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Analysis of Hartmann–Shack wavefront sensors for the eye is traditionally performed by locating and
centroiding the sensor spots. These centroids provide the gradient, which is integrated to yield the ocular
aberration. Fourier methods can replace the centroid stage, and Fourier integration can replace the direct
integration. The two—demodulation and integration—can be combined to directly retrieve the wavefront,
all in the Fourier domain. Now we applied this full Fourier analysis to circular apertures and real images.
We performed a comparison between it and previous methods of convolution, interpolation, and Fourier
demodulation. We also compared it with a centroid method, which yields the Zernike coefficients of the
wavefront. The best performance was achieved for ocular pupils with a small boundary slope or far from the
boundary and acceptable results for images missing part of the pupil. The other Fourier analysis methods
had much higher tolerance to noncentrosymmetric apertures. © 2007 Optical Society of America

OCIS codes: 010.7350, 120.2650, 120.3890, 120.5050, 170.4460.

1. Background

Measurements of optical wavefronts are now becom-
ing popular, spreading from optical manufacturing to
astronomy, and more and more for ophthalmology. A
common wavefront sensor is the Hartmann–Shack
device, where the wavefront is sampled by a lenslet
array, providing an array of focal spots on a camera.
From such an image, it is possible to obtain the wave-
front’s slopes, by calculating the spot movement. The
next stage is integration of the final wavefront from
these slopes. Both steps are calculation processes that
have been widely described either in the image1,2 or
in the Fourier domain.3–6 For Fourier analysis, it is
better if the lenslets are along a Cartesian grid, and
the number of lenslets and the number of detector
pixels are both maximized. Fourier methods also al-
low very long focal lengths of the lenslets, improving
the sensitivity, because adherence of the spots to the
lenslet locations is no longer required. The only con-
dition, similar to centroiding, is that the wavefront
and its derivatives are well behaved, and beams do

not cross each other before the detector (the adiabatic
condition).

To recap and understand the mathematical basis of
wavefront reconstruction methods, we write the in-
tensity of the spots in the Hartmann–Shack detector,
in a flat wavefront case, as a regular grid,3–6

I0�x, y� � �m,n am,n�cos 2�mx�P � cos 2�ny�P�, (1)

where P � 2��k is the lenslet pitch (in pixel units). To
develop the retrieval methods, the spots are assumed
circularly symmetric and equal, so not all the har-
monics are necessary. We also borrow the name
sidelobes for these harmonics, as in the similar su-
perheterodyne demodulation method. The first har-
monics in x and y provide us with enough information
to retrieve the wavefront, because they represent the
spots layout but not their internal structure. Hence,
in Eq. (1), it is possible to work with m � n � 1:

I0�x, y� � cos kx � cos ky. (2)

If the wavefront contains some aberrations, the spots
are shifted by a quantity directly related to the aber-
rations. These aberrations modify the periodicity of
the array:

I�x, y� � cos�kx � FWx�x, y�� � cos�ky � FWy�x, y��,
(3)

where Wx and Wy are the phase x and y derivatives
that we want to determine in order to retrieve the
final wavefront W�x, y� after the integration. F is the

C. Canovas is with the Departamento de Física, Laboratorio de
Optica, Universidad de Murcia, 30071 Murcia, Spain. E. N. Ribak
(eribak@physics.technion.ac.il) is with the Department of Physics,
Technion-Israel Institute of Technology, Haifa 32000, Israel.

Received 23 June 2006; revised 9 October 2006; accepted 23
October 2006; posted 26 October 2006 (Doc. ID 72244); published 1
April 2007.

0003-6935/07/100001-06$15.00/0
© 2007 Optical Society of America

1 April 2007 � Vol. 46, No. 10 � APPLIED OPTICS 1



focal length of the lenslets. In centroiding, Eq. (3) is
sampled at the lenslet locations only, whereas here
we assume that the slopes are continuous even be-
tween the measured spots.

It is rather easy to isolate these terms of Eq. (3) in
the Fourier transform of the spot pattern, as they are
contained in only four symmetric sidelobes [Fig. 1(b)].
The centers of the sidelobes are at distance k from the
Fourier origin (in the discrete representation), as
there are k lenslets across the pupil:

��I�x, y�	 � ��exp��iFWx�	��u � k, v� � ��exp�iFWx�	
� ��u � k, v� � ��exp��iFWy�	��u, v � k�
� ��exp�iFWy�	��u, v � k�, (4)

where u, v signifies the coordinates in the Fourier
domain, and ��a	 is the Fourier transform of a. The
different harmonics �m, n � 0, �1, �2, . . .� are well
separated in the Fourier domain when the number of
lenslets is large, and the first harmonics contain the

slopes. This is exactly the property that the Fourier
demodulation technique exploits in order to get the
phase derivatives. In this technique, the calculations
of the slope components are performed by a rigid
translation of the whole Fourier transform of the im-
age in order to place the first sidelobe, corresponding
to the lenslet frequency k, in the center. To remove all
other sidelobes, a low-pass filter multiplies the cen-
tered sidelobe, obtaining the filtered and centered
Fourier transform of the image

��I�x�x, y�	 � ��exp��iFWx�	��u, v� (5)

and similarly for the y direction. After isolation, the
x and y sidelobes are inverse transformed separately,
and their arguments provide the horizontal and ver-
tical slopes.3 As opposed to the centroiding method
where the slope is given only at the sites of the len-
slets, here the slope components are found (interpo-
lated) for each pixel in the original frame.

We chose to calculate the final wavefront in the
Fourier domain as well, by employing the fact that a
Fourier transform of a function is known if its deriv-
atives in x and y are known,7

��W�x, y�	 � ��iu��Wx�x, y�	
� iv��Wy�x, y�	���u2 � v2�. (6)

Then, to get the final wavefront, an inverse Fourier
transform is used. We actually employed a similar
least-squares solution,6,8 where u and v in Eq. (6) are
replaced everywhere by sin u and sin v. This accurate
method can be slow, because to process one image, it
is necessary to perform six Fourier transforms.

In some application, such as in adaptive optics,
speed is important. In an effort to provide faster so-
lutions, it was realized that the demodulation (but
not the integration) can be performed directly on the
Hartmann–Shack pattern in a manner similar to
Fourier analysis5 [Eqs. (1)–(5)]: The Fourier shift of
the x lobe to the center can be obtained by multiply-
ing the original pattern by an exponential phase
Icx�x, y� � I�x, y�exp��2i�x�P�, and similarly for y.
The low-pass filtering can be performed next by a
convolution of Icx with a kernel of the size of pitch P.
Alternatively, a low-pass filter can be performed by
smoothing the same array5 to interpolate the (com-
plex) values between the spots. In both methods, con-
volution and smoothing (or interpolation below), the
slope components are the arguments of the resulting
arrays. To retrieve the final wavefront, some type of
integration is needed, so Eq. (6) is also applicable,
requiring three Fourier transforms. Another type of
integration could be useful, such as modal approxi-
mation, say by Zernike polynomials. However, Eq. (6)
ensures Laplace’s property, whereas in modal calcu-
lation, only low-order terms are extracted from the
wavefront slopes, and from them the wavefront is
retrieved.9

Another method was developed in order to mini-
mize the calculation time, the fast Fourier demodu-

Fig. 1. (a) Simulated image and (b) its Fourier transform. The
distance of the first sidelobes from the Fourier origin is equal to the
number of spots across the pattern. Fourier modulation consists in
isolating each circled sidelobe, centering it, and transforming it
back to get the corresponding slope component. The resultant
wavefronts are from five processing methods (c) traditional cen-
troiding, (d) convolution, (e) smoothing, (f) Fourier demodulation,
and (g) fast Fourier demodulation. All the methods consisted of
first obtaining the wavefront slopes. In (c), Zernike polynomials
were fit to the slopes, in (d)–(f) integrating the slopes in the Fourier
domain, and in (g) all processing was achieved in the Fourier
domain. Note the different residual tilts.

2 APPLIED OPTICS � Vol. 46, No. 10 � 1 April 2007



lation.4 Here both demodulation and integration are
calculated in the Fourier domain, returning to the
image domain only to express the final results. In this
case, the adiabatic condition3,5 is not enough. The
amplitude is expected to be nearly constant and the
slopes to vary rather slowly,

exp�iFWx� � 1 � iFWx, (7)

so the Fourier transform of the wavefront after the
demodulation described before could be written as

��Icx�x, y�	 � ��exp�iFWx�	,

��u, v� � ��1 � iFWx	��u, v�. (8)

This allows extraction of the anti-Hermitian part of
the filtered and centered Fourier sidelobes, where all
the information about the transform of the slope com-
ponents is contained:

��iFWx�x, y�	 � ���exp�iFWx�	 � �*�exp�iFWx�	��2.
(9)

This information is exactly what is needed in the
integration of the slopes [Eq. (6)], so the whole cal-
culation is achieved without leaving the Fourier
domain. Thus, for every image, only two Fourier
transforms are needed, making the calculation much
faster. This method might also be called modal, as it
calculates the Fourier modes of the slope (albeit di-
rectly from the Hartmann–Shack pattern), then in-
tegrates these Fourier modes to yield the wavefront.
Compare this with the calculation of the Zernike
modes of the slope (as obtained by the centroids), and
from them, the Zernike description of the wavefront.

2. Methods

The main objective of the study is to perform a com-
parison between the methods in terms of speed and
accuracy, and conditions thereof. To make the com-
parison full, we also included a calculation based on
the centroid method, performed by a well-tested pro-
gram.9 As this program yields its results as Zernike
coefficients, we also expressed the retrieved wave-
fronts through the other methods as Zernike terms.

A MATLAB program was written with the theoret-
ical basis of all methods. Each image was processed
by the four methods to yield four final wavefronts as
well as the centroid result. This program was run for
images with circular apertures (ocular pupils), which
could not be accomplished before with the method of
fast Fourier demodulation. The main reason for writ-
ing the program was to see how this method (and
previous ones) handles real images and what the con-
ditions for good results are.

There are some important issues to stress that are
related to the processing. Theoretically, the method
to obtain the slopes in the Fourier domain is by ex-
traction of the anti-Hermitian part. To put this into

practice, it is important to take into account the fact
that an anti-Hermitian matrix has an antisymmetri-
cal real part and a symmetrical imaginary part. Then
it is possible to obtain a matrix with these properties
from the matrix, which holds the Fourier transform
of the image. Toward this end, a center of symmetry
needs to be well defined after shifting the sidelobe to
the Fourier origin. Using that center of symmetry,
another matrix is calculated where every point re-
lates, in its symmetric form, to the matrix center of
symmetry. The anti-Hermitian matrix retrieved from
the original one is the result of the subtraction of this
one and the new one generated by the center of sym-
metry:

��I��r�	 � ���I�R�r�	 � ��I�R��r�	 � i���I�t�r�	
� ��I�t��r�	���2, (10)

where ��I��r�	 is the filtered and centered Fourier
transform of the image with relation to the center of
symmetry, and subscripts I and R stand for real and
imaginary parts.

Two conditions have to be fulfilled in order to get
the anti-Hermitian part, both related to the require-
ment for a center of symmetry. The first one is that
the aperture is symmetrical within the frame to be
processed. Otherwise, it is not possible to define a
center of symmetry, and the slopes cannot be re-
trieved. The second condition is that the ocular pupil
must not be cut by the optics or by low eyelids, again
losing symmetry.

If these conditions are not fulfilled, the results from
the fast Fourier demodulation will only be qualita-
tively acceptable. Thus we had to find the pupil inside
the image, defining the diameter and location of a box
holding the centered image. First, the image is low-
pass filtered in the Fourier domain, leaving only the
central lobe but excluding the spot-related lobes (a
smoothing method in the image plane is just as good,
provided it obliterates the spot pattern). After that,
the edge of the resulting image is calculated. Finally,
a circle is fitted to this edge. This circle is defined as
the pupil, and from it, the containing box is readily
calculated (Fig. 2). With this subroutine, two objec-
tives are achieved: the unimportant information out-
side the pupil is discarded, and the remaining image
is centrosymmetric. Of course, all this is based on the
assumption that the pupil is indeed round.

A second issue is the subtraction of the reference.
As every system has some aberrations and system-
atic errors in it, a reference image is first taken
through the system from a model of a perfect eye,
processed and stored. To get the real ocular wave-
front, it is necessary to subtract from the processed
wavefront this reference wavefront. For fast Fourier
demodulation, the direct subtraction of the reference
wavefront can be performed in the Fourier domain
because of the linearity of Fourier transforms. How-
ever, it is also important to take into account the
average derivative phase generated by the shift of the
real from the reference image. This shift can arise
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from the fact that the two patterns, the reference and
the final one, had different centers: the grid of spots
is the same, but the pupil can appear in various lo-
cations as the eye moves, and cut out different spots.
In such a case, the spot pattern can look as if shifted
by the difference in the centers. If this is not removed,
then an average derivative is added, and after inte-
gration, the final result for fast Fourier demodulation
is totally different from the other methods.

Another point is related to the edges. It has been
shown that extending the edges, by copying the pe-
ripheral spots outside the pupil, is a technique that
can lower the boundary-related errors.5 This has
been used for all the methods that we tested except
for centroiding. As we show in the results, this tech-
nique is less beneficial for fast Fourier demodulation,
which seems to be more sensitive to small extension
errors. We believe that extrapolating the edge by a
true lenslet pitch and not by integer pixels, as we do
now, could remove this problem. Furthermore, the
true lenslet pitch is calculated from the perfect ref-
erence image. For eyes with large edge slopes, the
common result of defocus, astigmatism or spherical
aberration, the actual local pitch is different from
that of reference pitch, and spot extrapolation can
harm the results.

Finally, aliasing effects must be considered. Except
for centroiding, there is at least one Fourier stage in
the calculation, where aliasing can reduce the quality
of the final results. Zero padding is used to remove
these effects: a matrix of zeros of twice the pupil size
is defined. The image, resulting from the centering
subroutine, is planted in the center of the matrix of
zeros. The size of the matrix, even if necessary, slows
all Fourier calculations.

3. Comparison

We now present results for two types of image, all
processed with circular apertures: computer-created
images and real images. For this last case, we pro-
cessed both round and cut pupils and checked if those
theoretical assumptions, described before, were cor-
rect and sufficient. Finally, we expressed the final
wavefronts retrieved in each method in Zernike
terms and calculated their first 30 coefficients to per-

form a quantitative comparison of all the methods
and to study the reliability of fast Fourier demodula-
tion.

Hartmann–Shack images were simulated by creat-
ing wavefronts with Gaussian distribution and a
power spectrum of �

5
6 to �

5
3. These wavefronts were

then properly propagated through a lenslet array,
and their power spectrum was taken with Poisson
noise added to it (no speckle was assumed). In other
simulations, the Airy patterns at the foci of the len-
slets were replaced by equal-magnitude delta func-
tions [Fig. 1(a)]. Processing results are shown in Figs.
1(c)–1(g) for one of the ten realization runs. Also, the

Fig. 3. Comparison of wavefronts: (a) reference image, (b) part of
the image used in analysis from the eye’s measured spot pattern,
(c)–(g) results for the five methods corresponding to Figs. 1(c)–1(g).

Fig. 2. Defining a centrosymmetric pupil: (a) original image, (b) calculated pupil edge, (c) calculated box containing all the image
points.
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wavefronts were retrieved with the centroiding pro-
gram, and the results that we show were obtained
after the subtraction of a reference image, generated
by the same simulation program with much weaker
aberrations. The results are similar in all the meth-
ods. There is a very small tilt difference in the full
Fourier demodulation and centroiding, and the two
Fourier demodulations have a slightly narrower low-
pass filter. We calculated the rms differences between
the original wavefront and the results, compared
with the rms of the wavefront for the low noise case.
The ratio was less than 7% for the convolution and
smoothing methods, 9% for the Fourier method, and
10% for the centroid and full Fourier method. These
numbers are influenced by the slope and bandwidth
differences, and the slightly smaller centroid diame-
ter and are accurate to 
3%. Overall, we can con-
clude that, for the first time to the best of our
knowledge, fast Fourier demodulation was applied
successfully for circular apertures.

We now turn to real images. We show that fast
Fourier demodulation works properly for whole, un-
cut pupils. Figure 3(a) displays the reference and the
experimental data. The result of the centering sub-
routine and the final image to be processed (with
later zero padding) are also given in Fig. 3(b). The
final panels compare the final wavefronts for all the
methods. The images have been processed for a
3.5 mm pupil. The results are similar qualitatively,

despite edge errors that have to do with the extension
of the edges and with pupil centering.

We also processed images where the 4.2 mm pupil
was cut by the camera (Fig. 4). In this case, as ex-
pected from the asymmetric amplitude, the results of
the full Fourier demodulation are worse. On the other
hand, the shape of the wavefront is similar for all
the methods, if the sign is not taken into account.
We show this as an example: it happens because the
program locates automatically the brightest side-
lobes, and sometimes it finds an equal sidelobe in the
opposite quadrant. This can easily be remedied by
forcing it always to choose the sidelobes in the same
quadrants.

To perform a quantitative comparison, a set of ex-
perimental images was processed in all the methods,
and the final wavefronts were calculated as coeffi-

Fig. 4. As in Fig. 3 but with the bottom edge cut by the camera.
The fast Fourier demodulation picked up the opposite sidelobes
and inverted the sign.

Fig. 5. Comparison of the Zernike values for the five methods as
in Figs. 2–4. Shown from top are the absolute values of (a) defocus,
(b) spherical aberration, (c) vertical astigmatism, (d) vertical coma,
(e) vertical trefoil. The apertures were limited to 2.70, 3.50, 3.40,
3.04, 3.30, 3.06, and 2.98 mm. The largest pupils show the largest
errors, as more boundary values were included.
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cients for 30 Zernike polynomials. The main coeffi-
cients were plotted together. The results for defocus,
spherical, vertical astigmatism, and vertical coma for
different sizes of the pupil are shown in Fig. 5 for
pupils that vary from 2.7 to 3.5 mm, and the results
are similar for all the methods. For bigger pupils, the
results deviated, as is visible for the spherical aber-
rations in the 3.5 mm pupil. In the wavefronts shown
in Fig. 3, some edge effects were also present. We
suspect that they arise from the fact that for large
pupils fast Fourier demodulation becomes even more
sensitive to precise extension of the boundary and to
accurate centroiding. The bigger the pupil, the more
lenslets are visible, and the higher the frequency k of
the sidelobes. The same errors in the spot locations
lead to larger relative errors for denser spots. In ad-
dition, aperture centroiding becomes more sensitive
to pixelation errors, and comparison with the refer-
ence wavefront becomes less accurate. We plan to
probe into these error sources and remove them, for
example, by shifting the images by noninteger pixel
steps when extending their edges.

We also ran comparisons on the calculation time
for all the methods. For Hartmann–Shack experi-
mental images, where the image size is 768 � 576
pixels, the processing time of fast Fourier demodula-
tion, similar to an interpolation method and slightly
lower than a convolution method, is half of the Fou-
rier demodulation. This method employs two Fourier
transforms, as compared with the six by a simple
demodulation method. The balance is due to the fact
that in using MATLAB, the fast Fourier transform
routines are written efficiently in C as compared with
the rest of the processing.5

As a conclusion, the fast Fourier demodulation per-
forms well with actual ocular circular pupils. Its re-
sults are currently accurate for round pupils having
well-behaved boundary slopes. Otherwise, all the
methods yield similar results, with differences of

less than 10% among them. These differences occur
mostly at the boundary, where the extrapolation of
spots by the reference pitch, rounded to integer pix-
els, might not match the actual ocular pitch at the
edges. We now develop the next analysis version to
deal with this problem as well as the occasional shift-
ing of the pupil across the reference image.

The final choice of algorithm depends now on the
application: for adaptive optics, either the smoothing
or the fast Fourier method will be acceptable; for
accurate wavefront sensing, the slower full Fourier
method or the convolution with a large kernel.

This work was performed at the Technion with co-
operation within the Sharp-Eye Research and Train-
ing Network (European Framework V program), with
a contribution from the Israeli Ministry of Science. We
thank Pablo Artal for the results from the ocular wave-
front analysis program.
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