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For weakly disordered fractional quantum Hall phases, the nonlinear photoconductivity is related to the
charge susceptibility of the clean system by a Floquet boost. Thus, it may be possible to probe collective
charge modes at finite wave vectors by electrical transport. Incompressible phases, irradiated at slightly
above the magnetoroton gap, are predicted to exhibit negative photoconductivity and zero resistance states
with spontaneous internal electric fields. Nonlinear conductivity can probe composite fermions’ charge
excitations in compressible filling factors.
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Fractional quantum Hall (FQH) phases exhibit exotic
ground states and many-body collective modes. For exam-
ple, the magnetoroton (MR) mode in Laughlin states was
predicted by Girvin, MacDonald, and Platzman (GMP) [1]
to have a minimal gap Δ0 at wave vector k0 (see Fig. 1).
This mode was seen by Raman scattering [2], resistivity
activation gap with phonon pulses [3], and microwave
absorption with surface acoustic waves [4].
Some of these probes are based on the powerful relation

between conductivity σxxðωÞ and charge excitations in
weakly disordered quantum Hall gases [5–7]:
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VðrÞ ¼ A−1=2P
kVkeik·r is the random disorder potential

taken from a Gaussian ensemble with fluctuation spectrum
hV�

kVk0 i ¼ Γ2
kδkk0 , χ

00
0ðk;ΩÞ is the charge susceptibility of

the “clean” (V ¼ 0), but fully interacting, system, at
wave vector k and frequency Ω. B, c, n, and A are the
perpendicular magnetic field (B ¼ Bẑ), speed of light,
electron density, and system area, respectively.
In this Letter we extend Eq. (1) to the nonlinear current

versus field response. We propose new and independent
experiments to probe the collective charge excitations,
which would complement information given by the linear
response probes. Our derivation incorporates strong electric
fields into the current response function. To go beyond the
linear Kubo formula, we use a Floquet boost transformation
[8,9]. Our results retain the full many-body correlations in
χ000 , which make them suitable for the strongly correlated
FQH phases.
We propose to measure the dc photoconductivity

σphotoxx ðΩÞ in the presence of an ac radiation field at
frequency Ω. Within GMP theory, at frequency Ω > Δ0,
σphotoxx should become singularly large and negative. As a
consequence, the system will be unstable toward a “zero
resistance state” (ZRS) [10], where internal electric field

domains are spontaneously created [11]. ZRS phases, and
spontaneous internal fields, were previously observed at
weak magnetic fields (high Landau levels) [12–14]. The
photoconductivity has been calculated by various methods
[9,15–17]. At high Landau levels, the dark conductivity is
metallic, and negative photocurrent can be induced by
strong microwave power, which is positively detuned from
the cyclotron frequency ωc. In contrast, we show that the
ZRS in the lowest Landau level (LLL) arises from different
phenomena. It involves intra-Landau Level excitations of
the MR mode which is expected at Ω ≪ ωc. In addition,
negative photoconductivity appears already at leading order
in radiation power, since the dark conductivity is zero.
For the compressible phases, such as around ν ¼ 1

2
, the dark

nonlinear current jdcx ½Ex� is expressed in terms of χ000 . Thus,
predictions of composite fermion theory for χ000ðk;ωÞ could be
tested by transportmeasurements.We conclude bydiscussing
experimentally relevant frequency and field scales, and the
regime of validity of the weak disorder expansion.

FIG. 1. Magnetoroton collective excitation in an incompress-
ible Laughlin phase following GMP [1]. Radiation above thresh-
old frequency Ω > Δ0, combined with scattering by disorder
yields σxx > 0, by Eq. (1).
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Quantum Hall Hamiltonian.—Two-dimensional elec-
trons in a uniform magnetic field, and a time-dependent
vector potential aðtÞ, are described by the Hamiltonian
H ¼ H0 þ V, where

H0½a� ¼
1

2m

XN
i¼1

�
πi −

q
c
aðtÞ

�
2

þ
X
i<j

Φðri − rjÞ ð2Þ

and V ¼ A−1=2P
kVkρk. N is the number of particles of

charge q, and Φ are the two-body interactions. The density
operator is ρk ¼

P
N
i¼1 e

−ik·ri , and the cyclotron momentum
for particle i is πi ¼ pi − ðqB=2cÞẑ × ri, obeying ½παi ; πβj � ¼
isgnðqÞℏ2l−2ϵαβδij, where l ¼ ðℏc=jqjBÞ1=2 is the Landau
length. For electrons, q ¼ −e. The current density at
time t is

jðtÞ ¼ q
mA

XN
i¼1

hU†ðtÞπiUðtÞi − nq2

mc
aðtÞ; ð3Þ

where n ¼ N=A, and h� � �i denotes thermal and disorder
averaging at t ¼ 0. UðtÞ is the time evolution operator.
The calculation of the nonlinear photocurrent generalizes

the single electron approach of Auerbach and Pai [9], while
using the underlying Galilean symmetry ofH0. We proceed
in two steps.
(i) Floquet boost.—We decompose UðtÞ according to

UðtÞ ¼ WðtÞT exp

�
−
i
ℏ

Z
t

0

dt0 ~Hðt0Þ
�
; ð4Þ

whereWðtÞ≡Q
ie

−igðtÞ·πi=ℏ is the unitary Floquet boost. To
cancel aðtÞ from H0½a�, gðtÞ must satisfy

_gþ ωcẑ × gðtÞ ¼ −
ωc

B
aðtÞ; ð5Þ

where ωc ¼ eB=mc and gð0Þ ¼ 0. gðtÞ can be readily
solved for any aðtÞ.

~H ¼ W†HW − iℏW† _W is the Hamiltonian in the
boosted frame, given by ~H ¼ ~H0 þ ~V þ fðtÞ, with

~H0 ¼
X
i

π2
i

2m
þ
X
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~V ¼ A−1=2
X
k

Vkρkeik·gðtÞ; ð6Þ

and fðtÞ is an irrelevant c number.
(ii) Expansion in the disorder potential.—The evolution

operator is UðtÞ¼U0T exp½−ði=ℏÞR t
0dt

0Vðt0Þ�, where U0¼
WðtÞe−i ~H0t=ℏ is the clean evolution operator, and VðtÞ ¼
A−1=2P

kVkρkðtÞeik·gðtÞ, where ρkðtÞ≡ ei ~H0t=ℏρke−i
~H0t=ℏ.

The evolution of the global Landau operator Π† ¼P
iðπx

i − iπy
i Þ for the disorder-free Hamiltonian is given

by Kohn’s theorem:

U†
0ðtÞΠ†U0ðtÞ ¼ expðiωctÞΠ† −

iNℏ2

l2
g�ðtÞ; ð7Þ

where gðtÞ ¼ gxðtÞ þ igyðtÞ. For the clean system, by
setting U → U0 in Eq. (3), it is easy to see from Eq. (7)
that for a dc field E, (i) the longitudinal current vanishes
at all times, and (ii) the Hall current is the Galilean result
j ¼ ðnqc=BÞẑ × E.
The longitudinal current (3) is expanded in powers of

the disorder ðVÞn. The leading order is for n ¼ 2, whose
Fourier transform is given by

jxðωÞ ¼
qn
mℏ

1
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The electric field factors are given by

Rk½EðtÞ;ωÞ�≡
Z

∞

−∞
dt0eik·g½Eðt0Þ�eiωt0 : ð9Þ

χ000 is the dynamical charge susceptibility of the clean
system,

χ000ðk;ωÞ ¼
1

NZ0

Re
Z

∞

0

dteiωtTrfe− ~H0=T ½ρ−kðtÞ; ρkð0Þ�g;

ð10Þ

where Z0 ¼ Tre− ~H0=T , and T is the temperature.
Equation (8) applies (to second order in V) for an arbitrary
time-dependent electric field.
dc photocurrent.—We consider an electric field with

two components: a dc field Exx̂, and a circularly
polarized ac field E of frequency Ω, such that aðtÞ ¼
−cE½sinðΩtÞx̂ − cosðΩtÞŷ� − cExtx̂. Solving Eq. (5) yields

gðtÞ ¼ cEx

ℏBωc
ðx̂−ωctŷÞ−

cE
Bðωc−ΩÞ ½cosðΩtÞx̂þ sinðΩtÞŷ�

ð11Þ

and

RkðωÞ ¼
X∞
l¼−∞

eiϕkJlðkλEÞδ
�
ωþ lΩ −

cky
B

Ex

�
; ð12Þ

where k ¼ jkj, JlðxÞ is a Bessel function of order l, and
λE ¼ cE=BΩ measures the radiation field strength. ϕk is an
irrelevant phase.
The nonlinear dc photocurrent as a function of electric

fields is
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jdcx ðΩ; E; ExÞ ¼
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In the following, we apply Eq. (13) to the incompressible
and compressible FQH phases.
Incompressible Laughlin states.—At zero temperature,

filling fractions nhc=jeBj ¼ νm ¼ 1=m, for odd m, are
incompressible. In the strong magnetic field limitωc ≫ Δ0,
and at frequencies ω ≪ ωc, the charge susceptibility can be
computed within the LLL, i.e., using projected density
operators ρ → ρ̄k ¼ PρkP, where P is the LLL projector.
The projected structure factor sðkÞ ¼ N−1hρ̄kρ̄−ki, was
computed by GMP [1] using a Monte Carlo simulation
of the classical two-dimensional one component plasma.
At low k, sðkÞ ∼ k4. GMP also computed the oscillator
strength fðkÞ ¼ 1

2
N−1h½ρ̄k; ½H̄; ρ̄−k��i for the Laughlin state

with the LLL-projected Coulomb Hamiltonian. The single
mode approximation (SMA) assumes that the spectral
weight is exhausted by a single collective mode, i.e.,

χ000ðk;ωÞ≃ πe−k
2l2=2sðkÞδ(ω − ΔðkÞ); ð14Þ

where ΔðkÞ ¼ fðkÞ=sðkÞ is the magnetoroton dispersion.
GMP’s calculation is conveniently parametrized by a
Taylor expansion about k0

ΔðkÞ ¼ Δ0½1þ a2ðδklÞ2 þ a3ðδklÞ3 þ � � ��; ð15Þ
where δk ¼ k − k0, and a2 > 0.
Using Eq. (14), the photocurrent (at radiation powers

λE=l ≪ 1) is

jdcx ðΩ; ExÞ≃ ncjλE j2
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B
ck sin θ

�
:

ð16Þ
The detuning frequency is defined as δΩ ¼ Ω − Δ0. The dc
electric field defines the electric frequency scale

fx ¼ ck0Ex=B: ð17Þ
In the regime fx, jδΩj ≪ Δ0, the dc photoconductivity is

σphotoxx ≡ djdcx ðΩÞ
dEx

����
Ex¼0

ð18Þ

≃ jλEj2
�
nc2

ℏB2

�Z
∞

0

dkΓ2
kk

5sðkÞ d
dΩ

δ½ðΩ − ΔðkÞ�

≃ −jλE j2
�
nc2Γ2

k0
k50sðk0Þ

4ℏlB2
ffiffiffiffiffiffiffiffiffiffi
a2Δ0

p
�
jδΩj−3=2ΘðδΩÞ; ð19Þ

The dependence of σphotoxx on radiation frequency is
depicted in Fig. 2.
At finite driving field Ex > 0, the photocurrent is

jdcx ¼ j0h

�
δΩ
jfxj

�
sgnðfxÞ; ð20Þ

where the current scale is

j0 ≡
2jλE j2nlk40sðk0ÞΓ2

k0ffiffiffiffiffiffiffiffiffiffi
a2Δ2

p jδΩj−1
2; ð21Þ

and hðuÞ is the universal function,

hðuÞ ¼ juj1=2
Z

uþ1

ðu−1Þþ

dsffiffiffi
s

p s − uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðu − sÞ2

p ; ð22Þ

where ðu − 1Þþ ¼ maxð0; u − 1Þ. Photocurrent versus
electric field at fixed detuning frequency is depicted in
Fig. 3, for both positive and negative detuning frequencies.
ZRS spontaneous field.—Negative uniform conductivity

signals a thermodynamic instability toward formation of a
ZRS state [10] with spontaneous internal electric fields. For
a homogeneous quantum Hall phase these fields are fixed
by the minima of the Lyapunov functional condition [11]
jdcx ðΩ;E�Þ ¼ 0. Near the detuning threshold, we see in
Fig. 3 that the current vanishes f�x ¼ 1.6δΩ, which by
Eq. (17) yields the magnitude of the spontaneous electric
fields as,

E�
x½Volt=cm� ¼ 1.6 × δΩ

B
ck0

ΘðδΩÞ: ð23Þ

Notice that the spontaneous field is an independent
measure of the MR wave vector k0.—For inhomogeneous
systems with spatially varying Hall conductivity [18], there
is no Lyapunov functional. As a result, spontaneously
generated electric fields can fluctuate in time [19], which
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FIG. 2. Photoconductivity in an incompressible Laughlin
phase, given by Eq. (19). Δ0 is the MR gap depicted in Fig. 1.
Ω is the radiation frequency. At Ω > Δ0, large negative conduc-
tivity is predicted.
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may be the source of the experimentally observed telegraph
noise [14].
Compressible FQH phases.—At ν≃ 1

2
, the electronic

states have been described by composite Fermions (CF)
[20–23], which see an effective weak magnetic field. Their
effective “Fermi energy scale” ϵ�F is determined by intra-
LLL Coulomb interactions. Read [24] computed the long
wavelength dynamical charge susceptibility to go as

χ00CFðk;ωÞ ∼ e−k
2l2=2 ℏ2ω

ðϵ�FÞ2ðklÞ3
: ð24Þ

Near ν ¼ 1
2
, Park [25] has proposed to search for ZRS by

photoconductivity above the CF effective Landau level
spacing. Since the dark system is metallic, negative
conductivity could be achieved at high radiation power
if CF Landau levels are sharp modes at finite wave vectors.
Since the excitations are gapless, we can use the non-

linear current as a probe to the low energy excitations. In
the “dark” DC case, i.e., EðtÞ ¼ Exx̂, Eq. (5) yields
gdcðtÞ ¼ ðcEx=BωcÞðx̂ − ωctŷÞ. Thus,

Rdc
k ðωÞ ¼ 2π exp

�
ickxEx

Bωc

�
δ

�
ω −

cky
B

Ex

�
; ð25Þ

and Eqs. (8) and (25) yield the dark nonlinear longitudinal
current,

jdcx ¼ nc
ℏB

1

A

X
k

Γ2
kkyχ

00
0

�
k;
cky
B

Ex

�
: ð26Þ

The low field limit yields the linear conductivity

σxxð0Þ ¼
d

dEx
jdcx ¼ nc2

ℏB2
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kk
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y
d
dω

χ000ðk; 0Þ; ð27Þ

which coincides with the dc limit of Eq. (1).

The characteristic wave vectors that dominate Γk in the
LLL are of the order of l−1. The dark dc conductivity at the
compressible filling fraction ν is of the scale

σxxð0Þ ∼
νq2

h
Γ2

ðϵ�FÞ2
½1þOðΓ=ϵFÞ�: ð28Þ

Away from ν ¼ 1
2
the composite fermion theory predicts

resonances in χ000ðωÞ corresponding to the spectrum of “CF
Landau levels.” Such resonances should appear as oscil-
lations in the current by Eq. (26).
Experiments.—Photoconductivity measurements in

FQH samples were carried out some time ago [26,27].
Oscillatory magnetoresistance was reported without com-
parison to theoretical calculations. The published data did
not show indications of ZRS effects in the Laughlin phases.
However, the frequency scale may have been below the
magnetoroton threshold: For filling fraction ν ¼ 1=3 at
carrier density n ¼ 7.6 × 1010 cm−2, the magnetic field is
B ¼ 9.5 T, and ℏωc ∼ 100 K. The resistivity activation gap
[26], which is expected to be similar to Δ0, was about
210 GHz, which was higher than the microwave frequen-
cies used in these experiments. Recent advances in tera-
hertz spectroscopy may open the door to photoconductivity
measurements in the FQH regime. It would be instructive to
compare, e.g., the magnetoroton gap by photoconductivity
to the activation gap of resistivity.
For the compressible phases, we propose to measure

Eq. (26). The electric field Ēx that corresponds to a charge
excitation frequency ω̄charge is

Ēx ¼ Blω̄charge=c

¼ 0.26ω̄charge½GHz�ðB½T�Þ32½Volt=cm�; ð29Þ

where we have used l ¼ 26 nm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B½Tesla�p

.
Validity of weak disorder expansion.—Equations (8),

(13), and (26) are the second order expansion of the current
in the disorder potential V. Note that these expressions have
finite LLL limits for ωc → ∞, keeping ν < ∞ [28]. The
weak disorder expansion of the longitudinal current is valid
under the following conditions:
(1) σxx ¼ 0 in the clean limit. Note that this condition

fails for an ordinary clean metal at zero field.
(2) Landau level broadening. In the absence of inter-

actions the Landau levels are infinitely degenerate. The
degeneracy is lifted by Coulomb interactions that introduce
the intra-Landau level charge excitation scales ω̄ ¼ Δ0,
ϵ�F=ℏ we have seen above. These energy scales control the
higher-order corrections by powers of Γ=ℏω̄ ≪ 1.
(3) Density matrix is at equilibrium. It is expected that

strong time dependent electric fields modify the density
matrix at long times, and produce strong effects on the dc
photocurrent [17]. Our analysis above did not take non-
equilibrium effects on the density matrix into account,
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FIG. 3. Nonlinear photocurrent for an incompressible Laughlin
phase, given by Eq. (20). fx is the electric frequency defined in
Eq. (17). For positive detuning δΩ > 0, (blue curve), the negative
photocurrent is unstable in the shaded region toward a ZRS state
with spontaneous electric field E�

x given by Eq. (23).
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which is justified in cases of rapid thermalization. In other
words, we assume short nonradiative relaxation time by
phonons τinel ≪ τtr, where at zero magnetic field the
transport time τtr ¼ σxxm=e2n is long in the weak disorder
limit.
(4) By applying the derivation of Eq. (26) to the

transverse current jyðExÞ, the Hall conductivity σdcxy ¼
nqc=B gains no corrections at any finite order in V.
Thus, plateaus of σxy ¼ νe2=h in the incompressible phases
are necessarily nonperturbative effects in V such as
nucleation of localized quasiparticles or motion of domain
edges in the long range potential landscape.
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