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Kubo formulas for Hall, transverse thermoelectric, and thermal Hall conductivities are simplified into
on-shell commutators of degeneracy projected polarizations. The new expressions are computationally
economical, and apply to general Hamiltonians without a gap restriction. We show that Hall currents in
open boundaries are carried by gapless chiral excitations. Extrapolation of finite lattice calculations to the
dc-thermodynamic limit is demonstrated for a disordered metal.
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Electric, thermoelectric, and thermal Hall conductivities,
a.k.a. σxy, αxy, and κxy, respectively, characterize charge
and thermal carriers of condensed matter phases, and
identify their topology [1–3]. Anomalous Hall and thermal
Hall behavior have been reported in strongly interacting
systems, e.g., cuprates [4,5] and correlated insulators [6,7].
In principle, they might be explained by computing Kubo
formulas [8–10].
Unfortunately, dc Hall-type Kubo formulas are computa-

tionally costly. Their off-shell (energy nonconserving)
matrix elements of the currents, require full diagonalization
of the Hamiltonian on large systems. In addition, divergent
magnetization subtractions [10] for thermal Hall coeffi-
cients require careful cancellation [11,12].
Berry curvature (Chern) integrals [1,13] and Streda

(equilibrium) formulas [14,15], are often used to approxi-
mate the Kubo formula by reversing the dc order of limits
(i.e., setting frequency to zero before taking the large
volume limit [16]). Unfortunately, these proxies only apply
to bulk-gapped phases with vanishing longitudinal con-
ductivities, e.g., Quantum Hall (QH) and topological
insulators (TIs).
This Letter simplifies the Kubo formulas in their proper

dc order of limits. The new formulas are compact and valid
for general Hamiltonians, including gapless phases with
disorder and interactions. Physical insight is gained by
expressing σxy, αxy, and κxy as commutators of degeneracy-
projected polarizations (DPPs). The DPPs generalize the
role of Landau guiding centers to gapless phases. The
formulas imply that Hall and thermal Hall currents are
carried by extended chiral excitations which may be
supported on the sample edges (for, e.g., QH and TI) or
may percolate through the bulk.
The conductivities are expressed by a smaller sum over

on-shell matrix elements, which is computationally eco-
nomical. Problematic magnetization subtractions in the
thermal conductivities are eliminated. At low temperatures,
the relevant eigenstates are confined to low energies,

allowing one to replace the microscopic model by a simpler
low energy effective Hamiltonian.
Finite lattice calculations require extrapolation to the dc-

thermodynamic limit. A finite size scaling scheme is
demonstrated for the metallic phase of disordered electrons
at weak magnetic fields. The numerical results recover
Drude-Boltzmann (DB) theory, and Wiedemann-Franz law
for that model.
Kubo formulas.—The dc-thermodynamic limit of trans-

port coefficients is defined by

Sxy−dcOO0 ≡ lim
ε→0
V→∞

SxyOO0 ðε; VÞ; O;O0 ¼ C; T; ð1Þ

where the charge (C) and thermal (T) Hall-type conduc-
tivities are σxy ≡ SxyCC, αxy ≡ SxyCT=T, and κxy ≡ SxyTT=T. ε, V
are finite imaginary frequency and volume, respectively.
The dc order of limits is taken from bottom to top [17].
Here we consider a general many-body lattice

Hamiltonian H on open boundary conditions (OBCs)
[18], with C4 symmetry in the xy plane [19], and a
magnetic field B in the z direction. Its spectrum and
eigenstates are fEn; jnig. The Hall-type Kubo formulas
in the Lehmann representation are

SxyOO0 ¼ ℏ
V
Im

X
n;m

ðρm−ρnÞhmjjxOjnihnjjyO0 jmi
ðEn−EmÞðEn−Em−iεÞ −

hMOO0 i
V

: ð2Þ

ρnðTÞ are Boltzmann weights at temperature T. The
magnetization terms ∝ hMOO0 i eliminate circulating mag-
netization currents from the first term [10].
The currents jαO and magnetizationsMOO0 are defined as

follows. The Hamiltonian is spatially decomposed on the
lattice H ¼ P

i hi [20]. The charge and thermal polar-
izations are,

Pα
C ≡ e

X
i

nixαi ; Pα
T ¼

X
i

hixαi ; α ¼ x; y; ð3Þ
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where eni is the local charge density, and xi is the position
of lattice site i. The electric and thermal currents are

jαO ¼ i
ℏ
½H;Pα

O�; O ¼ C; T: ð4Þ

In the literature one often finds first quantized expressions
for the magnetizations [21]. Here we use more general
definitions which apply to any form of the Hamiltonian,

MCT ¼ −
i
ℏ
½Px

C; P
y
T �; MTT ¼ −

i
ℏ
½Px

T; P
y
T �: ð5Þ

Note that MCC ¼ 0, since the two charge polarizations
commute. For anomalous bosonic Hamiltonians hMTTi=T
may diverge as limT→0. Such divergence must be precisely
canceled by the current correlators, as shown for non-
interacting QH systems [11,22]. Such cancellations could
be problematic if one applies separate approximations to
the two terms in Eqs. (2).
DPP formulas.—Equations (2) are simplified as follows.

The real part of the summands’ numerator vanishes by C4
symmetry,

RehmjjxOjnihnjjyO0 jmi ¼ 0: ð6Þ

The real part of the denominator is written as two terms,

Re
1

ΔnmðΔnm − iεÞ ¼
1

Δ2
nm

−
ε2

Δ2
nmðΔ2

nm þ ε2Þ ; ð7Þ

where Δnm ≡ En − Em. The matrix elements of Eq. (4) in
the eigenstates basis are

hnjjαOjmi
Δnm

¼ i
ℏ
hnjPα

Ojmi; ð8Þ

which we insert into Eq. (2) to yield

SxyOO0 ¼ 1

ℏV

X
nm

ðρn − ρmÞIm
�
hmjPx

OjnihnjPy
O0 jmi

−
ε2hmjPx

OjnihnjPy
O0 jmi

ðΔ2
nm þ ε2Þ

�
−
hMOO0 i

V
: ð9Þ

The top row, which is an off-shell sum, can be rewritten as
the thermodynamic average of the polarizations’ commu-
tator h½Pα

O; P
β
O0 �i. Therefore it vanishes for σxy, and pre-

cisely cancels with the magnetization corrections (5) for αxy
and κxy (good riddance).
Surprisingly, it is the seemingly negligible ε2 term which

fully determines Sxy−dc. The Kubo formulas reduce to a
purely on-shell expression,

Sxy−dcOO0 ¼ − lim
ε→0
V→∞

1

ℏV
Im

X
n

ρnhnj½P̃x
O; P̃

y
O0 �jni; ð10Þ

where P̃α
O is the DPP in the α direction,

hnjP̃α
Ojmi ¼ hnjPα

OjmiΘεðjEn − EmjÞ; ð11Þ

and the Lorentzian ΘεðxÞ ¼ ½ε2=ðx2 þ ε2Þ� can be replaced
by a projector Heaviside function ΘεðxÞ → Θðπε=2 − jxjÞ
in the limit ε → 0.
Reduction to single particle (SP) Hamiltonians.—For

noninteracting fermions or bosons,

HSP ¼
X
ij

hijðBÞa†i aj ¼
X
α

ϵαðBÞa†αaα; ð12Þ

Eq. (10) reduces to

Sxy−SPOO0 ¼ − lim
ε→0
V→∞

1

ℏV
Im

X
α

nα½P̃x
O; P̃

y
O0 �αα; ð13Þ

where nα is the Fermi-Dirac or Bose-Einstein occupation of
SP state a†αj0i. The DPPs are [23]

P̃γ
O ¼

X
αβ

ðP̃γ
OÞαβa†αaβ;

ðP̃γ
OÞαβ ¼ hαjPγ

OjβiΘεðjϵα − ϵβjÞ: ð14Þ

Aversion of Eq. (13) was derived by Bradlyn and Read [22]
for noninteracting QH states without disorder.
DPPs in clean Landau levels.—Eigenstates of electrons

of effective mass m in a strong magnetic field are described
by degenerate Landau levels. The charge polarizations
(whose components commute) can be decomposed as

Pγ
C ¼ eRγ þ elBðπ × ẑÞγ; γ ¼ x; y; ð15Þ

where lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðℏc=eBÞp
. π connect between adjacent

Landau levels. R are guiding center coordinates which
satisfy ½Rx; Ry� ¼ −il2BI, and ½Rα; πβ� ¼ 0.
On OBCs, HSP includes a confining potential VðxÞ on its

edges. A smooth potential [24] with j∇ logVj−1 ≪ lB can be
approximated by an intra-Landau level operator VeffðRÞ.
VeffðRÞ (which commutes with π) acts only within a single
Landau level labeled by ν. One can choose the eigenstate basis
of say Ryjν; ki ¼ kl2Bjν; ki, in which hν; kjVeff jν; k0i is gen-
erally not diagonal. Uα;kðVeffÞ is the unitary matrix which
diagonalizesVeffðRÞ, anddefines theenergyeigenbasis jν; αi.
½Rx; Ry� ¼ −il2BI implies ½U†RxU;U†RyU� ¼ −il2BI which
is used in Eq. (13) to obtain σxy ¼ ðnec=BÞ, where n is the
electron density. This result also holds in the presence of
translationally invariant many body interactions.
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Disordered metals in weak magnetic fields.—This
regime can be described by DB theory [25] at small
Hall angles ωcτ ≪ 1, where τ is the transport scattering
time and ωc ¼ ðeB=mcÞ is the cyclotron frequency. The
DB Hall conductivity yields

σDBxy ¼ ne2ωcτ
2

m
: ð16Þ

In the weak field regime, disorder strongly mixes the
Landau levels and severs the relation between the DPPs
and the guiding centers. Equation (16) can be recovered
by a multiplicative renormalization of the DPPs, i.e.,
P̃γ
C ≃ eðωcτÞRγ, in Eq. (13).
Numerical calculations.—Equation (10) is significantly

less costly than the off-shell formulas Eq. (2). Having
eliminated −ðMCT=TÞ, −ðMTT=TÞ in αxy and κxy, respec-
tively, one may apply controlled approximations without
worrying about precise cancellations of divergent correc-
tions. While Eq. (2) requires full diagnalization of H and
calculations of many current matrix elements, Eq. (10)
includes only matrix elements between nearly degenerate
eigenstates in the spectrum below temperature T. These
states may be numerically accessible by Lanczos algo-
rithms [26] or approximated by variational methods [27].
Contrary to the initial off-shell formulation of Eq. (2),

H in (10) may be replaced by its low energy effective
Hamiltonian in the spectrum range En − E0 ≤ kBT. For
example, Fermi liquid theory can be used for interacting
fermions, or continuum field theories for magnets and
superconductors.
Numerical calculations are mostly performed on finite

latticeswhich require extrapolation to the dc-thermodynamic
limit of Eq. (1). If SOO0 ðε; LxÞ is computed for a sequence of
linear dimensions fLi

xg, “optimal” values of ε̄ðLi
xÞ can be

extracted by the extrema conditions,

∂εS
xy
OO0 ðε; Li

xÞ ¼ 0 ⇒ ε̄ðLi
xÞ: ð17Þ

The dc limit is obtained by Sdc ¼ limi→∞SOO0(ε̄ðLi
xÞ; Li

x).
This scheme is demonstrated in Fig. 1 for the square lattice
Hamiltonian,

HSL¼−
X
hiji

ðe−iAijc†i cjþH:c:Þþ
X
i

ðwi− ϵFÞc†i ci; ð18Þ

where wi ∈ ½−w=2; w=2� is a uniformly distributed random
number and B ¼ P

plaquetteAij is the magnetic field.
ε̄ are marked by black stars which apparently can be fit to

a power law ε̄ ≃ 7ðLxÞ−1. This scaling is consistent with
level spacings of one-dimensional extended states. In the
inset of Fig. 1, the Hall conductivities at different disorder
strengths extrapolate linearly in L−1

x , to their respective dc
limits.
In Ref. [28], we show that σdcxy ∼ w−4, which is consistent

with DB result (16), since by Fermi’s golden rule

ð1=τÞ ∝ w2. The zero field Hall coefficient RH ¼
ðd=dBÞσxyσ−2xx varies weakly with w in the moderate
disorder regime, as expected by DB theory in the constant
life-time approximation. RH is approximated fairly well
by the equilibrium Hall coefficient formula derived in
Refs. [16,29]. In addition, the Wiedemann-Franz ratio
ðκxy=TσxyÞ reaches close proximity to the DB result of
ðπ2=3Þ, at low temperatures.
Discussion.—Since Eq. (10) applies to any Hamiltonian

with OBCs, we can draw general conclusions concerning
Hall effects even in regimes with strong disorder and
interactions: (i) Quasidegenerate manifolds of eigenstates
are created by the magnetic field. (ii) These manifolds are
subjected to a noncommutative geometry by the DPPs, i.e.,
h½P̃α

O; P̃
β
O0 �i ¼ iϵαβc. In a sense, c−1ϵαβP̃

β
O ¼ Πα

O generates
translations and acts as a conjugate momentum to P̃α

O0 .
Thus, the DPPs generalize the algebra of guiding centers to
regimes of strong Landau level mixing. (iii) The quaside-
generate eigenstates are chiral as defined by their nonzero
vorticity as h∇P̃O

× Π⃗O0 i ¼ 2=c ≠ 0.
These gapless chiral wave functions may be sup-

ported exclusively on the sample edges, as in QH and
TI phases, or in the bulk. Bulk chiral states have been
derived semiclassically by Chalker and Coddington [30],
who described the transition between incompressible
plateaux using a percolating network of extended chiral
states. Finally, we can also infer that thermal Hall currents in
insulators [5–7] are also carried by extended chiral modes.
Summary.—Microscopic computations of charge and

thermal Hall conductivities are made easier by Eqs. (10),
(13), which is especially needed in gapless phases. The new

FIG. 1. Extrapolation of numerical Hall conductivities of the
square lattice Hamiltonian, Eq. (18). Disorder averaged σxy are
plotted versus ε, for a sequence of linear dimensions Lx. Stars
mark the values of ε̄ as defined in Eq. (17). The disorder strength
is fixed at w ¼ 3. The temperature, Fermi energy, and magnetic
field are T ¼ 0.3, ϵF ¼ −1, and B ¼ 0.025, respectively. Inset:
the dc limit σdcxy (marked by black arrows) for three values of
disorder strength.
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formulas unveil the essential role of noncommuting DPPs
and associated quasidegenerate chiral eigenstates. We
expect these formulas to facilitate connection between
model Hamiltonians and Hall-type measurements in
regimes of strong scattering.
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