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A recently developed formula for the Hall coefficient [A. Auerbach, Phys. Rev. Lett. 121, 066601
(2018)] is applied to nodal line and Weyl semimetals (including graphene) and to spin-orbit split
semiconductor bands in two and three dimensions. The calculation reduces to a ratio of two equilibrium
susceptibilities, where corrections are negligible at weak disorder. Deviations from Drude’s inverse carrier
density are associated with band degeneracies, Fermi surface topology, and interband currents. Experi-
ments which can measure these deviations are proposed.
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Semimetals are characterized by proximity of the Fermi
energy to band degeneracies. Vigorous research has
recently been invested in semimetals on surfaces of
topological insulators [1,2], Dirac and Weyl semimetals
[3–8], and on semimetal platforms for Majorana state
applications [9].
This Letter focuses on the Hall coefficient of semimetals,

which has been traditionally used to measure the charge
carrier density n using Drude’s relation RH ∝ n−1. In
semimetals, Drude’s relation may break down due to
multiband effects and Fermi surface topology. For example,
corrections to Drude’s relation was found by Liu et al. [10]
for spin-orbit split semiconductor bands. Multiband
conductivity calculations involve coupled Boltzmann
equations with interband collision integrals which are quite
challenging [11,12].
We can avoid coupled Boltzmann equations by applying

the Hall coefficient formula [13,14] to multiband
Hamiltonians. The dissipative scattering rates drop out,
and RH is primarily determined by the nondissipative
Lorentz force captured by the current-magnetization-cur-
rent (CMC) susceptibility χCMC, and the conductivity sum
rule (CSR) χCSR. Both coefficients are nondissipative: the
CMC describes the effect of the Lorentz force on the
currents, and the CSR governs their reactive response.
Crucial to our approach is the estimation of the formula’s

correction term Rcorr, which is determined by higher
moments of the dynamical conductivity. This Letter shows
that in the “good quasiparticles” (Boltzmann) regime,Rcorr

can be neglected for disorder strength less than the Fermi
energy.
Our key results are (i) For Weyl point semimetals in two

and three dimensions (including graphene), the intraband
RINTRA
H ðnÞ exhibits a Drude-like divergence, which is cut

off by interband scattering at low densities. (ii) The nodal
line semimetal (see Fig. 1) exhibits a constant (rather than
diverging) Hall coefficient, with a sign change at the nodal

energy. (iii) Previous results [10] of spin-orbit split bands
are extended into the interband transport regime, and to
three dimensions. (iv) Rcorr is shown to be relatively
suppressed by the disorder potential fluctuations divided
by the Fermi energy squared. The Letter ends with a
summary and proposals for experiments.
The Hall coefficient formula, as derived directly from the

Kubo formulas [13,14], for any Hamiltonian H and
spectrum fEn; jnig,

RH ≡ lim
B→0

�
σ−2xx

∂σxy
∂B

�
¼ χCMC

χ2CSR
þRcorr: ð1Þ

σαβ is the conductivity tensor (assuming C4 symmetry)
and B is the magnetic field in the z direction. χCMC ¼
Imðjy; ½M; jx�Þ − Imðjx; ½M; jy�Þ and χCSR ¼ ðjx; jxÞ,

FIG. 1. Nodal line semimetal. The nodal line is marked by the
black circle of radius k0. The three dimensional toroidal Fermi
surface (top) is depicted. At the upper right corner, the qualitative
behavior of the Hall coefficient (solid line) is compared to Drude
relation for density n as measured from the nodal circle filling.
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where jα is the uniform current in the α direction, and
M ¼ ∂H=∂B is the diamagnetization operator. The inner
products are defined by equilibrium susceptibilities, [15]

ðjα; AÞ ¼ 1

Z

X
nm

e−βEn − e−βEm

Em − En
hnjjαjmihmjAjni; ð2Þ

where Z ¼ Tre−βH and β is the inverse temperature.
The correction term Rcorr is given by

Rcorr ¼ 1

χCSR

X∞
i;j¼0

ð1 − δi;0δj;0ÞM00
2i;2j

×
Yi
i0¼0

�
−
Δ2i0−1

Δ2i0

�Yj
j0¼0

�
−
Δ2j0−1

Δ2j0

�
: ð3Þ

M00
2i;2j are cross susceptibilities, defined by the matrix

elements of the magnetization commutator ½M; •� between
two currents’Krylov bases. The Krylov bases are generated
by orthonormalizing the sets of operators ½H; ½� � � ; ½H; jα���.
Δi0 are the conductivity recurrent [16], which can be
obtained from the conductivity moments, defined by
μ2i ¼ h½jx; ½H; ½� � � ; ½H; jx����i, where H appears 2i − 1
times. Instructions for calculating M00

2i;2j and Δi0 are
reviewed in [15]. Physically, Rcorr incorporates the higher
order effects of current nonconservation. In several exam-
ples, its relative magnitude can be suppressed by using a
renormalized Hamiltonian [14]. Later, we estimate Rcorr

and show that it can be neglected in regimes of weak
disorder which concern this Letter.
We consider a general two-band Hamiltonian

H0 ≡
X
k

X2
l;l0¼1

c†lkhll0 ðkÞcl0k: ð4Þ

where c†lk creates a Bloch electron on band l and wave
vector k. A random potential with fluctuation V2

dis intro-
duces a transport scattering rate ℏ=τtr ∼ V2

dis=jεFj, where εF
is the Fermi energy measured from the nearest particle-hole
symmetric energy or band extremum.
Within the good quasiparticles regime, ℏ=τtr ≪ εF, the

ratio of the disorder strength to interband gap at the Fermi
energy Δε, defines two distinct transport regimes.
Importantly, for evaluation of Eq. (1), we have the freedom
to choose the (renormalized) effective Hamiltonian which
best describes the low energy correlations. Our choice
determines the values of χCMC, χCSR, and Rcorr. It is the
latter we wish to minimize.
(i) Intraband regime applies for V2

dis ≪ ðΔεÞ2, where
interband scattering is suppressed, and transport is
dominated by band-diagonal current and magnetization
operators

jαINTRA ¼ e
X
i;k

c†ikv
α
i ðkÞcik; α ¼ x; y; i ¼ 1; 2;

MINTRA ¼ ie
2c

X
i;k

c†ik

�
vyi ðkÞ

∂
∂kx − vxi ðkÞ

∂
∂ky

�
cik; ð5Þ

with vαi ðkÞ ¼ ∂εiðkÞ=∂kα, where εiðkÞ (i ¼ 1, 2) are the
eigenvalues of hll0 ðkÞ. The susceptibilities in this regime
are [15]

χINTRACMC ¼ e3

c

X2
i¼1

Z
ddk
ð2πÞd FiðkÞ

�
−
∂f
∂ε

�
ε¼εiðkÞ

;

FiðkÞ ¼ ½vyi ðkÞ�2
∂vxi ðkÞ
∂kx − vxi ðkÞvyi ðkÞ

∂vyi ðkÞ
∂kx ;

χINTRACSR ¼ e2
X2
i¼1

Z
ddk
ð2πÞd (v

x
i ðkÞ)2

�
−
∂f
∂ε

�
ε¼εiðkÞ

: ð6Þ

fi is the Fermi-Dirac distribution of band εiðkÞ at temper-
ature T and chemical potential εF. For any spherically
symmetric band, εðkÞ ¼ εðkÞ, Drude’s relation holds, i.e.,
RH ¼ χCMC=χ2CSR ¼ 1=ðnecÞ [17]. For more general band
structures, Eqs. (6) recover the venerable Boltzmann
equation result in the “isotropic scattering limit” [18,19].
(ii) Interband regime applies within the range

ðΔεÞ2 ≤ V2
dis ≪ ε2F, where disorder is strong enough to

mix the two bands (but still weak enough to neglect R, see
later discussion). Interband currents now contribute to the
longitudinal conductivity and to χCSR [11,20]. In this
regime, the susceptibilities must involve full two-band
operators represented by 2 × 2 matrices

jαll0 ðkÞ≡ e
∂hll0 ðkÞ
∂kα ;

Mll0 ðkÞ≡ ie
2c

�
jyll0 ðkÞ

∂
∂kx − jxll0 ðkÞ

∂
∂ky

�
; ð7Þ

which yield the interband susceptibilities which can be
conveniently expressed by [15]

χINTERCMC ¼
Z

ddk
ð2πÞd

X2
i¼1

f(εiðkÞ)FINTER
i ðkÞ;

FINTER
i ðkÞ¼e

�
U†

k

� ∂
∂ky ½M;jx�− ∂

∂kx ½M;jy�
�
Uk

�
ii
;

χINTERCSR ¼e
Z

ddk
ð2πÞd

X2
i¼1

f(εiðkÞ)
�
U†

k
∂jxðkÞ
∂kx Uk

�
ii
: ð8Þ

The unitary matrix Uk diagonalizes hðkÞ. We note that the
operator ∂½M; jα�=∂kβ includes a derivative ∂=∂kα acting to
the right on Uk. This derivative captures the effect of SU(2)
rotation of Bloch states inside the Fermi volume.
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Now, we apply Eqs. (6) and (8) to calculate the Hall
coefficients of the following models.
Weyl semimetals.—When the product of time reversal

and inversion is not a symmetry of a system, the band
structure may exhibit Weyl points, where two bands
intersect at the Fermi level. Expansion of the semimetal
band structure near a linear point degeneracy results in the
d-dimensional two-band Weyl Hamiltonian [21]

H0 ¼ v0k · σ; ð9Þ

which yields the conical dispersion ε�ðkÞ ¼ �v0jkj, see
Fig. 2. For d ¼ 2, this could describe surface states of a
three dimensional topological insulator [1], or a single
Dirac cone in graphene [22]. For d ¼ 3, this could describe
one Weyl cone in a Weyl semimetal.
The density (per cone) is n ¼ sgnðnÞkdF=2dπd−1, where

kF is the Fermi wave vector. In the intraband transport
regime,

χINTRACMC ¼ e4v20
c

kd−2F

2dπd−1
sgnðnÞ ∝ sgnðnÞjnjðd−2Þ=d;

χINTRACSR ¼ v0
2dπd−1

kd−1F ∝ jnjðd−1Þ=d; ð10Þ

which recovers the Drude relation RINTRA
H ¼ 1=nec.

For the interband regime [15], we find that

χINTERCMC ðnÞ ¼ χINTRACMC ðnÞ; χINTERCSR ðnÞ ∝ n0: ð11Þ

At low densities, the interband regime takes over when
Δε < Vdis, as depicted by pink (online) shaded areas in
Fig. 2. Since the sum rule in Eq. (11) does not vanish at the

Weyl point, the Drude-like divergence of the Hall coef-
ficient is cut off at the Weyl point.
Unfortunately, a quantitative calculation of RINTER

H in this
regime is not available, since the Fermi energy is half the
interband gap. This violates the good quasiparticle con-
dition, and Rcorr cannot be neglected (as explained later).
Nevertheless, since χINTERCSR > 0, the saturation of RINTER

H <
∞ at the Weyl point still holds.
Nodal-line semimetal.—It is also possible for two bands

to touch along a curve, as is the case in a nodal line
semimetal [6,23]. Such a state of affairs has reportedly been
observed in the compound ZrSiSe [24] as well as in optical
lattices with ultracold fermions [25].
We consider a nodal circle of radius k0 in the kz ¼ 0

plane, as depicted in Fig. 1. The dispersions near the nodal

line are expanded for low values of δk⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
− k0

and kz

εk� ≃�v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2ðδk⊥Þ2 þ k2z

q
; ð12Þ

where α is a dimensionless anisotropy parameter. Here,
we limit the calculation to the intraband regime at zero
temperature, where n ¼ k0ε2F=4παv

2
0. By Eq. (6), the

susceptibilities are

χINTRACMC ¼ 3e3v20α
2n

4k20c
; χINTRACSR ¼ e2v0

�
α3k0n
16π

�
1=2

; ð13Þ

which yields an unusual density dependence of the Hall
coefficient

RINTRA
H ¼ 12π

αk30ec
sgnðnÞ: ð14Þ

The nodal line semimetal exhibits a density independent
Hall coefficient with an abrupt sign reversal, at zero
temperature and disorder. The suppression of χINTRACMC at
large radii can be intuitively attributed to the near cancel-
lation of the inner (holelike) and outer (electronlike) sides
of the toroidal Fermi surface.
The density dependences of Weyl and nodal line

semimetals are summarized in Table I.

FIG. 2. The two dimensional Weyl cone, whose bands are
depicted in the upper left. The intraband Hall coefficient (online,
blue) and conductivity sum rule (online, orange) are plotted
versus the density of carriers n as measured from the nodal filling.
Pink (online) regions mark the low density interband dominated
transport regime, where the interband gap is lower than the
disorder potential Vdis. In this regime, the conductivity sum rule
χINTERCSR does not vanish at the nodal density, and the Drude-like
divergence of the Hall coefficient is cut off (see text).

TABLE I. Nodal line semimetal and Weyl semimetals in two
and three dimensions. The density dependence of the conduc-
tivity sum rules and Hall coefficients are given for the intraband
and interband transport regimes.

Model χINTRACSR RINTRA
H χINTERCSR RINTER

H

2D Weyl jnj1=2 1=n Const ≤ const
3D Weyl jnj2=3 1=n Const ≤ jnj1=3
Nodal line sm jnj1=2 sgnðnÞ
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Semiconductor bands.—Semiconductor bands with an
inversion-asymmetric zinc blende structure, e.g., GaAs and
CdTe, are subjected to spin orbit interactions described by
the Kane and Luttinger models [26–28]. They share with
semimetals the small interband gaps near the Fermi energy.
We study two models: (i) The (heavy) hole bands in a two
dimensional quantum well (2DH) [10]

h2DHðkÞ¼ k2

2m
I�β½kyðk2y−3k2xÞσxþkxðk2x−3k2yÞσy�; ð15Þ

where the Rashba parameter β depends on the
perpendicular electric field [10]. The bands ε2DHk� ¼
k2=2m� βk3 are rotationally symmetric, and split by β.
(ii) The conduction band in a cubic crystal, with spin

orbit interaction splitting expanded up to third order
in k [28]

h3DCðkÞ ¼ k2

2m
I � βhðkÞ · σ;

hðkÞ ¼ ðk2y − k2zÞkxx̂þ ðk2z − k2xÞkyŷþ ðk2x − k2yÞkzẑ;
ð16Þ

the dispersions ε3DCk� ¼ k2=2m� βjhkj, have cubic
symmetry.
We find that, for both models, Eqs. (15) and (16), the

susceptibilities and Hall coefficients are corrected by terms
of order β2

χCSR ¼ e2

m
ðnþ β2ΔχCSRÞ; RH ¼ 1þ β2KðnÞ

nec
: ð17Þ

The results for the corrections of both Eq. (15) and Eq. (16)
are listed in Table II. The density dependence and sign of
the intraband corrections for the heavy holes model (15) are
consistent with Ref. [10]. Our new results for the interband
regime [15] show that, while χINTERCMC ¼ χINTRACMC , the sum rule
is different since it acquires no order β2 corrections,
i.e., χINTERCSR ¼ ðe2n=mÞ. As a result, we obtain that
KINTER ¼ −KINTRA, that is to say, the spin-orbit correction
to the Drude Hall coefficient reverses sign as disorder
increases between the intraband and interband scattering
regimes.

For h3DCðkÞ, the spin-orbit correction Δχ3DCCSR is of order
−n5=3 due to the k3 scaling of hðkÞ. The interband
susceptibility χINTERCMC is not equal in magnitude to
χINTRACMC , which appears to be due to nonspherical symmetry
of the band structure, as shown in Fig. 3.
Estimation of the correctionRcorr.—Now, we prove that

Rcorr, of Eq. (3), vanishes as (at least) two powers of the
disorder potential over the Fermi energy. Explicit instruc-
tions to calculate the moments, recurrents, Krylov bases,
and magnetization matrix elements [14] are reviewed in
[15]. First. let us consider the intraband scattering regime
where Vdis ≪ Δε ≪ εF.
The intraband currents commute with the clean

Hamiltonian ½H0; jαINTRA
x� ¼ 0. Hence, the high order

Krylov operators are produced by commuting the current
with at least one power of the disorder potential. Therefore,
the magnetization matrix elements between normalized
Krylov bases should scale as

ð1 − δi;0δj;0ÞjM00
2i;2jj ∝

χCMC

χCSR

�
Vdis

εF
þO

�
Vdis

εF

�
2
�
: ð18Þ

For similar reasons, the first two conductivity moments
scale as

μ2 ∝ χCSRV2
dis;

μ4 ∝ χCSR½ε2FV2
dis þOðV4

disÞ�: ð19Þ

Transforming moments to recurrents (see [15]) yields the
ratio

Δ1

Δ2

¼
�

μ22
χCSRμ4 − μ22

�1
2

∝
Vdis

εF
: ð20Þ

Combining (18) and (20) in (3), we obtain an overall
multiplicative factor

FIG. 3. Spin-orbit split Fermi surfaces (FS) of conduction
electrons described by the Hamiltonian Eq. (16). Top left: Density
dependence of the non-Drude correction K, Eq. (17).

TABLE II. Spin-orbit corrections to the sum rule and Hall
coefficient factor for the two dimensional hole bands Eq. (15),
and three dimensional conduction bands, Eq. (16). Results for the
intraband and interband transport regimes are displayed. The
conductivity sum rule receives no order β2 correction in the
interband regime.

Model ΔχINTRACSR =m2 KINTRA=m2 KINTER=m2

2DH −18πn2 18πn −18πn
3DC −8.0ð1Þn5=3 −17.5ð1Þn2=3 −23.0ð1Þn2=3
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jRcorrj ∝ jχCMCj
χ2CSR

�
V2
dis

ε2F

�
: ð21Þ

In the metallic phase, RH, χCMC=ðχCSRÞ2 < ∞, and hence,
the infinite sum in Rcorr must converge. Therefore, the
coefficient of proportionality in (21) must be finite.
For the interband regime, we use Eqs. (4), (7) to obtain

μ2 ¼ jj ½H; jx� jj2 ∝ ½V2
dis þ ðΔεÞ2�χCSR. We also assume

ðΔεÞ2 ≤ V2
dis. Thus, we can appeal again to Eqs. (18),

(20) by simply replacing V2
dis → V2

dis þ ðΔεÞ2 ≤ 2V2
dis.

This recovers the same proportionality if Eq. (21) is also
applicable to the interband regime, where we use
χINTERCMC =ðχINTERCSR Þ2 to compute the Hall coefficient [29].
Thus, Rcorr can be neglected relative to the ratio of
corresponding susceptibilities as long as V2

dis ≪ ε2F in both
intraband and interband regimes.
Summary.—Equation (1) provides insight into deviations

from Drude’s relation in semimetals. Our calculations
demonstrate the effects of nonspherical and multiple
Fermi surfaces, and interband scattering. These effects
should be considered when comparing the “Hall number”
(R−1

H ) to the Fermi volume, as determined by, e.g., angular
resolved photoemission [2] and magnetotransport oscilla-
tions [30,31]. For time reversal invariant Weyl semimetals,
topologically protected surface states have been shown [32]
to contribute substantially to the longitudinal conductivity
in small samples. Future investigations of the finite size
corrections to the Hall coefficient due to surface Fermi arc
states would be interesting. For graphene, we propose to
split the Dirac cones by an in plane magnetic field. The Hall
coefficient should vanish between gate voltages
Vgate ¼ �gμBB=e, which may enable measurements of
the compressibility at low densities.
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