiterate them,
for simplicity. As before, the substitution rule 𝜎∗1 for the dual tiling is given by 𝜎2 with
the proper identi�cation.

The regular, dual and double-dual tilings are shown in Figure 3.4 for Penrose [15, 45],
Octanacci [15], Ammann A2 [66] and Staircase [45, 52] tilings. For Penrose and
Octanacci tilings, the substitution version was used. The double-dual tilings reminisce
the regular ones with the following di�erences. First, as discussed above, the sizes do
not necessarily match after double dual. Thus there are more tiles to consider. Second,
the vertices do not respect the tile shape, and thus the tiles alter after double Voronoï.
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(a) 𝜒 , 𝑆 and Θ for 𝜎5 with 𝐹𝑁 = 34. (b) 𝜒 , 𝑆 and Θ for 𝜎3 with 𝐹𝑁 = 34.

Figure 3.5: Structure factor 𝑆 and structural phase Θ for the squared Fibonacci substi-
tutions.

3.3 Topological Considerations
In the sections above, we have shown some topological features both in the structural
and spectral spaces. In the following, we show comparison between both, and present
universal topological parameters to consider.

3.3.1 Structural Features
As always, let us start with the structural features. We inspect quasiperiodic substitu-
tions. These include the Metallic substitutions (Fibonacci=golden, silver, bronze) and
their powers (Fibonacci2, Fibonacci3, and so on). One can naturally ask, whether all the
quasiperiodic substitutions obtained that way are (isomorphic to) C&P. The answer is
negative, as we shall shortly see below.

3.3.1.1 Non-C&P Substitutions

Let us inspect the following two substitutions (see [43, Eq. (4.2)] or [67, Sec. 5.4]),

𝜎5 :
𝐴 ↦→ 𝐴𝐵𝐴
𝐵 ↦→ 𝐴𝐵

, 𝜎3 :
𝐴 ↦→ 𝐴𝐴𝐵
𝐵 ↦→ 𝐵𝐴

. (3.46)

Both have the same occurrence matrix of the squared Fibonacci substitution

𝑀𝜎5
1 = 𝑀𝜎3

1 =
( 2 1
1 1

)
, (3.47)

with 𝜆1 = 𝜏2, 𝜆2 = 𝜏−2. We consider the normalized extension of the �uctuations 𝑢𝑘
(recall (2.66)), namely

Δ𝜃 = sup
𝑘

𝑢𝑘 − inf
𝑘
𝑢𝑘 . (3.48)

In [43], the authors showed that for C&P sequences Δ𝜃 = 1, whereas for all others
Δ𝜃 > 1. They have also showed that 𝜎5 is C&P, whereas Δ𝜃 (𝜎3) = 𝜏 > 1.

Let us show it in a di�erent way. Consider the sequence 𝑠0 (𝑛) = 𝜎𝑁𝑖 (𝐵), build
from it the matrix Σ1 (𝑛, ℓ) = T𝑚 (ℓ,1) [𝑠0 (𝑛)], and calculate the structure factor 𝑆 (𝜉) =
|𝜍 (𝜉) |2 and the phase Θ (𝜉, ℓ) = arg𝜔𝑚 (ℓ)𝜉 (see Section 2.2.1). The structure factor
𝑆 (𝜉) is dependent only on the initial sequence 𝑠0 (see Figure 3.5).

The phase factor, however, is dependent only on the translation operators T𝑚 (ℓ) .
These, in turn, are dependent only on (𝐹𝑁−1, 𝐹𝑁 ). Yet, the 𝐹𝑁 numbers come from the
substitution𝑀 , which is the same for 𝜎5 and 𝜎3. Thus, the windings are the same, as
shown in Figure 3.5. They act as topological invariants for these substitutions.
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(a) Mismatching Pairs for 𝜎5 with 𝐹𝑁 = 34. (b) Mismatching Pairs for 𝜎3 with 𝐹𝑁 = 34.

Figure 3.6: Mismatching pairs 𝑃 (𝑖, 𝑗) for the squared Fibonacci substitutions.

3.3.1.2 Mismatching Pairs

The characteristic function 𝜒 (𝑛, 𝜙) of Figure 3.5 is actually Σ1 (𝑛, ℓ). We build this
matrix initially such that in each row only a single pair changes

. . . 𝑥𝑥𝑥 𝐴𝐵 𝑥𝑥𝑥 . . .→ . . . 𝑥𝑥𝑥 𝐵𝐴𝑥𝑥𝑥 . . . (3.49)

The Σ1 matrix of 𝜎5 indeed acts that way. On the other hand, 𝜎3 behaves di�erently.
The main question now, is whether our order of Σ1 is the best for 𝜎3, or there is

another—better—order. Let us calculate how many pairs are changed from the row 𝑖 to
the row 𝑗 . We inspect Σ0 and assign +1↔ 𝐴 and −1↔ 𝐵. Compute the convolution:

𝐶 (𝑖, 𝑗) = Σ0 (𝑖,𝑚) · (Σ0 ( 𝑗,𝑚))T . (3.50)

This gives us the distance from row 𝑖 to the row 𝑗 . For instance, on the main diagonal
one gets the same row multiplied by itself; thus 𝐶 (𝑖, 𝑖) = 𝑠0 · 𝑠T0 = 𝐹𝑁 , and it is the
largest number.

Next, identify that if a pair changes, the value of 𝐶 changes by 4. Explicitly,

( 1 −1 ) ( 1−1
)
= 2, ( 1 −1 ) ( −11 ) = −2. (3.51)

Thus, the number of matching pairs is𝐶 (𝑖, 𝑗) /4, and the number of mismatching pairs
is given by

𝑃 (𝑖, 𝑗) = 1
4 (𝐹𝑁 −𝐶 (𝑖, 𝑗)) . (3.52)

Let us inspect 𝑃 (𝑖, 𝑗) for 𝜎5 and 𝜎3 as in Figure 3.6. For 𝜎5, 𝑃 (𝑖, 𝑗) shows that for
each row there are only two other rows with distance 1 from it, as expected from a
C&P sequence. Moreover, one can build the sequence of rows similarly to C&P as
follows. (i) Take a row 𝑖 and choose a di�erence-1 point 𝑗 , where 𝑃 (𝑖, 𝑗) = 1; (ii) go
to the row 𝑗 , and choose the 𝑘 ≠ 𝑖 such that 𝑃 ( 𝑗, 𝑘) = 1; (iii) continue to build the
sequence 𝑖 → 𝑗 → 𝑘 → · · · → 𝑖 . Since there are only 2 𝑗-s with 𝑃 (𝑖, 𝑗) = 1 ∀𝑖 , this
sequence is unique.

On the other hand, for 𝜎3, 𝑃 (𝑖, 𝑗) shows that the minimal number of changes
needed is 5. Moreover, it appears six times on the same row. Thus, it cannot be a C&P
sequence.

Corollary. I� Σ1 shows an “adiabatic” change depicted by 1-diagonals in the 𝑃-matrix,
then a phason can be de�ned and the sequence corresponds to C&P.

Proposition. The 𝑃-matrix can distinguish C&P from non-C&P tilings without prior
knowledge of the tiling itself, but only of its 𝐹𝑁 -numbers. Therefore, one can make a
physical experiment to characterize a tiling.
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(a) IDOS for 𝜎5 with 𝐹𝑁 = 89. (b) IDOS for 𝜎3 with 𝐹𝑁 = 89.

Figure 3.7: Integrated density of states for the squared Fibonacci substitutions using
scattering matrix with (𝑛𝐴, 𝑛𝐵) = (1, 1.62) and (𝑙𝐴, 𝑙𝐵) = (1.62, 1). The wavenumber 𝜈
represents the energy axis.

3.3.2 Spectral Features

The next step is to investigate the spectral features of substitution sequences, namely,
the eigenvalues of a Hamiltonian with an aperiodic potential. As before, our working
horses will be 𝜎5 and 𝜎3. We shall show where the spectral features coincide with the
structural, and where they signi�cantly di�er.

3.3.2.1 Introducing the Phason

We introduce the aperiodicity to the system. Consider the sequence 𝑠0 (𝑛) consisting of
letters {𝐴, 𝐵}. Construct the system by putting alternating dielectric slabs of refractive
index𝑛𝐴/𝐵 andwidth𝑑𝐴/𝐵 in the order set by 𝑠0 (𝑛). We extract the topological behavior
by comparing di�erent sequences 𝑠 (𝑛).

Take the substitutions 𝜎5 and 𝜎3 as in (3.46). Their traces of the gap-labeling groups
are given by [27, 28]

𝜏∗
(
𝐾0

(B𝜎5 ) ) � (
Z + 𝜏2Z) ∩ [0, 1) , 𝜏∗

(
𝐾0

(B𝜎3 ) ) � 1
5
(
Z + 𝜏2Z) ∩ [0, 1) , (3.53)

so that the gaps lie on

N𝜎5
gap =

(
𝑝 + 𝜏2𝑞) ∩ [0, 1) , N𝜎3

gap =
𝑝 + 𝜏2𝑞

5 ∩ [0, 1) . (3.54)

The results are clearly visible in Figure 3.7.
Consider now the sequences 𝑠ℓ (𝑛) � Σ1 (𝑛, ℓ). The index ℓ infers the phason

𝜙ℓ = 2𝜋ℓ/𝐹𝑁 . Since both 𝜎5 and 𝜎3 have the same 𝑀1 matrix (3.47), they have the
same 𝐹𝑁 numbers, so that Σ1 is constructed by the same rule. This is a naïve approach,
since 𝜎3 is not C&P—as seen in Figures 3.5 and (3.6)—yet it exhibits some interesting
features.

Next, we build the 𝜙-dependent scattering matrix S (𝑘, 𝜙) (see Section 3.4.2 for the
scattering matrix review). Extracting the phason information from S (𝑘, 𝜙) requires
some juggling. Since the total phase shift 𝛿 (𝑘) is 𝜙-independent, we need to inspect
the chiral phase [68, 69],

𝛼 (𝑘, 𝜙) = ®𝜃 (𝑘, 𝜙) − ®𝜃 (𝑘, 𝜙) . (3.55)
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Figure 3.8: Chiral phase for the Fibonacci substitution with 𝑑𝑁 = 233 using scattering
matrix with (𝑛𝐴, 𝑛𝐵) = (1, 1.15) and (𝑙𝐴, 𝑙𝐵) = (1.15, 1). The wavenumber 𝜈 represents
the energy axis.

Table 3.2: Number of edge-state windings𝑊𝑝,𝑞 in 𝜎3 for the gaps N𝜎3
4,−1 and N𝜎3

−10,5.

𝑁 3 4 5 6
𝐹𝑁 13 34 89 233
𝑊4,−1 1 −4 9 −25
𝑊−10,5 2 2 2 2

This phase winds exactly 2𝑞 times as seen in Figure 3.8,

𝑊𝛼g =
1
2𝜋

∫ 2𝜋

0

𝜕𝛼
(
𝑘 = 𝑘𝑝,𝑞, 𝜙

)
𝜕𝜙

d𝜙 = 2𝑞, (3.56)

where 𝑘𝑝,𝑞 is the wavevector corresponding to the gap N𝑝,𝑞 . Unfortunately, 𝛼 (𝑘, 𝜙) is
hard to measure. One resorts to the following trick.

Take a sequence 𝑠 (𝑛) and concatenate it to a �ipped sequence 𝑠 (−𝑛) thus creating
𝑠↔= [𝑠 (𝑛) 𝑠 (−𝑛)]. This generalized mirror procedure creates an edge-state inside the
gaps so that

𝜚↔(𝑘, 𝜙) = 𝜚 (𝑘) + 𝜚es (𝑘, 𝜙) . (3.57)

Here, 𝜚 (𝑘) is the density of states of a single sequence 𝑠 (𝑛), and 𝜚es (𝑘, 𝜙) are the
additional edge-states inside the gaps implicitly given by

𝜚es (𝑘, 𝜙) =
∑︁

𝑔
𝛿
(
𝑘 − 𝑘𝑔 (𝜙)

)
, (3.58)

with the sum on the gaps.
In quasiperiodic C&P sequences, the edge-state 𝑘𝑔 of each gap with label (𝑝, 𝑞)

winds exactly 2𝑞 times inside the gap as the phason changes 𝜙 = 0 . . . 2𝜋 [69],

𝑊C&P
(
𝑘𝑔 (𝑝, 𝑞)

)
= 2𝑞. (3.59)

In other words, 𝜚es (𝑘, 𝜙) is related to 𝛼 (𝑘, 𝜙) in C&P tilings. This is the case for 𝜎5 as
seen in Figure 3.9a.

3.3.2.2 Non-C&P Tilings

In non-C&P tilings, however, this is not the case, as seen in Figure 3.9b. For instance,
the edge-state of the N𝜎3

4,−1 =
(
4 − 1 · 𝜏2) /5 gap in 𝜎3 winds 9 times. Moreover, the

winding number for each gap changes with 𝑁 , as summarized in Table 3.2.
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(a) Winding of gap states for 𝜎5 with 𝐹𝑁 = 89. (b) Winding of gap states for 𝜎3 with 𝐹𝑁 = 89.

Figure 3.9: The density of states 𝜌 (𝜈, 𝜙) in a logarithmic scale showing the winding
of gap states for the squared Fibonacci substitutions using scattering matrix with
(𝑛𝐴, 𝑛𝐵) = (1, 1.15) and (𝑙𝐴, 𝑙𝐵) = (1.15, 1).

Claim. The gap in 𝜎3 located at N𝜎3
−10,5 =

(−10 + 5 · 𝜏2) /5 winds exactly 2 times, same
as its corresponding gap in 𝜎5 located atN𝜎5

−2,1 = −2 + 1 · 𝜏2. Generally,N𝜎3
5𝑝,5𝑞 andN𝜎5

𝑝,𝑞

have the same winding𝑊 = 2𝑞 of the edge state.

Corollary. The winding of the gaps in both C&P and non-C&P sequences corresponds to
their structural phase. However, it corresponds to the gap label only in C&P tilings.

Corollary. There are integral numbers in non-C&P sequences that can be extracted with
the naïve approach. However, they cannot be interpreted as topological winding numbers.

Conjecture. The additional gaps in non-C&P sequences do not carry the same topological
character as C&P sequences.

3.3.3 Comparison of Spectral and Structural Properties
The spectral analysis between 𝜎5 and 𝜎3 shows a de�nite di�erence between both
substitutions (see Figures 3.7 and 3.9). However, the structural phase Θ (𝜉, 𝜙) is the
same (Figure 3.5) despite Σ1 being distinct. This is due to our de�nition of Σ1, where
the phase Θ comes from the translation operators T𝑚 (ℓ) , as seen in (2.12). Since 𝐹𝑁
numbers are the same, so are T𝑚 (ℓ) . Thereby, we need another method.

The proper way to characterize the structure of a substitution is by its Čech
cohomology 𝐻̌ 1 (Ω) [52]. In our case,

𝐻̌ 1 (Ω𝜎5 ) � Z2, 𝐻̌ 1 (Ω𝜎3 ) � Z ⊕ Z2. (3.60)

Thus, 𝐻̌ 1 (Ω𝜎3 ) � Z2 = Zdim𝜎3 immediately shows that 𝜎3 is not a C&P sequence (here,
dim𝜎3 = 2 the number of letters in 𝜎3). Formally, we have found the following.

Proposition 3.2. For a Sturmian (C&P or substitution) 1𝑑 tiling 𝑇 , one has 𝐻̌ 1 (Ω𝑇 ) �
Z𝑎 , where periodic tilings have 𝑎 = 1, and quasiperiodic abide 𝑎 = |Γ1 |.
Proof. We apply the procedure in Section 3.1.4.1. Since 𝑇 is Sturmian, 𝑝1 (𝑧) is an
irreducible polynomial over Z with degree 𝑎 = |Γ1 |. Hence, 𝐻̌ 1 (Ω𝑇 ) � Z𝑎 . �

Comparing 𝐻̌ 1 (Ω) and 𝐾0 (B), we see that 𝜎5 is consistent with C&P tilings (see
Tables 3.3 and 3.4). Thus it follows a Bloch theorem, and the winding numbers
correspond to both structure and spectrum. The inconsistency in 𝜎3, namely that



3.3. Topological Considerations 49

Table 3.3: Some topological properties of selected substitution sequences.

Name Rule 𝑀1 𝜆1 𝐻̌ 1 (Ω) 𝜏∗ (𝐾0 (B))
Fibonacci 𝜎Fib 𝐴 ↦→𝐴𝐵

𝐵 ↦→𝐴

( 1 1
1 0

)
𝜏 Z2 Z + 𝜏Z

Fibo2 𝜎5 𝐴 ↦→𝐴𝐵𝐴
𝐵 ↦→𝐴𝐵

( 2 1
1 1

)
𝜏2 Z2 Z + 𝜏2Z

Non-Fibo2 𝜎3 𝐴 ↦→𝐴𝐴𝐵
𝐵 ↦→𝐵𝐴

( 2 1
1 1

)
𝜏2 Z ⊕ Z2 1

5
(
Z + 𝜏2Z)

Periodic 𝜎Per 𝐴 ↦→𝐴𝐵
𝐵 ↦→𝐴𝐵

( 1 1
1 1

)
2 Z 1

2Z

Thue-Morse 𝜎TM 𝐴 ↦→𝐴𝐵
𝐵 ↦→𝐵𝐴

( 1 1
1 1

)
2 Z ⊕ Z [ 1

2
] 1

3Z
[ 1
2
]

Period
Doubling 𝜎PD 𝐴 ↦→𝐴𝐵

𝐵 ↦→𝐴𝐴

( 1 1
2 0

)
2 Z ⊕ Z [ 1

2
] 1

3Z
[ 1
2
]

Silver 𝜎Sil 𝐴 ↦→𝐴𝐴𝐵
𝐵 ↦→𝐴

( 2 1
1 0

) √
2 + 1 Z2 1

2
(
Z + 𝜆1Z

)
Marginal 𝜎Mar 𝐴 ↦→𝐴𝐴𝐵

𝐵 ↦→𝐴𝐵𝐵

( 2 1
1 2

)
3 Z ⊕ Z [ 1

3
] 1

2Z
[ 1
3
]

Ternary 𝜎Ter
𝐴 ↦→𝐴𝐵
𝐵 ↦→𝐴𝐶
𝐶 ↦→𝐴𝐵𝐶

( 1 1 0
1 0 1
1 1 1

)
2.247. . . Z3 1

𝑎

(
Z + 𝜆1Z + 𝜆21Z

)
Table 3.4: Some topological properties of Fibonacci substitution sequences. Here,
ΔΘ (𝑆) is the atomic surface in accordance with [43]. The example rule corresponds
to the bold sequence in each family.

Sequence Family Example Rule ΔΘ (𝑆) 𝐻̌ 1 (Ω) 𝜏∗ (𝐾0 (B))

Fibonacci 𝑀1 =
( 1 1
1 0

)
, 𝜆1 = 𝜏

𝜎1,𝝈2
𝐴 ↦→𝐴𝐵
𝐵 ↦→𝐴 1 Z2 Z + 𝜏Z

Fibonacci2 𝑀1 =
( 2 1
1 1

)
, 𝜆1 = 𝜏

2

𝜎1, 𝜎2, 𝜎5,𝝈6
𝐴 ↦→𝐴𝐴𝐵
𝐵 ↦→𝐴𝐵 1 Z2 Z + 𝜏2Z

𝜎3,𝝈4
𝐴 ↦→𝐵𝐴𝐴
𝐵 ↦→𝐴𝐵 𝜏 Z ⊕ Z2 1

5
(
Z + 𝜏2Z)

Fibonacci3 𝑀1 =
( 3 2
2 1

)
, 𝜆1 = 𝜏

3

𝜎2, 𝜎3, 𝜎13, 𝜎16, 𝜎17, 𝜎27,𝝈29
𝐴 ↦→𝐴𝐴𝐵𝐴𝐵
𝐵 ↦→𝐴𝐴𝐵 1 Z2 1

2
(
Z + 𝜏3Z)

𝜎6, 𝜎12, 𝜎19,𝝈26
𝐴 ↦→𝐴𝐵𝐴𝐵𝐴
𝐵 ↦→𝐴𝐴𝐵 (𝜏 + 1) /2 Z2 1

2
(
Z + 𝜏3Z)

𝝈14
𝐴 ↦→𝐵𝐴𝐴𝐴𝐵
𝐵 ↦→𝐴𝐵𝐴 3 − 𝜏 Z ⊕ Z2 1

4
(
Z + 𝜏3Z)

𝜎1, 𝜎4, 𝜎5, 𝜎7, 𝜎15, 𝜎18
𝜎23, 𝜎24, 𝜎28,𝝈30

𝐴 ↦→𝐴𝐴𝐴𝐵𝐵
𝐵 ↦→𝐴𝐴𝐵 3/2 Z2 1

2
(
Z + 𝜏3Z)

𝜎8, 𝜎9, 𝜎11, 𝜎20, 𝜎22,𝝈25
𝐴 ↦→𝐴𝐵𝐵𝐴𝐴
𝐵 ↦→𝐴𝐴𝐵 𝜏/2 + 1 Z2 1

2
(
Z + 𝜏3Z)

𝜎10,𝝈21
𝐴 ↦→𝐵𝐵𝐴𝐴𝐴
𝐵 ↦→𝐴𝐴𝐵 (𝜏 + 3) /2 Z ⊕ Z2 1

4
(
Z + 𝜏3Z)

Sequence Family Example Rule ΔΘ (𝑆) 𝐻̌ 1 (Ω) 𝜏∗ (𝐾0 (B))
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𝜏∗
(
𝐾0

(B𝜎3 ) ) � 𝜏∗ (𝐾0
(B𝜎5 ) ) as shown in (3.53), implies no Bloch theorem and irregu-

lar windings. In other words, since 𝜎5 is C&P, then 𝐻̌ 1 (Ω𝜎3 ) � 𝐾0
(B𝜎3 ) so that we can

identify 𝜏𝐻̌∗
(
𝐻̌ 1 (Ω𝜎3 ) ) with Bragg peaks and 𝜏∗

(
𝐾0

(B𝜎3 ) ) with spectral gaps, and infer
Bloch theorem. Contrarily, comparing 𝜎3 with the Thue-Morse sequence suggests that
𝜏𝐻̌∗

(
𝐻̌ 1 (Ω𝜎3 ) ) cannot be identi�ed with Bragg peaks and thus Bloch theorem does not

hold. This can also be inferred from the 𝑃-matrix (3.52).
Next, we inspect the Fibonacci (regular, square and cubed) substitutions presented

in Table 3.4. One can divide Fibonacci2 into 2 families and Fibonacci3 into 6 families
based on the atomic surface ΔΘ (𝑆) [43]. These families are identi�ed completely by
inspecting the simplicial cohomologies 𝐻 1 (Γ𝑛) and their Betti numbers 𝛽1 (Γ𝑛) (see
Section 3.1.3), or by examining the complexity trees (see Section 3.1.5). These 𝛽1𝑛 and
𝑇𝑛 show a unique structure for each family, whereas the universal groups 𝐻̌ 1 (Ω) (or
𝐾0 (B)) may not. This is summarized in Table 3.4.
Remark. In both Tables 3.3 and 3.4, we compare 𝐻̌ 1 (Ω) with 𝜏∗ (𝐾0 (B)). Although,
in terms of groups, they are not on a par (since 𝐻̌ 1 (Ω) � 𝐾0 (B) in 1𝑑 but not
with its trace), we use them to compare structural and spectral properties of the
tiling, respectively. We could also examine in contrast 𝐻̌ 1 (Ω) with 𝜏𝐻̌∗

(
𝐻̌ 1 (Ω)) , since

𝜏𝐻̌∗
(
𝐻̌ 1 (Ω)) = 𝜏𝐾∗ (𝐾0 (B)) (cf. Section 5.4 and Theorem 5.1).

3.4 Tight Binding and Sca�ering Matrix
In calculating the spectral features of the previous section, we used the scattering
matrix approach. The scattering matrix itself was calculated using a transfer matrix on
the wave equation (see [68, 69] for details). To use the scattering matrix for a general
Hamiltonian, we must be more careful.

In this section, we shall review the essentials of the scattering matrix formalism.
The avid reader is referred to [68, 70] for further details. Then, we shall show how to
reproduce all the wave equation results using only a tight binding Hamiltonian.

3.4.1 Essentials of the Wave Equation Transfer Matrix
We now succinctly present the application procedure of transfer matrices in the wave
equation. Consider a 1𝑑 system of size 𝐿 of some dielectric material. There are waves
incoming to the system from the left and right, and outgoing waves after transmission
and re�ection. The free part (without dielectrics) has a well-de�ned 𝑘 vector, but the
system itself need a more careful analysis. Neglecting internal losses in the system,
the scattering matrix from the incoming to the outgoing waves is written as(

𝜓 o
𝐿

𝜓 o
𝑅

)
=

(®𝑟 𝑡
𝑡 ®𝑟

) (
𝜓𝚤
𝐿

𝜓𝚤
𝑅

)
� S𝑊

(
𝜓𝚤
𝐿

𝜓𝚤
𝑅

)
, (3.61)

where ®𝑟 and ®𝑟 are the rightwards and leftwards re�ection coe�cients and 𝑡 is the
transmission coe�cient (all complex), as presented in Section 3.4.2. The subscript𝑊
implies a wave equation, and will be omitted below unless speci�cally required. This
scattering matrix can be calculated from the total transfer matrix. If we consider our
system built of di�erent dielectric media (by means of width and permittivity), the
total transfer matrix from left to right is written as(

𝜓𝚤
𝑅

𝜓 o
𝑅

)
= T

(
𝜓𝚤
𝐿

𝜓 o
𝐿

)
= 𝑇𝑀 · · ·𝑇2𝑇1

(
𝜓𝚤
𝐿

𝜓 o
𝐿

)
, (3.62)
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and all the 𝑇𝑚-s are either propagation inside a slab or transfer between slabs as
follows [68, 71]. For propagation we use

𝑇𝐴 =

(
cos𝛿𝐴 − sin𝛿𝐴
sin𝛿𝐴 cos𝛿𝐴

)
, 𝑇𝐵 =

(
cos𝛿𝐵 − sin𝛿𝐵
sin𝛿𝐵 cos𝛿𝐵

)
, (3.63)

where the optical path is given by 𝛿𝐴 (𝑘) = 𝑘𝑛𝐴𝑙𝐴 with 𝑘 the wavevector, 𝑛𝐴 the
refraction index of the slab of type 𝐴 and 𝑙𝐴 its width (similarly for 𝛿𝐵). To simplify
the calculations, we use the same optical path 𝛿𝐴 (𝑘) = 𝛿𝐵 (𝑘) � 𝛿 (𝑘), so that

𝑛𝐴𝑙𝐴 = 𝑛𝐵𝑙𝐵 . (3.64)

For the interface between slabs, we have

𝑇𝐴→𝐵 =

(
1 0
0 𝑛𝐵/𝑛𝐴

)
, 𝑇𝐵→𝐴 =

(
1 0
0 𝑛𝐴/𝑛𝐵

)
. (3.65)

Naïvely, we could just multiply all the transfer matrices as in (3.62). If all we seek is
the integrated density of states (3.73), it would su�ce. However, should we inspect the
chiral phase (3.76) too, we would obtain numerical inaccuracies due to the sensitivity
of the phase. To solve the issue, we de�ne e�ective transfer matrices

𝑇𝐴 � 𝑇𝐴 =

(
cos𝛿 − sin𝛿
sin𝛿 cos𝛿

)
,

𝑇𝐵 � 𝑇𝐵→𝐴𝑇𝐵𝑇𝐴→𝐵 =

(
cos𝛿 −𝑛𝐴

𝑛𝐵
sin𝛿

𝑛𝐵
𝑛𝐴

sin𝛿 cos𝛿

)
.

(3.66)

Thus, (3.62) transforms to
T = 𝑇 𝑟𝑛

𝐴/𝐵 · · ·𝑇
𝑟3
𝐴
𝑇 𝑟2
𝐵
𝑇 𝑟1
𝐴
, (3.67)

where 𝑟𝑖 is the number of repetitions of the 𝑖th slab. Note that

𝑇 𝑟𝐴 =

(
cos 𝑟𝛿 − sin 𝑟𝛿
sin 𝑟𝛿 cos 𝑟𝛿

)
,

𝑇 𝑟𝐵 =

(
cos 𝑟𝛿 −𝑛𝐴

𝑛𝐵
sin 𝑟𝛿

𝑛𝐵
𝑛𝐴

sin 𝑟𝛿 cos 𝑟𝛿

)
.

(3.68)

There is a well-de�ned procedure to translate T into S (see [68, 69]). Simply put,
for T (𝑘) =

(
𝑀1 (𝑘) 𝑀3 (𝑘)
𝑀2 (𝑘) 𝑀4 (𝑘)

)
, one has S (𝑘) =

(
®𝑟 (𝑘) 𝑡 (𝑘)
𝑡 (𝑘) ®𝑟 (𝑘)

)
, where

®𝑟 (𝑘) = [(𝑀4 −𝑀1) + i (𝑀2 +𝑀3)]
/ [(𝑀1 +𝑀4) + i (𝑀3 −𝑀2)] ,

®𝑟 (𝑘) = [(𝑀1 −𝑀4) + i (𝑀2 +𝑀3)]
/ [(𝑀1 +𝑀4) + i (𝑀3 −𝑀2)]

𝑡 (𝑘) = 2
/ [(𝑀1 +𝑀4) + i (𝑀3 −𝑀2)] .

, (3.69)

3.4.2 Essentials of the Wave Equation Sca�ering Matrix
We shall use the scattering matrix formalism mainly due to its natural connection to
experiments. We shortly summarize the scattering formalism below; the avid reader is
referred to [68, 69].

Consider a 1𝑑 wave system of physical size 𝐿 bounded by two semi-in�nite free
waveguides supporting incoming and outgoing waves. The free part has a well-de�ned
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𝑘 vector, whereas the waveguide itself might not. To study it, we use the scattering of
waves [69].

Take, for simplicity, the scattering of electromagnetic waves by dielectric media.
We relate outgoing and incoming amplitudes of plane waves by an S-matrix

®𝚤 ®𝑜
®𝑜 ®𝚤︸   ︷︷   ︸
S

Here ®𝚤 and ®𝑜 are the rightward incoming and outgoing waves, and ®𝚤 and ®𝑜 are the
leftward ones. Explicitly, (®𝑜

®𝑜
)
=

(®𝑟 (𝑘) 𝑡 (𝑘)
𝑡 (𝑘) ®𝑟 (𝑘)

) (®𝚤
®𝚤
)
� S

(®𝚤
®𝚤
)
. (3.70)

Here 𝑡 is the transmission coe�cient with ®𝑟 = 𝑟 ei ®𝜃 and ®𝑟 = 𝑟 ei ®𝜃 the rightward and
leftward re�ection coe�cients. Note the dependence on 𝑘 . Since it is unitary, it can be
diagonalized to

S (𝑘) ↦→
(
ei𝜑1 (𝑘) 0

0 ei𝜑2 (𝑘)

)
. (3.71)

Now, de�ning the total phase shift as 𝛿 (𝑘) = 1
2 (𝜑1 (𝑘) + 𝜑2 (𝑘)), we have

detS = e2i𝛿 (𝑘) . (3.72)

The density of modes is found with the Krein-Schwinger formula [68–70]

N (𝑘) − N0 (𝑘) = 𝛿 (𝑘)
𝜋

=
1
2𝜋 Im log detS𝑊 (𝑘) , (3.73)

where N0 (𝑘) is the integrated density of states of the free part. Di�erentiating, we
obtain the density of states,

𝜚 (𝑘) − 𝜚0 (𝑘) = 1
𝜋

d
d𝑘 𝛿 (𝑘) =

1
2𝜋 Im d

d𝑘 log detS (𝑘) . (3.74)

Noting that in this left-to-right basis, since S is unitary, we have two phases
(eigenvalues). Thus, we can de�ne an asymmetrical phase 𝛾 (𝑘, 𝜙) = 𝜑1 (𝑘, 𝜙) −
𝜑2 (𝑘, 𝜙) [68, 69]. Inside the gaps, when 𝑟 = 1 (and 𝑡 = 0), S (𝑘) is diagonal. Hence,
𝛾 (𝑘, 𝜙) can be written in terms of S𝑊 (𝑘) similarly to before,

𝛾 (𝑘, 𝜙) = ImTr [𝜎𝑧 logS (𝑘, 𝜙)] , (3.75)

where 𝜎𝑧 =
( 1 0
0 −1

)
is the Pauli matrix. Here, we used the identities 𝑆𝜎𝑧 = exp [𝜎𝑧 log 𝑆]

and log det𝐴 = Tr log𝐴. This asymmetrical phase 𝛾 (𝑘, 𝜙) has a topological interpre-
tation, since it is dependent on the phason 𝜙 , whereas the total phase shift 𝛿 (𝑘) is
𝜙-independent (since it may depend on the order of the waveguide slabs but not their
chiral permutations, which are set by the phason 𝜙). The asymmetrical phase 𝛾 (𝑘, 𝜙)
is related to the chiral phase (cf. Figure 3.8),

𝛼 (𝑘, 𝜙) = arg ®𝑟 (𝑘, 𝜙) − arg ®𝑟 (𝑘, 𝜙) , (3.76)

by [69]
cos 𝛾2 = 𝑟 cos 𝛼2 , (3.77)
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where 𝑟 = | ®𝑟 | = |®𝑟 | (and the implicit dependence on 𝑘 and 𝜙). Thus,

𝛾 = 2 arccos (𝑟 cos𝛼/2) ⇐⇒ 𝛼 = 2 arccos
(
𝑟−1 cos𝛾/2) . (3.78)

Inside the gaps, when 𝑟 = 1, we obtain 𝛾 = 𝛼 . Near 𝑟 ∼ 0 (“tunneling”) the relation
𝛼 = 𝑓 (𝛾) is not well-de�ned.

3.4.3 Total Phase Shi�
We now turn our attention to the tight binding formalism. The scattering matrix
formalism we presented above must be independent of representation. Yet, in the
Hamiltonian description, we do not have incoming and outgoing waves nor a 𝑘-vector.
How to de�ne the scattering matrix then?

Let us consider a tight binding Hamiltonian

H � H0 + V = −Δ + V, (3.79)

where Δ is the Laplacian,V is a potential de�ned in a quasiperiodic manner, andH0
is the free Hamiltonian (without a potential). Representing in the site basis 𝑛 = 1 . . . 𝑁 ,
this Hamiltonian is an 𝑁 × 𝑁 matrix acting on𝜓 such that

H𝜓𝑛 = − (𝜓𝑛+1 +𝜓𝑛−1) + 𝑣𝑛𝜓𝑛, (3.80)

with periodic boundary conditions (𝜓0 � 𝜓𝑁 ). Its eigenenergies are formally given by

ΛH � specH = {𝐸𝑖 }𝑁𝑖=1 . (3.81)

Let us de�ne the resolvant operator

G (𝑧) � 1
H − 𝑧 , (3.82)

and two auxiliary resolvant-like operators

G± (𝐸) � 1
H − 𝐸 ∓ i𝜖 . (3.83)

The scattering matrix is then de�ned as [68, 70]

S (𝐸) � G+ (𝐸)G0+ (𝐸)

/G− (𝐸)
G0− (𝐸)

=
H0 − 𝐸 − i𝜖
H − 𝐸 − i𝜖

/H0 − 𝐸 + i𝜖
H − 𝐸 + i𝜖 .

(3.84)

The total phase shift is de�ned similarly to Section 3.4.2 above,

𝛿 (𝐸) � 1
𝑁

Im log detS (𝐸) , (3.85)

with the proper normalization 1/𝑁 . Using the Krein-Schwinger formula, the integrated
density of states reads

𝜂 (𝐸) − 𝜂0 (𝐸) � 𝛿 (𝐸)
𝜋

=
1
𝑁𝜋

Im log detS (𝐸) . (3.86)
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Figure 3.10: The integrated density of states 𝜂 (𝐸) using scattering formalism with
tight binding Hamiltonian in blue. The eigenvalues of 𝐻 are shown as red dots. Here
we used the Fibonacci sequence with 𝐹𝑁 = 34, 𝜖 = 10−4 and (𝑣𝐴, 𝑣𝐵) =

(√
2, 2

)
. Note

that the width of each step is ∼ 𝜖 .

Let us analyze this de�nition. The free HamiltonianH0 has a continuous spectrum,
and thus does not introduce singularities into (3.84). All the singularities, therefore,
come from the spectrum ofH . Thus,{

S (𝐸) 𝜖→0−−−→ −1 if 𝐸 ∈ ΛH,
S (𝐸) 𝜖→0−−−→ 1 if 𝐸 ∉ ΛH .

(3.87)

Hence, up to 𝜖 , the spectrum of S is given by

ΛS � specS =

{
(−1, 1, . . . , 1) if 𝐸 ∈ ΛH,
(+1, 1, . . . , 1) if 𝐸 ∉ ΛH .

(3.88)

The total phase shift is therefore,

𝛿 (𝐸) =
{
𝜋/𝑁 if 𝐸 ∈ ΛH,
0 if 𝐸 ∉ ΛH .

(3.89)

Corollary. The integrated density of states 𝜂 (𝐸) makes a discrete jump of 𝑁 −1 only at
those values where 𝐸 ∈ ΛH . For all other energies, 𝜂 (𝐸) does not change, and we have a
plateau (see Figure 3.10).

Remark. The density of states 𝜌 (𝐸) consists only of Lorentzian peaks at 𝐸 ∈ ΛH of
width 𝜖 (at half-maximum).
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3.4.4 Asymmetrical Phase

Let us now draw our attention to the asymmetrical phase. Since it is dependent on the
phason 𝜙 , we rewrite our Hamiltonian as

H (𝜙) � H0 + V (𝜙) . (3.90)

The scattering matrix is now also 𝜙-dependent S = S (𝐸, 𝜙). Note that since the
Hamiltonian admits periodic boundary conditions, allV (𝜙) and thusH (𝜙) are cyclic
permutations of each other. Therefore, its spectrum is 𝜙-independent.

Similarly to the discussion in Section 3.4.2, let us de�ne the asymmetrical phase as

𝛾 (𝐸, 𝜙) � ImTr [Z logS (𝐸, 𝜙)] , (3.91)

where now
Z = diag (+1,−1, +1, . . . ,±1) , (3.92)

is an alternating matrix analogous to 𝜎𝑧 . Let us connect it to the chiral phase 𝛼 (𝐸, 𝜙).
De�ning the normalized Green function as

W± = G± (𝐸)G0± (𝐸)
, (3.93)

the transmission probability 𝑇 (𝐸) = |𝑡 (𝐸) |2 is given by [68]

𝑇 (𝐸) = det𝑊+ (𝐸) det𝑊− (𝐸) = |det𝑊+ (𝐸) |2 . (3.94)

The re�ection probability is de�ned by 𝑅 (𝐸) = |®𝑟 (𝐸) |2 = 𝑟 2 (𝐸). In a lossless system,
𝑅 (𝐸) = 1 −𝑇 (𝐸); thus, the re�ection coe�cient 𝑟 (𝐸) is given by

𝑟 (𝐸) =
√︃
1 − |det𝑊+ (𝐸) |2. (3.95)

There is one technical—but important—detail left to consider. In order to see the
dependence on 𝜙 , we need the spectrum of S be also dependent on 𝜙 , namely, ΛS must
be ordered. Yet, if we diagonalize S numerically, the special eigenvalue of −1 always
comes �rst. To solve this issue we note thatH (𝜙) are similar, and thus S (𝐸, 𝜙) are
also similar. We therefore choose some 𝜙0 and diagonalize S within it as

S (𝐸, 𝜙0) = 𝑈 †𝜙0ΛS𝑉𝜙0 , (3.96)

where𝑈𝜙0 and 𝑉𝜙0 are the right- and left-eigenvectors, respectively, properly normal-
ized. Thus, we rewrite 𝛾 (𝐸, 𝜙) with respect to 𝜙0 as

𝛾 (𝐸, 𝜙) = ImTr
[
Z

(
𝑉 †
𝜙0
logS (𝐸, 𝜙)𝑈𝜙0

)]
. (3.97)

Remark. The de�nition above of 𝛾 (𝐸, 𝜙) indeed works, but there are some numerical
instabilities. These are mainly due to a bad condition number to inversion of S (𝐸, 𝜙),
which is also non-Hermitian.
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3.4.5 Comparison between Tight Binding and Transfer Matrix
We have seen some results with the scattering formalism using two di�erent ap-
proaches. The �rst, is the transfer matrix method, which we used to calculate the
S-matrix of the wave equation in Section 3.3.2; the second is tight binding of Section 3.4,
with which we have the solved Schrödinger equation. The wave and Schrödinger
equations are similar but not identical. What is the distinction then?

Looking on the IDOS, we do not see much di�erence between both cases. Re-
markably, the plateaus obey the same 𝜂𝑝,𝑞 = 𝑝 + 𝑞𝑠 equation, although Bellissard’s
gap-labeling theorem [27] has been proven for tight binding Hamiltonians only. This
emphasizes the topological nature of the quasiperiodic sequences.

Inspecting a bit closer, there is a slight numerical advantage in favor of the tight
binding scheme. Sincewe know the eigenenergies of the Hamiltonian (can be calculated
independently) and since the DOS peak width is of the order of 𝜖 , we know exactly how
to mesh the energy axis. Thus we can freely choose between runtime and resolution
of the IDOS calculation. Conversely, in the transfer matrix case, we do not know a
priori the density of modes (DOM) peaks vs. 𝑘 , and they must be found numerically.
Consequently, we must employ a search-and-re�ne algorithm of 𝑘 with respect to the
emergent peaks, which is both unstable and time consuming. This limits the resolution
we obtain with this method.

Let us now move our attention to the topological (chiral/asymmetrical) phases.
Here, we see a large distinction between both cases. In the tight binding formalism,
any topological information resides 𝜖-near the eigenenergies; all parameters inside the
gaps are trivial. Thus, it is quite di�cult to see both numerically and experimentally
the topological phase. On the other hand, in the transfer matrix formalism, the chiral
phase itself changes inside the gap as a function of the phason 𝜙 (cf. Figure 3.8). This is
a consequence of the transfer matrices. Thus we can inspect the chiral phase quite
easily both numerically and experimentally using generalized edge states.



Chapter 4

Di�raction of Tilings

Di�raction of aperiodic tilings is quite complicated compared to spectral properties.
Whereas the latter can be described by a simple formula for the gaps (3.4), di�raction
peaks cannot be determined in the same way. In this chapter, we review the known
theory behind di�raction of aperiodic tilings with an emphasis on the Thue-Morse
tiling, we present how to identify di�raction peaks, and we show how to calculate
them in several cases.

4.1 Introduction
Let us begin with a general review (see [23, 72–76]). Let {𝑣𝑛} be some aperiodic
sequence with 𝑣𝑛 ∈ {𝑣𝐴, 𝑣𝐵} (be it substitution or C&P). Its Fourier transform to order
𝑁 is given by

𝐺𝑁 (𝑘) =
𝐿𝑁∑︁
𝑛=1

𝑠𝑛 e2𝜋 i𝑘𝑛, (4.1)

where 𝑠𝑛 are the scattering amplitudes, and 𝐿𝑁 is the number of tiles at order 𝑁 of the
substitution. The di�racted intensity is

𝑆𝑁 (𝑘) = 1
𝐿𝑁

��𝐺𝑁 (𝑘)��2 . (4.2)

Naturally, we go to the limit 𝑁 → ∞. The normalization varies between authors.
Cheng, Savit, and Merlin [72], Kolář, Iochum, and Raymond [76], Peyrière, Cockayne,
and Axel [77] do not use the 𝐿−1

𝑁
factor, whereas Luck [23], Gähler and Klitzing [78]

have it. A simple analysis (see Section 4.1.1) suggests the latter.
The intensity can be considered as a positive (Lebesgue-Stieltjes) measure,

d𝜇 (𝑘) = 𝑆 (𝑘) d𝑘 = lim
𝑁→∞

𝑆𝑁 (𝑘) d𝑘. (4.3)

The measure 𝜇 (𝑘) =
∫ 𝑘
0 d𝜇 (𝜅) can be considered as an integrated intensity (or,

cumulative distribution function). It can also be represented as the Fourier-Transform
of the autocorrelation,

lim
𝑁→∞

1
𝑁

𝑁−1∑︁
𝑛=0

𝑠𝑛𝑠𝑛+𝑎 � 〈𝑠𝑛𝑠𝑛+𝑎〉 =
∫

d𝜇 (𝑘) e2𝜋 i𝑘𝑎 . (4.4)

Each positive measure 𝜇 (𝑘) can be divided into 3 parts.
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1. The discrete (atomic, pure-point) part 𝜇pp. Here, all discontinuities of 𝜇 (𝑘) are
delta functions 𝐶 (𝑘B) 𝛿 (𝑘 − 𝑘B) for some 𝐶 , and the support {𝑘B} is countable.
These are the Bragg peaks. Equivalently,

𝐺𝑁 (𝑘B) ∼ 𝐶 (𝑘B) 𝐿𝑁 . (4.5)

2. The absolutely continuous part 𝜇ac. Loosely speaking, the derivative exists at
each point,

𝑆 (𝑘) = d𝜇ac
d𝑘 . (4.6)

3. The singularly continuous part 𝜇ac. This is “what is left” after the previous two
were taken into account. It is continuous but nowhere di�erentiable; its support
is a Cantor set. Moreover, its peaks behave as a power law [23, 79, 80],

𝜇 (𝑘) − 𝜇 (𝑘C) ∼ ±𝐴± |𝑘 − 𝑘0 |𝛼 , 𝑘 → ±𝑘0, 0 < 𝛼 ≤ 2, (4.7)

where ± indicates convergence from above/below. The value 𝛼 = 0 would
indicate the �rst case.

4.1.1 Bragg Peak Amplitude Scaling
Let us make a few remarks regarding the scaling of di�erent peaks.

4.1.1.1 Scaling Approach

Let us inspect a periodic tiling with 𝑙𝐴 = 𝑎 with 𝐿𝑁 tiles. The location of atoms is given
by 𝑥𝑛 = 𝑎 (𝑛 − 𝐿𝑁 /2) with constant scattering amplitude 𝑠𝑛 = 1 and atomic density
(4.18). Taking 𝑛′ = 𝑛 − 𝐿𝑁 /2, its di�raction amplitude (4.19) reads

𝐺𝑁 (𝑘) =
𝐿𝑁 /2∑︁

𝑛′=−𝐿𝑁 /2
e2𝜋 i𝑘𝑎𝑛′ . (4.8)

Taking the limit 𝑛′→∞ and using Poisson summation formula, one has

𝐺 (𝑘) =
∑︁
𝑛′∈Z

e2𝜋 i𝑘𝑎𝑛′ =
∑︁
𝑚∈Z

𝛿 (𝑚 − 𝑘𝑎) =
∑︁
𝑚∈Z

1
𝑎
𝛿
(
𝑘 − 𝑚

𝑎

)
. (4.9)

Hence, 𝑘𝑚 =𝑚/𝑎. Putting it back into (4.8), one has

𝐺𝑁 (𝑘𝑚) = e2𝜋 i𝑁𝑎/2
𝐿𝑁∑︁
𝑛=0

e2𝜋 i𝑚𝑛 = e2𝜋 i𝑁𝑎/2
𝐿𝑁∑︁
𝑛=0

1 ∼ 𝐿𝑁 . (4.10)

Thus, generally, for Bragg peaks, 𝐺𝑁 (𝑘𝑚) ∼ 𝐶 (𝑘𝑚) 𝐿𝑁 .

4.1.1.2 Direct Approach

Let us explicitly calculate (4.8) yielding

𝐺𝑁 (𝑘) = ei𝜙 sin𝜋𝐿𝑁𝑘𝑎
sin𝜋𝑘𝑎 = ei𝜙 𝐿𝑁

sinc𝜋𝐿𝑁𝑘𝑎
sinc𝜋𝑘𝑎 , (4.11)
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with some phase 𝜙 . At each 𝑘𝑎 ∈ Z, the ratio of sines→ 𝐿𝑁 (sincs→ 1), and we
retrieve the previous result 𝐺𝑁 (𝑘𝑚) ∼ 𝐿𝑁 . Moreover, the structure factor (4.2) yields

𝑆𝑁 (𝑘) = 1
𝐿𝑁

���� sin𝜋𝐿𝑁𝑘𝑎sin𝜋𝑘𝑎

����2 = 𝐿𝑁 ���� sinc𝜋𝐿𝑁𝑘𝑎sinc𝜋𝑘𝑎

����2 . (4.12)

The �rst zeroes around each peak 𝑘𝑚 are given by 𝑘0𝑚 = 𝑘𝑚 ± 1/𝐿𝑁𝑎. Hence, the width
of a peak scales as𝑤𝑁 ∼ 𝐿−1𝑁 . Together with the height scaling as 𝑆𝑁 (𝑘𝑚) ∼ 𝐿𝑁 , this
gives rise to 𝛿-peaks.

Let us apply a similar logic to singular continuous peaks at 𝑘0. For Bragg peaks, we
have concluded that 𝑆𝑁 (𝑘B) ∼ 𝐿1𝑁 and𝑤𝑁 (𝑘B) ∼ 𝐿−1𝑁 . For singular continuous peaks,
𝑆𝑁 (𝑘0) ∼ 𝐿𝛾𝑁 with 0 < 𝛾 < 1 as given by (4.15). Therefore, demanding a 0-width peak
(singular, like 𝛿) with a 0-area (continuous, unlike 𝛿), we conclude that𝑤𝑁 (𝑘0) ∼ 𝐿−𝛽𝑁
with 𝛾 < 𝛽 ≤ 1.

4.2 Di�raction of the Thue-Morse Tiling
In this section, we dwell into the intricacies of the Thue-Morse tiling di�raction.

4.2.1 Analytical Summary
Here, we show the main analytical results from the literature.

4.2.1.1 Scaling of Peaks

In the following calculation, we take 𝑠𝐴 = 1, 𝑠𝐵 = −1 to get rid of the pure-point
part [73, 74] (more on that later). According to Luck [23] based on Cheng, Savit, and
Merlin [72], taking a primitive wavevector of the form 𝑘0 = ℓ/(2𝑛 + 1) (note the odd
denominator) yields

𝜇 (𝑘) − 𝜇 (𝑘0) ∼ ± |𝑘 − 𝑘0 |𝛼 , 0 < 𝛼 < 1. (4.13)

A general wavevector with a similar singularity is given by

𝑘1 = 2−𝑛 (𝑘0 +𝑀) = 2−𝑛 𝑚

2ℓ + 1 . (4.14)

The strongest singularity is at 𝑘0 = 1
3 ,

2
3 with 𝛼 = 2 − log 3/log 2. These singularities

were measured and identi�ed in [75]. The intensity scaling goes as

𝑆𝑁 (𝑘0) ∼ 𝐿𝛾𝑁𝑁 = 2𝑁𝛾𝑁 , lim
𝑁→∞

𝛾𝑁 = 𝛾 = 1 − 𝛼, (4.15)

and 𝐿𝑁 is the number of tiles. Numerically, for 𝑘0 = 1
3 I get 𝛾 = log2 3 − 1 implying

𝛼 = 2 − log2 3 as expected.
Another (weaker) type of singularities exists at dyadic 𝑘w = 𝑀2−𝑛 for which

𝜇 (𝜅) ∼ exp
(
− log

2 𝜅

log 2

)
, 𝜅 = |𝑘 − 𝑘w | . (4.16)

Note that the intensity 𝑆 (𝑘) = d𝜇
d𝑘 is repeating each integer value [73, 74],

𝑆 (𝑘) = 𝛿Z + 𝑆TM (𝑘) , (4.17)

where 𝑆TM (𝑘) is restricted to [0, 1). The spectrum is singularly continuous (apart
of trivial points). Moreover, the measure 𝜇TM (𝑘) is singular continuous and strictly
increasing [73, 74].
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4.2.1.2 Di�raction Spectrum

Now we follow Kolář, Iochum, and Raymond [76]. A parallel way is to de�ne the
atomic density,

𝜌𝑁 (𝑥) =
𝐿𝑁∑︁
𝑛=1

𝑠𝑛𝛿 (𝑥 − 𝑥𝑛) (4.18)

with 𝑠𝑛 a scattering amplitude term, 𝑥𝑛 =
∑𝑛
𝑖=1 𝑙𝑖 and 𝑙𝑖 ∈ {𝑙𝐴, 𝑙𝐵} are tile lengths. The

di�raction amplitude is given by

𝐺𝑁 (𝑘) =
𝐿𝑁∑︁
𝑛=1

𝑠𝑛 e2𝜋 i𝑘𝑥𝑛 . (4.19)

All other de�nitions are identical to the former ones. The critical exponent is now
given by

𝛼 = 2 log 𝜆max
log 𝜆∗

, 0 ≤ 𝛼 ≤ 2, (4.20)

where 𝜆∗ is the largest eigenvalue of the occurrence matrix and 𝜆max is the largest
eigenvalue of the Fourier matrix 𝑇 (𝑘) (see [76]). This time, 𝛼 = 2 is equivalent to
Bragg peaks.

• For the periodic tiling, Bragg peaks exist at each 𝑘per =𝑚/(𝑙𝐴 + 𝑙𝐵).

• For the Thue-Morse tiling, if 𝑙𝐴 ≠ 𝑙𝐵 , Bragg peaks exist at the same 𝑘per but with
di�erent intensities; if 𝑙𝐴 = 𝑙𝐵 , only “trivial” Bragg peaks survive; all other peaks
of the form 𝑘TM =𝑚2−𝑛 (𝑙𝐴 + 𝑙𝐵) belong to the singular continuous part of the
spectrum. Trivial peaks are those that exist in every tiling (even a random tiling),
e.g., at 𝑘triv = 0.

4.2.2 Simulations
In Figure 4.1, we show the di�raction amplitude |𝐺𝑁 (𝑘) | /𝐿𝑁 . The amplitude of the
Fibonacci peaks does not decay with 𝑁 in correspondence with the de�nition of Bragg
peaks (4.5). The amplitude of the Thue-Morse peaks visibly decays. It is analyzed in
Figure 4.2.

In Figure 4.2, we show the peak intensity 𝑆𝑁 (𝑘0) of chosen peaks for di�erent
families 1

𝑟
∈ { 1

3 ,
1
5 ,

1
7 ,

1
9
}
for 𝑘0 = 𝑚 2−𝑛/𝑟 with 𝑟 > 1 odd and gcd (𝑚, 𝑟 ) = 1. Each

family has its own exponent 𝛾𝑟 . Families 𝑟 ≥ 5 oscillate, but have a de�nite trend. For
families 7 ≤ 𝑟 < 17, the exponent 𝛾 < 0, which implies that there are no peaks for
𝑁 →∞. The modeled exponents were calculated as follows. • Family 1

3 is well known
in the literature [23, 81]; • family 1

5 was found by E. Akkermans (private communication)
and by Wolny et al. [82, 83]; • family 1

7 was calculated by [82, 83]; • family 1
9 was

matched to a best guess. There are more families with positive exponents (such as
𝑟 = 17 and 𝑟 = 31, where some of the fractions𝑚 2−𝑛/𝑟 exhibit positive exponents),
but the behavior is more erratic. The results are summarized in Table 4.1.

The general formula of the exponents 𝛾 for any 𝑘 = 𝑝/𝑞 (with gcd (𝑝, 𝑞) = 1 and
odd 𝑞 ≥ 3) is given by Baake, Grimm, and Nilsson [84],

𝛾𝑝/𝑞 =
1��𝑆𝑞 �� ∑︁𝑛∈𝑆𝑞 log2

(
1 − cos

(
2𝜋 𝑝𝑛

𝑞

))
, (4.21)
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(a) Fibonacci. (b) Thue-Morse.

Figure 4.1: Di�raction amplitude scaling |𝐺𝑁 (𝑘) | /𝐿𝑁 . Color represents the increasing
order of 𝑁 . Black lines: the top of chosen peaks. Here, 𝑙𝐴 = 𝑙𝐵 = 1 and 𝑠𝐴 = −𝑠𝐵 = 1.

with
𝑆𝑞 = {2𝑛 mod 𝑞 | 𝑛 ≥ 0} ⊆ 𝑈𝑞,
𝑈𝑞 = {1 ≤ 𝑝 < 𝑞 | gcd (𝑝, 𝑞) = 1} � (

Z/Z𝑞
)×
.

(4.22)

Here,
(
Z/Z𝑞

)× is the multiplicative group of integers modulo 𝑞 excluding 0.
The power-law dependence of singular continuous peaks (4.7) was �rst found nu-

merically in Aubry, Godrèche, and Luck [79] for a “circle map” model. Later, in Aubry,
Godrèche, and Luck [80], this model was proven to have a singular continuous di�rac-
tion spectrum with the exponent found numerically. It was conjectured that for the
Thue-Morse sequence the dependence is the same.

4.2.3 General Analysis
In the next section, we analyze the Thue-Morse di�raction from several additional
angles.

4.2.3.1 Peak Study

Let us start inspecting di�raction spectra that have a single peak only. The measure
𝜇 (𝑘) at a pure-point (Bragg) peak 𝑘B can be written as

𝜇 (𝑘) − 𝜇 (𝑘B) = 𝐶± (𝑘𝐵) , (4.23)

namely, it is a step function with intensity 𝐶+ −𝐶− = 𝐶 (𝑘B) from (4.5). Its value at 𝑘B
is immaterial since it is of 0-measure. Hence, it is a 𝛿-peak.

Let us now focus on singular continuous peaks 𝑘0. Take an 𝜖 neighborhood of 𝑘0,
speci�cally, 𝑘± = 𝑘0 ± 𝜖 . Applying (4.7), the power contained in (𝑘−, 𝑘+) is given by

𝐼𝜖 = 𝜇 (𝑘+) − 𝜇 (𝑘−) = (𝐴+ +𝐴−) 𝜖𝛼 , (4.24)

and 𝐼𝜖
𝜖→0−−−→ 0, unlike the pure-point case. Moreover, its total intensity 𝐼tot ∼ 𝜇 (∞) −

𝜇 (−∞) is unbound. Inspecting the di�raction spectrum 𝑆 (𝑘) using (4.3) and (4.7),
(simply, d𝜇 (𝑘) = 𝑆 (𝑘) d𝑘), we �nd that

𝑆 (𝑘) = 𝐴±𝛼 |𝑘 − 𝑘0 |𝛼−1 = 𝐴±𝛼 |𝑘 − 𝑘0 |−𝛾 . (4.25)
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Table 4.1: Peak intensity exponents for di�erent families.

Family 1/𝑟 𝛾�t 𝛾model Type Positive? Osc. per.

1/2 log2 4.0000 − 1 log2 4 − 1 pure-point ! 1
1/3 log2 3.0000 − 1 log2 3 − 1 sing. cont. ! 1
1/5 log2 2.2361 − 1 1

2 log2 5 − 1 sing. cont. ! 2
1/7 log2 1.9226 − 1 1

3 log2 7 − 1 sing. cont. % 3
1/9 log2 1.4528 − 1 1

6 log2 9 − 1 sing. cont. % 3
1
11 ,

1
13 ,

1
15 ,

1
19 , . . . ,

1
29 varies varies sing. cont. % varies

1/17, 1/31 varies varies sing. cont. !
/
% varies

(a) Family 1/3. (b) Family 1/5.

(c) Family 1/7. (d) Family 1/17.

Figure 4.2: Peak intensity 𝑆𝑁 (𝑘0) for di�erent families. Dashed lines indicate lines
atop of each other (symmetry around 𝑘 = 1

2 ). Thick and thin lines come to discern
positive and negative exponents. Here, 𝑙𝐴 = 𝑙𝐵 = 1 and 𝑠𝐴 = −𝑠𝐵 = 1. The black dotted
and dash-dotted lines represent a �tted 𝛾 and modeled one, as in Table 4.1.
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Unlike a 𝛿-function, its width is unbound. For 𝛼 ≥ 1 (equivalently, 𝛾 ≤ 0), there is no
singularity in 𝑘0 and thus the spectrum is absolutely continuous.

To avoid in�nite power in a single peak, we promote 𝜇 into a logistic-like distri-
bution function 𝜇̃, which behaves as a power-law in the peak’s vicinity. A possible
solution is

𝜇̃ (𝑘) − 𝜇̃ (𝑘0) = ±𝐴±
(
1 − (

1 + |𝑘 − 𝑘0 |𝛼
)−1)

. (4.26)

Note that 𝜇̃ → 𝜇 of (4.7) when |𝑘 − 𝑘0 | � 1. The di�raction spectrum thus reads

𝑆 (𝑘) = 𝐴± 𝛼 |𝑘 − 𝑘0 |−𝛾
(1 + |𝑘 − 𝑘0 |𝛼 )2

. (4.27)

This peak’s intensity is 𝐴 = 𝐴+ +𝐴−; its width is unfortunately unbound (similarly to
a Lorentzian).

To remedy the width problem, we choose an erf-like distribution function,

𝜇 (𝑘) − 𝜇 (𝑘0) = ±𝐴±
√
𝜋

2 erf ( |𝑘 − 𝑘0 |𝛼 ) , (4.28)

so that 𝜇̃
|𝑘−𝑘0 |�1−−−−−−−→ 𝜇. The di�raction spectrum is thus

𝑆 (𝑘) = 𝐴±𝛼 exp
(− |𝑘 − 𝑘0 |2𝛼 ) |𝑘 − 𝑘0 |−𝛾 . (4.29)

This peak’s intensity is 𝐴 = (𝐴+ +𝐴−)
√
𝜋/2. The width is given by

𝑊 2
± =

∫
(𝑘 − 𝑘0)2 𝑆 (𝑘) d𝑘∫

𝑆 (𝑘) d𝑘 =
𝐴± 12Γ

[ 1
2 + 1

𝛼

]
𝐴±
√
𝜋

2

=
1√
𝜋
Γ

[
1
2 +

1
𝛼

]
, (4.30)

so that𝑊 2 =𝑊 2+ +𝑊 2− = 2√
𝜋
Γ
[ 1
2 + 1

𝛼

]
. However,𝑊

(
𝛼 = 2 − log2 3

)
= 1.442, which is

still too high.
In summary, the power law (4.7) infers in�nite spectral power. Any logistic function

amends the issue, but only some functions lead to a �nite peak width. In any case, it is
not unique.

4.2.3.2 The Missing Dyadic Component of Thue-Morse

For a substitution tilingwith leading eigenvalue 𝜆∗, one expects that the Bragg spectrum
is supported on the dyadic values Z

[
𝜆−1∗

]
. It happens for quasiperiodic tilings, for

which Z
[
𝜆−1∗

]
� Z + 𝜆−1∗ Z; for Period Doubling tiling with Z

[ 1
2
]
; and other tilings.

In Thue-Morse, however, this is not the case, and the Bragg spectrum is supported on
Z only. We shall explain the reason below.

Let us start with a periodic tiling as in the previous section. Any dyadic component
infers wavevectors of the form 𝑘𝑝 = 1/𝑝𝑎. However,

𝐺 (𝑘2) =
∑︁
𝑛

e2𝜋 i𝑛/2 =
∑︁
𝑛=2𝑟

e2𝜋 i𝑟 +
∑︁

𝑛=2𝑟+1
e2𝜋 i(𝑟+ 1

2 ) =
∑︁
𝑛=2𝑟
(1) +

∑︁
𝑛=2𝑟+1
(−1) = 0,

𝐺 (𝑘3) =
∑︁
𝑛

e2𝜋 i𝑛/3 =
∑︁
𝑛=3𝑟

e2𝜋 i0+2𝜋 i𝑟 +
∑︁

𝑛=3𝑟+1
e2𝜋 i

1
3+2𝜋 i𝑟 +

∑︁
𝑛=3𝑟+2

e2𝜋 i
2
3+2𝜋 i𝑟 = 0,

... (4.31)

In other words, if a periodic component exists, the wavevectors 𝑘𝑝 = 1/𝑝𝑎 nullify due
to destructive interference.
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Let us return to Thue-Morse. Note that the tiles𝐴 and 𝐵 come always in pairs: if the
tile in the (2𝑟 − 1)th position is 𝐴, then the tile in 2𝑟 th is 𝐵, and vice versa. Therefore,
𝑥𝑛=2𝑟 = 𝑟 (𝑙𝐴 + 𝑙𝐵). In other words, the Thue-Morse tiling admits an underlying periodic
tiling with tile length 𝑙0 � 𝑙𝐴 + 𝑙𝐵 . Hence, all the dyadic wavevectors 𝑘 = 𝑚

2𝑛 ∈ Z
[ 1
2
]

for 𝑛 > 1 must nullify.

4.2.3.3 Thue-Morse with General Parameters

Let us take a general lattice with atomic density (4.18) with general 𝑠𝑛 and 𝑙𝑛 . Note
that by adding an atomic density with a constant 𝑠𝑖 = 1, we can always rescale 𝑠𝑛 to ±1.
Therefore, a general di�raction pattern has an 𝑠𝑛 = ±1 component and an underlying
𝑠𝑛 = 1 component.

Inspecting the 𝑠𝑛 = ±1 component, we have from (4.19),

𝐺𝑁 (𝑘) =
𝐿𝑁∑︁
𝑛=1

𝑠𝑛 e2𝜋 i𝑘𝑥𝑛 =

𝐿𝑁∑︁
𝑛=1

e2𝜋 i (𝑘𝑥𝑛+𝜙𝑛) , 𝑠𝑛 = e2𝜋 i𝜙𝑛 . (4.32)

From a previous discussion, 𝑥2𝑟 = 𝑟 (𝑙𝐴 + 𝑙𝐵) = 𝑟𝑙0. Hence

𝐺𝑁 (𝑘) =
𝐿𝑁 /2∑︁
𝑛=2𝑟

e2𝜋 i (𝑘𝑟𝑙0+𝜙2𝑟 ) +
𝐿𝑁 /2∑︁
𝑛=2𝑟−1

e2𝜋 i (𝑘 (𝑟−1)𝑙0+𝑘𝑙2𝑟−1+𝜙2𝑟−1) . (4.33)

The �rst sum is exactly the Thue-Morse sequence for the even positions with constant
length 𝑙𝐴/𝐵 = 𝑟𝑙0 and with scattering amplitudes 𝑠2𝑟 = e2𝜋 i𝜙2𝑟 = ±1. The second
sum is the Thue-Morse sequence for the odd positions with a phase respecting the
sequence 𝑠2𝑟−1, and positions 𝑥𝑟 = (𝑟 − 1) 𝑙0+𝑙2𝑟−1 implying tile widths 𝑙0, 𝑙0±𝛿𝑙 , where
𝛿𝑙 = 𝑙𝐴 − 𝑙𝐵 . This corresponds to the tile length of doublets on Thue-Morse sequence,
which have the same characteristic as the original sequence. Thus, the amplitude is
(recursively) the sum of

𝐺𝑁 (𝑘 ; 𝑙𝐴, 𝑙𝐵) = 𝐺𝑁−1 (𝑘 ; 𝑙0, 𝑙0) +𝐺 (2)𝑁−1 (𝑘 ; 𝑙0, 𝑙0 + 𝛿𝑙, 𝑙0, 𝑙0 − 𝛿𝑙) . (4.34)

4.2.4 Data Analysis
In this section, we perform analysis on experimental data.

4.2.4.1 Check Families

The family of 1
5 seems to be well shown in the experiments of Axel and Terauchi [75].

Figure 4.3 shows this for 𝑁 = 1024 (𝑁 = 128 exhibits similar results). Several chosen
peaks were matched to the closest rational data of families 1

3 and
1
5 . The results, which

Table 4.2: Peak comparison of Axel and Terauchi [75] for families 1
3 and

1
5 for 𝑁 = 1024

data.

Family 1/3
19
192

29
192

17
96

19
96

11
48

53
192

29
96

31
96

17
48

41
96

43
96 − 53

96
55
96

29
48

65
96

67
96

71
96

79
96

Family 1/5
1
10

3
20

7
40

1
5

9
40

11
40

3
10

13
40

7
20

17
40

9
20

19
40

11
20

23
40

3
5

27
40

7
10

29
40

4
5

Di�. × 200 0.21 0.21 0.42 0.42 0.83 0.21 0.42 0.42 0.83 0.42 0.42 − 0.42 0.42 0.83 0.42 0.42 2.92 4.58
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Figure 4.3: Thue-Morse di�raction data of Axel and Terauchi [75]. Grids are superim-
posed on the original data to better decipher the peaks. Blue grid: family of 1

5 (divisions:
coarse = 1

20 , �ne = 1
80 ); red grid: family of 1

5 (divisions: coarse =
1
24 , �ne = 1

92 ). The
𝑥-axis was calibrated using the 0 and 1

2 peaks.

are presented in Table 4.2, show that most of them di�er by less than the 1/200 error
reported in [75]. Therefore, using these experiments to undisputedly prove any family
is futile; the results are at most inconclusive.

4.2.5 The Rudin-Shapiro Tiling
The Rudin-Shapiro sequence is famous, since its di�raction spectrum in absolutely
continuous [85]. Its Hamiltonian spectrum, however, admits the GLT of Bellissard [27].
It is a good candidate to disprove the Bloch theorem for aperiodic tilings, as it is more
distinctive than the Thue-Morse tiling.

4.2.5.1 Definitions

We use the following operative de�nition.

• Start with 𝐵 or 𝐶 (this is relevant in �nite tilings).
• Apply the following substitution 𝑁 times:

𝐴 ↦→ 𝐴𝐶, 𝐶 ↦→ 𝐴𝐵,

𝐵 ↦→ 𝐷𝐶, 𝐷 ↦→ 𝐷𝐵.
(4.35)

• Decorate the �nal tiling of order 𝑁 by

𝐴 ↦→ 00, 𝐶 ↦→ 01,
𝐵 ↦→ 10, 𝐷 ↦→ 11.

(4.36)

The resulting tiling in Γ̃ = {0, 1} alphabet is the Rudin-Shapiro tiling.
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(a) Di�raction. (b) IDOS.

Figure 4.4: The Rudin-Shapiro tiling di�raction and IDOS.

4.2.5.2 Simulation

The potential values used are 𝑣0 = −𝑣1 = 1 for the tight binding simulations; the
structure factor calculations employed scattering amplitudes of 𝑠0 = −𝑠1 = 1 with
equal tile widths 𝑑0 = 𝑑1 = 1. The results are shown in Figure 4.4. Gaps are visible in
the counting function, but the structure factor shows no peaks.

The “�at” structure factor in Figure 4.4 is a result of 𝑑0 = 𝑑1. Varying the tile widths
produced additional features, which are not found to be di�raction peaks of any kind.
Although the absolutely continuous structure factor was derived assuming 𝑑0 = 𝑑1 = 1
in [85], the general—unequal—case seems to be absolutely continuous as well.

If we wish to not decorate, we apply 𝑣𝐴 = 𝑣𝐶 = 1 = −𝑣𝐵 = −𝑣𝐷 . Note that switching
𝑣𝐶 ↔ 𝑣𝐷 will result in a periodic-like spectrum [85].

4.3 Autocorrelation and Di�raction
Recall that the di�raction measure is also given by∫ ∞

−∞
d𝜇 (𝑘) e2𝜋 i𝑘𝑚 =

∫ ∞

−∞
d𝑘 𝑆 (𝑘) e2𝜋 i𝑘𝑚 = 𝐶 (𝑚) , (4.37)

with the inverse transform,

𝑆 (𝑘) =
∑︁
𝑚∈Z

𝐶 (𝑚) e−2𝜋 i𝑘𝑚 = 𝐶 (0) + 2
∑︁
𝑚≥1

𝐶 (𝑚) cos (2𝜋𝑘𝑚) . (4.38)

So the question of calculating di�raction boils down to computing the autocorrelation
function 𝐶 (𝑚). We shall do it in the section below.

4.3.1 The Model – Edge of Supertiles
Consider the autocorrelation function

𝐶 (𝑚) = 〈𝑙𝑛𝑙𝑛+𝑚〉 , (4.39)

where 𝑙𝑛 are letters (supertiles of size 1) at location 𝑛. We demand either of

𝑙𝑛𝑙𝑛+𝑚 = 𝛿𝑙𝑛,𝑙𝑛+𝑚 =

{
1 if 𝑙𝑛 = 𝑙𝑛+𝑚,
0 otherwise; (4.40a)
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𝑙𝑛𝑙𝑛+𝑚 = 2𝛿𝑙𝑛,𝑙𝑛+𝑚 − 1 =
{
1 if 𝑙𝑛 = 𝑙𝑛+𝑚,
−1 otherwise. (4.40b)

Therefore, looking on supertiles of size 𝑝 = 𝑚 + 1, we require that the �rst and the
last letters are the same. In other words, we seek supertiles of type 𝐴𝑥𝑥𝑥𝑥𝑥𝑥𝐴 and
𝐵𝑥𝑥𝑥𝑥𝑥𝑥𝐵. Taking a probabilistic approach as in [82, 83], the probabilities of these
supertiles are given by the proper elements in the leading eigenvector 𝑣∗𝑚+1 (recall,
𝑣∗𝑚+1𝐴𝑚+1 = 𝑣

∗
𝑚+1𝜆

∗ and∑𝑘

(
𝑣∗𝑚+1

)
𝑘
= 1 in Section 3.1.2.3). Explicitly, using correlation

rule (4.40a), we obtain

𝐶 (𝑚) =
∑︁

𝑙1=𝑙𝑚+1

(
𝑣∗𝑚+1

)
𝑙1 ...𝑙𝑚+1

, 𝑙1 . . . 𝑙𝑚+1 ∈ Γ𝑚+1 . (4.41)

Since 𝑙1 = 𝑙𝑚+1, then 𝐶 (𝑚) = 𝐶 (−𝑚) as expected. Also, by this de�nition, 𝐶 (0) = 1.
Note that unlike in the calculation of the GLT, we do not take all supertiles 𝑙 (𝑚+1) ∈
Γ𝑚+1, but rather a subset of them.

It is useful to de�ne an autocorrelation without its average,

𝐶 (𝑚) = 𝐶 (𝑚) −𝐶, 𝐶 = lim
𝑀→∞

1
2𝑀 + 1

𝑀∑︁
𝑚=−𝑀

𝐶 (𝑚) , (4.42)

so that the peaks at 𝑘 ∈ Z are excluded from its structure factor.
Next, we need to calculate 𝐶 (𝑚) according to the rule (4.41). It is quite simple to

compute it to any order using the standard tools, but we are not aware of a general
formula except for simple cases.

4.3.1.1 Examples

Let us inspect a few known examples.

Periodic.

• Here, 𝑣∗𝑝 =
( 1
2 ,

1
2
)
to any order 𝑝 . Additionally, for even 𝑝 , 𝑙 (𝑝) = 𝐴𝐵 . . . 𝐴𝐵;

and for odd 𝑝 , 𝑙 (𝑝) = 𝐴𝐵 . . . 𝐴𝐵𝐴 (similarly for 𝐵). Thus, using correlation rule
(4.40a), we obtain 𝐶per (𝑚) = 0 for an odd𝑚, and 𝐶per (𝑚) = 1

2 + 1
2 = 1 for an

even𝑚. Hence, applying (4.38), we have

𝑆per (𝑘) =
∑︁
𝑚′∈Z

1 · e−2𝜋 i𝑘 2𝑚′ =
∑︁
𝑛∈Z

1
2𝛿 (𝑘 − 𝑘𝑛) , (4.43)

with 𝑘𝑛 = 1
2𝑛 using Poisson summation formula in the last step.

• There is a strong Gibbs phenomenon.

Thue-Morse.

• Calculating 𝐶TM (𝑚) using correlation rule (4.40a), we have

𝐶TM (𝑚) = 1, 13 ,
1
3 ,

2
3 ,

1
3 ,

1
2 ,

2
3 ,

1
2 ,

1
3 ,

7
12 ,

1
2 ,

5
12 ,

2
3 ,

5
12 ,

1
2 ,

7
12 ,

1
3 ,

13
24 ,

7
12 ,

11
24 ,

1
2 ,

13
24 ,

5
12 ,

11
24 ,

2
3 ,

11
24 ,

5
12 ,

13
24 ,

1
2 ,

11
24 ,

7
12 ,

13
24 ,

1
3 , . . . (4.44)
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Table 4.3: Summary of properties of chosen substitutions.

Name Rule 𝜏∗ (𝐾0) 𝐻̌ 1 (Ω,Z) Di�raction

Periodic
{
𝐴 ↦→ 𝐴𝐵

𝐵 ↦→ 𝐴𝐵
Z Z Bragg: 𝑘 = 𝑝

Fibonacci
{
𝐴 ↦→ 𝐴𝐵

𝐵 ↦→ 𝐴
Z2 Z2 Bragg: 𝑘 = 𝑝 + 𝑞/𝜏

Thue-Morse
{
𝐴 ↦→ 𝐴𝐵

𝐵 ↦→ 𝐵𝐴
1
3Z

[ 1
2
]

Z
[ 1
2
] ⊕ Z SC: 𝑘 =

𝑝

𝑞
1
2𝑛 odd 𝑞

Period Doubling
{
𝐴 ↦→ 𝐴𝐵

𝐵 ↦→ 𝐴𝐴
1
3Z

[ 1
2
]

Z
[ 1
2
] ⊕ Z Bragg: 𝑘 = 𝑚

2𝑛

Rudin-Shapiro

𝐴 ↦→ 𝐴𝐶

𝐵 ↦→ 𝐷𝐶

𝐶 ↦→ 𝐴𝐵

𝐷 ↦→ 𝐷𝐵

Z
[ 1
2
]

Z
[ 1
2
] ⊕ Z
⊕ Z2 [ 1

2
] AC: no peaks

• We �nd the following recursive rules for normalization (4.40a)

𝐶TM (1) = 1
3 , 𝐶TM (2𝑚) = 𝐶TM (𝑚) ,

𝐶TM (2) = 1
3 , 𝐶TM (2𝑚 + 1) = 1 − 1

2 (𝐶TM (𝑚) +𝐶TM (𝑚 + 1)) .
(4.45a)

Removing Bragg peaks in normalization (4.40b) (cf. [73, Sec. 10.1] and [86])
yields,

𝐶TM (1) = − 1
3 , 𝐶TM (2𝑚) = 𝐶TM (𝑚) ,

𝐶TM (2) = − 1
3 , 𝐶TM (2𝑚 + 1) = − 1

2 (𝐶TM (𝑚) +𝐶TM (𝑚 + 1)) .
(4.45b)

• The structure factor 𝑆 (𝑘) (with rule (4.40b)) replicates previous results, but with
slower convergence (see Figure 4.5).

• The Gibbs phenomenon is less prominent than in the periodic case, since the
peaks are singular continuous rather than Bragg ones.

Period Doubling.

• Calculating 𝐶PD (𝑚) using rule (4.40a), we have 𝐶PD (0) = 1 and

𝐶PD
(
𝑚𝑝,𝑞

)
= 1 − 2

3 2
−𝑝 , 𝑚𝑝,𝑞 = 2𝑝 + 2𝑝+1𝑞, 𝑝 ≥ 0, 𝑞 ∈ Z. (4.46)

Similar expression exists for the regular Paper Folding tiling [73, 85].

• 𝑆PD (𝑘) exhibits Bragg peaks at 𝑘 = 2−𝑝 as expected. Explicit, but tedious,
calculation yields (cf. [23, Sec. IV B] and [73, Sec. 9.4.4]),

𝑆PD (𝑘) =
∑︁
𝑛∈Z

13
9 𝛿 (𝑘 − 𝑛) +

∑︁
𝑛∈Z

∑︁
𝑝≥0

10
9

1
4𝑝 𝛿

(
𝑘 − 2𝑛 + 1

2𝑝+1

)
. (4.47)

The summary of the di�raction spectra and Hamiltonian spectra of some chosen
substitutions is given in Table 4.3.
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4.3.2 Correspondence between 𝑺 (𝒌) = |𝑮 (𝒌)|2 and 𝑺 (𝒌) = F̂𝒎 [𝑪 (𝒎)]

Let us show the correspondence between both de�nitions (4.2) and (4.38). We start with
𝐶 (𝑚) = 〈𝑠𝑛𝑠𝑛+𝑚〉 and take rule (4.40b), i.e., assign 𝑠𝑛 = ±1 for tiles𝐴 and 𝐵, respectively.
Taking the Fourier transform of the autocorrelation yields the di�raction [87, 88],
namely, 𝑆 (𝑘) = F̂𝑚 [𝐶 (𝑚)]. Thus, we have

𝑆 (𝑘) =
∑︁
𝑚

e−2𝜋 i𝑘𝑚
∑︁
𝑛

𝑠𝑛𝑠𝑛+𝑚

=
∑︁
𝑛

𝑠𝑛 e2𝜋 i𝑘𝑛
∑︁
𝑚

e−2𝜋 i𝑘 (𝑚+𝑛) 𝑠𝑛+𝑚

=
∑︁
𝑛

𝑠𝑛 e2𝜋 i𝑘𝑛
∑︁
𝑚

𝑠𝑚 e−2𝜋 i𝑘𝑚 = 𝐺 (−𝑘)𝐺 (𝑘) , (4.48)

where 𝐺 (𝑘) = F̂ [𝜌 (𝑥)] with 𝜌 (𝑥) = ∑
𝑚 𝑠𝑚𝛿 (𝑥 − 𝑥𝑚), 𝑥𝑚 = 𝑚𝑎 and 𝑎 = 1. Since

𝜌 (𝑥) is real, then 𝐺 (−𝑘) = 𝐺∗ (𝑘); thus 𝑆 (𝑘) =
��𝐺 (𝑘)��2 as required. The results of

comparison for the Thue-Morse tiling are given in Figure 4.5.
In order to have the proper normalization for an in�nite tiling, set


𝐶 (𝑚) = lim

𝑁→∞
1
𝑁

𝑁−1∑︁
𝑛=0

𝑠𝑛𝑠𝑛+𝑚,

𝑆 (𝑘) = lim
𝑁→∞

1
𝑁
|𝐺𝑁 (𝑘) |2 .

(4.49)

This will not a�ect the calculation above.
To match with the structure factor using 𝜌 (𝑥) of (4.18) for a tiling-dependent

position 𝑥𝑛 , we update the de�nition of the autocorrelation to a continuous one by

𝐶 (𝑥) =
∫

d𝑦 𝜌∗ (𝑦) 𝜌 (𝑥 + 𝑦) , (4.50)

for a general 𝜌 (𝑥) (not necessarily real). Then

𝑆 (𝑘) =
∫

d𝑥 e−2𝜋 i𝑘𝑥
∫

d𝑦 𝜌∗ (𝑦) 𝜌 (𝑥 + 𝑦)

=

∫
d𝑦 𝜌∗ (𝑦) e2𝜋 i𝑘𝑦

∫
d𝑥 e−2𝜋 i𝑘 (𝑥+𝑦) 𝜌 (𝑥 + 𝑦)

=

∫
d𝑦 𝜌∗ (𝑦) e2𝜋 i𝑘𝑦

∫
d𝑥 𝜌 (𝑥) e−2𝜋 i𝑘𝑥 = 𝐺∗ (𝑘)𝐺 (𝑘) , (4.51)

as required. The proper normalization is now: lim𝑁→∞ 1
𝑥𝑁

∫ 𝑥𝑁
0 d𝑥 .

4.4 Di�raction 𝑺 (𝒌) via Cohomology 𝑯̌ 1(ℤ)

In this section, we show how to calculate the di�raction—andwindings using a phason—
of various tilings from the Čech cohomology (and its Bratteli diagrams).

4.4.1 Di�raction of Period Doubling Tiling

The Period Doubling tiling Čech cohomology is 𝐻̌ 1
PD � Z ⊕ Z

[ 1
2
]
[53, 89].
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Figure 4.5: Comparison of both di�raction procedures for the Thue-Morse sequence.

4.4.1.1 Observations

The Bratteli diagrams of the Period Doubling tiling exhibit a de�nite structure at each
order 𝑛 = 𝐹𝑁 = 2𝑁 as shown in Figure 4.6. This is to be expected as 𝜆∗PD = 2. Excluding
𝐹𝑁 = 1, the following holds for each order 𝐹𝑁 = 2𝑁 .

• There are exactly 2 cycles (connected in 2 adjacent nodes) of cyclically-permuted
2𝑁 -supertiles each.

• The long cycle is of length 𝐹𝑁 ; the short one is of length 𝐹𝑁 /2.

• The cyclic permutation is exactly by 1 tile (the leftmost goes rightwards).

• Each 2𝑁 -supertile in the short 2𝑁 -cycle is twice a 2𝑁−1-supertile of the long
2𝑁−1-cycle with the same ordering.

• All supertiles have the same probability of 𝑝𝑛 = 𝑣∗𝑛,𝑗 = 1/3 2𝑁−1.

• The number of 𝐵-s for the 2𝑁 -supertiles is 𝑛L
𝐵
= [𝐹𝑁 /3] in the long cycle, and

𝑛S
𝐵
= 2 [𝐹𝑁 /6] in the short one, where [𝑥] is the nearest integer to 𝑥 .

For example, in order 𝑁 = 3 (length 𝐹𝑁 = 8), the long and short cycles read (with
𝐴↔ 0 and 𝐵 ↔ 1),

𝐶
long
3 =

01000101
10001010
00010101
00101010
01010100
10101000
01010001
10100010

, 𝐶short
3 =

0100 0100
1000 1000
0001 0001
0010 0010

; (4.52a)
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Figure 4.6: Bratteli diagrams of the Period Doubling tiling for orders 𝑛 = 2𝑁 .

and in order 𝑛 = 4,

𝐶
long
2 =

0100
1000
0001
0010

, 𝐶short
2 =

01 01
10 10 . (4.52b)

Remark. For 𝑛 = 1, the long cycle is of length 1 (𝐴→ 𝐴); the short one is of length 0.
The probabilities of the tiles are 𝑝𝐴0 = 2

3 and 𝑝
𝐵
0 = 1

3 .

4.4.1.2 Phason and Di�raction

The observations above allow us to de�ne a phason 𝜙 (𝑁 ) for each long cycle of order
2𝑁 (the phason for the short cycle is already given by 𝜙 (𝑁−1) ). In other words, the
matrix 𝐶 long

𝑁
(𝑛, 𝜙) acts as the Σ1

𝑁
(𝑛, 𝜙) matrix in the Fibonacci case. Let us de�ne it

more carefully.
Let 𝑛 = 0 . . . 2𝑁 − 1 be the location of a 2𝑁 -supertile in the horizontal direction

in 𝐶𝑁 and let 𝜙 = 𝜙 (𝑁 ) = 2𝜋
(
0 . . . 2𝑁 − 1) /2𝑁 be the vertical one. The phason is

well-de�ned, since there are exactly 2𝑁 supertiles (of order 𝑁 ) in the long cycle. We
de�ne the Fourier transform over 𝑛,

𝐺𝑁 (𝜉, 𝜙) � F̂𝑛𝐶𝑁 (𝑛, 𝜙) , (4.53)

with

𝑆𝑁 (𝜉, 𝜙) � |𝐺𝑁 (𝜉, 𝜙) |2 /𝐹𝑁 , (4.54a)
Θ𝑁 (𝜉, 𝜙) � arg𝐺𝑁 (𝜉, 𝜙) . (4.54b)
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We also de�ne the Fourier transform in both directions𝑚 and 𝜙 ,

Υ𝑁 (𝜉, 𝜂) � F̂𝜙 F̂𝑛𝐶 (𝑛, 𝜙) . (4.55)

This allows a scattering experiment as in Dareau et al. [38].

Remark. Recall that 𝜉, 𝜂 ∈ 0 . . . 𝐹𝑁 − 1. It is also convenient to use 𝑘 = 𝜉/𝐹𝑁 and
𝑞 = 𝜂/𝐹𝑁 so that 𝑘, 𝑞 ∈ [0, 1).
Let us calculate it explicitly. Take 𝑡𝑁 be a representative 2𝑁 -supertile, let T be a cyclic
permutation over 𝑛 by a single tile (T 𝑡𝑁 (𝑛) = 𝑡𝑁 (𝑛 + 1)), and set 𝜙𝑚 = 2𝜋𝑚/𝐹𝑁 . Note
that 𝐶𝑁 can be written as

𝐶𝑁 (𝑛,𝑚) = T𝑚𝑡𝑁 (𝑛) . (4.56)
Taking 𝜔 = 𝜔𝑁 = exp (2𝜋 i/𝐹𝑁 ), its Fourier transform reads

𝐺𝑁 (𝜉,𝑚) =
𝐹𝑁 −1∑︁
𝑛=0

𝜔−𝑛𝜉T𝑚𝑡𝑁 (𝑛) = 𝜔𝑚𝜉
𝐹𝑁 −1∑︁
𝑛=0

𝜔−𝑛𝜉𝑡0 (𝑛) = 𝜔𝑚𝜉𝜏𝑁 (𝜉) , (4.57)

with 𝜏𝑁 the Fourier transform of 𝑡𝑁 . Thus, setting 𝜃𝑁 (𝜉) = arg 𝑡𝑁 (𝜉), we obtain
𝑆𝑁 (𝜉) = |𝜏𝑁 (𝜉) |2 /𝐹𝑁 , (4.58a)

Θ𝑁 (𝜉, 𝜙) = 2𝜋𝜉𝑚/𝐹𝑁 + 𝜃𝑁 = 𝜙𝑚𝜉 + 𝜃𝑁 . (4.58b)

Additionally,

Υ𝑁 (𝜉, 𝜂) =
𝐹𝑁 −1∑︁
𝑚=0

𝜔−𝑚𝜂𝜔𝑚𝜉𝜏𝑁 (𝜉) = 𝜏𝑁 (𝜉) 𝐹𝑁𝛿𝜉,𝜂 . (4.59)

Hence, in a 2𝑑 di�raction experiment [38], we expect a straight diagonal line.

Remark. One may ask how is that in Fibonacci we have a phason with a de�nite slope
(Σ1 = T 𝑠 (𝑚)𝑡𝑁 ), whereas in PD it only moves by 1. The reason is that is Fibonacci
permuting cyclically by 𝑐−1

𝑁
= 𝐹−1

𝑁−1 (modulo 𝑑𝑁 = 𝐹𝑁 ) gives T 𝑐−1𝑁 𝑡𝑁 ' 𝑡𝑁—up to
a single adjacent pair of tilings. This leads to a natural de�nition of 𝑠 (𝑚) = 𝑚𝑐−1

𝑁

(mod 𝑑𝑁 ). The Period Doubling tiling, however, is not C&P, and thus there is no
“magic” translation. Nonetheless, we can de�ne a simple phason—of walking along the
long cycle on the Bratteli graph.

4.4.1.3 Calculating Structure Factor from Bra�eli Diagrams

We choose a random 2𝑁 -supertile. It may be either a cyclic permutation of 𝑡 (1) = 𝑡𝑁
or of the double 𝑡 (2) = 𝑡𝑁−1𝑡𝑁−1. We denote 𝐴𝑁 = |𝐺𝑁 |, and denote the contribution
of 𝑡 (1) to it by 𝐴 (1)

𝑁
. The contribution of 𝑡 (2) is twice that of 𝑡 (1)

𝑁−1 but on even 𝜉 only:

𝐴 (2)
𝑁
(2𝜉) =

{
2𝐴 (1)

𝑁−1 (𝜉) even 𝜉 ,
0 odd 𝜉 .

Counting in the probabilities (over all cyclic permutations), 𝑝
(
𝑡 (1)

)
= 2
3 and 𝑝

(
𝑡 (2)

)
= 1

3 .
Together,

𝐴𝑁 (𝜉) = 2
3𝐴
(1)
𝑁
(𝜉) + 1

3𝐴
(2)
𝑁
(𝜉) = 2

3

{
𝐴 (1)
𝑁
(𝜉) +𝐴 (1)

𝑁−1 (𝜉/2) even 𝜉 ,
𝐴 (1)
𝑁
(𝜉) odd 𝜉 .

(4.60)

We assume next:
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1. Self similarity. For large𝑁 , tilings of consecutive orders seem similar: 𝐴 (1)
𝑁
(2𝜉) '

2𝐴 (1)
𝑁−1 (𝜉).

2. Equal contribution. Each new contribution of 𝐴𝑁 is the same. Explicitly,
𝐴 (1)
𝑁
(odd 𝜉) = 𝐴0 for all 𝑁 .

With these assumptions, we obtain for each 𝜉𝑝,𝑞 = 𝑝 2𝑞 .

𝐴𝑁
(
𝜉𝑝,𝑙

)
=
2
3
(
2𝑞+1 − 1) 𝐴0

𝑞�1−−−→ 4
32

𝑞𝐴0. (4.61)

As 𝑆𝑁 = |𝐴𝑁 |2 /𝐹𝑁 , we obtain for each 𝑘𝑝,𝑙 = 𝑝/2𝑙 = 𝑝 2𝑞−𝑁 ,

𝑆
(
𝑘𝑝,𝑙

)
=
16
9 𝐴

2
0 22(𝑁−𝑙)2−𝑁 ∼ 4−𝑙𝐹𝑁 . (4.62)

Since 𝑆
(
𝑘𝑝,𝑙

) ∼ 𝐹𝑁 , these are Bragg peaks [23]. The scaling by 4−𝑙 retrieves the Period
Doubling tiling results (cf. (4.47), [23, Sec. IV B] and [73, Sec. 9.4.4]).

4.4.1.4 Windings

The (discrete) winding number of Θ𝑁 at some 𝜉 is

𝑊 (𝜉) � 1
𝐹𝑁

𝐹𝑁 −1∑︁
𝑚=0

𝜕Θ𝑁 (𝜉,𝑚)
𝜕𝜙𝑚

= 𝜉 . (4.63)

Hence, for any Bragg peak at 𝑘𝑝,𝑙 = 𝑝 2−𝑙 with an odd 𝑝 , the winding reads

𝑊
(
𝑘𝑝,𝑙

)
= 𝑝 2𝑁−𝑙 . (4.64)

Since𝑊
(
𝑘𝑝,𝑙

) 𝑁→∞−−−−−→ ∞, it is not well de�ned. However, we can inspect the �nite
relative winding,

Ξ
(
𝑘𝑝,𝑙 , 𝑘𝑝′,𝑙 ′

)
�
𝑊

(
𝑘𝑝,𝑙

)
𝑊

(
𝑘𝑝′,𝑙 ′

) =
𝑝

𝑝 ′
2𝑙 ′−𝑙 < ∞. (4.65)

4.4.2 Di�raction of Periodic Tilings
In the following section, we show how to calculate the di�raction of a purely periodic
tiling. Its Čech cohomology is 𝐻̌ 1

Per � Z.

4.4.2.1 Di�raction via Autocorrelation

Suppose there is a tiling with a period 𝑅, and suppose, for simplicity, that all the tiles
are di�erent. Therefore,

𝐶 (𝑚) = 𝑐𝑙 𝛿𝑚,𝑅𝑗+𝑙 , 0 ≤ 𝑙 < 𝑅, 𝑗 ∈ Z, 𝑐0 = 1. (4.66)

Hence, the di�raction 𝑆 (𝑘) = ∑
𝑚𝐶 (𝑚) e2𝜋 i𝑚𝑘 reads,

𝑆 (𝑘) =
𝑅−1∑︁
𝑙=0

𝑐𝑙
∑︁
𝑗 ∈Z

e2𝜋 i (𝑅𝑗+𝑙)𝑘 =
𝑅−1∑︁
𝑙=0

𝑐𝑙 e2𝜋 i𝑙𝑘
∑︁
𝑗 ∈Z

e2𝜋 i𝑅𝑗𝑘

= 𝑐𝑅 (𝑘)
∑︁
𝑝∈Z

𝛿 (𝑝 − 𝑅𝑘) = 𝑐𝑅 (𝑘)
𝑅

∑︁
𝑝∈Z

𝛿 (𝑘 − 𝑝/𝑅) . (4.67)
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4.4.2.2 Di�raction via Bra�eli

Let us look on Bratteli diagrams of order 𝐹𝑁 = 𝑅𝑁 . Note that each 𝐹𝑁 diagram has
a single loop of size 𝑅 with all supertiles cyclically permuted. Additionally, each 𝐹𝑁 -
supertile has 𝑅 copies of 𝐹𝑁−1 supertile, or equivalently, 𝐹𝑁−1 copies of 𝑅-supertile. We
take a representative 𝑡𝑁 and denote by𝐺𝑁 (𝑘) the contribution of 𝑡𝑁 to the di�raction.
Therefore,

𝐺𝑁 (𝑘) = F̂
[
𝑡𝑅 (𝑛) ∗

𝐹𝑁−1−1∑︁
𝑙=0

𝛿 (𝑛 − 𝑅𝑙)
]
= 𝐺𝑅 (𝑘) ·

𝐹𝑁−1−1∑︁
𝑙=0

e2𝜋 i𝑅𝑙𝑘 . (4.68)

Taking 𝑁 →∞, we have (up to a phase),

𝐺 (𝑘) = 𝐺𝑅 (𝑘)
∑︁
𝑝∈Z

𝛿 (𝑝 − 𝑅𝑘) . (4.69)

Thus,
𝑆 (𝑘) = 𝑆𝑅 (𝑘)

∑︁
𝑝∈Z

𝑅−1𝛿 (𝑘 − 𝑝/𝑅) . (4.70)

4.4.3 Di�raction of C&P Tilings
After we have shown the di�raction for Period Doubling tilings, we shall calculate it
for the C&P ones. Their Čech cohomology is 𝐻̌ 1

C&P � Z
2.

4.4.3.1 Observations

There are several immediate �ndings we make on C&P Bratteli diagrams.

• There are exactly 2 cycles, Short and Long, for each approximation 𝑁 .

• The long 𝑑𝑁 -cycle consists of 𝑑𝑁 cyclically permuted 𝑑𝑁 -supertiles. The short
cycle is of length 𝑑𝑁−1 and contains a “rogue” supertile. This is true for any semi-
convergent continued fraction1 𝑠 (𝑚)

𝑁
with the corresponding lengths 𝐷L = 𝑑

(𝑚)
𝑁

and 𝐷S = 𝑑𝑁−1.

• The number of 𝐵-s in each 𝐹𝑁 -supertile corresponds to the slope 𝑠 such that if
𝑠𝑁 = 𝑛𝐵/𝐹𝑁 then |𝑠 − 𝑠𝑁 | < 1/𝐹𝑁 .

• The topology of the cycles may vary.

Next, we make a several assumptions.

1. The two cycles have total probability 𝑃S and 𝑃L, respectively, for a random node
(𝑑𝑁 -supertile) to be inside them, with

𝑃S + 𝑃L = 1. (4.71)

2. These probabilities satisfy in the 𝑁 →∞ limit

𝑃S/𝑃L = 𝑠 . (4.72)

Hence
𝑃L = 𝑠 /(𝑠 + 1) , 𝑃S = 1 /(𝑠 + 1) . (4.73)

1Let 𝑠 = [0;𝑎1, 𝑎2, . . .] and 𝑠𝑁 = [0;𝑎1, 𝑎2, . . . , 𝑎𝑁 ] = 𝑐𝑁 /𝑑𝑁 be continued fractions with{
𝑐𝑁 =𝑎𝑁 𝑐𝑁−1+𝑐𝑁−2
𝑑𝑁 =𝑎𝑁𝑑𝑁−1+𝑑𝑁−2 using

( 𝑐−2 𝑐−1
𝑑−2 𝑑−1

)
=

( 0 1
1 0

)
. Then the semi-convergent continued fraction is given by

𝑠
(𝑚)
𝑁

= [0;𝑎1, 𝑎2, . . . , 𝑎𝑁−1,𝑚] = 𝑐 (𝑚)𝑁
/𝑑 (𝑚)
𝑁

with 1 ≤𝑚 ≤ 𝑎𝑁 so that
{
𝑐
(𝑚)
𝑁

=𝑚𝑐𝑁−1+𝑐𝑁−2
𝑑
(𝑚)
𝑁

=𝑚𝑑𝑁−1+𝑑𝑁−2
.
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3. The probabilities of the nodes (supertiles) are equally divided in each cycle of
length 𝐷S = 𝑑𝑁−1 and 𝐷L = 𝑑𝑁 .

4. Nodes contained in both cycles accumulate both probabilities. Explicitly,

𝑃𝑘 =


𝑃S/𝐷S + 𝑃L/𝐷L 𝑘 ∈ 𝐶S,𝐶L,

𝑃S/𝐷S 𝑘 ∉ 𝐶L,

𝑃L/𝐷L 𝑘 ∉ 𝐶S.

(4.74)

4.4.3.2 Di�raction for Periodic C&P Tilings

Let us take a periodic tiling from a C&P procedure with slope 𝑠𝑁 = 𝑐𝑁 /𝑑𝑁 . We know
that from 𝑛 ≥ 𝑑𝑁 − 1, there is a single cycle of length 𝑑𝑁 . We take such a 𝑑𝑁 -supertile
representative 𝑡𝑁 (𝑚). Then, the autocorrelation reads

𝐶𝑁 (𝑚) � 𝑡𝑁 ★ 𝑡𝑁 , (4.75)

and the structure factor

𝑆𝑁 (𝜉) = F̂ [𝑡𝑁 ★ 𝑡𝑁 ] = 𝐺𝑁 (𝜉)𝐺∗𝑁 (𝜉) . (4.76)

Since it is periodic, it has Bragg peaks each 𝜉𝑙 = 𝑙 + 𝑑𝑁𝑝 ,

𝑆𝑁 (𝜉) =
∑︁
𝑝∈Z

𝑑𝑁 −1∑︁
𝑙=0

𝑎𝑙𝛿𝜉,𝑙+𝑑𝑁 𝑝 . (4.77)

Now, similarly to the Period Doubling case, we need information about the inner
structure of the supertiles. This is the winding. In C&P, cyclically permuting 𝑡𝑁 by
𝑐−1
𝑁
(mod 𝑑𝑁 ) results in the same supertile up to a single pair switch. Therefore, we

inspect
𝐶𝑁 (𝑚) =

(T 𝑐−1𝑁 𝑡𝑁 ) ★ 𝑡𝑁 = 𝐶𝑁 (𝑚) + O (1/𝑑𝑁 ) . (4.78)
Its Fourier transform reads,

𝑆𝑁 (𝜉) ' e2𝜋 i𝑐−1𝑁 𝜉 𝐺𝑁 (𝜉)𝐺∗𝑁 (𝜉) = e2𝜋 i𝑐−1𝑁 𝜉 𝑆𝑁 (𝜉) . (4.79)

Since 𝑆𝑁 and 𝑆𝑁 must match, we have a consistency relation,

e2𝜋 i𝑐−1𝑁 𝜉 = 1 =⇒ 𝜉𝑞 = 𝑐𝑁𝑞. (4.80)

Hence, the Bragg peaks must obey this relation by

𝑆𝑁 (𝜉) =
∑︁
𝑝∈Z

𝑑𝑁 −1∑︁
𝑞=0

𝑎𝑞𝛿𝜉,𝑐𝑁𝑞+𝑑𝑁 𝑝 . (4.81)

Note that 𝑎 is dependent on 𝑞 rather than on 𝑙 due to 𝑆𝑁 = 𝑆𝑁 . Additionally, 𝑎𝑞 = 𝑎−𝑞
from symmetry considerations.
Remark. Writing the remainder as 𝑅𝑁 (𝑚) = 𝐶𝑁 (𝑚) −𝐶𝑁 (𝑚), we calculate

𝑅𝑁 (𝑚) = 𝑏
∑︁
𝑙 ∈Z

𝛿𝑚,𝑑𝑁 𝑙+𝑐−1𝑁 , (4.82)

so that its Fourier transform reads

Δ𝑁 (𝜉) = F̂𝑅𝑁 = 𝑏 e2𝜋 i𝑐−1𝑁 𝜉
∑︁
𝑙 ∈Z

e2𝜋 i𝑑𝑁 𝑙𝜉 = 𝑏 e2𝜋 i𝑐−1𝑁 𝜉
∑︁
𝑝∈Z

𝛿𝑝,𝑑𝑁 𝜉 . (4.83)

Therefore,
𝑆𝑁 (𝜉) = e2𝜋 i𝑐−1𝑁 𝜉

(
𝑆𝑁 (𝜉) + 𝑏

∑︁
𝑝∈Z

𝛿𝑝,𝑑𝑁 𝜉
)
, (4.84)

and the di�erence only amounts to the trivial Bragg peaks (𝑘𝑝 = 𝜉𝑝/𝑑𝑁 ∈ Z).
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4.4.3.3 Di�raction for�asiperiodic C&P Tilings

We take (4.81) and change the variables to 𝑘 = 𝜉/𝑑𝑁 obtaining2

𝑆𝑁 (𝑘) =
∑︁
𝑝∈Z

𝑑𝑁 −1∑︁
𝑞=0

𝑎𝑞𝛿 (𝑘 − (𝑝 + 𝑠𝑁𝑞)) . (4.85)

In each 𝑁 -approximation of an irrational slope 𝑠 , we have two cycles implying the
approximation is incomplete.

• The long cycle is exactly the periodic approximation of the current order. Permuting
cyclically by 𝑐−1

𝑁
results in a single pair �ip.

• The short cycle is a periodic approximation for the previous order. Permuting
cyclically by 𝑐−1

𝑁−1 results in at most 2 pair �ips: one in the �rst 𝑑𝑁−1 tiles, and the
other in the rest, if it exists.

Thus, there are two copies of 𝑆𝑁 (𝑘) throughout the Bratteli graphs. Hence, we can
safely take the limit 𝑁 →∞,

𝑆 (𝑘) =
∑︁
𝑝∈Z

∑︁
𝑞∈Z

𝑎𝑞𝛿 (𝑘 − (𝑝 + 𝑠𝑞)) . (4.86)

4.4.4 Di�raction of the Thue-Morse Tiling
The Thue-Morse tiling does not show Bragg di�raction. Let us examine the Bratteli
diagrams and show possible explanations to this.

4.4.4.1 Observations

The Thue-Morse Bratteli diagrams show some structure for two families.

Family 1: length 𝑛 = 2𝑁 (order 𝑁 ).
• There are two cycles: a small of length 𝑛 and a large of length 2𝑛.
• The smaller is inside the larger with two shared nodes.
• The smaller cycle is circularly permuted; the long is not.
• The probability is 2/3𝑛 for the shared nodes and 1/3𝑛 for all the others.
• The shared nodes constitute the Thue-Morse sequence built from substitutions.

Family 2: length 𝑛 = 2𝑁 + 2𝑁−1 (order 3
2𝑁 ).

• There are �ve cycles.
• Their topology reminds a driving wheel.
• Only two of these cycles are circularly permuted. They are of size 𝑛.
• Each node’s probability is either 1/2𝑛 (if shared between cycles) or 1/4𝑛 (else).

Other orders do not show any particular structure.
Since there are no cyclic permutations of (almost) all nodes to each order 𝑁 , we do

not expect a Bragg di�raction as we derived in the previous sections. However, seeing
that at least some cycles are cyclically permuted, we might expect peaks of another
characteristic. These happen to be singular-continuous peaks.

2The Dirac rather than Kronecker delta notation is used for visual aid only.
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4.4.5 Di�raction of Other Tilings
Here we show examples of some tilings and their di�raction.

4.4.5.1 Rudin-Shapiro

The Rudin-Shapiro tiling (see Table 4.3) has an AC di�raction component only [85]. It
has some structure for 𝑛 = 2𝑁 . There are 2 main cycles, but they have no particular
order nor rule. The main cycles are interconnected by 4 smaller cycles (“ears”), which
are cyclically permuted. They consist of ears of order 𝑁 − 1, but permuted between
the 4 families.

4.4.5.2 Paper Folding

The Paper Folding tiling di�raction is D = D2 � Z
[ 1
2
]
[85]. Its rule is 𝐴 ↦→ 𝐴𝐶 ,

𝐵 ↦→ 𝐴𝐷 ,𝐶 ↦→ 𝐵𝐶 , 𝐷 ↦→ 𝐵𝐷 ; its Čech cohomology is 𝐻̌ 1 � Z⊕Z [ 1
2
]
. Like the Period

Doubling tiling, it has special structure each 𝑛 = 2𝑁 . There are two twice-doubly-
interconnected main cycles encompassing all nodes. Each main cycle consists of (same)
4 families dividing it in 4 equal parts. Moreover, each main cycle of order 𝑁 consists
of the previous cycles of order 𝑁 − 1.

4.4.5.3 Non-Fibonacci2

The rule is 𝐴 ↦→ 𝐴𝐴𝐵, 𝐵 ↦→ 𝐵𝐴; its Čech cohomology is 𝐻̌ 1 � Z ⊕ Z2. Its di�raction
is unknown; extrapolating from the Fibonacci and Thue-Morse sequences, it most
probably has a Bragg component at 𝑘B = 𝑝 + 𝑞/𝜏 and a SC component on top of
that. The Bratteli graphs show a similar characteristic to Thue-Morse each Fibonacci
number 𝐹𝑁—that is a single cyclically-permuted cycle among many others, which do
not have any particular structure.

4.4.5.4 Period Tripling

This tiling given by 𝐴 ↦→ 𝐴𝐴𝐵, 𝐵 ↦→ 𝐴𝐴𝐴 producing the Čech cohomology of 𝐻̌ 1 �
Z ⊕ Z [ 1

3
]
. It is similar to Periodic Doubling with the following di�erences. The

di�raction consists only of Bragg peaks on the triadic D3 � Z
[ 1
3
]
. The Bratteli

diagrams produce on each 𝑛 = 3𝑁 the same properties as in the Period Doubling case
(cf. Sec. 4.4.1.1 with the obvious changes).

The Period Tripling tiling can be generalized to any 𝑟 > 1 (“Period 𝑟 -ing”) so that
𝐴 ↦→ 𝐴𝑟−1𝐵, 𝐵 ↦→ 𝐴𝑟 with 𝐻̌ 1 � Z ⊕ Z [ 1

𝑟

]
and a Bragg di�raction component on

D𝑟 � Z
[ 1
𝑟

]
. Note that the gap-labeling group has N ∈ 1

𝑟+1D𝑟 ∩ [0, 1).
It can further be generalized to any rational 𝑡/𝑟 ∈ Qwith 1 ≤ 𝑡 < 𝑟 (not necessarily

coprime) by 𝐴 ↦→ 𝐴𝑟−𝑡𝐵𝑡 , 𝐵 ↦→ 𝐴𝑟 . This results in 𝐻̌ 1 � Z
[ 1
𝑡

] ⊕ Z [ 1
𝑟

]
having a gap

labeling group N ∈ 1
𝑟+𝑡D𝑟 ∩ [0, 1). Its di�raction has a Bragg component on D𝑟 and

possibly other components.



78 Chapter 4. Diffraction of Tilings



Chapter 5

Bloch Theorem

In the previous, sections we have shown that the structure of a quasiperiodic systems
contains topological character encoded in its winding. It corresponds exactly to the
gap labeling of [27, 90], containing the same information. Therefore, there is some link
between the structural and spectral topologies. The most obvious tool to inspect it is
the Bloch theorem. In this section, we shall analyze the Bloch theorem for aperiodic
tilings.

5.1 Bloch Theorem in Periodic Systems
In periodic systems, the Bloch theorem states that any eigenfunction of a periodic
Hamiltonian with period 𝒂 can be written in the following way [1],

𝜓𝒌 (𝒙) = ei𝒌 ·𝒙 𝑢𝒌 (𝒙) , 𝑢𝒌 (𝒙 + 𝒂) = 𝑢𝒌 (𝒙) . (5.1)

Here, 𝑢𝒌 (𝒙) is the Bloch function with period 𝒂. The elementary proof of this theorem
exploits the commutativity between the HamiltonianHper and the translation operator
T 𝒂 , namely

[Hper,T 𝒂
]
= 0. Moreover, the atomic density 𝜌per (𝒙) is also an eigenstate

of the translation operator,

T 𝒂𝜌per (𝒙) = 𝜌per (𝒙) . (5.2)

In quasiperiodic systems, however, the translation operator neither commutes
with the Hamiltonian nor has the density as its eigenvector. Thus, writing the Bloch
theorem naïvely would not work. A di�erent approach is therefore required.

5.2 Bloch Theorem in Cut and Project Tilings
There are many ways to construct quasiperiodic tilings. In this section, we con�ne
ourselves to the Cut and Project (C&P) structures.

5.2.1 Cut and Project – Reminder
The canonical C&P procedure from 𝑛 to𝑚 dimensions is de�ned as follows [42] (see
Section 2.1.1 and Figure 2.1 for a 2𝑑 → 1𝑑 example).
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Cut.

1. Start with an 𝑛-dimensional space 𝑅 = R𝑛 .
2. Insert “atoms” on the integer lattice 𝑍 = Z𝑛 .
3. Divide𝑅 into a physical space 𝐸 ‖ and an internal space 𝐸⊥ such that 𝐸 ‖⊕𝐸⊥ = 𝑅

and 𝐸 ‖ ∩ 𝐸⊥ = {𝒄} with 𝒄 ∈ 𝑅 de�ned below.
4. To resolve ambiguity for 𝐸 ‖ , choose an initial location 𝒄 ∈ 𝑅 such that 𝐸 ‖

passes through 𝒄 . There is no such requirement for 𝐸⊥.

Project.

1. Inspect the hypercube I𝑛 = [−0.5, 0.5)𝑛 .
2. The window is its projection on the internal space𝑊 = 𝜋⊥ (I𝑛).
3. The strip is the product with the physical space 𝑆 =𝑊 ⊗ 𝐸 ‖ .
4. Choose only the points inside the strip 𝑆 ∩ 𝑍 , and project them onto the

physical space, 𝑌 = 𝜋 ‖ (𝑆 ∩ 𝑍 ).
5. The atomic density is given by 𝜌 (𝒙) � 𝜌𝒄 (𝒙) = ∑

𝒚∈𝑌 𝛿 (𝒙 −𝒚) with 𝒙 ∈ 𝐸 ‖ .
Note the implicit dependence of 𝑌 on 𝒄 .

5.2.2 Bloch at Last
We observe that a translation of 𝒄 in the physical space 𝐸 ‖ does not change 𝑌 nor
𝜌𝒄 (𝒙) for all 𝒄 ∈ 𝑅. The density is thus changed only by internal space translations
T 𝒃
⊥ , 𝒃 ∈ 𝐸⊥, which we have previously identi�ed with the phason. Generally, we can

write such translations as

S𝒃𝜌𝒄 (𝒙) � 𝜌𝒄+𝒃 (𝒙) , 𝒃 ∈ 𝐸⊥ . (5.3)

Note that S𝒃 is not a translation, but rather a permutation of the atomic density.
Moving the entire length of the hypercube I𝑛 leaves 𝑌 unchanged. Thus, there are
�xed points 𝒂 such that ∀𝒄 ∈ 𝑅,

S𝒂𝜌𝒄 (𝒙) = 𝜌𝒄 (𝒙) , 𝒂 ∈ 𝐸⊥ . (5.4)

This reminds the condition (5.2). Explicitly, the operator S𝒃 is given by

S𝒃 = 𝜋 ‖ ◦ T 𝒃
⊥ ◦ 𝜋−1‖ . (5.5)

More carefully (since 𝜋−1‖ might not exist), S𝒃 is de�ned by

S𝒃 ◦ 𝜋 ‖ = 𝜋 ‖ ◦ T 𝒃
⊥ . (5.6)

There are several conditions to be met.

1. We need to specify how 𝜋 ‖ acts on functions 𝑓 (𝒓), 𝒓 ∈ 𝑅. To resolve ambiguity,
we abandon the strip 𝑆 and project directly on 𝐸 ‖ by

𝜋 ‖ [𝑓 (𝒓)] = 𝑓
(
𝒓 ∩ 𝐸 ‖

)
� 𝑓 (𝒙) , 𝒙 ∈ 𝐸 ‖ . (5.7)
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2. For consistency, the atomic density 𝜌𝑍 (𝒓) must be rede�ned to

𝜚𝑊 (𝒓) = 𝜌𝑍 (𝒓) ∗𝑊, (5.8)

namely, convoluted with the window. Hence, 𝜌𝑌 (𝒙) = 𝜋 ‖ [𝜚𝑊 (𝒓)].
3. By requiring 𝑓 (𝒓) to be continuous, 𝜋−1‖ is well-de�ned for quasiperiodic se-

quences by means of cyclic permutations, as described previously. Periodic
sequences may leave some ambiguity so that the operators S𝒃 can only be
de�ned by (5.6). This is shown in the following section.

These conditions imply thatS𝒃 is well-de�ned. Hence, we can write the Bloch theorem
for quasiperiodic C&P sequences as

𝜓𝒌 (𝒙) = ei𝒌 ·𝒙 𝑢𝒌 (𝒙) ,
S𝒂𝑢𝒌 (𝒙) = 𝑢𝒌 (𝒙) .

(5.9)

Notice that 𝑢𝒌 (𝒙) is pattern equivariant (PE), which incorporates the symmetries of
the quasiperiodic tiling (see [52, 54] for more details). In customary terms, 𝑢𝒌 (𝒙) is
symmetric to in�nite permutations.

5.2.3 �asiperiodic (C&P) Hamiltonian
Let us inspect a Hamiltonian in 𝑅 = R𝑛 , which has a hyper-cubic periodicity of𝑍 = Z𝑛 ,
namely

H (𝒓 +𝒎) = H (𝒓) , 𝒎 ∈ 𝑍 . (5.10)
The spectral decomposition of this Hamiltonian is

H (𝒓) Ψ𝑛,𝜿 (𝒓) = 𝐸𝑛,𝜿Ψ𝑛,𝜿 (𝒓) , (5.11)

where 𝑛 is the band index, and 𝜿 the crystal momentum. Consequently, we can write
its Bloch theorem as

Ψ𝑛,𝜿 (𝒓) = ei𝜿 ·𝒓 𝑣𝑛,𝜿 (𝒓) ;
𝑣𝑛,𝜿 (𝒓 +𝒎) = 𝑣𝑛,𝜿 (𝒓) , 𝒎 ∈ 𝑍 . (5.12)

Applying 𝜋 ‖ on Ψ𝜿 (𝒓) by
𝜓𝑛,𝒌 (𝒙) = 𝜋 ‖

[
Ψ𝑛,𝜿 (𝒓)

]
(5.13)

and comparing to (5.9), we obtain the following relations,

𝑢𝑛,𝒌 (𝒙) = 𝜋 ‖
[
𝑣𝑛,𝜿 (𝒓)

]
(5.14a)

ei𝒌 ·𝒙 = 𝜋 ‖
[
ei𝜿 ·𝒓

]
, (5.14b)

where 𝒌 = 𝜋 ‖ [𝜿] with 𝜿 = 𝒌 ⊕ 𝒌⊥.

Corollary. The conditions in (5.9) hold with 𝒂 = 𝜋⊥ [𝒎].
By applying 𝜋 ‖ onH (𝒓), we obtain the quasiperiodic Hamiltonian

H (𝒙) = 𝜋 ‖H (𝒓) 𝜋†‖ , (5.15)

with 𝜋†‖ = 𝜋
−1
‖ , so that

S𝒂H (𝒙) S−𝒂 = H (𝒙) . (5.16)



82 Chapter 5. Bloch Theorem

Thus, we write the eigenvalue equation as

H (𝒙)𝜓𝑛,𝒌 (𝒙) = 𝐸𝑛,𝒌𝜓𝑛,𝒌 (𝒙) , (5.17)

where the eigenenergy preserves,

𝐸𝑛,𝒌 = 𝐸𝑛,𝜿 . (5.18)

The Bloch condition is, therefore, the same as in (5.9)

𝜓𝑛,𝒌 (𝒙) = ei𝒌 ·𝒙 𝑢𝑛,𝒌 (𝒙) ,
S𝒂𝑢𝑛,𝒌 (𝒙) = 𝑢𝑛,𝒌 (𝒙) .

(5.19)

Remark. In a HamiltonianH = −∇2 +𝑉 , the operators T𝒎 in (5.10) and 𝑆𝒂 in (5.16)
act on the potential 𝑉 ; equivalently, the Laplacian ∇2 is indi�erent to these operators.

5.2.4 Periodicity and Pa�ern Equivariance
Let us continue towards pattern equivariance. Since 𝑣 (𝒓) is periodic, it can be written
as (omitting the indices 𝑛 and 𝜿 for simplicity),

𝑣 (𝒓) = 𝑓 (𝒓) ∗
∑︁
𝒛∈𝑍

𝛿 (𝒓 − 𝒛) � 𝑓 (𝒓) ∗ 𝜌𝑍 (𝒓) , (5.20)

for a (square-integrable) smooth 𝑓 (𝒓) on I𝑛 with periodic boundary conditions. Now,
using 𝒓 = 𝒙 ⊕ 𝒙⊥, both 𝑓 (𝒓) and 𝜌𝑍 (𝒓) can be (Schmidt) decomposed to

𝑓 (𝒓) =
∑︁

𝑖
𝑓 𝑖‖ (𝒙) · 𝑓 𝑖⊥ (𝒙⊥) , 𝜌𝑍 (𝒓) = 𝜌 ‖ (𝒙) · 𝜌⊥ (𝒙⊥) , (5.21)

so that 𝑣 (𝒓) reads

𝑣 (𝒓) =
∑︁

𝑖

(
𝑓 𝑖‖ (𝒙) · 𝑓 𝑖⊥ (𝒙⊥)

) ∗ (𝜌 ‖ (𝒙) · 𝜌⊥ (𝒙⊥))
=
∑︁

𝑖

(
𝑓 𝑖‖ (𝒙) ∗ 𝜌 ‖ (𝒙)

) · (𝑓 𝑖⊥ (𝒙⊥) ∗ 𝜌⊥ (𝒙⊥))
=
∑︁

𝑖
𝑓 𝑖‖ (𝒙) ∗

[
𝜌 ‖ (𝒙) ·

(
𝑓 𝑖⊥ (𝒙⊥) ∗ 𝜌⊥ (𝒙⊥)

) ]
(5.22)

�
∑︁

𝑖
𝑓 𝑖‖ (𝒙) ∗ 𝜚 𝑖⊥ (𝒓) ,

where 𝜚 𝑖⊥ (𝒓) is de�ned similarly to (5.8). Projecting 𝑣 (𝒓) on 𝐸 ‖ one obtains

𝑢 (𝒙) =
∑︁

𝑖
𝑓 𝑖‖ (𝒙) ∗

∑︁
𝑗
𝑤𝑖 𝑗𝛿

(
𝒙 − 𝒙 𝑗

)
. (5.23)

Proposition. If 𝐸 ‖ is incommensurate (quasiperiodic), then 𝑓 𝑖⊥ (𝒙⊥) can be inferred
uniquely from𝑤𝑖 𝑗 , since𝑤𝑖 𝑗 are dense on𝑊 . Thus, 𝜋−1‖ is well-de�ned in this case.

Corollary. By the means of (5.5), S𝒂 is well-de�ned.

The sum on 𝑗 gives a weighted atomic density. To accommodate the weight, choose
smooth𝑤 𝑖 (𝒙) such that𝑤 𝑖

(
𝒙 𝑗
)
= 𝑤𝑖 𝑗 , and de�ne

𝑔𝑖 (𝒙) = 𝑓 𝑖‖ (𝒙)𝑤 𝑖 (𝒙) , (5.24)

so that for each 𝑖 ,∑︁
𝑗
𝑔𝑖 (𝒙) ∗ 𝛿 (𝒙 − 𝒙 𝑗 ) = ∑︁

𝑗
𝑓 𝑖‖

(
𝒙 𝑗
)
𝑤 𝑖

(
𝒙 𝑗
)
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=
∑︁

𝑗
𝑓 𝑖‖

(
𝒙 𝑗
)
𝑤𝑖 𝑗 (5.25)

=
∑︁

𝑗
𝑓 𝑖‖ (𝒙) ∗𝑤𝑖 𝑗𝛿

(
𝒙 − 𝒙 𝑗

)
.

Thus,

𝑢 (𝒙) =
∑︁

𝑖
𝑔𝑖 (𝒙) ∗

∑︁
𝑗
𝛿
(
𝒙 − 𝒙 𝑗

)
� 𝑔 (𝒙) ∗ 𝜌 (𝒙) . (5.26)

Since 𝑓 𝑖‖ (𝒙) are smooth (up to boundaries) and compact-supported, so are 𝑔𝑖 (𝒙).
Moreover, a smooth 𝑓 (𝒓) implies a smooth 𝑔 (𝒙).
Corollary. 𝑢 (𝒙) coincides with the de�nition of (strongly) PE functions in [54].

Corollary. The eigenfunctions (5.9) of quasiperiodic Hamiltonians have PE symmetry.

5.2.5 Windings Revisited – Fourier Transform of 𝚺2

Thus far, when we considered the C&P procedure, we took its rational approximation
Σ1. This gave us relations between di�erent sequences by a discrete phason. We built
the phase Θ𝑁 and constructed the winding numbers in a simple algebraic way.

Nevertheless, there are some problems with this approach. The phason is discrete,
which is a bit peculiar for a gauge �eld. Moreover, since it is discrete and can only
have 𝑑𝑁 value, we cannot distinguish Σ1 from a periodic structure. Comparing with
section 3.1.5, we see that we miss a sequence, as there are 𝑑𝑁 + 1 sequences of size
𝑑𝑁 . We can also see it if we try to reconstruct Σ1 with S𝒃 described above. When 𝑠 is
irrational, we can never return to the same place, only approximately by 1/𝑑𝑁 .

To remedy the issue, let us indeed apply the S𝒃 as prescribed. A simpler way is to
use the celebrated characteristic function,

Σ2 (𝑛, 𝜙) = sign [cos (2𝜋𝑛𝑠 + 𝜙) − cos (𝜋𝑠)] . (5.27)

Here, 𝑛 ∈ {0, . . . , 𝑑𝑁 − 1} is taken discretely as before, but 𝜙 ∈ [0, 2𝜋) is a continuous
parameter thus resulting in a di�erent characteristic function. Now, we obtain 𝑑𝑁 + 1
di�erent sequences, where the frequency of the rogue sequence is Δ𝜙rogue < 2𝜋/𝑑𝑁
(see Section 4.4.3). The results are seen in Figure 5.1.

Next, we can apply the same procedure as in Section 2.2. Take the discrete Fourier
transform of Σ2 with respect to 𝑛 to have

𝐺̃ (𝜉, 𝜙) �
𝑑𝑁 −1∑︁
𝑛=0

𝜔−𝜉𝑛Σ2 (𝑛, 𝜙) , 𝜔 = e2𝜋 i/𝑑𝑁 . (5.28)

Although we do not any longer have a nice algebraic expression, we can still take the
absolute value to have the structure factor

𝑆 (𝜉, 𝜙) �
��𝐺̃ (𝜉, 𝜙)��2 , (5.29)

which is now dependent on 𝜙 due to the rogue sequence. Similarly, de�ne the phase

Θ̃ (𝜉, 𝜙) � arg 𝐺̃ (𝜉, 𝜙) . (5.30)

Both are very similar to the previous 𝑆 (𝜉) and Θ (𝜉, 𝜙) up to the rogue sequence, as
seen in Figure 5.2.

This rogue sequence makes a lot of mess but is extremely important. It is what
distinguishes between a periodic and a quasiperiodic sequence, as the former must
have all sequences similar. We use Σ1 only because of its simpler algebraic form, and
justify it by the small di�erence from Σ2 – smaller than 1/𝑑𝑁 .
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Figure 5.1: The continuous characteristic function Σ2 for the Fibonacci sequence. Here,
𝑑𝑁 = 89 points were taken. The amount of 𝐵-s in a sequence is indicated in the right
graph. Note the location of the rogue sequence.

Figure 5.2: The The Fourier transform of Σ2 for the Fibonacci sequence. Here, 𝑑𝑁 = 89
points were taken. The rogue sequence is indicated by the red arrow.
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5.2.6 Manifestation of Topology
In previous sections, we saw that the topology is revealed through the Fourier trans-
form. Let us take the quasiperiodic 𝑢 (𝒙) from (5.9) with S𝒂𝑢 (𝒙) = 𝑢 (𝒙). Let its
Fourier transform be

F̂𝒙 [𝑢 (𝒙)] � 𝑢0 (𝝃 ) , F̂𝒙
[S𝒃𝑢 (𝒙)] � 𝑢𝒃 (𝝃 ) . (5.31)

By de�nition of the �xed point 𝒂, 𝑢0 (𝝃 ) = 𝑢𝒂 (𝝃 ). Note that 𝝃 is unitless. The
interesting phenomena are when 𝒃 ≠ 𝒂 (without loss of generality, 𝒃 ‖ 𝒂).

Let us inspect, for simplicity, a �nite 1𝑑 system of size 𝑑𝑁 . Similarly to the ideas of
the previous section,

𝑢𝑏 (𝜉) = eiΘ𝑁 (𝜉,𝑏) 𝑢0 (𝜉) , (5.32)
such that

Θ𝑁 (𝜉, 𝑏) = 2𝜋 𝑏
𝑎

𝜉

𝑐𝑁
(mod 2𝜋). (5.33)

Here, 𝜙𝑏 � 2𝜋𝑏/𝑎 takes the role of the phason. Next, let 𝜈 = 𝜉/𝑑𝑁 , and take the limit
to obtain

Θ (𝜈, 𝑏) � lim
𝑁→∞

Θ𝑁 (𝜉, 𝑏) = 𝜙𝑏 𝑠−1 𝜈 (mod 2𝜋), (5.34)

so that
𝑢𝑏 (𝜈) = exp

(
i 𝜙𝑏 𝑠−1 𝜈

)
𝑢0 (𝜈) . (5.35)

The previous section’s idea of phase winding recurs here. For each 𝜈𝑞 = 𝑠𝑞, the
phase winds exactly 𝑞 times as we change 𝜙𝑏 from 0 to 2𝜋 . More generally, inspect
𝜈𝑝𝑞 = 𝑝 + 𝑠𝑞 for wavevectors outside the �rst quasi-Brillouin zone (𝑝 = 0). Thus, 𝑢𝑏 (𝜈)
is characterized by the two numbers (𝑝, 𝑞) given by the Čech cohomology group 𝐻̌ 1

on the tiling hull Ω𝑇 [52, 91],
𝐻̌ 1 (Ω𝑇 ) � Z2. (5.36)

In order to get extra topological information on the tiling, we inspect the 𝐾0 group.
Recall that 𝐻̌ 1 (Ω𝑇 ) � 𝐾0 (B𝑇 ) in the 1𝑑 case [45, 52, 91, 92] with

𝜏∗ (𝐾0 (B𝑇 )) � (Z + 𝑠Z) ∩ [0, 1) , (5.37)

on 1𝑑 C&P tilings [52, 91]. Additionally, 𝐾-theory gives the gap-labeling theorem
[90]. Moreover, since 𝑢 (𝒙) is (strongly) PE, one can build the (strong) PE de Rham
cohomology groups on tilings,𝐻 1

𝑃
(𝑇 ) [52, 54]. Furthermore, there exists an equivalence

between the de Rham and Čech cohomology groups [52, 54],

𝐻 ∗𝑃 (𝑇 ) � 𝐻̌ ∗ (Ω𝑇 ,R) . (5.38)

Thus, the PE de Rham cohomology classes Λ ∈ 𝐻 1
𝑃
(𝑇 ) can be labeled with (𝑝, 𝑞) so

that Λ = Λ𝑝,𝑞 .

Corollary. The cohomology class of a PE function 𝑢 (𝑥) ∈ Λ𝑝,𝑞 can be inferred from the
Fourier transform 𝑢 (𝜈).
Remark. These ideas can be readily generalized to higher dimensions.

5.3 Numerical Validation of the Bloch Theorem
In this section, we show numerical calculations of the above. For simplicity, we project
from 2𝑑 to 1𝑑 , namely, 𝑅 = R2 and 𝑍 = Z2.
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Figure 5.3: The projection 𝑢 (𝑥) of the top-hat function on 𝐸 ‖ using the Fibonacci
sequence with 𝒄 = (0, 0) corresponding to 𝑑𝑁 = 89.

5.3.1 The Projected Functions
We consider the top-hat function

𝑓TH (𝒓) =
{
exp

(
1 − 1

1−𝛼2𝑟 2

)
𝑟 = |𝒓 | < 1

0 otherwise,
(5.39)

for 𝛼 = 2, which is smooth and compact-supported on I2. It realizes the amplitude
of the periodic 𝑣 (𝒓) = 𝑓TH (𝒓) ∗ 𝜌𝑍 (𝒓). Next, we consider the Fibonacci sequence
with a slope of 𝑠 = 𝜏−1 = (√5 − 1) /2 and initial location of 𝒄 = (0, 0); this de�nes the
physical and internal spaces, and the projection 𝜋 ‖ .

The projected function 𝑢 (𝑥) is shown in Figure 5.3. The dependence of 𝑢𝑏 (𝑥)
on 𝜙𝑏 together with the amplitude and phase of the Fourier transformed 𝑢𝑏 (𝜈) are
shown in Figure 5.4. One can readily see that the amplitude |𝑢𝑏 (𝜈) | is only negligibly
dependent on 𝜙𝑏 due to �nite 𝑑𝑁 . However, the phase arg𝑢𝑏 (𝜈) shows a winding
behavior similar to Θ𝑁 (𝜈, 𝜙ℓ ) in Section 2. Up to numerical errors, they are the same.
The di�erence originates in S𝒂𝑢 (𝑥) that does not revert to 𝑢 (𝑥) for any �nite 𝑁 (up
to 𝑠𝑁 ).

Corollary. The discrepancy of arg𝑢𝑏 (𝜈) from Θ𝑁 (𝜈, 𝜙ℓ ) is the deviation from a perfect
cyclic permutation. It is a �nite-size e�ect that disappears with 𝑁 →∞.
Remark. One can choose any irrational slope 𝑠 ∈ [0, 1] instead of Fibonacci; the results
are the same.

An interesting phenomenon is observed in simulations. The Gaussian function
𝑓Gss (𝒓) = exp

(−𝛼2𝑟 2/2) with 𝛼 = 3 is not compact-supported. Nonetheless, it does
not change signi�cantly the results. Moreover, one can take a Lorentzian function
𝑓Lor (𝒓) = 1/(1 + 𝛼2𝑟 2) with 𝛼 = 5, or any similar function with long tails (such as the
Student 𝑡 or Poisson distributions), without much numerical penalty. Surprisingly,
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Figure 5.4: The projection 𝑢𝑏 (𝑥) of the top-hat function on 𝐸 ‖ using the Fibonacci
sequence corresponding to 𝑑𝑁 = 89, and its Fourier transform 𝑢𝑏 (𝜈) on the �rst
quasi-Brillouin zone (𝜈 ∈ [0, 1]) for 𝜙𝑏 = 0 . . . 2𝜋 .

even a checker-board function 𝑓CB (𝒓) = b2𝑟1c + b2𝑟2c (mod 2) with 𝒓 = (𝑟1, 𝑟2)
shows some results, despite being not smooth. Numerical analysis shows preference
for circular-symmetric functions (of |𝒓 | = 𝑟 ).

Since any function 𝑓 (𝒓) is numerically equivalent to a smooth and compact sup-
ported one, the analysis above holds. More carefully, one needs to impose that (a) the
envelope of 𝑓 (𝒓) is not too abrupt, and (b) the cut 𝜋 ‖ does not fall on any problematic
(discontinuity) points.

Corollary. A weakly PE function 𝑓 (𝒓) [52] is numerically indistinguishable from a
strongly PE one. Therefore, the requirement of compact-support is inessential.

Proposition. Any Bloch eigenfunction𝜓 (𝒙) = ei𝒌 ·𝒙 𝑢 (𝒙) of a quasiperiodic Hamilto-
nian has a (strong or weak) PE 𝑢 (𝒙).
Remark. The weakly PE de Rham cohomology 𝐻 ∗

𝑃,𝑤
(𝑇 ) is not equivalent to the Čech

cohomology 𝐻̌ ∗ (Ω𝑇 ) [52] but rather to a tangential cohomology [93].

5.3.2 Bloch Phase from 2 to 1 Dimensions
Let us reinspect the 2𝑑 periodic Hamiltonian

H (𝒓) Ψ𝑛,𝜿 (𝒓) =
(−∇2 + V (𝒓)) Ψ𝑛,𝜿 (𝒓) = 𝐸𝑛,𝜿Ψ𝑛,𝜿 (𝒓) , (5.40)

for 𝒓 = (𝑥,𝑦) and ∇2 = 𝜕2/𝜕𝑥2 + 𝜕2/𝜕𝑦2. In terms of theZ2-periodic function 𝑣𝑛,𝜿 (𝒓) =
e−i𝜿 ·𝒓 Ψ𝑛,𝜿 (𝒓), it is written with periodic boundary conditions as(−∇2 − 2i𝜿 · ∇ + 𝜅2 + V (𝒓)) 𝑣𝑛,𝜿 (𝒓) = 𝐸𝑛,𝜿𝑣𝑛,𝜿 (𝒓) (5.41)

Generally, it is a hard problem to solve. However, should we choose a separable
potential,

V (𝒓) = V𝑥 (𝑥) + V𝑦 (𝑦) , (5.42)
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the Hamiltonian becomes separable as well,

H (𝒓) = H (𝑥) + H (𝑦) =
(
− 𝜕

2

𝜕𝑥2
+ V𝑥 (𝑥)

)
+
(
− 𝜕

2

𝜕𝑦2
+ V𝑦 (𝑦)

)
. (5.43)

Thus, we are left to solve two 1𝑑 Hamiltonians with periodic boundary conditions,(
− 𝜕

2

𝜕𝑞2
− 2i𝜅𝑞 𝜕

𝜕𝑞
+ 𝜅2𝑞 + V𝑞 (𝑥)

)
𝑣𝑛𝑞 ,𝜅𝑞 (𝑞) = 𝐸𝑛𝑞𝜅𝑞𝑣𝑛𝑞 ,𝜅𝑞 (𝑞) , (5.44)

with 𝑞 = {𝑥,𝑦} so that{
𝑣𝑛,𝜿 (𝒓) = 𝑣𝑛𝑥 ,𝜅𝑥 (𝑥) 𝑣𝑛𝑦 ,𝜅𝑦 (𝑦) , 𝑛 = 𝑛𝑥 + 𝑛𝑦,

𝐸𝑛,𝜿 = 𝐸𝑛𝑥 ,𝜅𝑥 + 𝐸𝑛𝑦 ,𝜅𝑦 , 𝜿 =
(
𝜅𝑥 , 𝜅𝑦

)
.

(5.45)

Simplifying even further, we chooseV𝑥 = V𝑦 � V0. Thus, we need to solve only a
single 1𝑑 Hamiltonian, but we have an energy degeneracy of 𝑔𝑛 = 𝑛 + 1.

We can now project the 2𝑑 periodic eigenfunctions to the quasiperiodic axis 𝑧 (using
𝜋 ‖ of the previous sections) to obtain 𝑢𝑛,𝑘 . Since we work in a �nite approximation of
order 𝑁 , the length of this axis, 𝐿𝑧 is also �nite. A short calculation yields,

𝐿𝑧 =

√︃(
𝐿𝑁
𝐴

)2 + (𝐿𝑁
𝐵

)2
=

√︃
(𝑑𝑁 − 𝑐𝑁 )2 + 𝑐2𝑁 ' 𝑑𝑁

√︃
(1 − 𝑠)2 + 𝑠2. (5.46)

5.4 Bloch Theorem for General Tilings

The di�raction pattern Bragg peaks locations were thought to be inferred from the
Čech cohomology 𝐻̌ 1 (Ω𝑇 ) by the Ruelle-Sullivan map 𝐶𝜇 : 𝐻̌ 1 (Ω𝑇 ) → R [89, 94].
However, as careful de�nition of a trace 𝜏𝐻̌∗ : 𝐻̌ 1 → R is enough [58]. The gap-labeling
theorem provides a similar mapping for spectral gaps 𝜏𝐾∗ : 𝐾0 (B𝑇 ) → R [90, 92].

In general and in all dimensions (given an invariant transverse measure), there
is a natural map 𝐾0 (B𝑇 ) → 𝐻̌𝑑 (Ω𝑇 ,R). If 𝑑 ≤ 3, then this map factors through
to give a map 𝐾0 (B𝑇 ) → 𝐻̌𝑑 (Ω𝑇 ,Z) and this map is onto. If 𝑑 = 1, then the map
𝐾0 (B𝑇 ) → 𝐻̌ 1 (Ω𝑇 ,Z) is an isomorphism [58]. Together, one has the following
commutative diagram,

𝐻̌ 1 (Ω𝑇 )
𝜏𝐻̌∗
��

oo � 𝐾0 (B𝑇 )
𝜏𝐾∗
��

R oo
id // R

(5.47)

The equivalence of the last row—between the images of 𝜏𝐻̌∗ and 𝜏𝐾∗ —is the Bloch
theorem from the mathematical point of view [58]. It is valid in C&P tilings, but in
others the correspondence between 𝜏𝐻̌∗

(
𝐻̌ 1) and di�raction peaks is not clear. In the

following, we show this claim.

Theorem 5.1 (Generalized Bloch Theorem). For �nite local complexity tilings [52] with
�nitely many tile orientations, the diagram (5.47) commutes [58].
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5.4.1 The Role of the Čech Cohomology 𝑯̌ 1

Let us inspect the C&P sequences in 1𝑑 . Recall the Bragg peaks location given by

𝑘𝑝,𝑞 = 𝑘0
(
𝑝 + 𝑞𝑠−1) , 𝑘0 = 2𝜋/𝑙, (5.48)

with 𝑑 a normalization constant. For Pisot substitution sequences 𝑙 = 𝑙/(𝜆1 − 𝜆2),
where 𝑙 = 𝑙𝑎𝜌𝑎 + 𝑙𝑏𝜌𝑏 is the mean length of the sequence and 𝑠 = 𝑓 (𝜆1).

Let us inspect this condition from another perspective,

𝑘𝑝,𝑞 = (𝑝, 𝑞) · (𝑘0, 𝑘0/𝑠) � 𝚲 · 𝑮 . (5.49)

Here we identify 𝚲 = (𝑝, 𝑞) with the Miller indices [1], and 𝑮 = (𝑘0, 𝑘0/𝑠) with the
reciprocal-lattice vectors. Observe that since

𝚲 ∈ Z2 � 𝐻̌ 1 (Ω) , (5.50)

we have the following.
Corollary. The Čech cohomology 𝐻̌ 1 (Ω) gives the Miller indices of the Bragg peaks 𝚲,
and the trace 𝜏𝐻̌∗ projects them on the reciprocal-lattice vectors 𝑮 .

We can therefore rephrase (5.47) for quasiperiodic tilings to

Z2 � 𝐻̌ 1 (ΩC&P)
𝜏𝐻̌∗
��

oo � 𝐾0 (BC&P)
𝜏𝐾∗
��

Z +Z𝜌𝐵 oo id // Z +Z𝜌𝐵 (mod 1)

(5.51)

where 𝜌𝐵 = 𝑠 for C&P tilings and 𝜌𝐵 = 𝑣∗
𝐵
for substitutions.

Remark. Above 1𝑑 the situation is more involved. For instance, the Penrose tiling,
which is 5𝑑 → 2𝑑 , has 𝐻̌ 2 (Ω) = Z8, 𝐻̌ 1 (Ω) = Z5 and 𝐻̌ 0 (Ω) = Z. However, for
2𝑑 tilings, 𝐾0 (B) � 𝐻̌ 2 (Ω) ⊕ 𝐻̌ 0 (Ω) and 𝐾1 (B) � 𝐻̌ 1 (Ω) (see [45]). Thus, the
commutative diagram (5.47) has to be updated correspondingly.

The commutative diagram above is not yet the end of the story. We saw that we
can associate a structural phase Θ (𝜉, 𝜙) to the partial cohomologies 𝐻 1 (Γ𝑁 ). Each
structural phase gave, in turn, an integer winding number with respect to the pha-
sonW𝜙 [Θ (𝜉, 𝜙)]. Similarly, we used the chiral phase 𝛼 (𝑘, 𝜙) to construct wind-
ing numbers to the gapsW𝜙 [𝛼 (𝑘, 𝜙)]. This additional topological information is
presented only in quasiperiodic structures, since we the limit is well-de�ned. The
new—generalized—diagram reads

Z �W𝜙 [Θ (𝜉, 𝜙)]OO
oo

!
� W𝜙 [𝛼 (𝑘, 𝜙)] � ZOO

Z2 � 𝐻̌ 1 (ΩC&P,Z)
𝜏𝐻̌∗
��

oo 𝜓
𝐾0 (BC&P) � Z ⊕ Z

𝜏𝐾∗
��

Z ⊕ 𝑠Z oo =
Z ⊕ 𝑠Z

(5.52)

This is the “generalized Bloch theorem” for C&P tilings. Note that since the diagram is
commutative, we can infer GLT from 𝐻̌ 1 (Ω).
Corollary. All topological numbers can be inferred from the Čech cohomology 𝐻̌ 1 (Ω).
It is therefore the preferred topological invariant for aperiodic tilings.
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5.4.2 Non-C&P Sequences
We begin our analysis with the following observation. Since the vectors 𝑮 span the
Bragg peaks space, then 𝜋−1 (𝐺) spans the corresponding Bragg hyperspace for the
original 𝑅 = R𝑛 . But there are exactly 𝑛 spanning vectors, which must much those of
𝐺 . Formally, we have the following.

Proposition. In 1𝑑 C&P sequences [65],

dim𝐺 = rank 𝐻̌ 1 (Ω) = rank𝑅 = 𝑛. (5.53)

The above proposition has an immediate consequence in identifying non-C&P se-
quences. If 𝐻̌ 1 (Ω) � Z𝑛 , such as 𝜎3 (see Table 3.3), then it needs an in�nite number
of eigenvectors to span itself. Thus, its rank is also in�nite, and it cannot be C&P. The
converse is not necessarily true (cf. Marginal sequence in Table 3.3 or 𝜎30 in Table 3.4).

Next, we �nd the enumeration of 𝐻̌ 1 (Ω) in non-C&P sequences. Take, for example,
the Thue-Morse sequence with 𝐻̌ 1 (Ω) = Z ⊕ Z [ 1

2
]
such that

(
𝑛,𝑚/2𝑁 ) = Λ𝑁 ∈

𝐻̌ 1 (Ω). Then, the cochain represented by Λ𝑁 evaluates to 𝑚 every 2𝑁 tiles at the
𝑁 th supertile of size 𝐹𝑁 = 2𝑁 [52, Sec. 5.4]; the additional Z term describes the
combinatorics between the supertiles [52, Sec. 6.4].

Now, consider the atomic di�raction spectrum as in (2.23). The Bragg peak locations
of the Thue-Morse sequence are given by [23, 84] (see Section 4.2)

𝑘TM𝑛,𝑚,𝑁 = 2𝜋 𝑚
𝑛
2−𝑁 , 𝑛,𝑚, 𝑁 ∈ Z for some odd 𝑛. (5.54)

Here, we identify the Z
[ 1
2
]
part as the group describing an in�nite number of peaks

(cf. periodic sequences); the Z part is an additional degree of freedom given to the
families Λ̃ ∈ Z [ 1

2
]
. Note the the 𝐾0 group does not have this degree of freedom, as

𝜏∗ (𝐾0 (BTM)) � 1
3Z

[ 1
2
]
(see Table 3.3).

Next, inspect the di�erence in the di�raction spectrum between C&P and non-C&P
sequences having the same occurrence matrix𝑀1, such as 𝜎6 and 𝜎4 of the Fibonacci2
clan presented in Table 3.4. Here, the Čech cohomology groups are

𝐻̌ 1 (Ω𝜎6 ) � Z2, 𝐻̌ 1 (Ω𝜎4 ) � Z ⊕ Z2. (5.55)

Both sequences exhibit Bragg peaks, but 𝜎4 has much richer structure than 𝜎6, and
contains singularly-continuous peaks. The latter, having 𝐻̌ 1

𝜎6 � Z
2 3 (𝑝, 𝑞), needs

only the 2 numbers (𝑝, 𝑞) to enumerate the Bragg peaks,

𝜏𝐻̌∗
(
𝐻̌ 1 (Ω𝜎6 ) ) � 𝑘𝜎6𝑝,𝑞 = 𝑘0

(
𝑝 + 𝑞𝜏2) , (5.56)

with 𝑘0 a normalization wavevector. The non-C&P 𝜎4 with 𝐻̌ 1 � Z ⊕ Z2 3 (𝑛;𝑝, 𝑞)
needs at least 3 integral numbers for enumeration. In this case, the Bragg peak location
are known only for the 𝑛 = 0 case,

𝜏𝐻̌∗
(
𝐻̌ 1 (Ω𝜎4 ) | 𝑛 = 0

)
� 𝑘𝜎40,𝑝,𝑞 = 𝑘0

(
𝑝 + 𝑞𝜏2) . (5.57)

These results are presented in Figure 5.5.
The association of the 𝐻̌ 1 (Ω) elements with the tiling enumeration leads to their

identi�cation with Miller indices as in the C&P case. Note that there is an in�nite
number of reciprocal lattice vectors, and thus Bragg peaks are not assured to exist.
Similar considerations exist for the gap-labeling group 𝜏𝐾∗ (𝐾0 (B)).
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Figure 5.5: Di�raction spectrum of the Fibonacci2 substitutions 𝜎6 (blue) and 𝜎4 (red).
The enumeration of selected peaks in 𝜎6 is shown.

Claim. The 𝐾0 group is not a good candidate to identify quasiperiodic sequences. Take,
for instance, 𝜎29 and 𝜎26 from Table 3.4. They both have

𝜏𝐾∗
(
𝐾0

(B𝜎29 ) ) = 𝜏𝐾∗ (
𝐾0

(B𝜎26 ) ) � 1
2
(
Z + 𝜏3Z) , (5.58)

but 𝜎26 is C&P while 𝜎26 is not, as seen from their 𝐻̌ 1.
Remark. The di�erent families in Table 3.4 mean that the enumeration is identical for
sequences in the same family. However, in di�erent families, such as 𝜎26 and 𝜎30, the
enumeration would be di�erent even though 𝐻̌ 1 (Ω) is the same. This is similar to the
case of two di�erent sequences, such as Fibonacci and Silver with 𝐻 1 (Ω) � Z2.

5.4.3 Topological Bloch Theorem for Tilings

Let us clarify the content of Theorem 5.1 and its conditions of applicability. Recall
the Thue-Morse aperiodic tiling (Section 4.2). It is not a C&P quasicrystal, yet it is
a Pisot substitution. The possible values of Ngap are obtained from the gap labeling
group 𝜏𝐾∗

(
𝐾0

(BTM) ) . This is to be compared to the di�raction spectrum composed of
Bragg peaks (PP) and of a SC broad range contribution which does not appear in the
cohomology 𝜏𝐻̌∗

(
𝐻̌ 1 (ΩTM

) )
= 1

3Z
[ 1
2
]
. This lack of equivalence between di�raction

and (Laplacian) spectral data is not a limitation of Theorem 5.1, since the Thue-Morse
tiling abides its conditions of applicability. It is the expression of a discrepancy between
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Table 5.1: Summary of structural and spectral features applied to main representatives
of 1𝑑 tilings. For each of them, we have indicated the Čech cohomology 𝐻̌ 1 (Ω𝑇 ), the
nature of the di�raction spectrum, pure-point (PP), absolutely continuous (AC) and
singular continuous (SC). Theorem 5.1 applies to all cases so that the cohomology
trace 𝜏𝐻̌∗

(
𝐻̌ 1 (Ω𝑇 )

)
is calculated using the trace of the 𝐾0 (B) group. The spectral gaps

are taken modulo 1. Here, 𝜏 is the golden ratio with 𝜌𝑏 = 1− 𝜏−1, and 𝑛, 𝑝, 𝑞,𝑚, 𝑁 ∈ Z.

Family 𝐻̌ 1 (Ω𝑇 ) Di�raction peaks 𝜏𝐻̌∗
(
𝐻̌ 1 (Ω𝑇 )

) Spectral
Gaps

Periodic Z 𝑘𝑛 = 𝑛 PP Z N = const
Fibonacci Z2 𝑘𝑝,𝑞 = 𝑝 + 𝑞/𝜏 PP Z + 𝜏−1Z N𝑞 = 𝑞/𝜏
Thue-
Morse Z ⊕ Z[ 1

2
]

𝑘𝑛,𝑚,𝑁 = 1
2𝑛+1

𝑚
2𝑁 SC+PP 1

3 Z
[ 1
2
] N𝑚,𝑁 = 1

3
𝑚
2𝑁

Period
Doubling Z ⊕ Z[ 1

2
]

𝑘𝑚,𝑁 = 𝑚
2𝑁 PP 1

3 Z
[ 1
2
] N𝑚,𝑁 = 1

3
𝑚
2𝑁

Rudin-
Shapiro Z ⊕ Z[ 1

2
] ⊕ Z2 [ 1

2
]

N/A AC Z
[ 1
2
] N𝑚,𝑁 = 𝑚

2𝑁

(a) Periodic. (b) Fibonacci. (c) Thue-Morse.

(d) Period Doubling. (e) Rudin-Shapiro.

Figure 5.6: Comparison between di�raction and spectral data for the �ve representative
families of one-dimensional tilings considered previously and to which Theorem 5.1
applies. For the periodic (a), quasiperiodic (b) and aperiodic (limit-quasiperiodic) (d)
tilings, there is a direct correspondence between the two sets of data. This can be
viewed as an extension of the Bloch theorem. Note that for these three cases, the
di�raction spectrum is PP, a result to be contrasted with the non-quasiperiodic Pisot
Thue-Morse (c) and the aperiodic Rudin-Shapiro (e) tilings for which the di�raction
spectrum is respectively SC and AC, while the spectral counting function accounts for
in�nitely countable gaps well described by the GLT.
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𝜏𝐻̌∗
(
𝐻̌ 1 (Ω,Z) ) and the structure factor 𝑆 (𝑘) which contains additional information

not accessible from the cohomology description.
Furthermore, the aforementioned lack of equivalence is unrelated to the lack of

periodicity or quasiperiodicity (e.g. Period Doubling tiling) but rather a consequence
of the nature of the di�raction spectrum, a quantity which, unlike spectral data, is sen-
sitive to both local symmetries of the tiles, a condition of applicability of Theorem 5.1,
and to long-range correlations driven, e.g., by the order of the letters (immaterial for
periodic or C&P quasicrystals). For instance, the Rudin-Shapiro tiling has an abso-
lutely continuous and structureless di�raction spectrum, but a fractal spectral gap
distribution well accounted by 𝜏𝐻̌∗

(
𝐻̌ 1 (ΩRS

) )
= Z

[ 1
2
]
. These features are summarized

in Table 5.1 and compared in Figure 5.6.
We must further emphasize that the identi�cation of 𝜏𝐻̌∗

(
𝐻̌ 1) with the di�raction

𝑆 (𝑘) is valid in periodic and C&P tilings only. In other tilings, it happens only if the
di�raction admits only a Bragg spectrum such as in the Period Doubling tiling (see
Figure 5.6d). For mixed spectrum, or a non-Bragg one, this correspondence cannot be
made.

Proposition. 𝜏𝐻̌∗
(
𝐻̌ 1) ' 𝑆 (𝑘) if and only if the di�raction is purely Bragg.

Complement 5.A Derivations for C&P Tilings
Let us address some recurring points of Section 5.2.

5.A.1 Gaps in�asiperiodic Approximants
Let us show the existence of𝑑𝑁 gaps for the 𝑁 th approximant of a quasiperiodic system.
To prove that we shall �rst show the pattern of Bragg peaks of the aforementioned
approximant and then use the Bloch theorem to connect Bragg peaks to gaps.

We shall follow the argumentation of [15]. Consider points 𝑥𝑛 on the 1𝑑 line
following the rule (as in (2.67) or in Section 4.1.1),

𝑥𝑛 = 𝑎𝑛 + 𝑔 (𝑛) , 𝑛 ∈ Z, 𝑔
(
𝑥 + 𝑠−1) = 𝑔 (𝑥) . (5.59)

Note that 𝑠 may be rational or irrational. We shall also assume that 𝑎 and 𝑠 are chosen
such that 𝑥𝑛 forms a Delone set [15] (simply put, a crystal or quasicrystal). The atomic
density is thus

𝜌 (𝑥) =
∑︁
𝑛∈Z

𝛿 (𝑥 − 𝑥𝑛) . (5.60)

For a di�raction spectrum, we need to calculate the Fourier transform. Taking it for
𝜌 (𝑥), one has

𝜌 (𝜈) =
∑︁
𝑛∈Z

e−2𝜋 i𝑥𝑛𝜈 =
∑︁
𝑛∈Z

e−2𝜋 i (𝑎𝑛+𝑔 (𝑛))𝜈 . (5.61)

Since 𝑔 (𝑥) is periodic in 𝑠−1, we may divide e−2𝜋 i𝑔 (𝑥) into its Fourier components,

e−2𝜋 i𝑔 (𝑥) =
∑︁
𝑚

𝑒𝑚 (𝜈) e2𝜋 i𝑚𝑥𝑠 . (5.62)

Thus,
𝜌 (𝜈) =

∑︁
𝑚

𝑒𝑚 (𝜈)
∑︁
𝑛∈Z

e−2𝜋 i𝑛 (𝑎𝜈−𝑚𝑠) . (5.63)
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Using Poisson summation formula for the second sum, one has

𝜌 (𝜈) =
∑︁
𝑚

𝑒𝑚 (𝜈)
∑︁
ℓ∈Z

𝛿 (ℓ − 𝑎𝜈 +𝑚𝑠)

=
∑︁
𝑚

𝑒𝑚 (𝜈)
𝑎

∑︁
ℓ∈Z

𝛿

(
𝜈 − 1

𝑎
(ℓ +𝑚𝑠)

)
.

(5.64)

If 𝑠 is irrational, then𝑚 ∈ Z as in [15]. However, if 𝑠 = 𝑐/𝑑 ∈ Q a reduced fraction,
then𝑚 ∈ {1, . . . , 𝑑}. Hence, in the rational case, there are 𝑑 Bragg peaks located at
𝜈ℓ,𝑚 = (ℓ +𝑚𝑠𝑁 ) /𝑎 in the Brillouin zone [−1/2𝑎, 1/2𝑎] withweights given by 𝑒𝑚

(
𝜈ℓ,𝑚

)
.

This also holds for any approximant 𝑠𝑁 = 𝑐𝑁 /𝑑𝑁 by construction. Moreover, since
𝑎𝜈ℓ,𝑚 = ℓ +𝑚𝑠𝑁 , these Bragg peaks are equally distributed over the Brillouin zone.

Next, use Bloch theorem to calculate the gaps for the rational case of 𝑠𝑁 = 𝑐𝑁 /𝑑𝑁 .
Since the Bragg peaks equally distributed, so are the gaps over the normalized inte-
grated density of states. Thus, there are 𝑑𝑁 distinct gaps located at Nℓ,𝑚 = ℓ +𝑚𝑠𝑁
(mod 1). This is the gap labeling theorem for rational approximants.

5.A.2 The Structure Factors of 𝚺1 and 𝚺2

We have stated before (in Section 2.2) that the absolute value of the Fourier transform
(with respect to 𝑛) of Σ1,2 (𝑛, ℓ) is the structure factor. Let us show it here.

In the case of Σ1 and Σ2, we need to inspect ℎ (𝑥), where
ℎ (𝑥) = 𝑔 (𝑥) − 𝑔 (𝑥 − 𝑠−1) . (5.65)

Note that ℎ (𝑥) is also periodic in 𝑠−1 and gets only 2 values. The density thus reads

𝜚 (𝑥) =
∑︁
𝑛∈Z

ℎ (𝑥) 𝛿 (𝑥 − 𝑛) , (5.66)

up to, maybe, an envelope 𝜚 (𝑥) ← [ Π (𝑥) ∗𝜚 (𝑥). As before, we divide it into its Fourier
components,

ℎ (𝑥) =
∑︁
𝑚

ℎ𝑚 (𝜈) e2𝜋 i𝑚𝑥𝑠 , (5.67)

so that
𝜚 (𝜈) =

∑︁
𝑚

ℎ𝑚 (𝜈)
∑︁
𝑛∈Z

e−2𝜋 i𝑛 (𝜈−𝑚𝑠) . (5.68)

Using Poisson summation formula for the second sum, one has

𝜚 (𝜈) =
∑︁
𝑚

ℎ𝑚 (𝜈)
∑︁
ℓ∈Z

𝛿 (ℓ − 𝜈 +𝑚𝑠)

=
∑︁
𝑚

ℎ𝑚 (𝜈)
∑︁
ℓ∈Z

𝛿 (𝜈 − (ℓ +𝑚𝑠)) . (5.69)

Therefore, we have as in the previous case Bragg peaks at 𝜈ℓ,𝑚 = ℓ +𝑚𝑠 with amplitude
dependent only on 𝑚. The only di�erence between Σ1 and Σ2 is that we take the
approximant 𝑠𝑁 for the former and the irrational 𝑠 for the latter.
Corollary. The Fourier transform (with respect to 𝑛) of Σ1,2 a “structure factor.”

Complement 5.B Wannier Diagrams
Using the continued fraction expatiation of 𝑠 ∈ [0, 1] in Section 2.4, we inspect the set
of physical properties dependent on 𝑠 . We are interested in the structure factor 𝑆𝑠 (𝜈)
and the density of states 𝜌𝑠 (𝜈). These are presented below.
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(a) Wannier diagram of the structure factor 𝑆𝑠 (𝜈)
(di�raction spectrum). The color bar represents the
structure factor in a logarithmic scale.

(b) Wannier diagram of the normalized density of
states. The color bar represents the density of states
value. The gaps for |𝑞 | ≤ 3 are depicted by the
white lines with their label (𝑝,𝑞) attached.

Figure 5.7: Wannier diagrams for the cut and project method using scattering matrix
with (𝑛𝐴, 𝑛𝐵) = (1, 𝜏) and (𝑙𝐴, 𝑙𝐵) = (𝜏, 1). The wavenumber 𝜈 and the slope 𝑠 are
supported on [0, 1]. (a) Di�raction spectrum. (b) Density of states. Wannier lines are
given as 𝜈 = 𝑝 + 𝑞𝑠 .

5.B.1 Construction of Wannier Diagrams
Set 𝜈 = 𝜉/𝑑𝑁 ∈ [0, 1] as the physical wavenumber (normalized wavevector 𝑘). We
plot the structure factor (Bragg peaks) 𝑆𝑠 (𝜈) at all slopes 𝑠 ∈ [0, 1] calculated with the
scattering matrix formalism (see [38, 68, 71] for details). The Bragg peaks are solutions
of Diophantine equations, and thus are located at

𝜈𝑝,𝑞 = 𝑝 + 𝑞𝑠 (mod 1), (5.70)

which is exactly the Wannier diagram (see Figure 5.7a). Similarly, using the scattering
matrix (see Section 3.4), one can plot the density of states (DOS) 𝜌𝑠 (𝜈) instead of the
di�raction spectrum [38, 68, 71]. The gaps are located at the same 𝜈𝑝,𝑞 (see Figure 5.7b).

5.B.2 Topological Interpretation
For periodic systems, the numbers (𝑝, 𝑞) in the Wannier diagram 5.7b are understood
as Chern numbers [4, 95] (see [96–98] for review). In simple terms, a 2𝑑 periodic
Hamiltonian 𝐻 (𝑥,𝑦) in a perpendicular magnetic �eld (in Landau gauge) exhibits a
quantized Hall conductance [4]

𝜎H =
𝑒2

ℎ

i
2𝜋

∫
d2𝒓

∫
d2𝒌

(
𝜕𝑢∗

𝜕𝑘1

𝜕𝑢

𝜕𝑘2
− 𝜕𝑢

∗

𝜕𝑘2

𝜕𝑢

𝜕𝑘1

)
=
𝑒2

ℎ

i
4𝜋

∫
d2𝒓

∮
d𝑘

(
𝑢∗
𝜕𝑢

𝜕𝑘
− 𝜕𝑢

∗

𝜕𝑘
𝑢

)
.

(5.71)

Here 𝑢𝒌 (𝒓) is the Bloch function corresponding to the eigenfunctions of 𝐻 (𝑥,𝑦), and
𝑒2/ℎ is the natural conductance. The integral

∫
d2𝒌 can be interpreted as the Gauss-

Bonnet-Chern curvature. Thus, 𝜎H is given in units of 𝑒2/ℎ of theChern number [96, 97].
This gives them a topological aspect.
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Figure 5.8: Approximations of the density of states 𝜌𝑁 (𝜈) for the cut and project
method using scattering matrix with (𝑛𝐴, 𝑛𝐵) = (1.9, 2) and (𝑙𝐴, 𝑙𝐵) = (2, 1.9). The
color bar represents the values of 𝜌𝑁 (𝜈) in a logarithmic scale.

The above description works for any 𝑠 ∈ Q in the C&P scheme [98]. However,
since the calculation of the Chern numbers relies on the periodicity of 𝐻 (𝑥,𝑦), it
would not work for an irrational 𝑠 nor for non-periodic boundary conditions. In the
irrational case, the numbers (𝑝, 𝑞) are understood as the image of the 𝐾0 group under
trace operation [27] (cf. Section 5.2.6). Their topological character is therefore di�ers
from Chern.

In order to combine both views, we consider the sequence 𝑠𝑁 → 𝑠 with 𝑠 ∈ R \Q
as before. For any �nite 𝑁 , the density of states 𝜌𝑁 (𝜈) exhibits gaps characterized by
their Chern numbers. For each consecutive 𝑁 , more and more gaps open. In the limit
𝑁 →∞, we obtain an in�nite amount of gaps, where each gap is given by trace of 𝐾0.
The opening of gaps is presented in Figure 5.8.

Another approach is to de�ne Chern numbers in Figure 5.7b using K-theoretical
arguments on quasiperiodic quantum systems [99, 100]. Accordingly, bulk-boundary
correspondence is identi�ed and generalized to many-body systems.

Complement 5.C Conventional TopologicalNumbers

Examining topological quantities in periodic systems, two phases come to mind:
the Berry phase [29] and the Zak phase [101]. From them, it is straightforward to
calculate Chern numbers (only in periodic systems). In this section, we shall show
their counterparts in quasiperiodic C&P systems.

5.C.1 Topological Phases of Periodic Systems Revised

Let us start with the Berry phase [29]. Consider a time-dependent Hamiltonian
H (𝑹 (𝑡)) subjected to a periodic varying parameter 𝑹 (𝑡) such that 𝑹 (𝑇 ) = 𝑹 (0) for
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some path in the phase space of 𝑹 (𝑡). The system evolves naturally as

H (𝑹) |𝜓𝑛 (𝑹)〉 = 𝐸𝑛 (𝑹) |𝜓𝑛 (𝑹)〉 (5.72)

Solving the Schrödinger equation for the evolution of some state |𝜉 (𝑡)〉, a geometrical
phase emerges. On a closed phase-space path 𝐶 , its change is given by

𝛾𝑛 (𝐶) = i
∮
𝐶

〈𝜓𝑛 (𝑹) |∇𝑹𝜓𝑛 (𝑹)〉 · d𝑹 . (5.73)

The evaluation of ∇𝑹𝜓𝑛 (𝑹) requites some knowledge of the representation of𝜓𝑛 (𝑹),
and might be inconvenient. Using Stokes’ theorem, 𝛾𝑛 (𝐶) can be rewritten in a
representation free form [29],

𝛾𝑛 (𝐶) = −
∬
𝐶

d𝑺 · 𝑽𝑛 (𝑹) , (5.74)

where

𝑽𝑛 (𝑹) � Im
∑︁
𝑚≠𝑛

〈𝜓𝑛 (𝑹) |∇𝑹H (𝑹) |𝜓𝑚 (𝑹)〉 × 〈𝜓𝑚 (𝑹) |∇𝑹H (𝑹) |𝜓𝑛 (𝑹)〉
(𝐸𝑚 (𝑹) − 𝐸𝑛 (𝑹))2

. (5.75)

In periodic lattices, the application is straightforward. For instance, in a 2𝑑 periodic
system, one chooses 𝑹 =

(
𝑘𝑥 , 𝑘𝑦

)
with 𝑘𝑖 the Bloch quasi-momenta. Let us now try

to apply this scheme to quasiperiodic lattices. For simplicity, inspect 2𝑑 → 1𝑑 C&P
structures as in Figure 2.1. One might expect, that the 1𝑑 counterpart of the Berry
phase, namely the Zak phase [101], should work,

𝛾𝑛 = i
∫
BZ

〈
𝑢𝑛𝑘

���� 𝜕𝑢𝑛𝑘𝜕𝑘 〉
d𝑘. (5.76)

However, Zak phase is not sensitive to the internal structure of the potential, which
holds the entire quasiperiodic information. We thus need to examine di�erent ways.

5.C.2 Chern Numbers of�asiperiodic Approximations in 2𝒅
Hamiltonians

As discussed in the previous section, it is impossible to extract information from a
simple 1𝑑 Hamiltonian. We need an additional degree of freedom – the phason 𝜙 –
to see the topological information. There is one caveat though. We do not have a
magnetic �eld in our system, and the Hamiltonian is commuting with the time-reversal
operator. Thus, if our Hamiltonian is also simply-connected, then the only Zak/Berry
phases we could get are {0, 𝜋} (see [102]). This would contradict with the positive and
negative numbers we saw in Figure 5.7b. Yet, as our topological space is not simply
connected, we might get equivalence with magnetic �eld.

To calculate topological integers—Chern numbers, we shall use similar ideas to
[34, 35], but emphasize the periodic and �nite nature of the quasiperiodic approximants.
For pedagogical reasons, we shall solve a 2𝑑 problem – Hamiltonian of an electron
living on torus as in Figure 5.9. This is not the 1𝑑 problem experimented upon in [37],
but it will give us some good intuition. The main di�erence is that in 1𝑑 the phason
is a phase that cannot change any physical property of the system, whereas in 2𝑑
it is a physical axis on the torus. Additionally, we want a �nite approximant to the
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Figure 5.9: The quasiperiodic torus of the Fibonacci sequence with 𝑑𝑁 = 89. The axes
are 𝑥 (large circle) and 𝜙 (small circle). The colors represent the potential with 𝑣𝑎 on
the yellow sites and 𝑣𝑏 on the blue ones.

quasiperiodic system so that it becomes periodic. This can only happen for size 𝑑𝑁 ,
where 𝑠 → 𝑠𝑁 = 𝑐𝑁 /𝑑𝑁 . This imposes an additional constraint, where both the real
axis 𝑥 and the phason axis 𝜙 become discrete. Let us see how it works.

Consider the following Hamiltonian,

H =
𝒑2

2𝜇 + V (𝑥, 𝜙) , (5.77)

so thatV (𝑥 + 𝐿, 𝜙) = V (𝑥, 𝜙 + 2𝜋) = V (𝑥, 𝜙). ForV (𝑥, 0), we consider a piecewise
constant periodic potential of 𝐿 = 𝑑𝑁 sites, where each site {𝑎, 𝑏} is {𝑣𝑎, 𝑣𝑏}, respec-
tively, of width 𝑙𝑎 = 𝑙𝑏 = 1 taken from the 𝑁 th approximant of some C&P slope 𝑠 . The
total functionV (𝑥, 𝜙) is a torus as in Figures 2.3 or 5.9. The potential thus reads,

V (𝑥, 𝜙) = T𝑚 (𝜙)𝑥 V (𝑥, 0) T −𝑚 (𝜙)𝑥 , (5.78)

where
𝑚 (𝜙) =

(
𝜙

2𝜋 𝑑𝑁
)
𝑐−1𝑁 (mod 𝑑𝑁 ), (5.79)

similarly to Section 2.2.1. This means that T𝜙 = T𝑚 (𝜙)𝑥 , and we got a skew relation
between 𝑥 and 𝜙 instead of rotation. Thus, time-reversal symmetry is not broken.
Remark. The expression ofV (𝑥, 𝜙) is more restrictive than the general form in [32].
However, it has an explicit algebraic formula and relation to C&P procedure.

Not all hope is lost. Let us make a few observations. First, change variables from 𝜙
to 𝑦 = (𝜙/2𝜋) 𝑑𝑁 so that

𝑚 (𝑦) = 𝑦𝑐−1𝑁 (mod 𝑑𝑁 ), (5.80)
and we have a torus of 𝑑𝑁 × 𝑑𝑁 as in Figure 5.9. The Hamiltonian thus reads

H =
𝒑2

2𝜇 + V (𝑥,𝑦) . (5.81)

Let 𝜓𝑛,𝒌 (𝒓) be a solution to this equation with eigenenergy 𝐸𝑛,𝒌 , with 𝒓 = (𝑥, 𝜙).
Under Bloch’s theorem, we inspect the periodic functions 𝑢𝑛𝒌 = e−i𝒌 ·𝒓 𝜓𝑛𝒌 , whose
Hamiltonian reads

H =
(𝒑 + ℏ𝒌)2

2𝜇 + V (𝑥,𝑦) . (5.82)
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The Berry phase is then given by

𝛾𝑛 = Im
∫
BZ
d2𝒌

∫
𝑆

d2𝒓
(
𝜕𝑢∗
𝑛𝒌

𝜕𝑘𝑥

𝜕𝑢𝑛𝒌
𝜕𝑘𝑦
− 𝜕𝑢

∗
𝑛𝒌

𝜕𝑘𝑦

𝜕𝑢𝑛𝒌
𝜕𝑘𝑥

)
. (5.83)

According to [102], since there is time-reversal symmetry, the wavefunction could
always be taken real so that the possible values of 𝛾𝑛 are {0, 𝜋}. Now we claim the
following. SinceV (𝑥) has a period of 𝑑𝑁 , there are exactly 𝑑𝑁 distinct bands. Since
they are all distinct, the Berry phasemust be 𝜋 for all of them. Now, we have a relation
between 𝜙 and 𝑥 . Since d𝜙 = 𝜕𝑚 (𝜙) /𝜕𝜙 d𝑥 then d𝑦 = 𝜕𝑚 (𝑦) /𝜕𝑦 d𝑥 = 𝑐−1

𝑁
d𝑥 . This

means that 𝜕/𝜕𝑥 = 𝑐−1
𝑁
𝜕/𝜕𝑦. Thus, 𝑘𝑥 = 𝑐−1

𝑁
𝑘𝑦 so that 𝜕/𝜕𝑘𝑦 = 𝑐−1

𝑁
𝜕/𝜕𝑘𝑥 . Using the

Stokes theorem, the Berry phase is given by,

𝛾𝑛 = 𝑐−1𝑁 Im
∮
BZ

d𝑘
∫
𝑆

d2𝒓
𝜕𝑢∗
𝑛𝑘

𝜕𝑘
𝑢𝑛𝑘 . (5.84)

By the previous discussion, the integrals amount to i𝜋 . Hence, the Berry phase has a
degeneracy of 𝑐−1

𝑁
,

𝛾𝑛 = 𝜋𝑐−1𝑁 . (5.85)

The Chern number of the 𝑛th band is given by

𝐶𝑛 �
1
2𝜋 𝛾𝑛 = 1

2 𝑐
−1
𝑁 , (5.86)

and the winding of the edge state of the 𝑛th gap is given by [95, 103],

𝑊𝑛 �
𝑛∑︁
𝑖=1

𝐶𝑛 = 1
2 𝑛𝑐

−1
𝑁 , (5.87)

or, equivalently,
𝐶𝑛 �𝑊𝑛 −𝑊𝑛−1 = 1

2 𝑐
−1
𝑁 . (5.88)

Thus, for 𝑛 = 𝑞𝑐𝑁 one has
𝑊𝑛𝑞 = 1

2 𝑞. (5.89)

We should understand the 1/2 factor here as follows. The edge state always winds
twice around the Brillouin zone, when we change 𝜙 from 0 to 2𝜋 , because it travels
from band 𝑛 to band 𝑛 + 1 and back. However, when the Chern number is half-integer,
it winds in the same direction [37] instead of �ipping directions [102, 103]. This
interpretation does not require external �elds, and the (“molecular” [102]) Chern
number is seen as an internal property of the crystal.

5.C.3 Chern Numbers and Chirality in 2𝒅 Hamiltonians
The main issue with the previous model is that the time-reversal symmetry is not
broken. Thus, the topological numbers found are topologically trivial [102]. Conse-
quently, the factor 1/2 we have got has a shady interpretation. Below, we shall show a
di�erent approach.

We introduce twisted boundary conditions [104] similarly to [34]. This super�cial
condition is required in order to obtain Chern numbers [105] or to measure transport
properties by using an e�ective Hamiltonian [70, 104]. Suppose that the 𝑁 th approx-
imant is describing such a (𝑥,𝑦)-torus of size 𝑑2

𝑁
= 𝐿2 (see Figure 5.9), and impose
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chiral boundary conditions so that a full round-trip around the torus of 𝑥 and 𝑦 adds a
phase of ei𝛽𝜙 . Speci�cally, if𝜓 (𝑥, 𝜙) is an eigenfunction of the Hamiltonian, then

𝜓 (𝑥 + 𝑑𝑁 , 𝜙) = ei𝛽𝜙/2𝜋 𝜓 (𝑥, 𝜙) . (5.90)

Thus, these boundary conditions can be incorporated into the Hamiltonian by [32, 104],

H =

(
𝒑 + 𝛽𝑦𝐿−2𝑥 )2

2𝜇 + V (𝑥,𝑦) , (5.91)

These are exactly the equations of a magnetic �eld through a ring, where Φ𝛽 = 𝛽/𝐿
plays the role of the Aharonov-Bohm �ux in a Landau gauge. Note that the �ux has a
real physical interpretation only because we are in a 2𝑑 system.

The solution is now straightforward (see [106], for instance). We may use sim-
ilar arguments to the Hofstadter solution to the Harper model [107, 108], with the
following distinction. In [108], the �ux can have any two integer numbers 𝑝/𝑞; in
the quasiperiodic case they are uniquely determined by 𝑐𝑁 /𝑑𝑁 . The denominator is
identi�ed with the super-cell size, and it must coincide with the torus length 𝑑𝑁 . Since
we are in a quasiperiodic C&P approximant, for each 𝑑𝑁 there is only one 𝑐𝑁 , who
governs the labeling order of the gaps (as will be shown below). The chirality 𝛽 thus
governs the winding of the edge state. Physically, since we are in a 1𝑑 system, we can
only expect the trivial 𝛽 = 0 or the topological 𝛽 = ±1.

This Hamiltonian is already periodic in 2𝑑 (no need to add the 𝑘𝑥 , 𝑘𝑦 wavevectors).
Thus, we can calculate the Berry phase. Similarly to the previous section, we have a
relation between 𝑥 and 𝑦, d𝑦 = 𝑐−1

𝑁
d𝑥 so that 𝜕/𝜕𝑘𝑦 = 𝑐−1

𝑁
𝜕/𝜕𝑘𝑥 . We use, as before,

Stokes theorem, but now the integral is 2𝜋 i𝛽 :

𝛾𝑛 = 𝑐−1𝑁 Im
∮
BZ

d𝑘
∫
𝑆

d2𝒓
𝜕𝑢∗
𝑛𝑘

𝜕𝑘
𝑢𝑛𝑘 = 𝑐−1𝑁 2𝜋𝛽 (5.92)

Therefore, the Berry phase is the chirality multiplied by 𝑐−1
𝑁
. The latter factor gives

the correct Chern number of the required band

𝐶𝑛 = 𝛽𝑐−1𝑁 . (5.93)

The winding of the edge state of the 𝑛th gap is given by [95, 103],

𝑊𝑛 =
𝑛∑︁
𝑖=1

𝐶𝑛 = 𝑛𝛽𝑐−1𝑁 . (5.94)

Thus, for 𝑛 = 𝑞𝑐𝑁 one has
𝑊𝑛𝑞 = 𝛽𝑞. (5.95)

Let us now connect to the chiral phase 𝛼 (𝑘, 𝜙) of (3.76) to the Chern numbers found
above. In the experiments of [37], a structure and its re�ection were concatenated to
have a superstructure of double length. This corresponds to chirality of 𝛽 = +1. An
edge state always winds twice inside the gap [103], because it travels from band 𝑛
to band 𝑛 + 1 and back. As the structure is one-dimensional with a given chirality, it
winds in the same direction thus explaining the results of [37].
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5.C.4 Discussion on the Chern Numbers in 2𝒅 Hamiltonians
The main arguments (ingredients) to obtain the Chern numbers in the approximants
of quasiperiodic sequences are as follows.

i. The axes 𝜙 and 𝑥 are connected by𝑚 (𝜙) calculated from the slope (and used to
calculate the di�raction spectra).

ii. There are 𝑑𝑁 distinct bands, where each one is topologically di�erent from its
neighbors below and above. This is a consequence of the gap labeling theorem.

iii. Each band has a degeneracy of 𝑐−1
𝑁
(mod 𝑑𝑁 ). This comes from the quasiperiodic

approximant and𝑚 (𝜙).
Thus, the Chern number of the 𝑛th gap for 𝑛 = 𝑞𝑐𝑁 is 𝑛𝑐−1

𝑁
= 𝑞. The �rst issue is the

interpretation of the 3rd point. It is either (a) the non-trivial Berry phase for periodic
lattice, or (b) the chiral number of the band. The second issue is the double winding in
the same direction. It is either (a) a consequence of the 𝜋 phase, or (b) the chirality.

The main advantage of the non-trivial Berry phase approach is the absence of a
magnetic �eld. No additional conditions are imposed, and it is fully correlated with
the structural approach. However, the interpretation of the 1/2-integer Berry phase
is a bit vague, as is the double winding in the same direction. The chiral boundary
conditions are easier to calculate, but here the chirality is a super�cial quantity that
does not have physical interpretation (no physical quantity is dependent on it). It only
acts as a mediator to calculate the Chern numbers.

5.C.5 Topological Numbers in 1𝒅 Dynamical Systems
Our physical system, as measured by [37], is 1𝑑 ; the phason is just a phase that
cannot change any physical quantity (e.g., IDOS, transport). We need to change the
Hamiltonian accordingly. In the 2𝑑 case, we had a kinetic energy associated with the
real axis 𝜙 , which does not happen in 1𝑑 . Thus, looking on a discrete periodic torus of
size 𝑑𝑁 × 𝑑𝑁 (see Figure 5.9), each row is disconnected from the other.

Take a periodic 1𝑑 Hamiltonian of size 𝑑𝑁 ,

H𝜙 =
𝑝2

2𝜇 + V𝜙 (𝑥) . (5.96)

Here both 𝜙 ∈ [0, 2𝜋) and 𝑥 ∈ [0, 𝑑𝑁 ) are discrete with 𝑑𝑁 sites each. For simplicity,
rescale 𝑦 = 𝑑𝑁𝜙/2𝜋 so that 𝑦 is integer in [0, 𝑑𝑁 ). Since we have a relation between
di�erent rows, we could treat this Hamiltonian as a dynamical system. Explicitly,

H𝑦′ = T𝑚 (𝑦′−𝑦)H𝑦T −𝑚 (𝑦′−𝑦) = 𝑝2

2𝜇 + V𝑦′ (𝑥) , (5.97)

where, as before𝑚 (𝑦) = 𝑦𝑐−1
𝑁
(mod 𝑑𝑁 ).

Let𝜓𝑛 (𝑥) be an eigenfunction with eigenenergy 𝐸𝑛 . SinceH𝑦 is periodic, we use
the Bloch theorem and write a Hamiltonian for the periodic 𝑢𝑛𝑘 (𝑥) = e−i𝑘𝑥 𝜓𝑛𝑘 (𝑥),

H𝑦 (𝑘) =
(𝑝 + ℏ𝑘)2

2𝜇 + V𝑦 (𝑥) . (5.98)

Calculating the Zak phase, we have

𝛾𝑛 = i
∫
BZ

〈
𝑢𝑛𝑘

���� 𝜕𝑢𝑛𝑘𝜕𝑘 〉
d𝑘. (5.99)
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Now, sinceH𝑦 (𝑘) abides time-reversal symmetry, then 𝛾𝑛 ∈ {0, 𝜋} [101, 102]. There
are 𝑑𝑁 distinct bands in C&P approximants of size 𝑑𝑁 as a consequence of the Bloch
theorem, since there are 𝑑𝑁 di�erent Bragg peaks per Brillouin zone. All of them are
unique, and thus they get the phase 𝛾𝑛 = 𝜋 .

So far, we have not used the information on the phason (𝜙 or 𝑦). To do that make
the following observation. T is the generator of translations in 𝑥 , and its periodicity
by 𝑑𝑁 gives rise to 𝑘 . Similarly, T𝑚 (𝑦) is the generator of translations in 𝑦 and also has
the periodicity of 𝑑𝑁 . However, from the physical point of view, it acts on the same 𝑥
axis, but with 𝑐−1

𝑁
steps instead of 1. In C&P approximations, the translations T𝑚 (𝑦)

are more natural than T , as they are in the direction of the phason 𝜙 , thus converging
with 𝑁 . Henceforth, we shall use them.

The wavevector of 𝑦 given by 𝑘𝑦 = 𝑐−1
𝑁
𝑘 . Rewriting Zak phase in terms of 𝑘𝑦 , one

has the same form as before, but the Brillouin zone is in�ated by a factor of 𝑐−1
𝑁
,

𝛾𝑛 = i
∫
B̃Z

〈
𝑢𝑛𝑘𝑦

���� 𝜕𝑢𝑛𝑘𝑦𝜕𝑘𝑦

〉
d𝑘𝑦 = 𝑐−1𝑁 𝛾𝑛 . (5.100)

This can also be seen as a degeneracy. De�ne the Zak number of the 𝑛th band by,

𝐶𝑛 = 1
2𝜋 𝛾𝑛 = 1

2 𝑐
−1
𝑁 . (5.101)

Note the factor 1
2 as before. Analogously to Chern numbers, the Zak number of the

𝑛th gap is

𝑊𝑛 =
𝑛∑︁
𝑖=1

𝐶𝑖 =
1
2 𝑛𝑐

−1
𝑁 . (5.102)

Thus, for the 𝑛 = 𝑞𝑐𝑁 gap, one has a topological integer

𝑊𝑛𝑞 = 1
2 𝑞. (5.103)

Claim. Note that the phason 𝜙 only comes to scale the integer number of the gaps.
We have chosen𝑚 (𝑦) = 𝑐−1

𝑁
𝑦, and thus the 𝑐−1

𝑁
factor was brought to fruition. Should

we select a di�erent phase scale, the integer numbers would scale accordingly. Recall,
however, that the 𝑐−1

𝑁
factor comes from the C&P procedure, or, analogously, the

characteristic function.
We have thus associated the gaps’ integer labelingwith winding numbers. However,

edge states in the experiments of [37] wind twice inside each gap. This is not re�ected
in the current calculation, but rather it has the peculiar 1

2 factor.
Remark. In [37] it was experimentally veri�ed that

𝑊𝑛 =
𝑛∑︁
𝑖=1

𝐶𝑛 = 2𝑛𝑐−1𝑁 , (5.104)

so that for 𝑛𝑁 = 𝑞𝑐𝑁 one has

𝑊𝑞 =

𝑞∑︁
𝑖=1

𝐶𝑛𝑁 (𝑞) = 2𝑞. (5.105)

In other words, the topological number𝑊𝑞 = 2𝑞 does not depend on the approximation
𝑁 unlike the Chern numbers 𝐶𝑛𝑁 inside. This is in contrast with periodic structures,
where the Chern numbers are not dependent on system size.
Proposition. Winding numbers𝑊𝑞 are topologically more resilient than Chern num-
bers 𝐶𝑛 in C&P tilings. Moreover, their calculation is simpler as it does not require
wavefunctions.



Chapter 6

Fractals

This chapter is a bit special. Unlike the previous ones, where we have concentrated on
simple tiling spaces [52], here we present a discrete scale invariance construction with
a non-integer (Hausdor�) dimension. The avid reader is referred to [109] for a review
on fractals in physics.

6.1 Introduction
Here we present a short introduction to the construction of fractals.

6.1.1 L-systems and Turtle Graphics
The L-systems, named after A. Lindenmayer, are a generalization of substitution
systems [110, 111]. Formally, an L-system is the tuple

𝐿 � (𝑉 ,𝑤0, 𝜋) , (6.1)

where 𝑉 is the alphabet consisted of variables Γ changing under the rule 𝜋 , and
constants 𝐶 that are not replaced; 𝑤0 is the initial word (or an “axiom”); 𝜋 are the
production rules for all the variables, similar to substitution rules. One creates a word
of order 𝑛 via successive applications of 𝜋 on𝑤0,

𝑤𝑛 � 𝜋
𝑛 (𝑤0) . (6.2)

We shall generally interpret the L-system as a drawing rule where we hold a pen
(the “turtle”), and the letters in𝑤𝑛 tell it how to draw the fractal. Typically,
− 𝐴, 𝐵, 𝐹,𝐺 ∈ Γ : draw a line;
− 𝑋,𝑌 ∈ Γ : involve but do not draw;
− ± ∈ 𝐶 : turn right ±𝜃 degrees;
− [, ] ∈ 𝐶 : push and pop positions into (respectively, from) the stack.

Let us inspect a few examples.
Example (Sierpiński Gasket). Here, 𝐹,𝐺 is draw a line; ± turn right ±120◦; 𝑤0 =

𝐹 +𝐺 +𝐺 ; and
𝜋Sier :

{
𝐹 ↦→ 𝐹 +𝐺 − 𝐹 −𝐺 + 𝐹,
𝐺 ↦→ 𝐺 𝐺.

(6.3a)

Note that the angles ± do not need a rule.
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(a)SierpińskiGasketfororders
𝑛
=
1−9.
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Example (Basilica fractal). Here 𝐴, 𝐵 are curve leftwards, and 𝐶 make a loop (facing
backwards); ± turn right ±90◦;𝑤0 = 𝐴++𝐴; and

𝜋Bas :


𝐴 ↦→ 𝐵 −𝐶 − 𝐵,
𝐵 ↦→ 𝐴,

𝐶 ↦→ 𝐵𝐶 𝐵.

(6.3b)

Example (Koch curve). Here, 𝐹 is draw a line; ± turn right ±60◦;𝑤0 = 𝐹++𝐹++𝐹 ; and
𝜋Koch : 𝐹 ↦→ 𝐹 − 𝐹 + + 𝐹 − 𝐹 . (6.3c)

Example (Gosper curve). Here, 𝐺,𝐻 is draw a line; ± turn right ±60◦;𝑤0 = 𝐺 ; and

𝜋Gos :
{
𝐺 ↦→ 𝐺 + 𝐻 + + 𝐻 −𝐺 − −𝐺 𝐺 − 𝐻 + ,
𝐻 ↦→ −𝐺 + 𝐻 𝐻 + + 𝐻 +𝐺 − −𝐺 − 𝐻. (6.3d)

These examples are presented in Figure 6.1.

6.1.2 Substitutions via L-systems
So far we have seen how L-systems generalize substitutions. Mainly, the constants
and initial conditions enhance the capabilities of substitutions. Let us make the other
direction, namely, restate L-systems in substitution language. This will allow us to use
the many theorems and algorithms for substitutions we already know.

Let us make the following observation. The constants are letters in the substitution
rule that map to themselves. Thus, we can simply rewrite the production rules of the
L-systems as substitutions,

𝜎Sier :


𝐴 ↦→ 𝐴𝑐 𝐵𝑑𝐴𝑑𝐵 𝑐𝐴,

𝐵 ↦→ 𝐵 𝐵,

𝑐 ↦→ 𝑐,

𝑑 ↦→ 𝑑 ;

(𝑐, 𝑑) = (+,−) . (6.4a)

𝜎Bas :


𝐴 ↦→ 𝐵 𝑑𝐶𝑑 𝐵,

𝐵 ↦→ 𝐴,

𝐶 ↦→ 𝐵𝐶𝐵,

𝑑 ↦→ 𝑑 ;

𝑑 = −. (6.4b)

𝜎Koch :


𝐴 ↦→ 𝐴𝑐𝐴𝑏𝑏 𝐴𝑐𝐴,

𝑏 ↦→ 𝑏,

𝑐 ↦→ 𝑐;
(𝑏, 𝑐) = (+,−) . (6.4c)

𝜎Gos :


𝐴 ↦→ 𝐴𝑐 𝐵𝑐𝑐 𝐵𝑑 𝐴𝑑𝑑 𝐴𝐴𝑑 𝐵𝑐,

𝐵 ↦→ 𝑑𝐴𝑐𝐵 𝐵 𝑐𝑐𝐵 𝑐𝐴𝑑𝑑𝐴𝑑𝐵,

𝑐 ↦→ 𝑐,

𝑑 ↦→ 𝑑 ;

(𝑐, 𝑑) = (+,−) . (6.4d)

Here, the translation of the constant is explicitly stated. The constants are denoted by
lower-case letters for visual aid only.

We observe here the crucial importance of the constants. Take, for example, the
simple case of the Koch star. Without the constants, we have 𝐹 ↦→ 𝐹𝐹𝐹𝐹 , which is
simply a periodic structure. Similar argument transpires for all other presented cases.
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Corollary. The constants of a fractal substitution are essential for its algebraic properties.

Let us focus on the initial condition𝑤0. We have considered thus far only primitive
substitutions rules. The main mathematical idea was to create a closed tiling space Ω𝑇
so that we can study its topology [52]. Technically, it means that we can recreate Ω𝑇
starting with any tile 𝑡 ∈ 𝑇 . In fractals, this is not the case. The simplest example is
the Cantor set,

𝜎Cantor :
{
𝐴 ↦→ 𝐴𝐵𝐴, 𝐴 : draw a line,
𝐵 ↦→ 𝐵𝐵𝐵, 𝐵 : skip drawing.

(6.5)

Should we start with𝑤0 = 𝐴, we can safely recreate the fractal; starting with𝑤 ′0 = 𝐵
results in an empty line. We can also view it from the non-primitive occurrence matrix
𝑀Cantor =

( 2 1
0 3

)
, which does not have strictly-positive leading eigenvector.

Corollary. Primitivity implies insensitivity to initial conditions.

Another problem is that now, when the associated occurrence matrix is non-primitive,
one cannot use the Perron-Frobenius theorem. That means the de�nitions of the Čech
cohomology 𝐻̌ 1 (Ω) do not hold, and one cannot apply anymore the gap-labeling
theorem of [27]. Nonetheless, as we shall see below, the algorithm still holds.

6.2 Fractal Substitution Rules
In the previous section, we laid the groundwork of substitutions corresponding to
fractals. In this section, we shall show the consequences of considering fractals in
substitution language, and present new and interesting physics.

6.2.1 The Gap Labeling Conjecture for Fractals
We saw in the previous section how to construct a fractal with an L-system 𝐿 (turtle
graphics). Consider, for instance, the Sierpiński Gasket 𝐿Sier shown in Figure 6.1a, or
Basilica 𝐿Bas whose half is shown in Figure 6.1b. Take each L-system and transform it
into a planar graph𝐺 , where the edges are drawn by the turtle, and the nodes are their
boundary. Then, to each graph assign a physical entity: a tight binding Hamiltonian.
For planar graphs, it is simply the adjacency matrix [112] formally written as

𝐻 � 𝑡
∑︁
〈𝑖, 𝑗 〉

𝑐†
𝑖
𝑐 𝑗 + h.c., (6.6)

where 〈𝑖, 𝑗〉 are nearest neighbors 𝑡 ∈ R, and 𝑐†
𝑖
𝑐 𝑗 is the corresponding adjacency

matrix element. For the rest of this section we set 𝑡 = 1.
Next, calculate the IDOS by diagonalizing the Hamiltonian (6.6). We want to label

the gaps similarly to the aperiodic tiling case. We saw earlier that the gap labeling
theorem does not hold in fractal substitutions due to non-primitivity. Nevertheless, we
shall apply it formally in good faith exactly as in [27]. In other words, for any fractal
substitution 𝜎Fr, the gaps’ locations are conjectured to be located at

NFr
gap =

1
𝑎

𝑘

𝜆𝑁∗
(mod 1), 𝑎, 𝑘, 𝑁 ∈ N. (6.7)

Here, 𝜆∗ is the leading (largest) eigenvalue of the associated occurrence matrix𝑀Fr
1 ,

and 𝑎 is deduced from its respective leading eigenvectors 𝒗∗1/2 in both𝑀Fr
1 and𝑀Fr

2 .
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(a) Sierpiński Gasket of order 𝑛 = 7. Inset: scaling at N . 1 with 𝜆 = 1.01 and 𝑑𝑠 = log5 9 (cf. (6.11)).

(b) Double Basilica with Loops of order 𝑛 = 9.

Figure 6.2: IDOS vs. 𝐸 of fractal planar graphs. (a) Sierpiński Gasket; (b) Double Basilica
with Loops. Grid ticks are indicated on both sides for visual aid.

Claim. The only thing that matters for the gap labeling conjecture is the leading
eigenvalue 𝜆∗ that represents the strongest frequency of the substitution. All other
frequencies are washed away.
Remark (Perron-Frobenius Thm.). The primitivity requirement for𝑀1/2 ensures that
(a) the leading eigenvalue 𝜆∗ is unique, real and positive; (b) the leading eigenvectors
𝒗∗ have positive entries 𝑣𝑖 . [59, 60]
These 𝑣𝑖 are interpreted as corresponding letter 𝑙𝑖 frequency in the in�nite word
𝑤∞ [43]. They are used as probability measures in the calculation of GLT [27].

Fact. The Perron-Frobenius theorem above also holds for a general non-strictly-upper-
triangular nonnegative matrix𝑀 (see Thm. 2.20 in [59]) up to the uniqueness of 𝜆∗.
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Corollary. Since this is the case in the presented fractal examples, the GLT combinatorics
of [27] still holds.

Example. The gap labeling for the Sierpiński Gasket and the Basilica fractals reads,

NSier
gap = 1

10𝑘 3
−𝑁 (mod 1), 𝑘, 𝑁 ∈ N. (6.8a)

NBas
gap = 1

3𝑘 2
−𝑁 (mod 1), 𝑘, 𝑁 ∈ N. (6.8b)

The good correspondence with the prediction is shown in Figures 6.2.

In planar graph fractals, we consider 3 di�erent dimensions [109, 113–116]:

1. The Hausdor� dimension 𝑑ℎ corresponds to the geometric dimension.
2. The Walk dimension 𝑑𝑤 corresponds to random walks 〈𝑟 2 (𝑡)〉 ∝ 𝑡2/𝑑𝑤 [114].
3. The Spectral dimension 𝑑𝑠 corresponds to the Heat kernel [114].

For planar graphs𝐺𝑛 at iteration 𝑛 with 𝑁𝑛 sites, 𝐿𝑛 length and di�usion time𝑇𝑛 , these
3 dimensions are written as [113]

𝑑ℎ = log𝑁𝑛 / log𝐿𝑛 ;
𝑑𝑤 = log𝑇𝑛 / log𝐿𝑛 ;

𝑑𝑠/2 = log𝑁𝑛 / log𝑇𝑛 .
(6.9)

Thus, they are related by
𝑑𝑠/2 = 𝑑ℎ / 𝑑𝑤 . (6.10)

The governing scaling dimension for the IDOS is the spectral dimension,

N (𝜆𝐸) = 𝜆𝑑𝑠/2N (𝐸) . (6.11)

In the Sierpiński Gasket, 𝑑𝑠/2 = ln 3 / ln 5 [113]. One can readily check in Figure 6.2a
that this is indeed the scaling in case.

6.2.2 Topological Phase Transitions
Thus far, we have shown that the gap labeling conjecture works for the planar fractal
graphs. Now, let us show how magnetic �uxes interact with the fractals. These
questions were considered before by means of renormalization group approach [117,
118], but we shall seek a di�erent—simpler—path.

Consider the Sierpiński Gasket above in a perpendicular magnetic �ux. By means
of Peierls substitution, we assign phases to each edge of the graph,

𝐻𝑃 � 𝑡
∑︁
〈𝑖, 𝑗 〉

ei𝛼𝑖 𝑗 𝑐†
𝑖
𝑐 𝑗 + h.c. (6.12)

This magnetic phase 𝛼𝑖 𝑗 is given by means of Peierls substitution,

𝛼𝑖 𝑗 � Φ−10

∫
𝑨 · d𝒍𝑖 𝑗 . (6.13)

where 𝑨 is the gauge �eld vector potential, and 𝒍𝑖 𝑗 is the path between nodes 𝑖 and 𝑗 ,
and Φ0 = ℎ/𝑒 the �ux quantum.
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Figure 6.3: IDOS of the Sierpiński Gasket in a magnetic �ux (linear model).

Consider an Aharonov-Bohm setup: a �ux Φ4 threading all the smallest plaquettes
4 in 𝐺𝑛 with 𝑩 = 0 on their edges. We set a symmetric gauge 𝑨 = 𝐵 (𝑥𝑦 − 𝑦𝑥) /2, and
integrate with respect to 4 so that (0, 0) is in its center. A short calculation yields,

𝛼𝑖 𝑗 =
𝐵𝑆4
Φ0
×
{
+1/3 for 𝛾𝑖 𝑗 = {2𝜋/3, 0, −2𝜋/3} (anticlockwise),
−1/3 for 𝛾𝑖 𝑗 = { 𝜋/3, 𝜋, −𝜋/3} (clockwise),

(6.14)

where 𝑆4 is the plaquette area, and 𝛾𝑖 𝑗 is the the angle between nodes 𝑖 and 𝑗 ,

𝛾𝑖 𝑗 � tan−1
(
𝑟
𝑦

𝑖 𝑗
/ 𝑟𝑥𝑖 𝑗

)
, 𝒓𝑖 𝑗 � 𝒓 𝑗 − 𝒓𝑖 . (6.15)

Therefore, we only need a single parameter—the phase di�erence per plaquette,

𝜃 � 𝜃4 = Φ−10

∮
4
𝑨 · d𝒍 = 𝐵𝑆4/Φ0 = Φ4/Φ0 . (6.16)

The phase 𝜃 ∈ [0, 2𝜋) is well-de�ned in the limit of in�nite fractal order 𝑛 →∞. Note
that 𝐵, 𝑆4,Φ4 are �ctitious and can be dropped. The Hamiltonian in the “linear model”
thus reads,

𝐻𝐿 = 𝑡
∑︁
〈𝑖, 𝑗 〉

ei𝜃/3 𝑐†
𝑖
𝑐 𝑗 + h.c. (6.17)

The results of the calculation of IDOS for the Sierpiński Gasket in a magnetic �ux
are given in Figure 6.3. One can readily see that gaps open and close with respect to 𝜃 .
However, all of them reside on the gap labeling conjectured NSier

gap (𝐸, 𝜃 ) = 𝑎−1𝑘/3𝑁 as
in (6.7). We thus have topological phase transitions on fractals.

Corollary. The gap labeling conjecture persists in a magnetic �ux. All of the gaps of the
fractal—open or closed—must obey this gap labeling rule.

Conjecture. The main frequency 𝜆∗ is all that matters for IDOS calculations. Magnetic
�ux or other short-range interactions may only open or close gaps in the module of 𝜆∗.

Fact. These L-systems are one-dimensional words in the sense of dynamical systems
(though the fractals themselves are not).
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Figure 6.4: IDOS of the Sierpiński Gasket for chosen angles 𝜃 (linear model).

Claim. Gaps open and close only at 𝜃 = 0, 𝜋,±𝜋/2. The respective Hamiltonians
exhibit high symmetry with high spectral degeneracy.

Corollary. We got topological phase transitions with a simple gauge �eld in 1𝑑 systems.

6.2.3 Analysis of Sierpiński IDOS
The Hamiltonian (6.17) is dependent only on a single parameter 𝜃 , the total angle per
plaquette. Let us make a unitary transformation keeping 𝜃 ,

𝐻𝐿 (𝜃 ) ↦→ 𝐻̃𝐿 (𝜃 ) = 𝑡
∑︁
〈𝑖, 𝑗 〉

ei𝛼̃𝑖 𝑗 𝑐†
𝑖
𝑐 𝑗 + h.c., (6.18)

where

𝛼𝑖 𝑗 = 𝜃 ×
{
{ 1,−1, 1} for 𝛾𝑖 𝑗 = {2𝜋/3, 0, −2𝜋/3} (anticlockwise),
{−1, 1,−1} for 𝛾𝑖 𝑗 = { 𝜋/3, 𝜋, −𝜋/3} (clockwise).

(6.19)

Notice that e±(𝜃+𝜋 ) = − e±𝜃 . Therefore,
𝐻̃𝐿 (𝜃 ) = −𝐻̃𝐿 (𝜃 + 𝜋) . (6.20)

But since spec𝐻𝐿 (𝜃 ) = spec 𝐻̃𝐿 (𝜃 ), we have
𝐸 (𝜃 ) = −𝐸 (𝜃 + 𝜋) . (6.21)

Hence, the IDOS �ips 180◦,

N (𝐸, 𝜃 ) = 1 − N (−𝐸, 𝜃 + 𝜋) . (6.22)

Note that the gap labeling rule N = 𝑎−1𝑘/3𝑁 as in (6.7) is una�ected. Additionally,
since spec𝐻𝐿 (𝜃 ) = spec𝐻 ∗

𝐿
(𝜃 ) = spec𝐻𝐿 (−𝜃 ), then

N (𝐸, 𝜃 ) = N (𝐸,−𝜃 ) ,
N (𝐸, 𝜋 + 𝜃 ) = N (𝐸, 𝜋 − 𝜃 ) . (6.23)
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This implies re�ection of the IDOS around 𝜃 = 0 and 𝜃 = 𝜋 . These two inversion (6.22)
and re�ection (6.23) symmetries are well seen in Figure 6.3.

There are 2 special cases to consider.

1. 𝜃 = 0. SinceN (𝐸, 0) is asymmetric with respect to 𝐸 (cf. Figure 6.2a), then (6.22)
implies that there must be gaps that open and close.

Corollary. Topological phase transitions are unavoidable.

2. 𝜃 = 𝜋/2. From (6.23), one has N (
𝐸, 𝜋2

)
= N (

𝐸,−𝜋2
)
. Together with (6.22), we

have N (
𝐸, 𝜋2

) + N (−𝐸, 𝜋2 ) = 1.

Corollary. N (
𝐸, 𝜋2

)
is symmetric with respect to 𝐸, and N (

𝐸, 𝜋2
)
= N (

𝐸,−𝜋2
)
.

These cases are presented in Figure 6.4.
Let us consider the change of the Sierpiński magnetic Hamiltonian with 𝜃 ,

𝜕𝜃𝐻𝐿 (𝜃 ) =
𝑡

3
∑︁
〈𝑖, 𝑗 〉

(
i ei𝜃/3 𝑐†

𝑖
𝑐 𝑗 − i e−i𝜃/3 𝑐†

𝑗
𝑐𝑖
)

=
𝑡

3
∑︁
〈𝑖, 𝑗 〉

(
ei (𝜃+3𝜋/2)/3 𝑐†

𝑖
𝑐 𝑗 + e−i (𝜃+3𝜋/2)/3 𝑐†𝑗 𝑐𝑖

)
=
1
3 𝐻𝐿 (𝜃 + 3𝜋/2) . (6.24)

A complementary approach is to rewrite (6.12) as

𝐻𝐿 (𝜃 ) = cos (𝜃/3)𝐻0 + sin (𝜃/3)𝐻3𝜋/2, (6.25)

where 𝐻𝜃 � 𝐻𝐿 (𝜃 ). Note that although 𝐻0 ≠ 𝐻2𝜋 , one has spec (𝐻0) = spec (𝐻2𝜋 ).
It is tempting to compare this Hamiltonian to a Zeeman interaction 𝑩 · 𝝈 , where

𝐻0 ∼ 𝜎𝑥 and 𝐻3𝜋/2 ∼ 𝜎𝑦 . There are, however, two main di�erences. First, the spectrum
of 𝐻0 and 𝐻3𝜋/2 is di�erent (cf. Figure 6.4) whereas spec (𝜎𝑖 ) = ±1. Second, their
commutation relations are not SU (2). Explicitly,[

𝐻0, 𝐻3𝜋/2
]
= −2i

∑︁
〈〈𝑖, 𝑗 〉〉

(
𝑐†
𝑖
𝑐 𝑗 − 𝑐†𝑗 𝑐𝑖

)
s.t. (𝑖, 𝑗) ∈ (

O(𝑘)
𝑁
,O(𝑙)
𝑁

)
, 𝑘 ≠ 𝑙 . (6.26)

Thus, the next-nearest-neighbors 〈〈𝑖, 𝑗〉〉 belong to di�erent highest-depth triangles
O𝑁 .

6.2.4 Sierpiński L-system and Tight Binding Correspondence
Let us reinspect the Sierpiński L-system with a slight change,

𝜋Sier* :


𝐹 ↦→ 𝐹 +𝐺 − 𝐹 − 𝐻 + 𝐹,
𝐺 ↦→ 𝐺 𝐺,

𝐻 ↦→ 𝐻 𝐻,

(6.27)

so that 𝐹,𝐺, 𝐻 is draw a line; ± turn right ±120◦;𝑤0 = 𝐹 +𝐺 +𝐻 . Note that all the 𝐹 -s
are pointing to the same direction, and similarly for𝐺 and𝐻 . As before, we translate it
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to the substitution rule 𝜎Sier* to create 1𝑑 words𝑤𝑁 . Applying formally the procedure
of [27], we get the same gap labeling rule,

NSier* =
1
10

𝑘

3𝑁
(mod 1), 𝑘, 𝑁 ∈ Z. (6.28)

Additionally, calculating the 𝜁 -function using formally the procedure in Section 3.1.4,
we have

𝜁Sier* (𝑧) = 1 − 𝑧
(1 − 3𝑧) (1 − 2𝑧)2 (1 − 𝑧) . (6.29)

Hence, the Čech cohomologies read

𝐻̌ 0 (ΩSier*,Z) = Z,
𝐻̌ 1 (ΩSier*,Z) = Z [1/3] ⊕ Z [1/2]2 ⊕ Z.

(6.30)

Notice that 𝐻̌ 0 � Z because the Sierpiński fractal is path connected. Additionally,
𝐻̌ 1 ⊃ Z [1/3] as expected.

We saw that (6.27) gives rise to the tight binding Hamiltonian (6.6). Let us add the
phase 𝜃 . Change 𝜋Sier* ↦→ 𝜋Sier* (𝜃 ) so that the rule stays the same, but 𝐹,𝐺, 𝐻 are now
reinterpreted as “draw a line acquiring a phase of ei𝜃/3.” The tight binding Hamiltonian
for 𝜋Sier* (𝜃 ) changes to (6.12). It is well-de�ned, since each of 𝐹,𝐺, 𝐻 has the same 𝛾𝑖 𝑗 .

Figure 6.5: The angles 𝛼area𝑖 𝑗 /𝜃 for the Sierpiński Gasket of order 𝑛 = 3. The values
are shown above each edge and illustrated by its width. Blue and red edges indicate
positive and negative values, respectively, with respect to the angles 𝛾𝑖 𝑗 indicated by
the arrows. The �ux inside each triangle representative is presented in purple.
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As we have only reinterpreted the drawing rule, the substitution system is unchanged,
namely, 𝜎Sier* = 𝜎Sier* (𝜃 ). Thus, 𝑤𝑁 = 𝑤𝑁 (𝜃 ) and the combinatorics are una�ected.
Therefore, the gap labeling rule, 𝜁 -function and Čech cohomologies remain unaltered.

Corollary. The gap labeling rule of the magnetic Sierpiński Hamiltonian (6.12) is
independent of 𝜃 . Namely, all gaps—opened or closed—must reside on 𝑘/3𝑁 .
Remark. The factor of 1/10 in (6.28) comes from the combinatorics of the 1𝑑 chain. It
is not seen in the tight binding calculation (cf. Figure 6.3).

6.2.5 Flux Penetrating the Entire Gasket
In Section 6.2.2, we have considered a linear �ux penetrating the Gasket. The results
were staggering—quantum phase transition have appeared. However, such a �ux is
either non-physical or di�cult to realize experimentally at best. We shall follow the
ideas of S. Alexander [118–120] immersing the whole Gasket in a magnetic �eld.

Consider a Sierpiński Gasket immerged entirely in a perpendicular magnetic �ux.
We shall call it the “area model.” By means of Peierls substitution, assign phases to
each edge of the graph as in (6.12). However, unlike the previous case in (6.14), the
phases 𝛼𝑖 𝑗 are not all equal. They obey the following criteria.

1. The phases surrounding a triangle sum up to the �ux inside that triangle,{∑︁
O𝑚

𝛼𝑖 𝑗 = 4𝑚−1𝜃,∑︁
4 𝛼𝑖 𝑗 = 𝜃 .

(6.31a)

Here, O𝑚 is the downward triangle of the𝑚th depth, 4 is the upward (smallest)
triangle. As before, 𝜃 is the total angle (normalized �ux) through the smallest
plaquette 4. See Figure 6.5 for illustration.

2. We enforce a Kirchho�-like condition by applying the London gauge [118, 120].
Namely, the total of phases through a node 𝑖 must vanish,∑︁

𝑗
𝛼𝑖 𝑗 = 0, ∀𝑖 . (6.31b)

Figure 6.6: IDOS of the Sierpiński Gasket in a magnetic �ux (area model).
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Figure 6.7: IDOS of the Sierpiński Gasket for chosen angles 𝜃 (area model).

We need to solve 3𝑛+1 equations to obtain uniquely all the angles 𝛼𝑖 𝑗 for the 𝑛th order
of the Sierpiński Gasket. By Euler’s formula, criteria (6.31) above give us 3𝑛+1 + 1
conditions (for depths𝑚 = 1 . . . 𝑛). Changing the gauge (6.31b) to ∑

𝑗 𝛼𝑖 𝑗 = 𝜈𝑖 implies∑
𝑖 𝜈𝑖 = 0 (since 𝛼𝑖 𝑗 = −𝛼 𝑗𝑖 ), thus removing one condition on the nodes.

Claim. If we, alternatively, change condition (6.31a) for the downward triangles to∑
O𝑚 𝛼𝑖 𝑗 = −2𝑚−1𝜃 , we are back in the linear model of Section 6.2.2.

Problem. Unlike (6.14), no closed form for 𝛼area𝑖 𝑗 has been found thus far. Their values
are computed by solving equations (6.31).

Solving (6.12) in the area model, we have a similar picture of gaps appearing and
disappearing, as seen in Figure 6.6. Moreover, looking closely (as in Figure 6.7), the gaps
still reside on the sameN area

Sier = 𝑘 3−𝑁 as before (see Figure 6.4); only their locations in
𝐸 have changed.

Corollary. The IDOS conditionNSier = 𝑘 3−𝑁 is a property of the L-system combinatorics
rather than the model’s �ux conditions.

Inspecting closer the angles 𝛼𝑖 𝑗 in the area model (see Figure 6.5), we have a
surprising result. Their values at the 𝑛th order are rationals following the rule,

𝛼area𝑖 𝑗

𝜃
=

𝑘𝑖 𝑗

3 × 5𝑛−1 , 𝑘𝑖 𝑗 ∈ Z. (6.32)

In other words, we have retrieved the factor 5 of 𝑑𝑠 without any approximations. Note
that these values can be negative, namely, in the opposite direction of 𝛾𝑖 𝑗 . Recall that
in the linear model, 𝛼𝑖 𝑗 = 1/3 as in (6.14).

Corollary. The dimension 𝑑𝑠 can be inferred from the consistency conditions for 𝛼𝑖 𝑗
with magnetic �ux. No Hamiltonian needs to be solved.

Remark. In [118, 119], the Hamiltonian (6.12) is not solved, but rather,

𝐻𝐴𝜓𝑘 = 1
4𝑍 𝐸𝑘𝜓𝑘 , (6.33)
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(a) Simple linear model. (b) Linear model with 𝑍 .

(c) Simple area model. (d) Area model with 𝑍 .

Figure 6.8: The spectrum of 𝐻𝑃 (𝜃 ) with respect to 𝑍 in di�erent �ux models. Colors
represent band index. (a) Simple linear model; (b) linear model with 𝑍 ; (c) simple area
model; (d) area model with 𝑍 .

where 𝑍 is a diagonal matrix of the number of neighbors of each node. Since all but the
3 head nodes have 4 neighbors, 𝑍 is expected to have a negligible e�ect on the results.
However, its absence produces edge modes both in the linear and the area model, as
presented in Figure 6.8. It also a�ects the eigenfunctions, which are imperative in
Section 6.3, although the main results do not change.
Claim. The gaps in the area model open and close only at 𝜃 = 0, 𝜋,±𝜋/2 as before.
Thus, the area model also exhibits topological phase transitions.
Remark. Making Peierls approximation (6.33) to the free-particle Schrödinger equation
( i∇ −𝑨/Φ0)2𝜓 = 𝑞2𝜓 , obtain 𝑞 = ℓ−1 arccos𝐸/4 (see Appendix 6.A.1 and [118–120]).
Being a monotonically decreasing function, the IDOS rule NSier = 𝑘 3−𝑁 persists.

6.2.6 Flux Conditions
Adding a magnetic �ux to the Sierpiński Gasket may change the topological group of
the system. Take, for instance, the Hofstadter model [108]. Without a magnetic �eld,
the system is boring with a single gap (so that 𝐻̌ 1 � Z); after adding a magnetic �eld
with an irrational �ux (Φ/Φ0 ∉ Q) there appear an in�nite amount of gaps (𝐻̌ 1 � Z2).
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The resulting Wannier butter�y [121, 122] is very reminiscent of the one created in 1𝑑
C&P system (cf. Figure 5.7b). It can be shown that these two systems exhibit the same
tiling rule. In the Sierpiński Gasket, however, we cannot utilize such methods. It was
created by a 1𝑑 rule (e.g., (6.27)), but any �ux condition (6.31a) is 2𝑑 by default. As we
add a dimension instead of reducing one, we cannot use the construction of [45]. We
thus need to describe the topological group in a di�erent way.

Let us inspect (6.31a) and generalize it. Consider how the �ux changes after
application of the in�ation (6.27), namely, use the tiling procedure on the magnetic
�uxes. Let 𝐴 be the �ux though an upward plaquette 4, and 𝐵𝑚 the �ux though the
downward plaquette of𝑚th depth O𝑚 . Then,

𝜎ΦSier :


𝐴 ↦→ 3𝐴 + 𝑟𝐵1
𝐵1 ↦→ 𝑏𝐵2

𝐵2 ↦→ 𝑏𝐵3
...

⇐⇒ 𝑀Φ
Sier =

©­­­­«
3 𝑟

0 𝑏
0 𝑏
. . .
. . .

ª®®®®¬
. (6.34)

Here 𝑟 is the ratio between the �uxes in 4 and O1, and𝑏 is the basis of growth (in�ation).
In the area model (𝑏, 𝑟 ) = (4, +1), whereas in the linear model (𝑏, 𝑟 ) = (2,−1). This is
an in�nite in�ation rule, which resembles a C&P scheme represented in a substitution
language. Additionally, (6.31a) is rephrased as{∑︁

O𝑚
𝛼𝑖 𝑗 = 𝑟𝑏

𝑚−1𝜃,∑︁
4 𝛼𝑖 𝑗 = 𝜃 .

(6.35)

We now have two knobs to probe. When 𝜃 = 0, all the spectra are the same for any
value of (𝑏, 𝑟 ). However, when 𝜃 = 𝜋/2, the spectra are di�erent between the linear
(2,−1) and area (4, +1) models (cf. Figures 6.4 and 6.7). Take a path between the linear
and area models, say (2,−1) → (2, 0) = (4, 0) → (4, +1). Note that the middle point is
equivalent in any basis (no �ux penetrating any of the O𝑚). Gaps that open or close in
this path imply a di�erent magnetic character between both end points. This is readily
seen in Figure 6.9. The gaps retain the IDOS rule NSier = 𝑘 3−𝑁 .

The numerical calculation shows indeed a di�erent character between 𝑏 = 2 and
𝑏 = 4. Yet, we cannot characterize it with (6.34), since the emerging tiling is in�nite
and our current tools do not support such tilings. This is reminiscent of the pinwheel
tiling having an irrational rotation and thus an in�nite number of tiles. In that case,
rotations were added to the tiling space resulting in two types of tiles only (see Chap. 4
of [52]). Using these ideas, add �ux growth to the tiling space so that (6.34) changes to

𝜎ΦSier :
{
𝐴 ↦→ 3𝐴 + 𝑟𝐵
𝐵 ↦→ 𝑏𝐵

⇐⇒ 𝑀Φ
Sier =

(
3 𝑟
0 𝑏

)
. (6.36)

This substitution rule works with our established machinery. Since we deal with 2𝑑
tilings (since �ux corresponds to area), the corresponding Čech cohomology is 𝐻̌ 2 [45].
However, since we do not deal with a proper tiling space, the cohomology group is
not 𝐻̌ 2 by de�nition. That being said, we nonetheless call this group 𝐻̌ 2 due to the
similarities between tiling and �ux spaces.

Calculating the 𝐻̌ 2 group (similarly to 𝐻̌ 1 in Section 3.1.4), one obtains,

𝐻̌ 2 (ΩΦ
g ,Z

)
� Z

[
3−1

] ⊕ Z [
𝑏−1

]
, (6.37)

where ΩΦ
g is the new �ux tiling space containing growth. Note that the ratio 𝑟 does

not play a role in the group characterization.
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Figure 6.9: Spectrum of 𝐻𝑃 with generalized �ux conditions for 𝜃 = 𝜋/2 and order
𝑛 = 5. Negative 𝑟 spectra are calculated in the linear model (𝑏 = 2); positive 𝑟 spectra
are in the area model (𝑏 = 4).

Figure 6.10: Spectrum of 𝐻𝑃 with generalized �ux conditions in di�erent bases for
𝜃 = 𝜋/2 and order 𝑛 = 5. (a–d) 𝑏 = (1, 2, 3, 4), respectively, for a full spectral period.
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(a) 𝜁 -function at 𝜃 = 0. (b) 𝜁 -function at 𝜃 = 𝜋/2.

Figure 6.11: 𝜁0 (𝑠;𝜃 ) on a Sierpiński Gasket of order 𝑛 = 5. (a) 𝜃 = 0; (b) 𝜃 = 𝜋/2. The
amplitude is represented by height (logarithmic scale) and the phase by coloring (scale
on the right). The zeros of 𝜁0 (𝑠;𝜃 ) are shown by red dots.

Corollary. The linear and area models have di�erent topological 𝐻̌ 2 groups, namely,
Z

[ 1
3
] ⊕ Z [ 1

2
]
and Z

[ 1
3
] ⊕ Z [ 1

4
]
, respectively.

The 𝐻̌ 2 group does not add to the GLT, which stems from 𝐻̌ 1 � Z
[ 1
3
] ⊕ Z[ 1

2
]2.

However, it changes the spectrum and its characteristics as shown in Figure 6.9. For
instance, the positive and negative slopes of 𝑏 = 2 in Figure 6.9 appear also in 𝑏 = 4
(with larger values), but the latter has an additional set of negative slopes resulting
in a “denser” pattern. A comparison of di�erent bases is shown in Figure 6.10. The
spectra of 𝐻𝑃 (𝜃 ; 𝑏, 𝑟 ) are periodic so that

spec𝐻𝑃
(
2𝜋/𝑅; 𝑏, 𝑟 ) = spec𝐻𝑃

(
2𝜋/𝑅; 𝑏, 𝑟 + 𝑅) . (6.38)

6.2.7 Spectral Zeta Function
Another way to characterize fractal systems is by the associated 𝜁 -function [109, 113,
114]. This opens the path for thermodynamics, spectral dimensions and other physical
properties. On the Sierpiński Gasket, the 𝜁 -function has been considered thus far only
for the Laplacian in zero �ux [123, 124]. Let us extend these results.

The 𝜁 -function is de�ned as [113]

𝜁 (𝑠, 𝛾) �
∑︁
𝑘

𝑔𝑘
(𝐸𝑘 + 𝛾)𝑠

, (6.39)

where 𝑔𝑘 is the degeneracy of 𝐸𝑘 and 𝑠, 𝛾 ∈ C. It is the Mellin-Laplace transform of
the heat kernel 𝑍 (𝑡),

𝜁 (𝑠, 𝛾) = Γ (𝑠)−1
∫ ∞

0
d𝑡 𝑡𝑠−1 𝑍 (𝑡) e−𝛾𝑡 , (6.40)

where Γ (𝑠) is the gamma function and

𝑍 (𝑡) �
∑︁
𝑘

𝑔𝑘 e−𝐸𝑘𝑡 . (6.41)
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Figure 6.12: The location of 𝜁0 (𝑠;𝜃 ) zeros with respect to 𝜃 . Line colors represent
contiguous zero change. The red line is emphasized for clarity.

For our purposes, we calculate the poles and zeros of the Sierpiński Gasket with
respect to the magnetic �ux at 𝛾 = 0,

𝜁0 (𝑠;𝜃 ) � 𝜁𝐻𝑃 (𝜃 ) (𝑠, 0)
���
𝐸𝑘≠0

=
∑︁
𝑘,𝐸𝑘≠0

𝑔𝑘
(𝐸𝑘 (𝜃 ))𝑠

. (6.42)

The condition 𝐸𝑘 ≠ 0 is required to avoid in�nities [123]. The poles of 𝜁0 (𝑠; 0)
are located at {i𝜔𝑠𝑛,𝑑𝑠 + i𝜔𝑠𝑛 : 𝑛 ∈ Z} (see [123, 124]), where 𝑑𝑠 = ln 9/ln 5 and
𝜔𝑠 = 2𝜋/ln 5 for the Sierpiński Gasket. Figure 6.11 shows a calculation of 𝜁0 (𝑠;𝜃 ) for
�uxes 𝜃 = (0, 𝜋/2).

We are left with the task of identifying the poles and zeros of 𝜁0 (𝑠;𝜃 ). Numerically,
it is a challenging task, since we might never compute a pole or zero 𝑠0 but rather
points in its neighborhood. However, we can use a property of meromorphic functions
𝑓 (𝑠): that arg 𝑓 (𝑠) winds around a pole or a zero 𝑠0. De�ne the curl of 𝜁0 (𝑠;𝜃 ) by

𝐶 (𝑠;𝜃 ) = 𝜕𝑥 Im 𝜁0 (𝑠;𝜃 ) − 𝜕𝑦 Re 𝜁0 (𝑠;𝜃 ) , 𝑠 = 𝑥 + i𝑦. (6.43)

The zeros and poles are identi�ed when 𝐶 (𝑠0;𝜃 ) ≥ 𝐶0, where 𝐶0 = 2𝜋 . We may lower
a bit 𝐶0 to increase sensitivity. Figure 6.12 shows the variation of the zeros of 𝜁0 (𝑠;𝜃 )
using this method.

6.3 Eigenfunctions on Fractals
Thus far, we have analyzed the structural properties and the distribution of energies
on fractals—with and without magnetic �ux. These all were static properties of the
system. Next, we would like to inspect the eigenfunctions on fractals to infer some
winding and transport properties of fractals, as will be shown below.

6.3.1 Sierpiński Eigenfunctions
Consider the Hamiltonian (6.33) in the area model, and calculate its eigenfunctions𝜓𝑘 ,

𝐻𝐴 (𝜃 )𝜓𝑘 = 1
4𝑍 𝐸𝑘𝜓𝑘 . (6.44)
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These eigenfunctions must retain the Sierpiński 𝐶3 symmetry [118]. For degenerate
𝜓𝑘 , the numerical solver typically �nds non-𝐶3-symmetric solutions. Yet, there always
exists a 𝐶3-symmetric linear combination of these states.
Remark. To force 𝐶3-symmetric solutions 𝜓𝑘 , one may add a small regularization
mass term |𝜇 | � |𝑡 | to (6.12) using 𝜇∑𝑖 𝑐

†
𝑖
𝑐𝑖 . However, since arg𝜓𝑘 is numerically

susceptible to such changes, we drop it for now.
In some parameter combinations, the eigenfunctions obtain a very special shape:

they exist only on a single depth O𝑚 . The case of the boundary 40 and the �rst depth
O1 is shown in Figure 6.13. To quantify this, we de�ne the overlap for the𝑚th depth as

𝑂𝑚
𝑘
= 〈𝜓𝑘 |1𝑚 |𝜓𝑘〉 /〈𝜓𝑘 |𝜓𝑘〉 , (6.45)

where 1𝑚 is the indicator function on 40 or O𝑚>0, respectively. The results for 𝑂0 and
𝑂1 are presented in Figure 6.14 as a function of the �ux 𝜃 and the IDOS N (since N
has a linear scale whereas 𝐸 does not). We have several immediate results.

1. The large overlaps are located in distinct bands.
2. Overlaps of di�erent depths come consecutively (checker-board band pattern).
3. Jumps in overlaps occur near the gaps N = 𝑘 3−𝑁 .
4. The deeper the depth is, the less distinct the overlap becomes. The boundary

(depth 0) has the highest overlap.

6.3.2 Sierpiński Eigenfunction Windings
Since the eigenfunctions are vectors𝜓𝑘 ∈ C𝑁𝑛 (with 𝑁𝑛 the number of nodes), they
have an amplitude |𝜓𝑘 |2 and a phase

𝜗𝑘 = arg𝜓𝑘 . (6.46)

Similarly to the quasiperiodic case, we inquire whether this phase winds with respect
to some 𝜑 . Let us de�ne this new phason 𝜑 . For each triangle O𝑚 , de�ne its center 𝒓𝑚𝑐 .

(a) An eigenfunction on the boundary 40. (b) An eigenfunction on O1.

Figure 6.13: Eigenfunctions on a Sierpiński Gasket of order 𝑛 = 4. (a) The 68th
eigenfunction; (b) the 69th eigenfunction. The �ux is 𝜃 = 13𝜋/18 for both cases. The
amplitude is indicated by circle radius and the phase by a cyclic color map (right).
Top-left inset: the IDOS for the current �ux with the energy shown by the red circle.
Middle-left inset: winding of the phase 𝜗𝑘 with respect to 𝜑 .
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(a) Overlap of 40. (b) Overlap of O1.

Figure 6.14: Overlaps of 40 and O1 vs. IDOS N and �ux 𝜃 for order 𝑛 = 4.

It is unambiguous for 40 and O1 lying in the center of the Gasket (we shall not deal
with𝑚 ≥ 2 for now). The phase 𝜑̃ , de�ned on the whole Gasket, is then

𝜑̃𝑚𝑖 𝑗 � tan−1
(
𝑟
𝑦

𝑖 𝑗
/ 𝑟𝑥𝑖 𝑗

)
, 𝒓𝑖 𝑗 � 𝒓𝑖 𝑗 − 𝒓𝑚𝑐 . (6.47)

Restricting 𝜑̃𝑚 on its𝑚th triangle, we have a well-de�ned phase 𝜑𝑚 ∈ [0, 2𝜋],

𝜑𝑚
𝑙
� 𝜑̃𝑚𝑖 𝑗

��40 for𝑚=0
O1 for𝑚=1

, 𝜑𝑚
𝑙

< 𝜑𝑚
𝑙+1 . (6.48)

The winding𝑊𝑚
𝑘

is then just the winding of 𝜗𝑘 with respect to 𝜑𝑚 de�ned as,

𝑊𝑚
𝑘
�

1
2𝜋

∑︁
𝑙

𝛿𝜗𝑘
𝛿𝜑𝑚

𝑙

Δ𝜑𝑚
𝑙
�

1
2𝜋

∑︁
𝑙

𝛿𝜗𝑚
𝑘,𝑙
. (6.49)

The winding𝑊𝑚
𝑘

is well-de�ned only on the wavefunctions 𝜓𝑘 with 𝑂0
𝑘
= 1 or

𝑂1
𝑘
= 1. To be less strict, we de�ne a threshold 𝜀 so that𝑊𝑚

𝑘
is well-de�ned for

𝑂𝑛
𝑘
> 1 − 𝜀 and 0 otherwise. To avoid abrupt changes, we use a threshold function 𝑓𝜖

instead. Figure 6.15 shows the winding with respect to this threshold.
Unfortunately, the winding𝑊𝑚

𝑘
is not well-behaved while increasing the fractal

order 𝑛. The general shape (and overlap) of the eigenfunction retains, but the winding
value may change. This is unlike the quasiperiodic case, where the phase Θ and its
winding converge well with 𝑛. It might be numerical diagonalization issues, degen-
eracy, or an ambiguous de�nition of phase. Either way, we cannot currently use the
eigenfunction winding as a tool.

6.3.3 Sierpiński Currents
We use the spatial locations of the eigenstates in order to construct some interesting
phenomena. Consider, for instance, an eigenstate𝜓0 = 𝜓

(N 0, 𝜃
)
living on the boundary

40 only, namely, 𝑂0 (𝜓0) ' 1. We set the IDOS to N 0, the �ux to 𝜃 , and inject a
thermodynamic current into one of the Gasket’s head nodes. Since the corresponding
state is𝜓0, the current 𝐼 will stay on the boundary 40.

Now, suppose we want the current to �ow on the �rst-depth triangle O1. We need
an eigenstate𝜓1 = 𝜓

(N 1, 𝜃
)
with 𝑂1 (𝜓1) ' 1. However, since 𝑂1 (𝜓0) ' 𝑂0 (𝜓1) ' 0,
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(a) Winding at 40. (b) Winding at O1.

Figure 6.15: Windings at 40 and O1 vs. IDOSN and �ux 𝜃 for order𝑛 = 4. The threshold
is 𝜀 = 0.05 with a threshold function (white saturation) 𝑓𝜀 = tan−1 (8𝜋 (𝑂𝑚 − (1 − 𝜀))).

we cannot just changeN and 𝜃 to transfer between𝜓0 and𝜓1; we need an intermediate
state𝜓01 that has a large overlap with both 40 and O1, that is𝑂0 (𝜓01) ' 𝑂1 (𝜓01) ' 0.7.
Luckily, we have such a state as presented in Figure 6.16. All we need to do is to change
N and 𝜃 to their respective values in 𝜓0 → 𝜓01 → 𝜓1 consecutively. The current 𝐼1
will persist on O1 as it has no channels of decay.

Suppose one desires a persistent current 𝐼2 on O2. Similarly to the discussion above,
�nd 𝜓12 and 𝜓2 to transfer the current to O2 using 𝜓0 → 𝜓01 → 𝜓1 → 𝜓12 → 𝜓2.
Generalizing this approach, one can continue up to a desirable 𝐼𝑚 on O𝑚 by

𝜓0 → 𝜓01 → 𝜓1 → · · · → 𝜓𝑚−1,𝑚 → 𝜓𝑚 . (6.50)

Corollary. We have de�ned a topological storage or memory with respect to the
persistent current 𝐼𝑚 at depth𝑚. Keeping the system in the eigenstate 𝜓𝑚 , the current
will stay on O𝑚 and will not leak to other triangles. In particular, there is no interaction
with the Sierpiński Gasket boundary 40 where the current is probed.
Remark. Triangles of depth O𝑚 are adjacent to all triangles of depth O𝑚+1, but not to
those of depth O𝑚+2 and above. Thus, we need to make the sequence (6.50) consecutive
through all depths. Remarkably, since 40 touches all O1, O2 and O3, we can make a
shortcut at these stages.

6.4 Index Theorems on Fractals
Thus far, we have observed that L-system fractals encompass integer numbers cor-
responding to a labeling of the gaps. We have also shown that these gaps open and
close with respect to an external order parameter—the magnetic �ux 𝜃 . To �nish our
discussion, we attempt to give them a topological nature by matching gap numbers
with a certain operator’s index

The topology of fractals is di�erent than the usual condensed matter systems in
which the underlying lattice of the Hamiltonian is periodic. Thus, the application of the
common formulae (as presented in Section 6.4.1) is not expected to work. Additionally,
these index formulae require two continuous symmetries, whereas we have only the
magnetic �ux and no Brillouin zone. Finally, any index de�ned by means of projection
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(a) Eigenstate at 40. (b) Eigenstate at both 40 and O1. (c) Eigenstate at O1.

Figure 6.16: Persistent current protocol on order 𝑛 = 5 Sierpiński Gasket: start at
𝜓0 = 𝜓 (N𝑎, 𝜃 ), proceed to𝜓01 = 𝜓 (N𝑏, 𝜃 ) and �nish with𝜓1 = 𝜓 (N𝑐 , 𝜃 ). (a) Eigenstate
at 40 withN𝑎 = 170/366; (b) eigenstate at 40 and O1 withN𝑏 = 174/366; (c) eigenstate
at O1 with N𝑐 = 159/366. The �ux is 𝜃 = 16𝜋/45 in all three cases.

𝑃𝐹 requires a contiguous gap at 𝐸𝐹 throughout the entire range of the �ux. This is not
the case in the Sierpiński Gasket, as presented in Figure 6.3.

6.4.1 Common Index Formulae
In this section, we present some unsuccessful tries to apply some index formula on
the Sierpiński Gasket. In [125, 126], an attempt was made to apply an index to a band
in the Sierpiński Gasket and carpet by means of a Chern number. The formula in
question was given by [127],

AB

C

Figure 6.17: Kitaev’s
division of space.

𝜈 (𝑃) = 12𝜋 i
∑︁

𝑗 ∈𝐵,𝑖∈𝐴
𝑘∈𝐶

(
𝑃𝑖 𝑗𝑃 𝑗𝑘𝑃𝑘𝑖 − 𝑃𝑖𝑘𝑃𝑘 𝑗𝑃 𝑗𝑖

)
, (6.51)

where 𝐴, 𝐵,𝐶 are regions dividing the space (see Figure 6.17),
and 𝑃𝑖 𝑗 are projections onto the 𝑙 th band given by

𝑃𝑖 𝑗 =
∑︁
𝑙 ∈band

𝜓𝑙 (𝑖)𝜓 ∗𝑙 ( 𝑗) , (6.52)

with𝜓𝑙 (𝑖) an eigenfunction of 𝐻𝑃 on site 𝑖 .
The main issue with the application of (6.51) in [125, 126]

is that a local index formula was used. Namely, the patches 𝐴, 𝐵,𝐶 were taken on a
�nite patch inside the Gasket rather than the entire fractal. Thus the boundary of the
patch had a great e�ect, and non-integer numbers were obtained. Another issue is that
Kitaev mainly deals with a bipartite lattice [127], which is not the case in the Sierpiński
Gasket. Moreover, Kitaev required an in�nite planar Bravais lattice. Thus, we need a
di�erent approach more suitable to the fractal case.

Another version of the index formula given by [127] is

𝜈 (𝑃) = 2𝜋 i Tr
(
𝑃
[[𝑋, 𝑃] , [𝑌, 𝑃]] ), (6.53)

with 𝑃 the projection onto the 𝑙 th band, and [· , ·] is a commutator. Note that this is a
continuous version of (6.51), which is set on a lattice. This formula �rst appeared in
the context of the quantum Hall conductance [4, 95, 96],

Ch (𝑃𝐹 ) =
∫
T2

d2𝒌
2𝜋 i Tr

(
𝑃𝐹 (𝒌) [𝜕1𝑃𝐹 (𝒌) , 𝜕2𝑃𝐹 (𝒌)]

)
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=
1
𝜋

∫ 2𝜋

0
d𝑘1

∫ 2𝜋

0
d𝑘2 Im 〈𝜕1𝜉 (𝒌) |𝜕2𝜉 (𝒌)〉 , (6.54)

for, 𝜕𝑖 = 𝜕/𝜕𝑘𝑖 and 𝑃𝐹 (𝒌) 𝜉 (𝒌) = 𝜉 (𝒌) with 𝑃𝐹 (𝒌) a projection on all energies smaller
than the Fermi energy 𝐸𝐹 , namely, 𝐸 ≤ 𝐸𝐹 . Another version of this formula appears
in [128], where the index of a continuous quasiperiodic acoustic structure is taken to
be

Ch (𝑃𝐹 ) = Tr𝐿
(
𝑃𝐹

[
𝜕𝜙𝑃𝐹 , [𝑍, 𝑃𝐹 ]

] )
, (6.55)

where Tr𝐿 is trace per unit length,𝜙 the phason degree of freedom, and𝑍 the coordinate
along the structure. Note that the derivative with respect to 𝜙 is explicit.

Since we deal with the Sierpiński Gasket, we must �nd a set of periodic operators
representing the symmetries of the Gasket. Because it has a natural 𝐶3 symmetry, we
choose the rotation 𝑅2𝜋/3 and the re�ection Π around one of the Gasket’s (triangle’s)
symmetry axes. The relevant index formula reads

𝜈 (𝑃) = Tr
(
𝑃
[[𝑅2𝜋/3, 𝑃] , [Π, 𝑃]] ) . (6.56)

Unfortunately, this formula works only for the highly symmetric 𝐻0 and 𝐻𝜋/2; other
values of 𝜃 do not display meaningful results. That being said, since the numbers 𝜈 (𝑃)
are integers corresponding to a band, this approach has some promise.

Another symmetry presented is the periodicity of the eigenenergies in the �ux
𝜃 ↦→ 𝜃 + 2𝜋 . Therefore we need to seek some magnetic group. We shall use the fact
that—independently on the �ux model—gaps open close at those �uxes 𝜃𝑑 at which
spec [𝐻 (𝜃𝑑 )] is degenerate. In the �rst order (low Fractal depth 𝑛), 𝜃 (1)

𝑑
= 𝑑 𝜋/2 with

𝑑 ∈ Z; second order goes as 𝜃 (2)
𝑑

= 𝑑 𝜋/22; generally, 𝜃 (𝑟 )
𝑑

= 𝑑 𝜋/2𝑟 . The degeneracy
is more prominent in the linear �ux model. Therefore, we cannot follow the bands
uniquely. Denote, as before, 𝑃𝐹 (𝜃 ) the projection on all energies 𝐸 ≤ 𝐸𝐹 of 𝐻𝑃 (𝜃 ).
However, generally, the gap does not persist with 𝐸𝐹 as we change 𝜃 . Thus, a Chern
number calculation [34, 95, 105] (similarly to (6.54)),

Ch (𝑃𝐹 ) = 1
2𝜋 i

∫
T2
d𝜃 d𝜙 Tr

(
𝑃𝐹

[
𝜕𝜃𝑃𝐹 , 𝜕𝜙𝑃𝐹

] )
, (6.57)

would not work.

6.4.2 Multiplicity and Index
Let us analyze the possible index from the Hamiltonian multiplicity considerations.
The Linear Hamiltonian reads

𝐻𝐿 (𝜃 ) =
∑︁
〈𝑖, 𝑗 〉

exp
(
i𝛼𝑖 𝑗

)
𝑐†
𝑖
𝑐 𝑗 + h.c., 𝛼𝑖 𝑗 = 𝜃/3, (6.58)

where 𝛼𝑃𝑖 𝑗 is speci�ed in the counter-clockwise direction. This implies, on the one
hand, that 𝐻𝐿 (𝜃 ) = 𝐻𝐿 (𝜃 + 2𝜋𝑎 × 3) with 𝑎 ∈ Z. On the other hand, we saw that
spec [𝐻𝐿 (𝜃 )] = spec [𝐻𝐿 (𝜃 + 2𝜋𝑏)] with 𝑏 ∈ Z. Thus we have a 3-fold multiplicity in
the solutions. This can also be seen from (6.25).

In the area model (of 𝑛th order),

𝐻𝑛𝐴 (𝜃 ) =
∑︁
〈𝑖, 𝑗 〉

exp
(
i𝛼𝑛𝑖 𝑗

)
𝑐†
𝑖
𝑐 𝑗 + h.c., 𝛼𝑛𝑖 𝑗 = 𝜃

𝑘𝑖 𝑗

3 · 5𝑛−1 , 𝑘𝑖 𝑗 ∈ Z. (6.59)
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Similarly to the linear model, this implies 𝐻𝑛
𝐴
(𝜃 ) = 𝐻𝑛

𝐴

(
𝜃 + 2𝜋𝑎 × 3 · 5𝑛−1) together

with spec [𝐻𝑛
𝐴
(𝜃 )] = spec [𝐻𝑛

𝐴
(𝜃 + 2𝜋𝑏)] with𝑎, 𝑏 ∈ Z. Thus a 3·5𝑛−1-fold degeneracy

unravels.

Corollary. Any �ux model with 𝛼𝑛𝑖 𝑗/𝜃 = 𝑘𝑖 𝑗/𝑞𝑛 , where 𝑞𝑛 is the least common multiplier
of all the denominators, will have an 𝑞𝑛-fold multiplicity.

Remark. The degeneracy does not prove the existence of a topological index, but rather
implies its possibility.
After �nding the multiplicity, let us check the corresponding degeneracy of the energy.
For each �ux change of 2𝜋 , de�ne the degeneracy of the 𝑙 th band as

𝑔𝑙 = |{𝐸𝑙 (𝜃 ) | 𝐸𝑙 (𝜃 ) is degenerate at 𝜃 ∈ [−𝜋𝑞𝑛, 𝜋𝑞𝑛)}| . (6.60)

Highly degenerate spectra appear at �uxes 𝜃𝑑 . Note that this de�nition of 𝑔𝑙 is insensi-
tive to sign, which has to be calculated otherwise.

6.4.3 The Zak Phase
Let us now inspect the Zak phase (5.76). Although there is no Brillouin zone to speak
of, there exists a coordinate 𝜃 by which the Hamiltonian is periodic. It di�ers from the
Berry phase case, which requires at least 2 periodic coordinates. In our case, the Zak
phase is written as an integral over the Berry connection,

𝛾𝑙 = i
∫
𝐶

d𝜃
〈
𝜓𝑙 (𝜃 )

���� 𝜕𝜕𝜃 𝜓𝑙 (𝜃 )〉 , (6.61)

where 𝐶 � 𝐶 (𝜃 (𝑡)) denotes a path in 𝜃 such that 𝐻 (𝜃 (0)) = 𝐻 (𝜃 (𝑇 )). The |𝜓𝑙 (𝜃 )〉
are the eigenfunctions of 𝐻 (𝜃 ), which are unique up to the eigenenergy degeneracy
happening in 𝜃𝑑 . This degeneracy makes the calculation of the index rather cum-
bersome, as one cannot follow uniquely the eigenfunctions through the �uxes 𝜃𝑑 .
Unfortunately, the simpli�cations of [29] would not work, as the problem is 1𝑑 and
there is no simple closed formula for the solutions. A direct application of Berry’s
formula requires a second periodic continuous coordinate; it does not exist in the
present case.

An important issue with (6.61) is that the phase of |𝜓𝑙 (𝜃 )〉 is not unique. To deal
with it, a phase independent formula was derived in [29]. However, it is not applicable
in a single periodic coordinate. An attempt to align all eigenfunctions (by normalizing
the total phase by the phase of the head node) produced inconclusive results. There
is an apparent phase jump across a degeneracy point 𝜃𝑑 , which can be probed by a
principle derivative,

〈𝜓 𝑖
𝑙
| i𝜕𝑃

𝜃
|𝜓 𝑖
𝑙
〉 � 〈𝜓

𝑖+1
𝑙
| + 〈𝜓 𝑖

𝑙
|

2 i
|𝜓 𝑖+1
𝑙
〉 − |𝜓 𝑖

𝑙
〉

Δ𝜃
=
Im 〈𝜓 𝑖+1

𝑙
|𝜓 𝑖
𝑙
〉

Δ𝜃
, (6.62)

where 𝜓 𝑖
𝑙
� 𝜓𝑙 (𝜃𝑖 ) and Δ𝜃 = 𝜃𝑖+1 − 𝜃𝑖 choosing 𝜃𝑖 = 𝜃𝑑 − 1

2Δ𝜃 . However, there exist
�ctitious phase jumps far from 𝜃𝑑 , which make the calculation of the Zak phase (6.61)
inconsistent. In total, this method yields 𝛾𝑙 ' 0 for most 𝑙 with some irregularities as
described above.

Corollary. Either the Zak phase nulli�es for the Sierpiński Gasket, or we must directly
probe the degeneracy �uxes 𝜃𝑑 .
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Another method to lift the degeneracy is to apply a small disorder as in (6.70) or
(6.71) with𝑊 � 𝑡 . However, this disorder does not preserve the Zak phase 𝛾𝑙 for
di�erent realizations. Thus it cannot be used to calculate the phase. It also suggests
that the Zak phase of (6.61) is not topologically protected.

An alternative approach to disorder is to add a small on-site regularization mass
term [6] that explicitly breaks the Sierpiński Gasket’s symmetry. However, such at-
tempts did not yield meaningful results. Similarly to the disordered case, the calculated
phase was susceptible to abscissas’ locations or amount, fractal order, and so on.

6.4.4 An Emergent Symmetry
Let us make an interesting observation. Since we built the Sierpiński Gasket using
an L-system as in (6.27), we have a natural order to the edges (bonds) 〈𝑖, 𝑗〉 � 𝑒 with
𝑒 = 1 . . . 3𝑛+1 by tracing the drawing rules. Therefore, (6.12) can be written as

𝐻𝑃 � 𝑡
∑︁
𝑒

(
ei𝛼𝑒 𝑐†𝑠𝑒𝑐𝑡𝑒 + h.c.

)
, (6.63)

where 𝑠𝑒 and 𝑡𝑒 denote the source and target nodes of edge |𝑒〉, respectively. De�ne a
translation operator 𝑇𝑒 such that 𝑇𝑒 |𝑒〉 = |𝑒 + 1〉 with 𝑇𝑒 |3𝑛+1〉 = |1〉. In other words,

𝑅𝑒𝐻𝑃𝑅
†
𝑒 = 𝑡

∑︁
𝑒

(
ei𝛼𝑒−1 𝑐†𝑠𝑒𝑐𝑡𝑒 + h.c.

)
. (6.64)

We note that in the linear model (6.17), 𝛼𝑒 = 𝜃/3 for all 𝑒 . Therefore,

𝑇𝑒𝐻𝐿𝑇
†
𝑒 = 𝐻𝐿 . (6.65)

Remark. This result is seemingly gauge dependent, because it would not work for
𝐻̃𝐿 in (6.18). However the only di�erence in 𝛼𝑒 is for edges with di�erent spatial
orientations, which are labeled by the L-system’s variables 𝐹,𝐺, 𝐻 in (6.27). Hence, we
can always rede�ne 𝑇𝑒 with respect to the gauge.

Now that we have a periodic coordinate, we may apply Bloch’s theorem. If𝜓 (𝑒) is
a mutual eigenstate of 𝑇𝑒 and 𝐻𝐿 , we may rewrite it in terms of 𝑢𝜅 (𝑒) = e−i𝜅𝑒 𝜓 (𝑒).
These are the eigenstates of the Bloch Hamiltonian,

𝐻̂𝐿 (𝜃, 𝜅) = 𝑡
∑︁
𝑒

(
ei (𝜃/3−𝜅ℓ) 𝑐†𝑠𝑒𝑐𝑡𝑒 + h.c.

)
, (6.66)

where ℓ is the length of each edge, and 𝐻̂𝐿 (𝜃, 𝜅) periodic in 𝜅 in the Brillouin zone
𝐵𝜅 = 3−(𝑛+1) [−𝜋/ℓ, 𝜋/ℓ].

As there are two periodic coordinates, the �ux 𝜃 and Bloch’s wavevector 𝜅 , we can
calculate Berry’s curvature [29]. We must pay attention to the following.

1. The number of nodes 𝑁𝑛 =
(
3𝑛+1 + 3) /2 and the number of edges 𝑁𝑒 = 3𝑛+1 is

not equal. Thus, we mush carefully rephrase (6.63) in the basis of |𝑒〉.
2. The �ux 𝜃 and Bloch’s wavevector 𝜅 may be replaced by a single coordinate

in Hamiltonian (6.66). Thus, the degeneracies cannot be avoided. A careful
derivation of the Peierls substitution (see Appendix 6.A.1) implies that the
approximation ℓ2𝜕𝑠𝜉𝑖 𝑗 � 1 does not change under the transformation 𝜉 → 𝜉 −𝜅
in (6.73).
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Let us return to the gauge and probe carefully the degrees of freedom. Denote by
𝛼𝐹,𝐺,𝐻𝑒 the phase for edge |𝑒〉 that lies in direction 𝐹,𝐺, 𝐻 , respectively. Let us assume
that the phase 𝛼𝑒 does not depend on the index 𝑒 , namely,

𝛼𝐹,𝐺,𝐻𝑒 = 𝛼𝐹,𝐺,𝐻 , ∀𝑒. (6.67)

Then condition (6.31a) (phase per plaquette applied to the linear model) leads to

𝛼𝐹 + 𝛼𝐺 + 𝛼𝐻 = 𝜃 ; (6.68a)

and condition (6.31b) (London gauge) to
𝛼𝐹 − 𝛼𝐺 = 0
𝛼𝐺 − 𝛼𝐻 = 0
𝛼𝐻 − 𝛼𝐹 = 0

=⇒ 𝛼𝐹 = 𝛼𝐺 = 𝛼𝐻 . (6.68b)

Together, these conditions imply that

𝛼𝐹,𝐺,𝐻 = 𝜃/3. (6.69)

Corollary. Conditions (6.68) in the linear model are equivalent to assumption (6.67).
This is the analogue of the Landau gauge on a square net as in [120].

Let us make the following observation. There exists a periodic coordinate |𝑒〉
containing non-trivial connections between non-neighboring edges. Thus there are
long-range correlations, which summarize to the non-trivial spectrum in Figure 6.3. This
is very reminiscent of the quasiperiodic lattice, which carries long-range correlations
resulting in an interesting spectrum as well. Additionally, aperiodic tilings admit
an extraordinary metric connecting spatially distant patches (see (3.1) and [52, 54])
similarly to the connections between edges on the Sierpiński Gasket.

6.4.5 Disorder
A natural thing to investigate when discussing a (topological) index is the response of
the system to disorder. E�ects of disorder on the Sierpiński Gasket and carpet were
considered in [125, 126, 129–131]. For our purposes, any index formula working on
the unperturbed system must also work after applying a small disorder.

We shall model the disorder by an on-site random potential as follows,

𝐻𝑉𝑊 (𝜃 ) = 𝐻𝑃 (𝜃 ) +𝑉𝑊 � 𝑡
∑︁
〈𝑖, 𝑗 〉

(
ei𝛼𝑖 𝑗 𝑐†

𝑖
𝑐 𝑗 + h.c.

)
+
∑︁
𝑖

𝑤𝑖𝑐
†
𝑖
𝑐𝑖 , (6.70)

where 𝐻𝑃 (𝜃 ) is the Hamiltonian (6.12), 𝑤𝑖 ∈ [−𝑊,𝑊 ] is taken from a constant
distribution, and𝑊 de�nes the disorder strength. The disorder does not open and
close gaps, but rather washes up distinct features of the IDOS. This can be seen
in Figures 6.18 showing the IDOS of (6.70) with respect to 𝑊 averaged over 𝑁𝑊
realizations. We see that the gaps weaken as we increase𝑊 . We also observe that the
energy degeneracy is lifted by disorder. Similar results are seen in Figures 6.19 shown
IDOS of (6.70) versus the �ux 𝜃 . The area model exhibits identical behavior.

A complementary approach is to add disorder to the edges by

𝐻𝐸𝑊 (𝜃 ) � 𝑡
∑︁
〈𝑖, 𝑗 〉

(
𝑒𝑖 𝑗 ei𝛼𝑖 𝑗 𝑐†𝑖 𝑐 𝑗 + h.c.

)
, (6.71)

with 𝑒𝑖 𝑗 = 𝑙𝑖 𝑗/ℓ ∈ [1 −𝑊, 1 +𝑊 ] is the relative edge length. In this procedure, the
disorder must be small (𝑊 � 𝑡 ) in order to make the approximations in (6.79) valid, and
to leave the degree matrix 𝑍 in (6.33) unchanged (see [119, 120] and Appendix 6.A.1).
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(a) Mean IDOS of 𝐻𝑊 (𝜃 = 0) . (b) Mean IDOS of 𝐻𝑊 (𝜃 = 𝜋/2) .

(c) Mean IDOS of 𝐻𝑊 (𝜃 = 𝜋 ) . (d) Mean IDOS of 𝐻𝑊 (𝜃 = 3𝜋/2) .

Figure 6.18: Average integrated density of states of 𝐻𝑊 (𝜃 ) with respect to disorder
strength𝑊 . The spectrum was averaged over 𝑁𝑊 = 121 realizations. (a–d) 𝜃 =

(0, 𝜋/2, 𝜋, 3𝜋/2), respectively.

(a) Mean IDOS of 𝐻𝑊 =0 (𝜃 ) . (b) Mean IDOS of 𝐻𝑊 =0.2 (𝜃 ) . (c) Mean IDOS of 𝐻𝑊 =0.4 (𝜃 ) .

(d) Mean IDOS of 𝐻𝑊 =0.6 (𝜃 ) . (e) Mean IDOS of 𝐻𝑊 =0.8 (𝜃 ) . (f) Mean IDOS of 𝐻𝑊 =1 (𝜃 ) .

Figure 6.19: Average integrated density of states of 𝐻𝑊 (𝜃 ) with respect to 𝜃 . The
spectrum was averaged over 𝑁𝑊 = 121 realizations. (a–f)𝑊 = (0, 0.2, 0.4, 0.6, 0.8, 1),
respectively.
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Complement 6.A Derivations

6.A.1 Peierls Approximation Derivation in Alexander’s Model
In this section, we show a short derivation of (6.33) based on [118–120]. Start with the
free particle Schrödinger equation in a magnetic �eld,

( i∇ −𝑨/Φ0)2𝜓 = 𝑞2𝜓, (6.72)

where Φ0 = ℏ𝑐/𝑒 is the �ux quantum and 𝑞2 = 2𝑚𝜖/ℏ2. Next, set this equation on a
thin-wire network resulting in

( i𝜕/𝜕𝑠 − 𝜉)2𝜓 = 𝑞2𝜓, (6.73)

using 𝑠 � 𝑢 · 𝒓 and 𝜉 � 𝑢 · 𝑨/Φ0, where 𝑢 is the direction of a bond. The continuity of
𝜓 on the edges of each bond requires that

𝜓𝑖 𝑗 (𝑠𝑖 ) = 𝜓𝑖 , 𝜓𝑖 𝑗
(
𝑠 𝑗
)
= 𝜓 𝑗 , (6.74)

for nodes 𝑖 and 𝑗 . On the derivatives of𝜓 impose a Kirchho�-like condition [132],∑︁
𝑗

[( i𝜕𝑠 − 𝜉)𝜓𝑖 𝑗 (𝑠)]𝑠𝑖 = 0, (6.75)

taking the derivatives in the outgoing direction relative to the node.
The formal solution of (6.73) reads

𝜓𝑖 𝑗 (𝑠) = 𝐶1 e−i(𝛼𝑖 𝑗+𝑠𝑞) +𝐶2 e−i(𝛼𝑖 𝑗−𝑠𝑞) , (6.76)

with 𝛼𝑖 𝑗 �
∫ 𝑗

𝑖
𝜉𝑖 𝑗 (𝑠) d𝑠 . Apply conditions (6.74) for 𝑠𝑖 = 0 and 𝑠 𝑗 = 𝑙𝑖 𝑗 ,{

𝜓𝑖 = 𝐶1 +𝐶2

𝜓 𝑗 =
(
𝐶1 e−i𝜗𝑖 𝑗 +𝐶2 e+i𝜗𝑖 𝑗

)
e−i𝛼𝑖 𝑗 ,

(6.77)

where 𝜗𝑖 𝑗 � 𝑙𝑖 𝑗𝑞, and with 𝛼𝑖 𝑗 ' 𝜉𝑖 𝑗𝑙𝑖 𝑗 assuming 𝑙2𝑖 𝑗 𝜕𝑠𝜉𝑖 𝑗 � 1. This surmounts to

𝜓𝑖 𝑗 (𝑠) = e−i𝑠𝜉𝑖 𝑗
sin𝜗𝑖 𝑗

[
𝜓𝑖 sin

(
𝑞 (𝑙𝑖 𝑗 − 𝑠)

) + ei𝛼𝑖 𝑗 𝜓 𝑗 sin (𝑞𝑠)] . (6.78)

Next, apply conditions (6.75) to have

−
∑︁
𝑗

𝑞 cos𝜗𝑖 𝑗
sin𝜗𝑖 𝑗

𝜓𝑖 +
∑︁
𝑗

𝑞 ei𝛼𝑖 𝑗
sin𝜗𝑖 𝑗

𝜓 𝑗 = 0. (6.79)

Let all bonds be the same length 𝑙𝑖 𝑗 = ℓ , and assume small nets ℓ𝑞 � 1. Hence,

−
∑︁
𝑗

𝜓𝑖 cos (ℓ𝑞) +
∑︁
𝑗

ei𝛼𝑖 𝑗 𝜓 𝑗 = 0. (6.80)

Set cos (ℓ𝑞) = 𝐸/4 and obtain (6.33) as required.
Another useful form of (6.79) is

𝑚𝑖𝑞
2𝜓𝑖 +

∑︁
𝑗

𝑑𝑖 𝑗
(
ei𝛼𝑖 𝑗 𝜓 𝑗 −𝜓𝑖

)
= 0, (6.81)

where the “bond di�usivity” 𝑑𝑖 𝑗 = 𝑞/sin𝜗𝑖 𝑗 ' 𝑙−1𝑖 𝑗 corresponds to conductance, and a
mass term𝑚𝑖 = 𝑞

−1 ∑
𝑗 tan (𝜗𝑖 𝑗/2) ' ∑

𝑗 𝑙𝑖 𝑗/2.
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Complement 6.B Laplacian Spectrum in the Sierpiński
Gasket

In this Appendix, we show that the spectrum of the Hamiltonian (6.6) on the Sierpiński
Gasket equals to the spectrum of the Laplacian on it up to a linear transformation. We
shall follow [133] throughout the Appendix.

6.B.1 Laplacian on the Sierpiński Gasket
Let Γ𝑛 be the Sierpiński graph of order 𝑛 and 𝑉𝑛 be its vertices. We de�ne the graph
Laplacian by

Δ𝑛 𝑢 (𝑥) �
∑︁
𝑥
𝑛∼𝑦
(𝑢 (𝑦) − 𝑢 (𝑥)) , 𝑥 ∈ 𝑉𝑛 \𝑉0, (6.82)

for 𝑢 (𝑥) a function on Γ𝑛 , and 𝑥
𝑛∼ 𝑦 denote the neighbors of 𝑛th order. The Laplacian

on the in�nite Gasket is then de�ned by

Δ𝑢 (𝑥) � 3
2 lim
𝑛→∞ 5

𝑛Δ𝑛𝑢 (𝑥) . (6.83)

The origin of the factors 3/2 and 5𝑛 comes from the measure and energy regularization,

Δ𝑢 (𝑥) = lim
𝑛→∞

(
2
3
1
3𝑛

)−1 ( 3
5

)−𝑛
Δ𝑛𝑢 (𝑥) . (6.84)

We present below the details behind these factors.

6.B.1.1 Energy Regularization

We de�ne the energy 𝐸𝑛 of the graph Γ𝑛 by

𝐸𝑛 (𝑢) =
∑︁
𝑥
𝑛∼𝑦
(𝑢 (𝑦) − 𝑢 (𝑥))2 . (6.85)

For self-similar graphs, we need to renormalize the energies by

E𝑛 (𝑢) = 𝑟−𝑛𝐸𝑛 (𝑢) , 0 < 𝑟 < 1. (6.86)

For the Sierpiński Gasket, 𝑟 = 3/5. The in�nite graph energy is then

E (𝑢) = lim
𝑛→∞ E𝑛 (𝑢) . (6.87)

Additionally, 𝐸𝑛 (𝑢) can be rewritten as

E𝑛 (𝑢) = −𝑟−𝑛
∑︁

𝑥 ∈𝑉𝑛\𝑉0
𝑢 (𝑥)

∑︁
𝑥
𝑛∼𝑦
(𝑢 (𝑦) − 𝑢 (𝑥))

= −𝑟−𝑛
∑︁

𝑥 ∈𝑉𝑛\𝑉0
𝑢 (𝑥) Δ𝑛𝑢 (𝑥) . (6.88)

We identify the regularized energies with the corresponding Laplacian. The renormal-
ized energies are depicted in Figure 6.20a.
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Figure 6.20: The spectrum of the Sierpiński Gasket Laplacian for increasing order 𝑛.
The gray line is the normalized in�nite energy calculated with (6.96). (a) Renormalized
energy E𝑛 with respect to 𝜇0. (b) The IDOS N (𝐸) with respect to𝑊 .

6.B.1.2 Measures and Weights

The standard measure on the Sierpiński Gasket of order 𝑛 is de�ned by

𝜇0 = 3−𝑛
{
2/3 𝑥 ∈ 𝑉𝑛 \𝑉0
1/3 𝑥 ∈ 𝑉0 ,

(6.89)

where 𝑉0 are the 3 head nodes and 𝑉𝑛 denote all other nodes. The weights used in the
diagonalization of (6.6) are given by

𝑊 =
𝑍

4 =

{
1 𝑥 ∈ 𝑉𝑛 \𝑉0
1/2 𝑥 ∈ 𝑉0 ,

(6.90)

where 𝑍 (𝑥) is the number of neighbors of node 𝑥 (see [118]). In the Gasket, all the
nodes have 4 neighbors except the head nodes having 2. Therefore,

𝜇0 =
1
2

1
3𝑛+1𝑍 =

2
3𝑛+1𝑊 . (6.91)

6.B.1.3 Adjacency Matrix

The Hamiltonian (6.6) is represented by the adjacency matrix given by

𝐴𝑢 (𝑥) �
∑︁
𝑥
𝑛∼𝑦
𝑢 (𝑦) = (Δ𝑛 + 𝑍 ) 𝑢 (𝑥) . (6.92)

The generalized spectrum {𝜆𝑖 , 𝑣𝑖 } of 𝐴 with respect to weights𝑊 reads

𝐴𝑣𝑖 = 𝜆𝑖𝑊𝑣𝑖 . (6.93)

Therefore,

Δ𝑛𝑣𝑖 = (𝐴 − 𝑍 ) 𝑣𝑖 = 𝜆𝑖𝑊𝑣𝑖 − 4𝑊𝑣𝑖

= 1
23
𝑛+1 (𝜆𝑖 − 4) 𝜇0𝑣𝑖 . (6.94)

Thus, specΔ𝜇0𝑛 =
{ 1
23
𝑛+1 (𝜆𝑖 − 4) , 𝑣𝑖

}
. Hence, we have a linear correspondence between

the spectrum of Δ𝜇0 and the spectrum of 𝐴𝑊 .
The spectrum of 𝐴𝑊 is bounded in [−2, 4] for any order 𝑛; moreover, the spectrum

of the magnetic Hamiltonian (6.12) is bounded in [−4, 4]. Therefore, they are better
suited for comparison purposes.
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6.B.2 Sierpiński IDOS Formula
For Sierpiński Gaskets of dimension 𝑑 , the functional iterative equation for the IDOS
is given by [134],

N𝑑 (𝐸) =



0 , 𝐸 ≤ 0

N𝑑 (𝜙𝑑 (𝐸)) − 𝑑−1
𝑑+1 Θ (𝐸 − 2)

𝑑 + 1 , 0 < 𝐸 ≤ 𝑑 + 32
2 − N𝑑 (𝜙𝑑 (𝐸)) − 𝑑−1

𝑑+1
(
Θ (𝐸 − 2) − Θ (𝐸 − 𝑑 − 3))
𝑑 + 1 ,

𝑑 + 3
2 < 𝐸 < 2𝑑 + 2

1 , 2𝑑 + 2 ≤ 𝐸 ,
(6.95)

with Θ (𝑥) the step function, and 𝜙𝑑 (𝐸) = 𝐸 (𝑑 + 3 − 𝐸) the renormalization function.
For the triangular 𝑑 = 2 gasket embedded in the 2𝑑 plane, (6.95) reduces to

N (𝐸) =



0 , 𝐸 ≤ 0
1
3 N (𝜙 (𝐸)) −

1
9 Θ (𝐸 − 2) , 0 < 𝐸 ≤ 5

2
2
3 −

1
3 N (𝜙 (𝐸)) −

1
9 (Θ (𝐸 − 2) − Θ (𝐸 − 5)) ,

5
2 < 𝐸 < 6

1 , 6 ≤ 𝐸 ,

(6.96)

with 𝜙 (𝐸) = 𝐸 (5 − 𝐸).
These equations are solved by an iterative process. Numerical calculations show

a complete match with the spectrum of (6.6) (see Figure 6.20b). Moreover, since the
denominators in (6.96) are 3 and 9 only, the valuesN (𝐸) gets during the iterations are
of the form 𝑘/3𝑁 . This infers the gap labeling formula (6.28).
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Topological Phase Transitions

Thus far, we have seen that di�erent structures—C&P or substitution—have topological
character exhibited in their Čech cohomology. It can be manifested experimentally by
means of winding numbers. The next natural question is whether one can continu-
ously transform between two structures of di�erent topological character. If so, then
one has a topological phase transition (TPT) in a classical system reminiscent of the
structural phase transitions of [135, 136]. In the following chapter, we shall explore
such transitions.

7.1 Random Substitution Tilings
In this section, we shall explore substitution tilings with an explicit randomization
built-in.

7.1.1 Introduction
The �eld of random tilings starts with Godrèche and Luck [137]. They have considered
a transition between two equivalent Fibonacci substitution rules,

𝜎FibFib (𝑝) =


𝜎0 :

{
𝐴 ↦→ 𝐴𝐵

𝐵 ↦→ 𝐴
with probability 1 − 𝑝 ,

𝜎1 :
{
𝐴 ↦→ 𝐵𝐴

𝐵 ↦→ 𝐴
with probability 𝑝 .

(7.1)

The creation of words𝑤𝑁 by consecutive application of 𝜎FibFib (𝑝) is similar to the regular
case, but at each step we apply either 𝜎0 or 𝜎1 with their respective probabilities. Note
that 𝜎FibFib (0) = 𝜎0 and, likewise, 𝜎FibFib (1) = 𝜎1.

To quantify the randomness, we can inspect the topological entropy [138] (struc-
tural entropy per letter),

𝑆 = lim
𝑁→∞

log 𝑐𝑁
𝐿𝑁

. (7.2)

where 𝑐𝑁 is the complexity de�ned in Section 3.1.5 and 𝐿𝑁 = |𝑊𝑁 | (note that since
the substitutions are of the same length, it is well-de�ned). For 𝜎FibFib (𝑝) above, it was
found that [137]

𝑆
(
𝜎FibFib

)
=
∞∑︁
𝑚=2

log𝑚
𝜏𝑚+2

' 0.444399. (7.3)
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Note that for all deterministic substitutions, 𝑆 (𝜎deter) = 0.
Families of random noble mean substitutions were considered in [138, 139],

𝜎𝑚 :


𝐴 ↦→


𝐵𝐴𝑚 with probability 𝑝0
𝐴𝐵𝐴𝑚−1 with probability 𝑝1

...

𝐴𝑚𝐵 with probability 𝑝𝑚
𝐵 ↦→ 𝐴.

(7.4)

The ideas ofmixed substitution tiling spaces were rigorously de�ned and constructed by
Gähler and Maloney [140], based on the AP complexes [45], and the Čech cohomology
was computed. We shall not repeat it here.

7.1.2 Phase Transitions
With these de�nitions, we can consider the probability 𝑝 as an order parameter to
transform between di�erent spaces. Consider, for instance

𝜎PerTM (𝑝) =


𝜎Per :

{
𝐴 ↦→ 𝐴𝐵

𝐵 ↦→ 𝐴𝐵
with probability 1 − 𝑝 ,

𝜎TM :
{
𝐴 ↦→ 𝐴𝐵

𝐵 ↦→ 𝐵𝐴
with probability 𝑝 ,

(7.5)

which interpolates between the periodic and Thue-Morse substitutions. Now, since
𝐻̌ 1 (ΩPer) � Z and 𝐻̌ 1 (ΩTM) � Z ⊕Z

[ 1
2
]
, we have two very di�erent topologies and

thus a topological phase transition. Several problems immediately arise.

1. How to measure this topology?
2. We are dealing with �nite sequences only and the de�nitions work for the

in�nite case.
3. How to physically construct such a substitution?

The main point to consider is the �rst – how to probe the topology with a simple
procedure. We have already dealt with �nite approximations and stated that they
reconstruct well the properties of the in�nite case. An experimental work is still too
far beyond the horizon.

To tackle these problems, we introduce a statistical physics approach.

a) Take some 𝜎 (𝑝) for a given 𝑝 , and �x the iteration number 𝑁 .
b) Construct many realizations of words𝑤𝑟

𝑁
(𝑝) for 𝑟 = 1 . . . 𝑅 with large 𝑅.

c) Take the average of 𝑓
(
𝑤𝑟
𝑁

)
. There is no sense of inspecting an average word

𝑤̄𝑁 , but we can look on some function (say, IDOS) of𝑤𝑟
𝑁
, namely, 𝑓

(
𝑤𝑟
𝑁

)
. Take

its average w.r.t. realizations,

𝑓𝑁 (𝑝) �
〈
𝑓
(
𝑤𝑟𝑁 (𝑝)

)〉
𝑟
. (7.6)

d) Calculate the variance of 𝑓
(
𝑤𝑟
𝑁

)
,

(Δ𝑓𝑁 )2 �
〈
𝑓 2

(
𝑤𝑟𝑁

)〉
𝑟
− 〈

𝑓
(
𝑤𝑟𝑁

)〉2
𝑟
. (7.7)

One may consider higher cumulants as well.
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(a) Periodic–Thue-Morse.

(b) Fibonacci2–non-Fibonacci2.

Figure 7.1: Structure factor 𝑆 (𝑘) for random substitutions. (a) Periodic–Thue-Morse
with 𝑅 = 1255 and 𝐹𝑁 = 512; (b) Fibonacci2–non-Fibonacci2 with 𝑅 = 1255 and
𝐹𝑁 = 377.
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(a) Periodic–Thue-Morse.

(b) Fibonacci2–non-Fibonacci2.

Figure 7.2: Integrated density of states 𝜂 (𝐸) for random substitutions. (a)
Periodic–Thue-Morse with 𝑅 = 1255 and 𝐹𝑁 = 512; (b) Fibonacci2–non-Fibonacci2
with 𝑅 = 1255 and 𝐹𝑁 = 377.
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e) Repeat the calculation for each 𝑝 ∈ [0, 1].
This procedure can be well simulated on a computer in a reasonable time as seen in
Figures 7.1 and 7.2. A physical construct is also possible.
Remark. The simulations above in Figures 7.1 and 7.2 are done using the tight binding
rather than scattering matrix formalism due to two main reasons. First, it is much
faster, as one only needs to diagonalize an 𝐹𝑁 × 𝐹𝑁 matrix instead of a large mesh
in the 𝑘-space. Second, in scattering matrix approach one needs to re�ne the mesh
near gap edges due to numerical instabilities. As it is unknown a priori where are
the gaps and which of them need re�ning for each realization, the simulation slows
considerably, and the �nal—combined—mesh is rather large with more inaccuracies.

7.1.2.1 Inverse Participation Ratio

We have many gaps located at di�erent energies and it is hard to quantify the amount
of “gapness” in the sequence. The usual suspect to quantify the spatial localization is
the inverse participation ratio de�ned by [141],

𝐼 �
∫
|𝜓 (𝑥) |4 d𝑥, (7.8)

where𝜓 (𝑥) is the normalized wavefunction so that |𝜓 (𝑥) |2 is the probability to �nd a
particle at location 𝑥 . Setting𝜓 = 𝜌 (𝑘) the Fourier transform of the atomic density so
that |𝜌 (𝑘) |2 = 𝑆 (𝑘) is the structure factor, one has

𝐼 (𝑝) �
∫
𝑆2 (𝑘 ; 𝑝) d𝑘, (7.9)

where the structure factor normalized such that
∫
𝑆 (𝑘) d𝑘 = 1. More general de�ni-

tions are in [96, 142].
Unfortunately, numerical analysis does not show any signi�cant change of 𝐼 (𝑝)

from Periodic–Thue-Morse or Fibonacci2–non-Fibonacci2 substitutions (as in Fig-
ures 7.1). Thus, we need a di�erent approach.

7.2 Thermodynamics of Random Substitutions
As stated in the previous section, the main problem is how to measure the topology.
What we want, in simple words, is some functional of the IDOS 𝜂 (𝐸, 𝑝) that gives us
a number quantifying the topology with respect to 𝑝 . Ideally, for 𝑝 = 0, 1 it would
restore the Čech cohomology 𝐻̌ 1 (Ω) or some characteristic of it. In the following, we
present a thermodynamic approach to quantify the topology.

7.2.1 Heat Kernel
Let us de�ne the heat kernel 𝑍 (𝑡) by [68, 70],

𝑍 (𝑡) � Tr
[
e−𝑡𝐻

]
, (7.10)

with 𝐻 the Hamiltonian of the system. Explicitly, in terms of the density of states
𝜚 (𝐸),

𝑍 (𝑡) =
∫

e−𝑡𝐸 𝜚 (𝐸) d𝐸. (7.11)

Note that d𝜂 (𝐸) = 𝜚 (𝐸) d𝐸 is a well-de�ned Lebesgue measure (see, e.g., [28, 44]).
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Since we calculate the IDOS 𝜂 (𝐸) rather than 𝜚 (𝐸), and since derivatives are
numerically inaccurate, we would like to rephrase 𝑍 (𝑡) in terms of 𝜂 (𝐸). Integrating
by parts, we have

𝑍 (𝑡) = e−𝑡𝐸 𝜂 (𝐸)
����𝐸max

𝐸min

+
∫ 𝐸max

𝐸min

𝑡 e−𝑡𝐸 𝜂 (𝐸) d𝐸

= e−𝑡𝐸max +𝑡
∫ 𝐸max

𝐸min

e−𝑡𝐸 𝜂 (𝐸) d𝐸, (7.12)

where [𝐸min, 𝐸max] is the support of 𝜂 (𝐸) with 𝜂 (𝐸min) = 0 and 𝜂 (𝐸max) = 1. Now,
since 𝐸 might be negative (depending on the values of the potential in 𝐻 ), we rescale
𝑍 (𝑡) to

𝑍 (𝑡) = e−𝑡 (𝐸max−𝜇) +𝑡
∫ 𝐸max

𝐸min

e−𝑡 (𝐸−𝜇) 𝜂 (𝐸) d𝐸, (7.13)

where 𝜇 = 𝐸min. Thus 𝑍 (𝑡) is a good Laplace transform.
Now, let us return to the random substitutions. We set

𝑍 (𝑡, 𝑝) = e−𝑡 (𝐸max−𝐸min) +𝑡
∫ 𝐸max

𝐸min

e−𝑡 (𝐸−𝐸min) 𝜂 (𝐸, 𝑝) d𝐸, (7.14)

where 𝐸max, 𝐸min, 𝜂 and𝑍 are all implicitly functions of 𝑝 averaged over the realizations
(thus, 𝑍 (𝑡, 𝑝) = 𝑍𝑁 (𝑡 ;𝑝), etc.). Identifying the heat kernel over 𝑡 with the partition
function over 𝛽 , we de�ne the following thermodynamic functions:

𝑈 (𝑡, 𝑝) = − 𝜕 log𝑍 (𝑡, 𝑝)
𝜕𝑡

“Internal energy;” (7.15a)

𝐶 (𝑡, 𝑝) = 𝑡2 𝜕
2 log𝑍 (𝑡, 𝑝)

𝜕𝑡2
“Heat capacity;” (7.15b)

𝐹 (𝑡, 𝑝) = − log𝑍 (𝑡, 𝑝)
𝑡

“Free energy;” (7.15c)

𝑆 (𝑡, 𝑝) = 𝑡2 𝜕𝐹 (𝑡, 𝑝)
𝜕𝑡

“Entropy.” (7.15d)

The interpretation as thermodynamic quantities should not be taken at face value
(thus the quotation marks).

Similarly, one can calculate the zeta function [68],

𝜁𝐻 (𝑠) � Tr [𝐻−𝑠 ] , 𝑠 ∈ C. (7.16)

Explicitly,
𝜁𝐻 (𝑠) =

∫
𝐸−𝑠𝜚 (𝐸) d𝐸. (7.17)

Repeating the steps as in the heat kernel calculation above, one obtains,

𝜁𝐻 (𝑠, 𝑝) = (𝐸max − 𝐸min)−𝑠 +


1
𝑠 − 1

∫ 𝐸max
𝐸min
(𝐸 − 𝐸min)1−𝑠 𝜂 (𝐸, 𝑝) d𝐸, 𝑠 ≠ 1;∫ 𝐸max

𝐸min
log (𝐸 − 𝐸min) 𝜂 (𝐸, 𝑝) d𝐸, 𝑠 = 1.

(7.18)

Heat capacity calculations are shown in Figures 7.3, as 𝐶 (𝑡, 𝑝) is the most pro-
nounced thermodynamic quantity. The periodic sequences in Figure 7.3a do not show
any special behavior, whereas the aperiodic Thue-Morse heat capacity changes sign
and oscillates. Things are even more violent in Fibonacci2 vs. non-Fibonacci2 sequences
as in Figure 7.3b.
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(a) Periodic–Thue-Morse.

(b) Fibonacci2–non-Fibonacci2.

Figure 7.3: Heat capacity 𝐶 (𝑡, 𝑝) for random substitutions in logarithmic scale.
Solid lines are positive values of 𝐶 (𝑡, 𝑝), and dashed lines are negative values. (a)
Periodic–Thue-Morse with 𝑅 = 1255 and 𝐹𝑁 = 512; (b) Fibonacci2–non-Fibonacci2
with 𝑅 = 1255 and 𝐹𝑁 = 377.
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7.2.1.1 Phase Transitions

Unfortunately, as seen in Figures 7.3, it is quite di�cult to identify TPTs in these struc-
tures. The heat capacity changes violently, and does not follow any “𝑛th-order phase
transition” rule. Most probably, a di�erent de�nition of thermodynamic quantities is
required for aperiodic tilings, which makes use of the tiling’s combinatorics. Thus far,
it has not been found.

7.2.2 Probability Measures
In the previous section, we have described the thermodynamics of the spectral part.
Can we do the same for the structural part? To succeed, we need a probability measure
similarly to d𝜂 (𝐸). Luckily, d𝜇 = 𝑆 d𝑘 is a good Lebesgue measure [23, 73]. Thus, we
have structural and spectral measures,

d𝜇 (𝑘) � 𝑆 (𝑘) d𝑘, (7.19a)
d𝜂 (𝐸) � 𝜚 (𝐸) d𝐸. (7.19b)

Both 𝜇 (𝑘) and 𝜂 (𝐸) have the same algebraic properties thus obtained from 𝐻̌ 1 (Ω).
Therefore, we need to repeat the procedure of the previous section but with 𝑆 (𝑘)
instead of 𝜚 (𝐸).
Problem. Unlike the spectral case where 𝐸 ∈ [𝐸min, 𝐸max], in the structural case
𝑘 ∈ (−∞,∞). To make 𝑍struct (𝑡) �nite, we con�ne the integration to the �rst quasi-
Brillouin zone, namely, 𝑘 ∈ [0, 𝑘0].
Since 𝜂 (𝐸) is derived from the scattering matrix S (𝐸), we propose deriving 𝜇 (𝑘) in a
similar manner, namely, �nd T (𝑘) such that

𝜇 (𝑘) = 𝑐 Tr logT (𝑘) , (7.20a)
𝜂 (𝐸) = 𝑐 Tr logS (𝐸) . (7.20b)

Here, 𝑐 = −i/𝜋 a constant. The operator T (𝑘) is new. It can be found by reverse
engineering via comparison to the derivation of S (𝐸) from G (𝐸) as in Section 3.4.3.

Let us now combine the probability measures to the topological language of 𝐻̌ 1

and 𝐾0. Recall that the gap labels are given by the trace on the 𝐾0 group. This is the
reason behind the Tr in (7.20). Similarly, the trace 𝜏𝐻̌∗ (or Ruelle-Sullivan current) that
gives the Bragg locations of 𝑆 (𝑘) is a trace. We combine both and (7.20) to

𝜇 (𝑘) = 𝜏𝐻̌∗
(
𝐻̌ 1 (Ω)) � Tr⊥ 𝐻̌ 1 (Ω) , (7.21a)

𝜂 (𝐸) = 𝜏𝐾∗
(
𝐾0 (B)

)
� Tr‖ 𝐾0 (B) . (7.21b)

The parallel and perpendicular subscripts are given a physical interpretation. In the
parallel case Tr‖ , one considers a scattering experiment parallel to a 1𝑑 structure of
thin �lms. The scattering matrix gives 𝜂 (𝐸 = 𝑘) as in (3.73). The perpendicular case
Tr⊥ implies a transmission experiment perpendicular to the same structure—a phase
mask. In the far-�eld one gets the structure factor 𝑆 (𝑘). Thus, 𝜇 (𝑘) and 𝜂 (𝐸) are
di�erent points of view of the same phenomenon.



Chapter 8

Summary

In this chapter, we summarize our work and explore future endeavors.

8.1 Contribution
In this work, we reviewed the topological behavior of many families of aperiodic
tilings. In 1𝑑 C&P tilings, we de�ned winding numbers using the phason as a gauge
�eld. The phason gives rise to the permuted tiling Σ1, whose Fourier transform
argument indicates the windings on Bragg peak locations with the ubiquitous 𝑝 + 𝑞𝑠
formula. This works for any 2𝑑 → 1𝑑 C&P tiling with slope 𝑠 , where the best rational
approximations to 𝑠 ∉ Q are in terms of continued fractions. Constructing Wannier
diagrams, we conclude that spectral gaps (of the wave equation) and di�raction peak
are in 1-to-1 correspondence, with the slope in the 𝑠−𝜈 plane coincides with the
aforementioned 𝑞. Identifying quasiperiodic tilings with C&P ones, we extended our
de�nition for quasiperiodicity to a condition on �uctuations around the mean tiling.
We demonstrated that this condition also holds for certain classes of substitution tilings,
thus establishing them as quasiperiodic.

We then presented a more general mathematical treatment of tiling combinatorics
using Bratteli diagrams, complexity trees, Čech cohomology 𝐻̌ 1 and zeta functions. We
explained the GLT and the explicit calculations of its formula. Next, we illustrated how
this treatment explains the intricate nature of dual aperiodic tilings. Simply put, the
construction of alphabets of 𝑛-letters (or tiles for 𝑑 > 1) contains all the information
required to construct dual tilings. After that, we combined general aperiodic tilingswith
quasiperiodic ones showing that several aspects pertain (such as the basic windings
in the non-Fibonacci2 tiling), but many more features appear (more windings for
non-Fibonacci2, etc.). These features were analyzed by means of Čech cohomology
establishing that when it changes, the aspects of a tiling also change. However,
in some cases it is not enough, and we must calculate additional properties of the
tiling such as the Bratteli diagrams or the atomic surface. We ended the chapter by
presenting scattering theory and how we can calculate some tiling properties from it.
We demonstrated that winding numbers can be written in terms of S-matrix related
quantity akin to the Krein-Schwinger formula.

Next, we showed an important aspect of aperiodic tilings – their di�raction pat-
terns. Emphasizing the Thue-Morse tiling, we analyzed its peaks and compared them
to known experimental results. Whereas in quasiperiodic tilings the peaks are Bragg,

141



142 Chapter 8. Summary

easily discernible and enumerable, the singularly-continuous peaks of the Thue-Morse
tiling pose a di�culty to distinguish between di�erent families, and a proper identi-
�cation experiment – of plotting the di�raction intensity of a peak with respect to
the tiling order 𝑁 – has not been realized. This makes the nature of Thue-Morse
di�raction peaks at �nite order an open question. We then illustrated how to calculate
di�raction peaks for some tilings using autocorrelation between tiles. Finally, we
introduced a novel idea to calculate the di�raction of tilings with Bragg spectrum
using the Bratteli diagrams we discussed earlier. We demonstrated it in a periodic, C&P
quasiperiodic and aperiodic (Period Doubling) cases. We showed how in each case we
can identify a phason and calculate winding number. We summarized by mentioning
additional tilings without complete Bragg spectrum like Thue-Morse. Therefore, Čech
cohomology—or, more accurately, the sequence of Bratteli diagrams converging to
it—can be utilized to calculate di�raction spectra of tilings.

We moved on to connect the di�raction and energy spectra of aperiodic tilings by
means of an extension of Bloch theory. We showed how to construct quasiperiodic
Bloch Hamiltonians and identi�ed its symmetries using operators. We extended
the Hamiltonians to be continuous and connected their eigenfunctions to pattern
equivariant functions. Then we numerically validated all our constructions above.
Putting our attention to general aperiodic tilings in 1𝑑 , we used our previous work [58]
to connect the traces of 𝐻̌ 1 and 𝐾0, where 𝐻̌ 1 is on the structural (di�raction) side
and 𝐾0 on the spectral one. The connection between 𝜏𝐻̌∗

(
𝐻̌ 1) and the structure factor

𝑆 (𝑘) is only valid in C&P tilings, whereas the GLT corresponds to the spectral gaps
Ngap (𝐸) for all tilings. We then conjectured that a similar relation exists between 𝐻̌ 1

and the structural winding’s group, and between 𝐾0 and the spectral winding group
in 1𝑑 C&P tilings. Altogether, since the diagrams (5.47) and (5.52) commute, we can
omit 𝐾0 and focus on 𝐻̌ 1 only. We �nished this chapter by analyzing conventional
topological numbers, such as Chern number, in quasiperiodic systems using the Zak
and Berry phases.

Straying from FLC tilings, we explored the world of fractals. We introduced L-
systems and reverted them to substitution rules. We then demonstrated the GLT on
the Sierpiński gasket with and without magnetic �ux pierce the fractal. Analyzing the
spectrum led us to deduce topological phase transitions in this setup. We furthermore
examined di�erent �ux conditions and showed that the �ux itself acts as an order
parameter, and new topological phase transitions in terms of 𝐻̌ 2

Φ have arisen. We
continued to explore more properties, such as windings and currents, on magnetic
Sierpiński gaskets. We ended the section checking various index formulae on the
gasket but to no avail.

It the last part, we return to FLC tilings and searched for topological phase transi-
tions therein. Employing the idea of random substitution rule between two 1𝑑 tilings,
we found phase transitions between the topological groups 𝐻̌ 1 of each tiling. We also
introduced thermodynamic potentials in this scheme.

8.2 Outlook
In this work, we focused our attention to 1𝑑 tilings leaving 2𝑑 and 3𝑑 tilings unexplored
(with the exception of dual tilings, and the �ux in the Sierpiński gasket). This is a rich
environment where some of our results can be readily generalized. For instance, the
Penrose and Octanacci C&P tilings both admit 2 distinct phasons in the internal space
𝐸⊥ together with the 2𝑑 physical space 𝐸 ‖ . Note that in the Penrose case, although
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dim𝐸⊥ = 3, one of the dimensions is degenerate to obtain the “regular” Penrose
tiling [15, 17, 18]. These two phasons together thus imply a phase akin to Berry’s
phase indicating new and exciting topological numbers unlike the 1𝑑 windings. In 3𝑑
icosahedral quasicrystals, there are 3 distinct phasons implying exotic behavior such
as braiding or knotting.

Although we explained how to compute di�raction spectra using Bratteli diagrams,
we found it only in tilings containing Bragg peaks. In periodic tilings it could be
calculated using standard descriptions. In the quasiperiodic case, however, we needed
the combinatorics developed in Chapter 2. In the Period Doubling example, we closely
analyzed Bratteli diagrams to deduce the di�raction. This leaves the question of general
tilings open—why does the Thue-Morse tiling have (mostly) a singularly-continuous
di�raction, and the Rudin-Shapiro tiling an absolutely continuous one? Can we give
a general statement on any 1𝑑 tilling just by looking on its Bratteli diagrams (of the
proper orders)? This question can be generalized even to higher dimensions to probe
the di�raction of the Penrose, Octanacci and Chair tilings by means of their Bratteli
diagrams.

As proven in Theorem 5.1, the traces of both 𝐻̌ 1 and 𝐾0 groups are identical. This
leaves the relation between 𝐻̌ 1 and di�raction in 1𝑑 open apart from quasiperiodic
tilings. Since we saw that 𝑆 (𝑘) can be computed in some cases using Bratteli diagrams,
then there must be a mapping 𝜛

(
𝐻̌ 1) = {

𝑘𝑖
𝐵

} ∪ {𝑘 𝑗0} for Bragg peaks 𝑘𝐵 and singularly-
continuous peaks 𝑘0. Additionally, there must be a mapping to the winding groups
𝜐Θ

(
𝐻̌ 1) =W𝜙 [Θ] and 𝜐𝛼

(
𝐻̌ 1) =W𝜙 [𝛼] as in (5.52), and an isomorphism𝜓 between

both winding groups.
The GLT for fractals is very tailored to the Sierpiński case, as the substitution is 1𝑑

whilst the fractal is embedded in 2𝑑 . There are complicated links, which are seen only
in the 2𝑑 perspective. Moreover, the GLT is de�ned with respect to the substitution,
and thus is insensitive to the 2𝑑 links. Yet it matches the calculated data impeccably.
Better means of correlation between 1𝑑 and 2𝑑 ought to be made. In addition, the
conventional index theorems do not work for fractals despite numerous attempts, and
a suitable one is in order to capture gap locations, windings, and so forth.

The main issue with topological phase transitions on FLC tilings, is that we could
not identify a proper observable of 𝐻̌ 1 of this transition. Naturally, gaps open and
close, but it happens with even slightest randomization and goes only one way (un-
like the Sierpiński case, where the same gap opens and closes periodically). Similar
phenomenon happens in the di�raction case. Finding such observable opens path to
experiments to measure and validate it.
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תקציר X

המתמטיים הכלים את נציג אנחנו כן. גם הקומבינטוריקה של זה משינוי מושפעים לא־מחזוריים, ריצופים
נראה אנחנו צ׳ך. קוהומולוגיית על בדגש לא־מחזוריים ריצופים ולתאר לזהות כדי הדרושים העיקריים

זה. תיאור בעזרת חדשים חישובים ונציג הפיזיקליות, ההשלכות את
המבניות התכונות את המתארת שלהם העקיפה תמונת היא ריצופים של העיקריות התכונות אחת
על המרמזת ההופכי, במרחב בלבד בראג שיאי של תמונה מניב מחזורי בריצוף עקיפה ניסוי שלהם.
במרחב בראג שיאי מניבים קוואזי־מחזוריים ריצופים לכך, בדומה ארוכת־טווח. (קורלציה) מִתאם
פיזיקלית, מבט מנקודת .(Brillouin) רִילוֹאֵן בְּ אזור ואין צפופה השיאים של העקיפה תמונת אבל ההופכי,
כללי, באופן קוואזי־מחזורי. להיות ריצוף עבור מספיק) לא (אבל הכרחי תנאי הוא בראג שיאי של הקיום
בראג), (כלומר, טהור נקודתי :(Lebesgue) לֵבֵּג משפט לפי חלקים לשלושה מופרדת העקיפה תמונת
בעל (Rudin-Shapiro) פִּירוֹ רודִּין־שָׁ ריצוף הן לציון ראויות דוגמאות סינגולרית. ורציף בהחלט רציף
רציפה עקיפה תמונת שלו ,(Thue-Morse) תואֵּה־מוֹרְס וריצוף בלבד, בהחלט רציפה עקיפה תמונת
מסוימים במקרים לחשבהּ כיצד ונראה העקיפה, תמונת של הללו החלקים את ננתח אנחנו סינגולרית.

צ׳ך. קוהומולוגיית חישוב מתוך הנגזרים כלים עם
לפערי בראג עקיפת שיאי מיקום את המקשר מחזוריים בריצופים מרכזי נדבך הוא בלוך משפט אם
בריצופים מתקיים בלוך משפט כי ידוע, לא־מחזוריים? בריצופים מופגן הוא כיצד ספקטרליים, אנרגיה
כלל. בדרך המקרה לא זהו לא־מחזוריים בריצופים ברם, מחזוריים. לריצופים בדומה קוואזי־מחזוריים
קשר יש 1𝑑שב־ נראה, בנוסף קוואזי־מחזוריים. לריצופים בלוך משפט את ננסח אנחנו כל, קודם
של הכיראלי המופע של הספקטרליים לליפופים בראג שיאי (פאזת) מופע של המבניים הליפופים בין
בממדים סופית מקומית סיבוכיות בעלי ריצופים של הכללי שבמקרה נראה, לבסוף הפיזור. מטריצת
את מתארות הללו העקבות זהות. נשארות 𝐾0 חבורת ושל צ׳ך קוהומולוגיית של העקבות רק ,3 ≥ 𝑑

בהתאמה. וספקטרליות, מבניות תכונות בין השוויון
נמוכים. בממדים לא־מחזוריים בריצופים העיקרית הטופולוגית כשמורה צ׳ך קוהומולוגיית את ביססנו
להראות טופולוגי. פאזה מעבר מתאר אחד לכל שונות צ׳ך קוהומולוגיות עם ריצופים שני בין מעבר לכן
סֶרְפִּינְסְקִי שלמשולש להראות, כדי בפרקטלים נעזר אנחנו אחת, בגישה וכלל. כלל פשוט לא זאת
הולכה תכונות נציג בשטף. כתלות טופולוגי פאזה מעבר יש מגנטי בשטף המשוקע (Sierpiński)
מעבר לקבל כדי אקראיים החלפה בחוקי נשתמש אחרת. בגישה אלו. פרקטלים על אינדקס ומשפטי

תואמות. תרמודינמיות תכונות בהם ונציג מצויים, לא־מחזוריים ריצופים בין טופולוגי פאזה



תקציר

ובשלושה בשניים אחד, בממד תופעות מגוון מאפשרות הן בפיזיקה. מרכזית חשיבות מחזוריות למערכות
ספקטרליות אחרות וכו׳; החומר קשיות (דיפרקציה), עקיפה גבישי, סידור כגון מבניות חלקן ממדים.
מובילה בזמן מחזוריות כך, על נוסף וכיוב׳. (Chern) צֵ׳רְן מספרי חשמלית, ניידות אנרגיה, פערי כגון
וספקטרליות מבניות תכונות של השילוב זמן. גבישי או (Floquet) פְלוֹקֵה המילטוניאן כמו לתופעות
של פונקציות־הגל סימטריות עם מבניות סימטריות המקשר המפורסם, (Bloch) לוֹךְ בְּ למשפט מוביל

מחזורי. המילטוניאן
אפשרות מחזוריות. להיות הקרובות מערכות מחפשים המחזוריות, המערכות מתחום יוצאים כאשר
כמו במערכת פגם להכניס היא אחרת אי־סדר; בצורת מחזורית למערכת הפרעה להכניס היא אחת
אבל מסודרים לא שהם היפר־אחידים, חומרים הוא אחר רעיון שבר; או צבע מרכז ,(vacancy) מגרעת
אחד מצד אשר כמעט־מחזוריות, מערכות מחפשים אנחנו מחזוריות. מערכות עם משותפות תכונות בעלי
מערכות עם משותפות תכונות למרות מחזוריות אינן שני ומצד אי־סדר, או הפרעות ללא דטרמיניסטיות

בחד־ממד. בריצופים ובעיקר – זו בתזה נתמקד שבהם לא־מחזוריים, בריצופים נעוץ הפתרון כאלו.
דינמיות, במערכות מעובה, חומר של בפיזיקה רבים בתחומים מופיעים לא־מחזוריים ריצופים
ריצוף קיים ”האם לשאלה: התשובה הם וכו׳. באופטיקה חומרים, של במדע סטטיסטית, במכניקה
לחיוב שוערה התשובה מרצפות?“. של סופית קבוצה בעזרת המישור של לא־מחזורי אבל דטרמיניסטי
זו שיטה וואנג. מרצפות בעזרת (Berger) בַּרְגרֶ ע״י בהתאם הוכחה יותר ומאוחר ,(Wang) ואַנְג ע״י
פּנְֵרוֹז נוספים. לא־מחזוריים לריצופים הצוהר נפתח כך מקומיים“. התאמה ל”חוקי בהמשך הוכללה
החלפה. חוקי בעזרת פנרוז“, כ”ריצוף כיום הידוע מחומשת, סימטריה בעל ריצוף הראה (Penrose)
יותר מאוחר מסוים. אלף־בית מעל אותיות של מרחבי לסידור שקולים ההחלפה חוקי אחד בממד
גבוה, מממד ממרחב הטלה באמצעות לא־מחזורי ריצוף לקבל כיצד הסביר (de Bruijn) רויּןְ דהֶ־בְּ
התאמה חוקי הללו, השיטות שלוש כיום .(Cut and Project) ”גזור־והטל“ כשיטת כיום שמוכר מה

לא־מחזוריים. ריצופים ליצור העיקריים הכלים הן וגזור־והטל, החלפה חוקי מקומיים,
הקרובים אשר קוואזי־מחזוריים, ריצופים של היא לא־מחזוריים ריצופים של מפורסמת משפחה
הספקטרליות התכונות ;(Bragg) ראַג בְּ עקיפת יש זו ממשפחה לריצופים למחזוריים. (“כמעט“) ביותר
פרקטלית (ספקטרום) מקשתת של הן בקשירה־הדוקה) המילטוניאנים של או מתקדמים גלים (של שלהם
פערי את לסווג מאפשר (Gap labeling theorem) הפער כינוי משפט אנרגיה. פערי אינסוף עם
בעזרת מחזוריות מערכות של הסטנדרטי מהסיווג ששונים שלמים, מספרים בעזרת הללו האנרגיה
השלמים המספרים את לרשום ניתן לא כלומר, .(Berry) בֵּרִי עקמומיות באמצעות המובעים צ׳רן מספרי
תוכן הללו השלמים למספרים לצקת ניתן (קומוטטיבית). חילופית גאומטריה של עקמומיות בעזרת הללו
התכונות רוב זאת, עם יחד .(Čech) צֵ׳ךְ קוהומולוגיית דרך (אינווריאנטיות) שמורות ותכונות טופולוגי
של הטופולוגי התוכן לכן מן־הכלל. יוצאים למספר פרט ניסיוני לווידוא ניתנות ולא ממופות לא הללו
חשיבות בעלי להיות מחוֹשבים אינם דלעיל, המוכרים השלמים המספרים כלומר, לא־מחזוריים, ריצופים
בעזרת קוואזי־מחזוריים בריצופים הללו הטופולוגיים המספרים את לאפיין כיצד נדגים אנחנו פיזיקלית.

ידועים. לניסיונות אותם ונקשר ,(winding) ליפוף מספרי
שיאי מפגינים קוואזי־מחזוריים ריצופים הקוואזי־מחזורי. לעולם מעבר אקזוטיים נעשים ריצופים
של (Miller) מִילֵר לאינדקסי בדומה ההופכי במרחב למספר ניתן שאותם העקיפה, בתמונת בראג
לא ולכן שונה, קומבינטוריקה יש כלליים לא־מחזוריים לריצופים זאת, אם יחד מחזוריים. ריצופים
על המוגדרים המילטוניאנים של המקשתת כמו נוספות, פיזיקליות תכונות הסגנון. באותו למספרם ניתן
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תודות

מחקר אחר לרדוף ההשראה על אקרמן, אריק פרופ׳ שלי, למנחה העמוקה תודתי את להכיר ברצוני
מרק יותר היותו ועל שואף; אני שאליו אידאל, – האינסופי והידע הרעיונות שלל על ומדויק; נקי אקדמי

וחבר. מדריך

רוזנברג, יונתן עבדת, עמרי גיטלמן, דור לוי, אלי שפילברג, אוהד למחקר: לשותפי במיוחד מודה אני
מוחשיות. ליצירות ורעיונותיי מחשבותיי את לצקת לי שעזרו אקרמן, ואריק שוחט חיים

ברק רוטשטיין, בוריס עבדת, עמרי גיטלמן, דור שפילברג, אוהד שלי, לעמיתים גם להודות ברצוני
המעניינים. הרעיונות ועל פורים דיונים של הרבות השעות על סורה ואריאן שינדלמן תום קציר,

התמיכה. ועל המרובה הסבלנות על למשפחתי מצדיע אני לבסוף,



לפיזיקה בפקולטה אקרמן אריק פרופסור של בהנחייתו בוצע המחקר

ולטכניון ג׳ייקובס וג׳ואן אירווין לעמותת מודה אני
בהשתלמותי הנדיבה הכספית התמיכה על
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