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Abstract

A new treatment is presented for light propagation through multilayer turbulence. Equations for the intensity and phase of
an observed wavefront are derived together with their validity conditions for both single and multiple layer systems. A
method for finding the statistics of observed scintillations is presented together with a detailed calculation for a single layer

system. © 1997 Elsevier Science B.V.
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1. Introduction

Since the early seventies much attention has been paid
to the compensation of wavefront degradation caused by
atmospheric turbulence, usually concentrated in a few thin
layers [1-6]. To succeed in solving this problem, there is a
need for a good theory of light propagation through a
system of multiple turbulent layers. Whereas the theory of
light propagation through turbulence is well established
and confirmed experimentally [7-9], most treatments con-
sider a continuous distribution of turbulence. To investi-
gate the discrete case, two approaches could be used. One
is to use the continuous theory, representing the turbulence
by some kind of step functions, and the other is to develop
the discrete theory from first principles. Despite its sim-
plicity, the first way has some important disadvantages.
The main one is that this approach is purely mathematical
and does not reveal the underlying physics of the processes
involved. In particular, the range of validity of the formu-
lae obtained may not be clear. To avoid these problems we
chose to proceed in the second way. This approach has
been taken previously by Lee and Harp [10] and Roddier
[11]. Lee and Harp consider an action of a thin turbulence
layer on a Fourier component of the incoming wave in
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order to obtain the wavefront statistics for a continuous
turbulence. Since they are interested mainly in the continu-
ous case, they integrate the discrete expressions as soon as
possible. Thus they do not obtain any theoretical predic-
tions concerning discrete turbulence as such. Roddier in
his review paper goes further and applies the Fourier
optics formalism to multilayered structures. This enables
him to get general convolution formulae for the phase and
intensity of the wavefront that has passed a multilayer
turbulence. In this paper we intend to go further and use
the Fourier optics formalism of light propagation to obtain
specific theoretical prediction for the phase and scintilla-
tion pattern of a wavefront degraded by a multilayer
turbulence. Conditions for the validity of the theory will be
clearly indicated. In addition, we shall derive the statistical
properties of scintillation patterns resulting from multilayer
turbulence.

2. Single turbulence layer

In what follows we shall use the coordinate system
with the z-axis lying along the light propagation direction
and pointing downward. A turbulence layer is a portion of
the atmosphere possessing refractive index variations which
lies between z =0 and z =1/, where [ is the layer width.
The observer on the ground is at z = h. Notice that by
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using such a definition we are not concerned with prob-
lems of layer orientation since the layer, so defined, is
always perpendicular to the light propagation direction.

Let us consider what happens when a plane monochro-
matic wave passes through a thin turbulence layer located
somewhere in the atmosphere and reaches the observation
plane at the ground. By saying that the layer is thin, we
assume that the wave acquires only a phase shift as it
passes through the layer. Taking the refractive index of the
still air to be equal to unity, we can write

U(r)=U0exp(ikf01[l+,u.(r,z)]dz , (D

where r =(x, y) is the two-dimensional lateral position
vector, U(r) is the wavefront after the turbulence layer, U,
is the plane wave (independent of r) before the layer, k is
the wave vector and u(r, z) is the refractive index
change, produced by turbulence at the point (x, y, z).
We idealize this process, representing the layer by an
infinitesimally thin surface lying at z = 0. The refractive
index of the surface is taken to be the average of the real
refractive index over the propagation direction. Thus

U(r)=Upexp{ik[1+7u(r)]i}, 2)
where

1
a(r) = 7f0’#(r,z)dz. (3)

The constant phase factor in Eq. (2) is entirely unimportant
for the present discussion, so we can incorporate it into U,
and write

U(r) = Uye'*", (4)
where
o(r)=ku(r)i. (5)

Following Tatarskii [7], we shall assume that the refractive
index additive due to turbulence is very small, i.e.

p(r) <1 (6)
We also assume that the refractive index changes are
randomly distributed in the layer with coherence length
~ 20 cm [9]. So, their average value over the distances of
few hundreds meters, which is the probable layer width
[3,6], will become very small. This will make ¢ small
despite the big wavevector. Thus, we can assume that

e(r)<1. (7
Eq. (4), together with the condition (7), summarize mathe-
matically our concept of weak turbulence layer.

In order to clarify the meaning of condition (7) let us
consider what is its meaning for a real atmospheric turbu-
lence layer. For layer width /~ 100 m [3,6] and optical
frequencies, condition (7) taken together with the defining
Eq. (5) demands that the refractive index additive (aver-
aged over 100 m) should be t < 10~°. For the turbulence
correlation length £~ 20 cm the average index change f
will obviously satisfy this condition for any usual turbu-
lence strength w(x, v, z)=(0.1-10)x 107° [8]. The

interesting point is that for weak turbulence (large ¢) u(x,
y, z) will be small by itself, thus making 7 even smaller.
On the other hand, for strong turbulence & will become
small (compared to /) and that will compensate for a large
refractive index additive. Thus we expect that in any case
© will remain very small, satisfying the above condition.
After passing the layer the wave propagates in a homo-
geneous and isotropic atmosphere till it reaches the obser-
vation plane (at the ground level). For such a propagation
the next formula may be used (see Ref. [12], Eq. (3-47))

U(r.z=h) =9’"{L7(w,z = 0) exp(iAkV1 — A’ )},
(8)

where U(r, z=h) denotes the field at vertical distance &
down from the turbulence, U@, z = 0) is the two-dimen-
sional Fourier transform of the field at turbulence level,
F~! is the two-dimensional inverse Fourier transform
operator, A is the wavelength and k=2w/A is the
wavevector. In what follows we shall generally use the
tilde or symbol F{ } to indicate the Fourier transform
operation.

For Eq. (8) to be valid, the following condition must
hold [12]
h> A )
For the optical frequencies and propagation distances we
are concerned with, this condition is obviously satisfied.
Using (7) we can rewrite Eq. (4) as
U(ry=U(r,z=0)=Uy(1 +ie(r)). (10)
Substituting this relation into Eq. (8) we get
U(r.h)

= Uy {F {1 +ig(r)} exp(ihkV1 - )\57)}

= 0,5 {[8(w) +i®(w)]exp(ink/1 - Xw? )}

= Uolexp(ihk)
+ig {15 w) exp(ihk 1—/\%2)}]. an
In the usual Fresnel approximation [12] we assume
Mo < 1. (12)

So we can expand the exponential kernel as follows,
exp(ihk\/l - No?)

= exp(ihk(1 - 3Nw?)) = exp(ihk) exp( —imhiw?)

= exp(ihk)(l —imhiw?® — %(Wh)‘wz)z - )

(13)

Now, if we assume that
Thiw? > %(ﬂhsz)z, (14)
we can truncate the series in Eq. (13) to get
exp(inkV1 — Nw? ) = exp(ink)(1 —imhAw?).  (15)
Transforming Eq. (14) we obtain
AMw? < 2A/mh. (16)
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Comparing Eq. (16) with Eq. (12) we obtain that the
condition of Eq. (16) is at least as severe as that of Fresnel
diffraction (for & equal to just a few wavelengths) and for
distances of kilometers it is much stronger. This means
that if we wish to use the condition of Eq. (16) we can
safely omit the Fresnel diffraction condition. Eq. (16) may
also be written as

sin(0) =6 y2A/mh, (17)
where 9 is the usual off-axis angle, related to the Fourier
frequency by @ = sin 8/A. The validity of the above con-
dition was already discussed by Ribak et al. [13]. There it
is shown that for the layer height of ~ 8 km and optical
frequencies, condition (17) requires that the angular size of
the star should be smaller than 1.4”. Bright stars and small
sodium beacons approach this limit. We shall assume in
what follows that (17) holds.

Substituting the result of Eq. (15) into Eq. (11) we
obtain

U(r.h) = Up[exp(ihk)
+17 " @(w)exp(ihk)(1 —imhiw?)}]
= erxp(ihk)[l +ie(r)
+7Th)t7“{{b(w)w2}]. (18)

The last term in the square brackets may be transformed
according to the following weli-known formula

Vif(r) = —4#27_1{f(w)w2}, (19)
where V2 denotes the two-dimensional Laplacian operator.
Thus we obtain

h
U(r,h) = Uyexp(ikk) |1 +ip(r) — Z%\"’zqo(r) . (20)

This equation is the main result of this section. It gives the
wavefront at any distance from the turbulent layer in terms
of the wavefront incident on it. Thus, we can consider the
layer as a sort of a blackbox device whose response to the
monochromatic plane wave is given by Eq. (20). From
here it follows that

I(r,h)=!0{[l —%V2<p(r)]~+<p2}, 1)

where I(r, h) and I, denote intensity at point (r, 4) and
initial (pre-turbulence) wavefront intensity respectively.
Now let us make the final assumption that

hA
—V(ry<l. (22)
4ar

For optical wavelengths and distances of less than tens
of kilometers which are usually involved, this condition
obviously holds even for great phase curvatures (see also
the discussion following Eq. (37)).

To obtain a numerical estimate of the above condition
let us take, again, the layer width and altitude to be

[~ 100 m and A ~ 8 km. Then from condition (22) taken
together with Eq. (5), we obtain that V25 <3 x 107°
m~?. For the same layer parameters condition (7) demands
that @ < 10~° (see the discussion following (7)). To this
end, we may assume V2 ~ /&2, where ¢ is the correla-
tion length of the refractive index fluctuations. For &~ 20
cm [9] we shall have, then, V> < 3 X 107 % m™2. So we
see that (22) is likely to hold for most parts of the layer.

Returning to Eq. (21) and using conditions (7) and (22)
we obtain

1(r,h) - h—/\V%p(r), (23)
ly 2w

or using (22) again
I(r.h) A _

In A = — ;V o(r). (24)

The only conditions for validity of this equation are (7),
(17) and (22). Eq. (24) connects the scintillation pattern as
observed on the ground with the curvature of the phase in
the turbulent layer. This equation (as well as its generaliza-
tion of Eq. (41)) can also be obtained from the conven-
tional continuous theory [7,8] by substituting a é-function
to represent a turbulence layer. However, such an approach
would not provide us with any indication of the validity
range of Eq. (24). Using the present derivation we are able
to state clearly the conditions of its validity (formulae (7),
(17) and (22)). Moreover, in the case when condition (22)
does not hold we can resort to the more general Eq. (20) to
obtain the corresponding results. Thus we do not only
propose a new derivation of the old results but a whole
method of dealing with the multilayer turbulence struc-
tures. The value of the present derivation, as we shall see,
lies also in the possibility of expanding it to non-mono-
chromatic illumination and to systems of multiple turbu-
lence layers.

Returning back to Eq. (20) we can calculate also the
wavefront phase ¢(r, #) which is equal to
y(r.h)

= U(r.h)} = hk + arct ¢ )

arg{ (r’ )} arctan 1_(h,\/477)vz¢

= hk + ¢(r), (25)
where we have used (7) and (22) again. Eq. (25) means
that, apart from a constant additive from a straight propa-
gation, the phase does not change in the first order as a
result of propagation after the turbulence layer (provided
conditions (7), (17) and (22) hold).

Egs. (23) and (25) give us the amplitude and the phase
of the wave U(r, h). So using (22) we can write

hA 1/2 ‘
U(r.h) = Uo[l — Evzw(r)jl el +eln]

hA :
= Uo[l - ?‘;quo(r)] gllhk+ el (26)

This is another, more convenient form of Eq. (20).
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3. Non-coherent illumination

Let us now consider the case when the wave incident
on the turbulence layer is not monochromatic. Inasmuch as
our method has many things in common with the geometri-
cal optics approach [8] we may suppose intuitively that the
results obtained will not change in the non-monochromatic
case apart from the integration over the whole spectrum.
However, in order to check whether this will not introduce
any additional constraints on the system or any undesired
effects we will explicitly derive all formulae. We can still
use Eq. (26) for each monochromatic component of the
wave reaching the ground level. The full time-dependent
wavefront will be given by

hA
U(r.h,t) =fU0(/\) L= —Vie(r.A)
X ei[2‘n'h/)\+(p(r,}\)]e*iZ‘n’(‘r//\d)\
= [A(r,A)e™ 72, (27)

where c is the velocity of light, ¢ is the time and we have
allowed for the wavelength dependence of the phase ¢.
The instantaneous intensity is then

1(roht) = [ [A(r.A) A" (r.2)

1

1 1
Xexp[2'n'ict(/\——-—):)]d)ld,\,. (28)

The observed intensity is equal to the time average of Eq.
(28) over the relaxation time of the detector. The exponent
in the integral vanishes for any available detection time
unless the two frequencies A and A, are equal. Thus, we
obtain

7i(r.k) = [1A(r. ) dA

=f10()\)[1 —%w(m)] dA, (29)

where 7 is the detection time, 7 is the average intensity
and I1,(A) =|Uy(M)]? is the initial intensity spectrum. Us-
ing (22) we obtain

Ti(r.h) = [I(A)dA— —;—WVZIID(A)(p(r,/\) AdA,
(30)

where we interchanged the Laplacian and integration since
they are acting on different variables. It follows that

Ti(r,h) h 2
———— =1 - —=Ve(r, ), (31)

J1,(2)dA -7
where

J1o(X)e(r.2) Ada
(Ae(r.A)) = : (32)
J1o(A)dA

Using Parseval’s theorem we can rewrite Eq. (31) as

1(r,h) ] h

72

A 27V {(Ap(r,A)), (33)
where I, is the initial intensity averaged over time 7.
Because of the rapid variation of the intensity with time
we can assume that the average over 7 is equal to the
average over infinite time. The last term in Eq. (33) is very
small compared to unity because ¢ and A are small. So we
can take the logarithm of both sides and write

I(r,h) h_
In 3 =—5;V‘(<p(r,)\)}i>. (34)

We see that for an incoherent illumination the observed
intensity will obey the same spatial equation as for the
coherent one (cf. Egs. (24) and (34)). The only difference
is that for the incoherent case we should average all the
wavelength dependent parameters over the initial spec-
trum. This means, in particular, that no special color
effects will be observable in the scintillation pattern (to the
order of accuracy of the present treatment) apart from the
possible overall average color. We have obtained also that
no new constraints are introduced if we wish to extend the
monochromatic expressions for the non-monochromatic
case.

4. Multiple layers

In this section we shall expand the above treatment to
the realistic case when more than one layer is present. We
shall show how using the present method one can easily
obtain the expressions for the multilayer system knowing
exactly which is their validity range. Again, here we shall
apply the most widely used turbulence conditions in order
to be able to compare our results with the conventional
ones in the limit of continuous turbulence. However, the
derivation may easily be repeated for other conditions that
do not necessarily fall into the framework of the conven-
tional theory.

In order to extend the previous treatment to a system of
multiple layers we need to allow for the wave incident on
the layer to vary spatially. That would be the case when a
wavefront perturbed by one layer reaches the second. In all
other respects the treatment will be quite similar to that of
Section 1. Each layer is assumed to add to the passing
wavefront a phase ¢,(r), where # is the layer number. The
only additional condition we impose on a multilayer sys-
tem would be that the distance between any two adjacent
layers will be greater than few wavelengths (see Eq. (9)).
This will enable us to use the diffraction formula of Eq. (8)
again.
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Consider a wave that has passed a layer, traveled in still
air to the next one and passed it too. Accordingly, this
wave will now be given by an analogue of Eq. (4)

Un(r'sn) = Un— l(r’sn)eiw,,(r)

= U, (r.s,)(1 +ig(r)), (35)
where s, is the altitude of the nth layer, U(r, s,) is the
wave immediately after the nth layer, U,_ (7, s,) is the
incident wave as a result of the action of the previous layer
and ¢, is the phase added by the last layer. Now we can
proceed exactly as in the previous section, the only differ-
ence being the fact that now the pre-layer wavefront is
position dependent. We shall use the conditions of (7),
(17) and (22) again, whenever possible, assuming that they
hold for each layer. Then Eq. (11) transforms to

U(r,s,+h)
=5r—'{[l7,,71 +i5{U, - ¢} ] exp(ihk\/l__m)}

= ettt [0, +iF{U,-,¢,}] (1 —imhAw?))

: ihA
=e™ |y _ (1 +ig)+—VU,_,
4

hA
- EVZ(%Un_l)], (36)

where h is the distance between the nth layer and the
observation plane (or the next layer). The Laplacian is, as
before, a two-dimensional one (i.e. with respect to r only).
After some algebra the last equation can be written as

U(r,s,+h)
, hA
:elhk Un—l(l__VL‘Pnﬁ-ian)
4ar
iMVZU 1+i MVU v
+— + -—Vu,_,-
47 n—l( I(P") 41 n—1 (2

) hA _ ihA ,
=e"™| U _[1—-—V%,|e¥+ —e'*VU, _,
4ar 447

.y 'V<P,.], (37)

where the last step followed from condition (7).

The phase in a layer cannot vary appreciably over
distances shorter than &, the correlation length of the
turbulence layer [9]. Thus, we can write Vo~ 1/¢ and
Vi~ 1/¢?%, where ¢ stands for the phase in any layer.
Let us estimate the order of magnitude of the expressions
containing VU,_, and V2U,_,. To do so we can use the
results obtained for single layer turbulence. From Eq. (23)
we obtain that U~ Uy(1 — hAV?¢), where all symbols
have the meaning as in Section 1. Taking the gradient and
Laplacian we have VU ~ —UyhA/£? and VU ~
—UyhA/&*. These relations give us an estimate of the
relative magnitude of both derivatives. To this end we may
assume that U,_ | ~ U, and substitute the above estimates
into Eq. (37). For the usual values [1,5] of the correlation

length (~ 10 cm), wavelength (~ 10”7 m) and interlayer
distance (< 10 km) [3,5,6] we obtain that the last two
terms in the bracket in Eq. (37) can be safely neglected.
However, for stronger turbulence and, thus, smaller corre-
lation lengths this may be not possible for very large
distances. In what follows we shall consider only the case
when turbulence is not very strong and we can neglect
these terms.
We remain with

) hA
a

This formula is the analogue of Eq. (26) for the multilayer
case. Accordingly, the intensity is given by

hA
L(ros, + ) = nv.(r,sn)(l —;v%on(r)). (39)

We see that with regard to intensity, each layer in a
multilayer system behaves exactly as one single laver of
Section 1. For the full system of N layers shown in Fig. 1,
we immediately obtain

N h"A N
1 =TT {1- 27,0 (40)
n=1 ™

where I(r) is the final intensity at the ground level, I, is
the intensity of the initial monochromatic wave coming
from the star to the first layer, 4, is the distance between
layers n and n + 1, whereas h, denotes the distance from
the last layer to the observation plane. In logarithmic form
this equation (using condition (22)) reduces to

I(r) N h,A
log =2 log(l——Vzwn(r))
Iy a1 24
N h A
= — . ) 41
L 5 V() (41)

n=1
Returning to Eq. (38) we can find the phase of the
observed wavefront

Ur.s,+ h) = arg(U,(r. s, + )
=, i(r,5,) +kh + @,(r). (42)
We see that the phase is simply added at each layer, so that

the final phase is, actually, a sum of the phases of all
layers (ignoring an unimportant constant),

N
W= ¥ efr). )

n=
Eqs. (40) and (43) are the generalizations of Egs. (23)
and (25) for a muitilayer system. We have seen that they
are valid for any attainable distances between layers from
few wavelengths to hundreds of kilometers. The distance
of a few wavelengths is of course a theoretical idealization.
In practice layers do not have a rigid boundary, so we can
interpret the above condition as simply saying that Egs.
(40) and (44) are valid for continuous turbulence too.
Actually, the same equations for a continuous case are
long known (see Ref. [7], Egs. (6-18) and (6-20) and Ref.
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Fig. 1. Turbulence layers encountered by down-propagating wave
front.

[8]). So, as we expected at the limit of continuous turbu-
lence our derivation produces the same results as the
current theory [7-9].

5. Determination of the intensity statistics

To demonstrate the use of the above theory we shall
determine the correlation function of intensity fluctuations
in the observation plane when only one layer is present.
Such a calculation has been already made for continuous
turbulence [7-9] and here, again, we may achieve similar
results by representing the turbulence as a &-function. But,
as stated before, this approach will not provide us with any
information concerning the validity of the formulae ob-
tained. The method proposed here has the advantage of
relative simplicity compared with the integral derivations
of Refs. [7,8] and may be extended directly to turbulence
layers which obey equations others than Eq. (41).

We assume that the phase fluctuations of the wave after
passing the layer are approximately isotropic. Then their
structure function may be defined as follows

D,(r)={[¢(ro) — e(ry+r)]". (44)

where { ) denotes an ensemble average over different
realizations. In what follows we shall assume that this
ensemble average can be interchanged with spatial aver-
age, i.e. with integration over r, divided by the area of
integration. We shall also assume that a similar structure
function exists for the intensity fluctuations at the observa-
tion plane. In view of Eq. (24) we shall be interested,
however, in the fluctuations of logarithmic intensity Y,
which is defined as

x(r)=In(I(r)/1,). (45)
That is, we wish to find
D(r)=<{[ x(ro) = x(ro + NI, (46)

First we shall find the Fourier transform of Eq. (46),

- N 2
B (w) = /dre’z”"""gfd"o [x(ro) —x(ry+0)].
(47)

where S is the area of averaging (we assume it to be finite
but very large to avoid the unnecessary complications of
dealing with convergence problems). After interchanging
the order of integrations, we obtain

~ 1 —2riw-r 2 z
Dx(w)=Efdr0fdre 27 [)(“(ro)+)(‘(r0+r)
_2X(’0)X("0+")]
1
= Efdro[é(w)xz(ro)
+e21rim.r0/'\~/2(w) _ 2e2wiw-r0X(rO)X/(w)] ]
(48)
Performing the integration on r; (it is assumed to be so
large that we can take infinite integrals where possible) we
get
. 2 1, 2 2
D (@) =d(e)|{x*) + <X (@) | — <l x(@)l”
(49)

Noting that the expression multiplying the delta function
has meaning only when w = 0, and remembering that the
Fourier transform at zero frequency is just the integral of
the transformed function we obtain

By(w) =20(@)(x) — o (@) (50)

There is nothing in this derivation which uses the function
x specifically. Thus we can write a similar expression for
any function for which similar assumptions could be made.
In particular for ¢ we have

- 2

D (w)=28(w)e?) - §|¢(w)¢2. (51)
From Eq. (24) we obtain

$(w) =2mhreF(w). (52)

Substituting this into Eq. (50) and solving together with
Eq. (51) for D, (w) we get

B (w)=25(w)[(x*) - Qmhrw?) (o)

+Qmhre?) B (w). (53)

Noting again that the expression in square brackets has
meaning only for @ = 0 we obtain

D(w)=28(w) x*) + (Qmrhae?) D (w).  (54)

Taking the inverse Fourier transform we arrive at the
expression for the structure function of the log-intensity
fluctuations

D(ry =2 x*) + (hA/27)’V*D,(r). (55)
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From the usual relation between the structure and correla-
tion functions (when such exists) {9] we obtain

L(ry=—3(hAr/2m)’V*D,(r), (56)

where I (r) denotes the correlation function of the log-in-
tensity fluctuations. An analogous expression for continu-
ous turbulence was obtained by Reiger [8]. Thus we see
that our results correspond to those of the continuous
theory. However, as before the method presented here may
be easily extended to systems with other governing equa-
tions whereas with integral formulation it becomes a much
harder task.
Specifically for Kolmogorov turbulence [7,9]

D,(r)=Clr*?, r>|, (57)

we get

L(8\2 (hAND
I;((r)=—5 5) CH(; r10 0 >, (58)

We see that for distances longer than the inner scale [,
the log-intensity is anti-correlated, and as the distance
increases, the correlation falls to zero as expected. Inten-
sity fluctuations in this model are small (see Section 4).
Thus, because we are dealing with log-intensity fluctua-
tions we may assume that I(0) = { x*) = 1. For reason-
able values of the constants (A~ 10 km, A~ 0.5 pm,
C}~10"" m™%3, iy~ 1 mm) [9] we have I (i)~
107 '2. Thus the correlation length of the log-intensity is
actually much smaller than /,, and for all practical pur-
poses the logarithmic intensity may be considered to be
white noise. We know that for a large number of layers the
log-intensity statistics should become Gaussian. This is
because according to Eq. (41) the final log-intensity is
composed of a large sum of terms. Each of these terms is a
white noise as we have shown above. So by virtue of the
central limit theorem we should obtain the normal distribu-
tion in the overall log-intensity. Thus, the intensity itself
will be log-normal. This is in accordance with the result of
Tatarskii [7], who proves it for continuous turbulence. We
see that the statistics of the observed intensity may serve
as an indicator whether the atmospheric turbulence in a
specific location is concentrated in a few layers or is
continuous with altitude.

6. Conclusions

We have presented a general method for determining
the optical properties of systems of multiple turbulence
layers. Although our results may be obtained by the con-
ventional continuous theory, our method offers many ad-

vantages. Firstly for every result one obtains there are clear
conditions of its validity. Secondly the derivation of all
results may easily be repeated for systems which do not
obey the conditions of weak turbulence and, thus, are out
of reach for any approach that uses geometrical optics a
priori or relies in its basis on the weakness of the turbu-
lence.

We have derived the formulae for intensity and phase
fluctuations of a wavefront that have passed multilayer
turbulence. The equations obtained reveal many interesting
features. First we should note that the equations for loga-
rithmic intensity are differential ones. This is in contrast to
conventional, continuous turbulence theory that results in
integro-differential equations which are much harder to
handle. For example, the derivation of statistical properties
of the observed wavefront reduces, as we have shown, to a
very simple procedure. Another important feature is the
connection between the curvatures of the phase fluctua-
tions in the turbulence layers and the resulting intensity.
This may enable us to apply the well-established solutions
of Poisson’s equation to find the phase fluctuations of the
wavefront. It may turn out to be very important in adaptive
optics systems. Such methods should bear close resem-
blance to curvature sensing as formulated by Roddier [14].
One such method was recently proposed by Ribak et al.
[13] for a system of two turbulence layers.
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