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An exact formula for the temperature dependent Hall number of metals is derived. It is valid for
nonrelativistic fermions or bosons, with an arbitrary potential and interaction. This dc transport coefficient
is proven to (remarkably) depend solely on equilibrium susceptibilities, which are more amenable to
numerical algorithms than the conductivity. An application to strongly correlated phases is demonstrated by
calculating the Hall sign in the vicinity of Mott phases of lattice bosons.

DOI: 10.1103/PhysRevLett.121.066601

The zero field Hall number or “carrier density” of a metal
is defined by

nH ≡ −
�
dρH
dB

����
B¼0

e�c
�

−1
; ð1Þ

where ρH, B, e�, and c are the (magnetic field antisym-
metric) Hall resistivity, magnetic field, quasiparticle charge
and speed of light, respectively. This definition is rooted in
the Drude-Boltzmann [1] theory for weakly interacting
conduction electrons (holes) of density n and charge e� ¼ e
(−e). While conductivities σxx, σH depend on the quasi-
particles’ effective mass and scattering time, for isotropic
Fermi liquids, these properties cancel out in ðdρH=dBÞ ¼
−σ−2xx ðdσH=dBÞ ¼ −1=ðne�cÞ.
The experimental Hall number, however, has defied a

carrier density interpretation in strongly correlated metals.
In the normal phase of cuprates [2,3] and in disordered
superconducting films [4,5] nH exhibits anomalous temper-
ature dependences and sign changes, which have posed a
challenge to the theory [6]. When the quasiparticles’
scattering rate is too high, the Boltzmann transport theory
has questionable validity.
For gapped phases and finite lattices σxx ¼ 0, and ρH ¼

−σ−1H can be calculated by Chern numbers on the torus
[7–10]; however, computing both σxx, σH in the resistive
phases (σxx > 0) of strongly correlated systems is notori-
ously difficult: Diagrammatic expansions of the Kubo
formulas require infinite resummations [11]. Exact diago-
nalization suffers from small lattice sizes [12,13], quantum
Monte Carlo simulations [14] from ill-posed analytical
continuation [15,16], and continued fraction calculations
[8,17,18] require extrapolation schemes. Approximations
for dρH=dB include high frequency [19], retraceable paths
[20], Drude weight derivatives [21], and dynamical mean
field theory [22]. However an exact (generally valid),
computable expression is in dire need.
In this Letter, I derive a summation formula, given by

Eq. (26), for the temperature dependent Hall number of

nonrelativistic fermions or bosons, in an arbitrary potential
and two-body interaction strength. Remarkably, the for-
mula expresses a dc transport coefficient solely in terms of
equilibrium susceptibilities. Such a property of the Hall
number was previously suggested, but not proven, except in
the high frequency limit [19]. Susceptibilities are much
more amenable to numerical computation than the con-
ductivity, which miraculously drops out of the Hall number
formula given below. Properties of the magnetic Liouvillian
in Bogoliubov hyperspace are essential in the derivation.
The leading term in the sum recovers Drude-Boltzmann’s
result at weak disorder. For strong lattice potentials and
interactions, projected Hamiltonians may be used to com-
pute the susceptibilities. As an example, I evaluate the Hall
signs for strongly interacting lattice bosons. The results
extend previous Chern number calculations [8,9] to finite
temperatures. Future applications are discussed.
Hamiltonian and Kubo formulas.—We consider N

interacting particles in volume V in an arbitrary bounded
potential Φ,

H ¼
XN
i¼1

ðpi − e�
c AðxiÞÞ2
2m

þΦðxiÞ þ
1

2

X
i≠j

Uðjxi − xjjÞ:

ð2Þ
AðxÞ ¼ ðB=2Þðẑ × xÞ. The zero wave vector current oper-
ators are jα ¼ ðe�=mÞPi½pα

i − ðe�=cÞAαðxiÞ�, α ¼ x; y.
The Bogoliubov hyperspace of operators is defined by

inner products [23–25]. For any two operators (hyperstates)
A, B,

ðAjBÞ ¼ 1

Z

X
n≠m

e−βEn − e−βEm

Em − En
A�
mnBmn ð3Þ

where En is the spectrum of H and Z is the partition
function. ðAjBÞ is a thermodynamic susceptibility. In this
hyperspace, the Liouvillian L≡ ½H; •� is a Hermitian
hyperoperator and • is any operator. The Liouvillian
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resolvent ½ð1=L − i0þÞ�≡ ½ð1=LÞ�0 þ i½ð1=LÞ�00 separates
into the Hermitian and anti-Hermitian parts. (The latter’s
eigenvalues are energy conserving delta functions.) The dc
conductivities [26] are written in hyperspace notation as
(for the derivation, see the Supplemental Material [27])

σxx ¼
ℏ
V
Re

�
jx
����
�
1

L

�00����jx
�
;

σH ¼ ℏ
V
Im

�
jx
����
�
1

L

�0����jy
�
: ð4Þ

Defining ρ ¼ e−βH=Z the operators can be reorganized
as [28]

σH ¼ −
ℏ
V
ImTr

�
ρ

��
1

L

�0
jx;

�
1

L

�0
jy
��

: ð5Þ

Differentiating the density operator yields

dρ
dB

¼ −
�
ρ;

�
1

L

�0
M

�
− βhMi; ð6Þ

and differentiating the resolvent yields

d
dB

�
1

L

�0
¼

�
1

L

�0
M

�
1

L

�0
−
�
1

L

�00
M

�
1

L

�00
; ð7Þ

where

M≡ −
dH
dB

; M≡ ½M; •�; ð8Þ

are the magnetization operator and the magnetization
hyperoperator, respectively.
The field derivative of the Hall conductivity at B ¼ 0

[29] is given by a sum of five terms:

dσH
dB

����
B¼0

¼ Ξosc þ Ξcomm þ Ξj þ ΞM
0 þ ΞM

00: ð9Þ

I shall now show that the sum over the first four terms in
Eq. (9) vanishes identically.
The first term, using Eq. (6), is

Ξosc ¼
ℏβ
V

ImTr

�
ρMdiag

��
1

L

�0
jx;

�
1

L

�0
jy
��

− βhMdiagiσH ¼ 0; ð10Þ

where Mdiag is the energy-diagonal part of M, which
vanishes at the zero field.
The other terms, using Eqs. (6) and (7), are

Ξcomm ¼ ℏ
V
Im

�
Mj

��
1

L

�0
jx;

�
1

L

�0
jy
��

; ð11Þ

Ξj ¼
ℏ
V
Im

��
djx

dB

����
�
1

L

�0����jy
�
þ
�
jx
����
�
1

L

�0���� dj
y

dB

��
; ð12Þ

ΞM
0 ¼ ℏ

V
Im

�
jx
����
�
1

L

�0
M

�
1

L

�0����jy
�
− ðjx ↔ jyÞ; ð13Þ

ΞM
00 ¼−

ℏ
V
Im

�
jx
����
�
1

L

�00
M

�
1

L

�00����jy
�
þðjx↔ jyÞ: ð14Þ

The following identities hold for HðB ¼ 0Þ:
�
1

L

�0
j ¼ ie�

ℏ
d;

½M;d� ¼ −i
ℏe�

2mc
ẑ × d

dj
dB

¼ −
ðe�Þ2
2mc

ẑ × d; ð15Þ

where d ¼ P
ixi is the total polarization operator.

Ξcomm ¼ 0 since the two polarizations commute [30],

��
1

L

�0
jx;

�
1

L

�0
jy
�
¼ −

�
e�

ℏ

�
2

½dx;dy� ¼ 0: ð16Þ

It also follows from Eq. (15), that the next two terms
cancel each other:

Ξj ¼
ðe�Þ3
2mcV

Re½ðdxjdxÞ þ ðdyjdyÞ�

ΞM
0 ¼ ðe�Þ2

ℏV
Imðdxj½M; dy�Þ − ðx ↔ yÞ ¼ −Ξj: ð17Þ

Thus in Eq. (9), we are left with just ΞM
00 i.e.,

dσH
dB

����
B¼0

¼ −
ℏ
V
Im

�
jx
����
�
1

L

�00
M

�
1

L

�00����jy
�
þ ðjx ↔ jyÞ:

ð18Þ

Krylov states and recurrents.—We set B ¼ 0. H is
assumed to have x ↔ y symmetry, for simplicity. Two
orthonormal Krylov bases jn; αi, α ¼ x, y are constructed

j0; αi≡ jjαÞ
ðjαjjαÞ12 ; j1; αi ¼ LjjαÞ

ðjαjL2jjαÞ12
jn; αÞ≡ ð1 − Pn−2;αÞLð1 − Pn−3;αÞ � � �Lj0; αi n ≥ 2;

jn; αi ¼ 1

Nn
jn; αÞ; ð19Þ

where j•Þ (j•i) denote unnormalized (normalized) hyper-
states, and Nn are the normalizations of jn; αÞ. Pnα ¼
jn; αihn; αj are projectors.
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In Krylov space, the Liouvillian acts as a hopping
Hamiltonian on two semi-infinite chains, as shown in
Fig. 1,

hn; αjLjn0; αi≡ Ln;n0 ¼ δn0;nþ1Δn þ δn0;n−1Δn−1 ð20Þ

Δn ¼ hnþ 1; αjLjn; αi are the recurrents [17]. The
conductivity moments μ2k ¼ ℏ−2kV−1ðLkjxjLkjxÞ are
computable as thermodynamic susceptibilities. Δn is
obtained directly from μ2k by the recursive relations [27]
μ2k ¼ ℏ−2kτxxðL2k½Δ�Þ0;0, which depend only on Δn; n ¼
1; 2;…; k.
The spectral matrix G00

0;0 ¼ Imði0þ − LÞ−10;0 yields the
continued fraction representation of σxx [8]

σxx ¼ −ℏτxxG00
0;0

¼ −ℏτxxIm
1

i0þ − jΔ1j2
i0þ− jΔ2 j2

i0þ−
jΔ3 j2
…

; ð21Þ

where

τxx ¼
1

V
ðjxjjxÞ ¼

Z
∞

−∞

dω
π

σxxðωÞ; ð22Þ

is the “f-sum rule.” While computation of low order
recurrents is commonly feasible, determination of σxx
requires extrapolation [17,18] of Δn to n → ∞, a procedure

which can suffer from some ambiguity. I will now show
that, fortunately, σxx drops out of the Hall number.
Summation formula for nH.—Inserting (partial) resolu-

tions of identity 1 ¼ P
nPn;α between the hyperoperators

in ΞM
00 of Eq. (14) leads to the following sums:

dσH
dB

����
B¼0

¼ −
ℏτxx
V

X
n;m

G00
0;nG

00
m;0M

00
n;m;

M00
n;m ≡ Imðhn; xjMjm; yi − hn; yjMjm; xiÞ: ð23Þ

All the odd terms G0;2jþ1 are purely real [27] and do not
contribute to ΞM

00, while the even terms are given by

G00
0;2j ¼ G00

0;0Rj ¼ −
σxx
ℏτxx

Rj;

R0 ¼ 1

Rj>0 ≡
Yj
i¼1

�
−
Δ2i−1

Δ2i

�
: ð24Þ

Assuming a metal with time reversal symmetry, σxx > 0,
and dσxx=dBjB¼0 ¼ 0, one can write

dρH
dB

����
B¼0

¼ −σ−2xx
dσH
dB

����
B¼0

ð25Þ

Hence, by Eqs. (1), (23), and (24), the prefactor of σ−2xx is
eliminated and we arrive at

1

nH
¼ 1

nð0ÞH

þ e�c
ℏτxx

X∞
j;k¼1

RjRkM00
2j;2k;

1

nð0ÞH

¼ e�c
Vℏτ2xx

Im½ðjxjMjjyÞ − ðjyjMjjxÞ�: ð26Þ

Discussion.—Equation (26) is the key result of this
paper. Since for a noncritical metal jdρxy=dBj < ∞, this is
a conditionally convergent sum. When truncated, a finite
subset of recurrents Δn and magnetization matrix elements
M00

n;m need to be computed. The truncation error may
be estimated by various perturbative methods, depending
on the Hamiltonian, or numerically. Remarkably, all
coefficients depend solely on static thermodynamic sus-
ceptibilities as defined by Eq. (3). Hence they are amenable
to well controlled algorithms. A partial list is as follows.
(i) Quantum Monte Carlo simulations [14,31] (for sign
free models), which compute imaginary time correlators
ðAjBÞ ¼ R β

0 dτhA†ðτÞBi. (ii) High temperature series
expansion [32]. (iii) Variational methods, including the
density matrix renormalization group [33], which can
compute ðAjBÞ ¼ −ð∂2F=∂hA∂hBÞ, where F is a varia-
tional free energy which includes the source terms
−hAA† − hBB. (iv) Equation (3) may be computed by
exact diagonalization on finite clusters, whose linear length
exceeds the correlation length.

FIG. 1. The orthonormal Krylov bases, Eq. (19), constructed
(for B ¼ 0) from jx and jy by repeated application of the
Liouvillian L. Δn are the recurrents of σxx. M00

n;m are the
magnetization matrix elements defined in Eq. (23).
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Formula (26) will now be demonstrated for weak and
strong interaction models.
Weak disorder and interactions.—The f-sum rule

(gauge invariance) yields τxx ¼ ðnðe�Þ2=mÞ. Thus, using
Eq. (15) in Eq. (26), Drude’s result is obtained at the zeroth

order: nð0ÞH ¼ n. Higher order terms in Eq. (26) are sup-
pressed by a common factor

�
Δ1

Δ2

�
2

∝
P

qq
2
xjΦqj2κq
ϵF

≪ 1; ð27Þ

where κq is the wave vector dependent isothermal com-
pressibility and ϵF is the Fermi energy. Thus, the sum in
Eq. (26) produces systematic corrections to the Drude
theory due to potential fluctuations and interactions.
Strong interactions.—In the presence of a large Mott-

Hubbard gap, induced by strong interactions, and at low
temperatures, one can replace the operators H, M, and j in
Eq. (18), and thus in Eq. (26), by the renormalized effective
Hamiltonian and its derivatives [34]. The Krylov states,
recurrents and magnetization matrix elements are modified
accordingly. Formula (26) can then be computed for the
effective Hamiltonians, such as the Hubbard, t-J [35], and
Kondo lattice models [36]. These are relevant to strongly
correlated metals, including the normal phase of unconven-
tional superconductors and heavy fermion phases. The Hall
number of these modes will be investigated elsewhere [37].
Here we study the Bose Hubbard model (BHM),

HBHM ¼ −t
X
hiji

e−ie
�Aija†i aj þ H:c:þU

2

X
i

n2i − μni;

ð28Þ

where a†i creates a lattice boson on site i, with occupations
ni ¼ 0; 1;…. The BHM is relevant to superconducting
Josephson junction arrays and to cold atoms in optical
lattices. At large U=t, there are gapped Mott insulator
phases at integer fillings hnii ¼ integer. Huber and Lindner
[9] have computed the ground state Chern number on finite
tori. Here we obtain the finite temperature Hall number sign
for the thermodynamic metal and compare it to the Chern
calculations as shown in Fig. 2.
(1) Near the superfluid to Mott insulator critical points

at integer fillings n0, we replace HBHM by quantum
rotators (QR). Defining the charge deviation from the
Mott insulator density by ρðxÞ,

HQR ¼
Z

ddx
1

2χc
ρðxÞ2

þ 1

2
ρs

�
∇φðxÞ þ e�

c
A

�
2

½1þ γρðxÞ2� þΦðxÞρðxÞ;

ð29Þ

where χc is the local compressibility, and ρs is the local
superfluid stiffness. γ > 0 since the superfluid order
parameter increases away from the Mott phases. The
canonical density-phase commutations are [38]

½ρðxÞ;φðx0Þ� ¼ −iδðx − x0Þ: ð30Þ

The QR currents and magnetization densities are

jðxÞ ¼ −e�ρs∇φð1þ γρ2Þ;

mðxÞ ¼ e�

2c
½xjyðxÞ − yjxðxÞ�: ð31Þ

Thus, we can evaluate the sign of the leading term as

1

nð0ÞH

∝
γ

e�ρsc
ρþOðρ2Þ: ð32Þ

Since γ > 0, the Hall number near the Mott critical
point changes sign in the same direction as determined
at zero temperature using Chern numbers, as shown in
Fig. 2. Higher order terms in Eq. (26) are suppressed in
disorder free systems.
(2) Near half odd integer fillings, between Mott

phases, we can use the effective hard core bosons
(HCB) model [8],

HHCB ¼ −t
X
hiji

e−ie
�AijSþi S

−
j þ H:c:; ð33Þ

where S are the effective spin half operators. Sþi creates a
HCB at site i, and Szi ¼ ni − 1

2
measures its occupation

relative to half filling.

FIG. 2. Hall signs in the strong interactions regime of the
Bose Hubbard model Eq. (28). Mott insulators are the thick
black lines, ending at critical points (black circles). The solid
blue lines mark the Hall sign changes at zero temperature,
computed by Huber and Lindner [9]. At high temperatures, we
find the same sign changes using quantum rotators, and HCB
in Eqs. (32) and (36).
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The HCB currents and magnetization are

jα ¼ −ie�t
X
i

ðe−ie�AiiþαSþi S
−
iþα − H:c:Þ;

M ¼ e�

2

X
i

xij
y
iþy − yijxi;iþx: ð34Þ

Expanding Eq. (3) at high temperature yields

ðAjBÞ ¼ βTrρ∞A†B −
β2

2
Trρ∞fH;A†gBþOðβ3Þ: ð35Þ

The infinite temperature density matrix ρ∞ projects
onto a fixed particle number

P
iS

z
i ¼ ðn − 1

2
ÞV. τxx ¼

βTrρ∞j2i;iþx. The traces in the magnetization matrix
elements M2j;2k

00 vanish unless the operators encircle a
magnetic flux. Therefore, for a triangular lattice at high
temperatures,M0;0

00 ∝ −βðn − 1
2
Þ, while for a square lattice,

M00
0;0 ∝ −β2ðn − 1

2
Þ. Thus, we obtain

1

nð0ÞH

∝
�−Tðn − 1

2
Þ triangular

−ðn − 1
2
Þ square

ð36Þ

High order terms includeM2j;2k
00, which decay rapidly with

j, k due to diminishing overlaps between Krylov states.
Thus the Hall sign of HCB, in Eq. (36), is depicted in
Fig. 2. We note that the lattice effect resembles the behavior
at infinite frequency [39].
Summary.—Equation (26) provides an exact computable

formula for the Hall number of metals where∞ > σxx > 0.
It should prove useful for numerical studies of disordered
and strongly correlated, nonrelativistic fermions and
bosons. The formula does not require well defined quasi-
particles, as needed for Boltzmann’s equation. It also
circumvents numerical difficulties associated with real-time
response functions, such as the Kubo formulas for con-
ductivities. We look forward to its application in exper-
imentally relevant models of strongly correlated electron
systems.
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