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We present a fast Fourier demodulation method for calculating the distortion in a repetitive pattern.
The technique is based on applying digital demodulation, then using only the anti-Hermitian part of
the pattern in Fourier space. After demodulation, we are left with the Fourier transform of the sought
phase information only. Using also the Hermitian part, we would have gotten the object itself. We
investigate the boundaries of the technique, as related to aberration content, amplitude variations,
and sensitivity to noise. ©2004 American Institute of Physics.@DOI: 10.1063/1.1759770#

The Fourier demodulation technique is convenient when
small irregularities in a quasiregular grid are investigated.
Takeda1 used a one-dimensional Fourier method to calculate
the fringe phase. Roddier and Roddier2 described a method
for acquiring the two-dimensional phase and amplitude of a
fringe visibility function. Lately a technique was developed
for two-dimensional Fourier demodulation in order to ac-
quire the phase gradient components from a Hartmann–
Shack wave front sensor3 ~from here on CR!. Basically the
multidimensional demodulation technique works as follows:

~1! Fourier transform~FT! the data.
~2! Apply a rigid translation so that the designated sidelobe

will be centered on the origin in Fourier space;
~3! apply a low pass filter;
~4! inverse FT; and
~5! extract the phase argument of the inverse transform, to

yield the desired phase derivative result:
~6! FT the phase derivative results.

The above technique suffers from inefficiency, since
many FTs must be applied before acquisition of the FT of the
phase result. In order to reduce the number of transforms, we
developed a technique in which under some constraints, the
FT of the phase can be calculated using steps~1!–~3! alone.
Only steps~2!–~3! have to be repeated per dimension in the
multidimensional case. One more semistep has to be added,
but its complexity is negligible relative to the other steps.

After applying an FT to the data, Fourier demodulating,
and applying a low pass filter~steps 1–3! we are left with
I(Vei j), whereI is the Fourier transform operator,V is the
pattern amplitude, andj is the information we are interested
in obtaining ~CR!. j can correspond to different physical
entities: in a Hartmann–Shack sensor it corresponds to one
of the phase gradient components, while in a structured light
measurement it corresponds directly to the height of the mea-
sured model.

If we assume thatj is small, then using the Taylor theo-
rem to first order on the imaginary and real parts separately
we obtain
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ĵ2

2
,
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whereuFumax is the maximum of the absolute ofF.
We denoteV5A01dA, whereA0 is the mean intensity.

Let us calculate the ratio of error to signal on the phase, and
limit this ratio by h: using Eq. ~1! we get the following
condition:
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Next we calculate the ratio of error to signal on the am-
plitude, and limit that ratio bys
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If these conditions are met, we can write the following
equations for the anti-Hermitian and Hermitian parts of the
Fourier transform:

I~Vei j!2I* ~Vei j!

2A0
'I~j!,

I~Vei j!1I* ~Vei j!

2
'I~A0!.

We see that ifj is small and adiabatic~is not under
sampled!, and the pattern amplitude variability is small
enough, the FT ofj can be obtained by applying steps~1!,
~2!, and~3!, and applying an additional step@3~b!# that dis-
cards the Hermitian part of the transform. The complexity of
this additional step is negligible relative to the other steps in
the method, so overall efficiency is improved.

Specifically, for the Hartmann–Shack pattern the con-
straints are
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F is the focal length of the lenslet array, andfx , fy are the
gradient components of the phase.

We simulated the method: A random wave front phase
and amplitude were generated, and a Hartmann–Shack pat-
tern simulated. We used the CR algorithm and our algorithm
to reconstruct the wave front. It was confirmed that as long
as the aberration content is relatively small, and the ampli-
tude is close to constant@Fig. 1 and Eq.~4!#, the fidelity of
both algorithms is similar. Sensitivity to noise content was
also tested, and it was found that it is the same as in the CR
algorithm.

One advantage of CR over conventional Hartmann–
Shack centroiding is that it can handle a larger class of wave
aberrations, since there is no pre-designated subaperture in-
side which the Hartmann spots need fit.5 If the wave aberra-
tion measured is very large, special unwrapping algorithms
must be used, making the algorithm less robust.6,7 Our
method never needs to be unwrapped so the calculation
never fails totally. However, relatively large errors may occur

@Fig. 1~a!#. In very complex cases, this is an improvement
over CR.

In many applications, the aperture of the system is not
rectangular. In this case one must writeV5P(A01dA)
whereP is an aperture function~1 inside the aperture!. After
applying steps@1–3~b!# we are left with the convolution
I(PA0)* I(j). For nonrectangular apertures this can intro-
duce some error near the edge. IfS is the size of the aperture,
ands is the sampling segment size, the error increases with
s/S. A method was proposed4 in which the two gradient
components of the phase are calculated from a Hartmann–
Shack pattern using the traditional centroiding technique.
These gradient components are then extended beyond the
aperture limits in such a way that the mixed derivatives theo-
rem is not violated. This technique is not applicable in our
case since we calculate the gradient components in Fourier
space, not real space. We reduced this error to some extent
by extrapolating the actual Hartmann pattern by one spot
period on each side before applying a Fourier transform to
it.8

A Fourier reconstructor can be used to compute the wave
front from the FTs of the gradient components. It is shown4

that for large adaptive optic systems this method is more
efficient than the reconstructor method that is usually used,
because of the high efficiency of the fast Fourier transform.
Our method can further speed the calculation, since we offer
a way of calculating the FT of both gradient components
using one transform only.

Because of the technique’s simplicity and speed, we
started to implement it in an adaptive optics system. Usually
the gradients of the wave front are multiplied by a recon-
structor matrix~which is the inverse of the mirror elements’
response to voltage!. This product is the voltage vector that
is sent to the mirror to correct the aberration. The realization
of this method now involves the following steps:

Calculate the reconstructor matrix so that it accepts as inputs
the FTs of the gradient components, instead of the gradient
components in real space. Then, during the adaptive optics
loop, repeat the following steps:

~a! Acquire the Hartmann image;
~b! go through stages 1–3b to calculate the FTs of the two

gradient components, as described above; and
~c! multiply the result with the previously calculated re-

constructor matrix, to yield the desired voltage correc-
tion vector.
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FIG. 1. Performance of both algorithms under varying circumstances. We
used 2003200 pixels with a Hartmann–Shack lenslet array of 20320 len-
slets. In the top frame, the amplitude modulation is increased while the
aberration content remains constant. It is seen that our algorithm’s fidelity
deteriorates linearly. In the bottom frame, the aberration becomes increas-
ingly larger and the amplitude remains constant. The fidelity of the recon-
struction is not significantly reduced in our algorithm until a peak to valley
of two radians in the input phase is reached.
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