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The doped 1D Kondo Lattice describes complex competition
between itinerant and magnetic ordering. The numerically com-
puted wave vector-dependent charge and spin susceptibilities
give insights into its low-energy properties. Similar to the predic-
tion of the large N approximation, gapless spin and charge modes
appear at the large Fermi wave vector. The highly suppressed spin
velocity is a manifestation of “heavy” Luttinger liquid quasiparti-
cles. A low-energy hybridization gap is detected at the small (con-
duction band) Fermi wave vector. In contrast to the exponential
suppression of the Fermi velocity in the large-N approximation,
we fit the spin velocity by a density-dependent power law of the
Kondo coupling. The differences between the large-N theory and
our numerical results are associated with the emergent magnetic
Ruderman–Kittel–Kasuya–Yosida interactions.
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The Kondo Lattice (KL) (1–3) describes itinerant conduc-
tion electrons Kondo-coupled to localized spins in each unit

cell by an SU (2) (special unitary group of degree 2) symmet-
ric magnetic interaction. The KL has been intensively studied
as the microscopic model of heavy fermion (HF) metals in rare
earth compounds. Nevertheless, much remains unknown about
its low-energy correlations.

The large-N limit of theSU (N )model was worked out long ago
(4–7). It describes a Fermi liquid of hybridized conduction and
valence electrons with a large Fermi surface. It includes conduc-
tion electrons and localized spins as itinerant fermions in agree-
ment with Luttinger’s theorem (8–10). Signatures of the large
Fermi surface were found numerically in one dimension (11) and
experimentally in HF compounds (12, 13). The large-N theory
predicts an exponentially small (in inverse Kondo coupling) Fermi
velocity, which resembles the scaling of the single impurity Kondo
temperature (3). However, the validity of the large-N approxi-
mation for the physical N =2 KL has been severely challenged.
Intersite magnetic interactions, named RKKY (Ruderman–
Kittel–Kasuya–Yosida) (14), emerge at second order in the
Kondo coupling and at order 1/N 2 (15), but they are neglected in
the large-N approximation. RKKY interactions may well destabi-
lize the HF metal by magnetic ordering (2) or at least change its
low-energy scales and correlations (16). If a Fermi liquid phase is
indeed found at weak coupling, the crucial question is as follows:
how does the spin velocity (i.e., the renormalized Fermi velocity
of the spin mode) scale with the Kondo coupling for N = 2?

In 1D, KL has been notoriously resistant to treatments by exact
solutions, bosonization, quantum Monte Carlo, and field theory,
especially away from half-filling.‡

Its phase diagram (Fig. 1) has been determined numeri-
cally (11, 20–27) using exact diagonalization and Density Matrix
Renormalization Group (DMRG) (28). From the analysis of spin
and charge density Friedel oscillations and the large-N approach
(29), a Tomonaga–Luttinger Liquid (30, 31) (TLL) phase was
hypothesized with a large Fermi surface (9) and a small Lut-
tinger interaction parameter [although there is some controversy
regarding the size of the Fermi surface that remained (32, 33)].
The importance of carefully treating the RKKY interactions was
shown in recent works (34, 35) on the anisotropic KL model using
bosonization. They obtained an easy-plane spiral phase, with

broken Z2 symmetry, and an easy axis phase. Both phases exhibit
collective fluctuations at twice the small Fermi wave vector. The
SU(2) symmetric model analyzed here, however, is a quantum
critical point between these phases. It has no broken symmetry,
and massless fermions are at a large Fermi wave vector.

In this paper, we provide comprehensive numerical proof for
the existence of a TLL. We probe this phase by computing the
wave vector-dependent charge and spin susceptibilities. These
response functions allow us to measure the low-energy momen-
tum and velocity scales. Their singularities can be described by a
Heavy Tomonaga–Luttinger Liquid (HTLL), which is character-
ized by gapless spin and charge modes at the large Fermi wave
vector. The Luttinger interaction parameter is much smaller than
unity, and the spin velocity is highly suppressed relative to the
charge velocity.§ For the values of nc calculated, the spin velocity
fits power laws of the Kondo coupling in contrast to the expo-
nential behavior predicted by the large-N theory (29). We also
detect a low-energy charge gap at twice the small (conduction
electrons’) Fermi wave vector. This gap is qualitatively consistent
with the hybridization gap expected by the large-N approach. We
present the numerical calculation of its dependence on the inter-
action strength, which shows power law behavior. The difference
between the numerical results and the large-N approximation
is associated with the effects of RKKY interactions. The 1D
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The large effective electron mass observed in rare-earth
“heavy fermion” metals, such as CeAl3 and CeCu6, has chal-
lenged theorists since the discovery of the effect in 1975. In
particular, the popular theory that explains the electron mass
enhancement neglects important emergent magnetic inter-
actions, which could destroy the heavy fermion phase by
magnetic ordering. Here, we investigate in great detail the
effect of these magnetic interactions in the 1D Kondo Lattice
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albeit with different energy scales than previously predicted.
These insights may help us understand the Kondo Lattice and
heavy fermions in higher dimensions.
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‡Indeed, in most of the bosonization approaches of the KL, an effective coupling JH
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KL at weak coupling, J < t , traditionally assumed that RKKY
interactions dominate the low-energy physics and inhibit the
Kondo effect, which produces heavy quasiparticles. However,
our conclusion is that itineracy and RKKY work hand in hand to
produce the HTLL, with a large Fermi wave vector, which bears
resemblance to HF states in higher dimensions.

Model
We study the SU(2) 1D KL model:

H=−t
∑
i,s

c†i,sci+1,s +H.c+ J
∑
i

~Si ·~si . [1]

J is the Kondo interaction. cis annihilates an electron at posi-
tion i =1 . . .L with z spin s; sαi = 1

2

∑
ss′ c

†
isσ

α
ss′cis′ , Sα are

spin-half operators of the conduction electrons and localized
f spins, and σα,α= x , y , z are Pauli matrices. The conduction
electron number Nc =ncL defines the “small” Fermi wave vector
kF = π

2
nc . The “large” (Luttinger theorem) Fermi wave vector is

k?F = kF + π
2

.
The phase diagram in the nc , J/t plane is shown in Fig. 1.

Here, we avoid the ferromagnetic regions (FMs) FM1 and FM2
and choose our parameters to be well within the weak-coupling
paramagnetic regime. Note that, according to the large-N theory
(Eq. 11), weak coupling is defined by 0 < J

t
� 4π sin(k?F ).

Luttinger Parameters and Susceptibilities
The uniform spin and charge susceptibilities are given by dif-
ferentiating the ground-state energy E0(L,Nc ,M ), where M =∑

i(S
z
i + szi ) is the conserved magnetization:

χs(L)=
1

L

(
∂2E0

∂M 2

)−1

, χc(L)=
1

L

(
∂2E0

∂N 2
c

)−1

. [2]

By the TLL theory, these are related to the spin and charge
velocities by

vs =χ−1
s /(2π), vc =χ−1

c K/(2π), [3]

respectively, where K is the Luttinger interaction parameter. In
a TLL theory, the spin and charge density Friedel oscillations
near the boundaries are given to leading order by (20, 36)

Fig. 1. Schematic phase diagram of the KL model in one dimension; nc is
the conduction electron density, and J/t is the dimensionless Kondo cou-
pling constant. FM1 (11) and FM2 (20–22) are shown. The paramagnetic
phase (blue) is characterized as an HTLL. The DMRG calculations reported
here are carried out at densities nc = 0.6, 0.67, and 0.875 marked with thick
vertical green lines.

A

B

Fig. 2. Charge susceptibility vs. wave vector for nc = 0.875, J/t = 2.5. (A)
large-N approximation. (B) DMRG calculation. k?F denotes the large Fermi
surface wave vector. Finite-field scaling of DMRG reveals divergent peaks at
2k?F and 4k?F as expected for a TLL. B, Inset shows a nondivergent peak at
twice the small Fermi wave vector 2kF , which is attributed to the inverse of
the hybridization gap 2r0 depicted in Fig. 6. arb, arbitrary units.

〈(S z
i + szi )〉=B1 cos(2k

?
Fx ) xi

−K [4]

and ∑
s

〈c†iscis〉=A1 cos(2k
?
Fxi) x

−K+1
2

i

+A2 cos(4k
?
Fxi) x

−2K
i , [5]

which allows us, in principle, to extract k?F and K . Other wave
vectors are associated with smaller-amplitude oscillations, which
are hard to extract from Eqs. 4 and 5. Therefore, we use a com-
plementary approach and calculate the susceptibilities by adding
wave vector-dependent source terms to the Hamiltonian:

H′=−hq(S z
q + szq )−µqρq ,

where S z
q , s

z
q , and ρq are the lattice cosine transforms of the

operators S z
i , s

z
i , and ρi . The susceptibilities are obtained by

differentiating the DMRG ground-state energies:

χs(q)=−
1

L

∂2E0

∂h2
q

, χc(q)=−
1

L

∂2E0

∂µ2
q

. [6]

To avoid finite lattice effects, we take hq and µq to be larger than
the respective finite size gaps.

Methods
We use open boundaries with U(1)¶ (unitary group of degree 1) and SU(2)#

DMRG (28). Lattice sizes were L≤ 192. We retain up to 5,500 states in the
reduced density matrix; 28 sweeps were sufficient for good convergence.
The DMRG relative truncation error was less than 10−8.

Friedel spin density oscillations were found at twice the large Fermi wave
vector 2k?F = 2kF +π, in agreement with Luttinger’s theorem. Due to the
very low values of K, the signature of 2k?F in the charge Friedel oscillations
is too weak for detection (11, 23–27) (SI Appendix, Fig. S5).

The Luttinger parameter K was determined by measuring the power law
singularities of the density operator nq at 2k?F and 4k?F . TLL theory yields the
scaling relation (SI Appendix has a complete derivation):

nq =−
1

L

∂E0

∂µq
∼µ

∆(q)
2−∆(q)
q , [7]

¶Calculations were performed using the ITENSOR library.
#Calculations were performed using the SYTEN library.
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Fig. 3. Spin susceptibility vs. wave vector for nc = 0.875, J/t = 2.5. (A)
large-N approximation. (B) DMRG calculation. Finite-field scaling reveals a
divergent peak at q = 2k?F . arb, arbitrary units.

where ∆(q = 2k?F ) = K+1
2 and ∆(q = 4k?F ) = 2K are the scaling dimensions of

nq at the two wave vectors 2k?F and 4k?F . We find good agreement for the
values of K extracted from ∆ and from the charge density Friedel oscillations
in Eq. 5.

Results
We chose three fillings, nc = 0.6, 0.67, and 0.875, with associated
ranges of coupling constant J/t within the paramagnetic region
(shown in Fig. 1). The lower values of J/t were limited by the
rapid increase of ground-state entanglement, which approached
the numerical limitations of our DMRG calculations.

The Friedel oscillations of the spin density are dominated by
wave vector 2k?F . The charge density oscillations are dominated
by the 4k?F terms, since K < 0.33 (Eq. 5). The subdominant
2k?F oscillations were too weak for detection in the Friedel
oscillations (36).

The wave vector-dependent charge and spin susceptibilities
are depicted in Figs. 2 and 3, respectively. We note the detec-
tion of divergent peaks at 2k?F in both spin and charge sectors,
which firmly confirm the TLL phase with a large common Fermi
wave vector k?F . The charge sector shows a pronounced peak at
4k?F as expected for small values of K .

In Fig. 4, the values of the Luttinger parameter K (nc , J/t)
are depicted; we note a monotonic decrease as a func-
tion of J/t , signaling stronger repulsive interactions at weak

Fig. 4. Luttinger interaction parameter K along the three lines shown in
Fig. 1. The values of K . 0.33 throughout the HTLL phase (in the text)
indicate effects of strong repulsive interactions.

A

B

Fig. 5. (A) Spin velocity as a function of J/t at different fillings. Solid lines
are power laws vs∼A(nc)(J/t)α(nc ). We note a significant increase of α and
a decrease of A as nc increases (Discussion). (B) Uniform (q = 0) charge sus-
ceptibility. Note a weaker dependence of χc on nc and J/t than for the spin
susceptibility (Fig. 7).

coupling in agreement with earlier calculations by Shibata
et al. (29).

We compute the spin and charge velocities of the TLL by
Eq. 3. The spin velocity vs(J/t), as shown in Fig. 5A, is highly
suppressed in the weak-coupling limit J/t� 1. This “heavi-
ness” is the hallmark of HTLL phase. We can fit vs to a power
law (J/t)α(nc), where 1.1<α< 8.3. The power α increases
significantly as nc approaches unity.

In Fig. 5B, we see that the charge susceptibility varies only
moderately with J/t and nc . For our parameters, the charge
velocities vc are at least an order of magnitude larger than the
respective vs .

Fig. 2B shows a nondiverging peak at twice the small Fermi
wave vector, which is attributed to the inverse hybridization gap
(Discussion). Clearly, this is the high-energy scale, much larger
than the characteristic energy scales for which the HTLL is rele-
vant. The appearance of the hybridization gap is shared by other
fillings as well.

Large-N Approximation
The localized spins in Eq. 1 are represented by slave fermions:

Sγi =
1

2

∑
s,s′

f †i,sσ
γ
ss′ fi,s′ , [8]

which are subject to a constraint
∑

s f
†
i,s fi,s =1. The large-N

approximation yields an effective hybridized band structure,
which is depicted in Fig. 6:
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Fig. 6. Band structure of the large-N Hamiltonian. εk is the tight bind-
ing kinetic energy, E±k are the hybridized bands, 2r0 is the hybridization
gap. The shaded area denotes the occupied part of the Fermi surface.
Blue-colored f and orange-colored c denote the f-character and c-character
parts of the band, respectively. Note the suppression of the spin velocity vs

compared with the charge velocity given by vc.

HLarge−N =
∑
ks

εkc
†
kscks + r0c

†
ks fks +H.c+ εf f

†
ks fks

=
∑
ks

E±k α
†
±,k ,sα±,k ,s . [9]

The bare conduction electron band structure is εk =−2t cos(k),
and the large-N hybridized bands E±k are

E±k =
εk + εf

2
±
√( εk − εf

2

)2
+ r20 . [10]

εf and r0 are variational parameters, which depend on J/t and
nc . Solving the mean field equations at weak coupling yields (37)

r20 =

(
εk?F − εkF
2ρ0εk?F

)
e

1
ρ0J , [11]

where ρ0 = 1
4πt sin(k?F )

is the (single-spin) conduction electron’s

density of states at the large Fermi wave vector. r20 determines
the Fermi velocity suppression as v?F =2tr20 sin(k?F ), and r0 yields
the minimal hybridization gap at kF . As shown in Fig. 6, the small
Fermi wave vector kF marks a sharp cross-over in the character
of the quasiparticles from c to f fermions.

Discussion
The large-N theory effectively describes noninteracting fermions
(in essence, a TLL with K =1). Its spin and charge wave vector-
dependent susceptibilities are compared with the DMRG in Figs.
2 and 3. Large-N theory exhibits a weak logarithmic singularity at
2k?F , while the DMRG exhibits a K -dependent power law diver-
gence. The DMRG peak in χc(q) at 4k?F , absent in the large-N
theory, is also associated with K < 1.

Similarities between large-N theory and the DMRG are as
follows.

i) The ratio of charge to spin susceptibilities. In the large-N
theory,

χs

χc
= r−2

0 ∝ e
1
ρ0J , [12]

which follows from the dominance of the f fermions charac-
ter at k?F . The DMRG also obtains χs

χc
� 1 throughout the

studied parameter regime.

ii) In the large-N theory, the f fermions cannot contribute to
the charge susceptibility. χc is completely determined by the
conduction electrons susceptibility and is weakly dependent
on the Kondo coupling. The DMRG results for χc are also
weakly dependent on J/t , as shown in Fig. 5.

iii) The hybridized bands in the large-N theory predict a minimal
hybridization gap at the small Fermi wave vector kF (Fig. 6).
This gap should be proportional to the square root of the spin
velocity. The DMRG indeed finds a small peak at 2kF (Fig.
2B, Inset). This peak can be interpreted as a signature of a
hybridization gap at ±kF , albeit with a different parametric
dependence on J/t than given by Eq. 12. This qualitative
feature is in support of a hybridized band description of
the HTLL.

Differences between the large N and the DMRG results are
especially noteworthy. As seen in Fig. 7, the variation of the
spin velocity with the Kondo coupling is well-fit by power laws.
The large-N predictions cannot be reconciled with the numer-
ical data unless large renormalization factors are introduced
into the exponent of Eq. 12. While it is hard to distinguish
between a power vs ∝ (J/t)α and a general exponential function
e−F(nc)t/J , it requires unjustifiably large renormalization factors
F (nc), especially at lower fillings. In addition, we find that the
hybridization gap scales weakly with the Kondo coupling com-
pared with the high-power law suppression of the spin velocity
(Fig. 5A). This differs from the large-N prediction (Eq. 12).

Fig. 5A shows that the DMRG-obtained power laws α increase
toward half-filling, nc→ 1. The reason for the increase in α(nc)
is still uncertain, but it may be associated with the approaching
phase transition into the Kondo insulator at nc =1, where both
spin and charge modes are gapped (11).

Summary
Our DMRG results of the spin and charge wave vector-
dependent susceptibilities establish the HTLL phase of the N =
2 KL model at weak coupling and away from half-filling. In addi-
tion, we find numerical evidence for hybridized band features
revealed by a nondivergent peak of the wave vector-dependent
charge susceptibility at precisely twice the small Fermi wave vec-
tor 2kF . Altogether, our results strongly support the fact that, at
least in one dimension, the RKKY interactions do not destroy
the heavy quasiparticles at k?F but “work with them” to produce
the HTLL. At this point, it is worth commenting on recent works
(34, 35) studying the anisotropic KL, where it was found that,
in the presence of a strong easy-plane anisotropy (XXZ type),

Fig. 7. Uniform spin susceptibility, which is related to the velocity of Fig. 5
via χs = 1/(2πvs). Solid straight lines are a fits to power laws χs ∝ (J/t)−α.

Dashed lines are fits to the large-N theory χLarge−N
s ∝ e

1
ρ0J .
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RKKY is responsible for 2kF ordering of the f spins and pre-
dominates over the Kondo screening. Although this leads to
interesting physics, the latter scenario is not extended to the
isotropic limit. Indeed, in the SU (2) invariant case, quasilong-
range helical ordering is likely to be destroyed by quantum
fluctuations (e.g., in the spin one-half J1− J2 spin chain) (38).
We believe that, in the isotropic limit, RKKY induces 2kF
fluctuations of the f spins that couple to those of the conduc-
tion electrons, resulting in the opening of the hybridization gap
[which is proportional to χ−1

c (2kF )]. This scenario is consistent
with our numerical results. Future calculations of spectral func-
tions could explore the scaling of the hybridization gap by, for
example, time-dependent DMRG (39, 40).

We note that, in commensurate fillings [i.e., half-filling (11)
and quarter-filling (41)], a charge gap was observed. At quarter-
filling, the f spins open a gap and dimerize. We conclude that
the RKKY wave vectors play an important role in the competi-
tion between the formation of the decoupled f -spin gap and the
formation of the hybridization gap.

The scaling of the Luttinger parameters as a function of the
Kondo coupling can serve as a useful guide for future work.

Specifically, in any analytical approach, two parametrically dif-
ferent energy scales are expected to emerge in the HTLL phase:
the spin velocity vs and the hybridization gap at 2kF . Sorting
out the interplay between dimerization and 2kF hybridization
remains as a challenge to theory. We hope that future experi-
mental realizations of the KL in wires and cold atom systems
may also shed light on these issues.

Lessons learned here could be relevant to the high-dimen-
sional KL and HFs. In particular, signatures of the gapped small
Fermi surface (i.e., hybridization gap) should be visible in the
charge sector in the weak-coupling, heavy-mass regime, as they
are in one dimension.
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