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ABSTRACT 
 

Adaptive optics systems on single big telescopes correct many modes, allowing imaging in the infra red. At the 
same time, visible photons can be used as well, especially when infra red light is also employed for wave front sensing. 
It is argued that pupil-plane interferometry is the most useful application for high-resolution imaging. This is because 
the isoplanatic patch area and the integration time are larger after correction, and they afford enhanced signal collection 
in the aperture plane. In contrast, speckle imaging methods only gain indirectly from this enhancement. 
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1. THE IMPROVEMENT OF THE WAVE FRONT 

 
Most big telescopes today measure the wave front and correct it using adaptive optics, and then use the corrected 

beam for infra-red observations. Since the correction in the infra red leaves the visible beam only partially corrected, the 
question arises: is there any use for the visible photons, and can something be gained from them? This is definitely 
important if the wave front sensing and the astronomical observation are performed in the infra red, essentially leaving 
all the visible photons unused. Similar questions occur in exoplanet search and in solar adaptive optics, where 
measurement and observation are performed with plentiful visible photons, but the quality of correction is not 
sufficient. 

 
The best use for the visible light is for imaging, either directly or indirectly. There is a number of existing and new 

modes of observation, to be compared. Essentially, they are comprised of direct imaging and interferometric imaging. 
Spectral and coronographic information can be considered as the combination of the two. In the case of solar 
observations, the interferometric option is rather difficult, because of the large extent of the object.  

 
First, what is to be expected from the partially corrected wave front? Let us assume that all aberrations, up to the 

highest corrigible by the adaptive optics system, are almost nulled. Since the fractal spectrum of aberrations is well 
described by the Kolomogorov-von Karman statistics, it can be drawn schematically in a log-log plot (Figure 1).  
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Figure 1: Wave front aberrations after partial 

correction are nearly constant all the way up to the 

adaptive optics pitch, then tails off following the 

Kolmogorov spectrum. This is a schematic log-log 

plot, and the small deviation near the adaptive optics 

cut off is due to aliasing effects and to non-circular 

optics, such as in the primary mirror or the 

deformable mirror. 
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Thus the phase errors are reduced up to the pitch frequency of the elements of the deformable mirror, and for faint 
reference stars, by the pitch of the wave front sensor. A slight additional error might occur at higher frequencies because 
of aliasing in the adaptive optics system (e.g. the waffle mode or hexagonal mirrors). Alternative descriptions can be 
found in Roddier1 and Cagigal and Canales2. The region in which atmospheric aberrations are still not corrected is 
between r0 and d0, the scales of Fried’s parameter and the element size of the deformable mirror or wave front sensor. 
For different telescopes this range can lie between 5-40 cm and 30-100 cm (in the visible), according to the quality of 
the site, which also sets the decision of the size of d0. 

 
As the spectrum of the residual aberrations can be considered flat up to the atmospheric cut off frequency, its effect 

on direct imaging will be to create a speckled background, which, upon integration, hides fine details. However, it is 
much improved compared to the uncompensated imaging case. This is because most of the coarse aberrations, those 
which cause most damage to the usual astronomical image, are essentially removed. For example, the tip-tilt error, 
which shifts the instantaneous stellar speckle pattern and causes it to smear upon integration, is rather small (≈ λ / d0, 
from the simplified graph above). 

 
Fried’s coherence length, over which the standard deviation of the wave front does not exceed λ / 2π ≈ 80 nm, will 

grow because of the partial correction of the wave front. Let us call it the compensated Fried’s parameter, ρ0, where ρ0 ≥ 
r0, with a similar effect in integration times2. The Greenwood frequency, which is proportional to r0 / w, where w is the 
wind speed1. After correction, it is approximately proportional ρ0 / w. Thus the isoplanatic volume, namely the product 
of the patch area and integration time, grows as ρ0

3 c / w. The isoplanatic volume growth increases the number of 
coherent photons which can be detected (Figure 2). In pupil-plane interferometry and in aperture masking these 
parameters can set the maximum detector pixel size and the maximum integration time, and here is where there might 
be an advantage. 

 

2. SPECKLE IMAGING AND INTERFEROMETRY 
 

Thus there are two modes of direct imaging which can be considered: by integration and by speckle imaging. Direct 
imaging might suffer from smearing of fine details and high background, but the images will be rather stable. When 
speckle imaging is performed, it is also simpler than uncompensated speckle imaging. Again, because of the very small 
shift of the central speckle, shift-and-add methods will require less of the shift, more of the smart add. Such methods act 
in a manner of blind deconvolution3. This deconvolution can also be accomplished by fitting the wave front, measured 
separately4, or from its instantaneous power spectrum, calculated from matched filtering of the speckles5. Similar 
methods integrate over the Fourier transform or the wave front6 or closure phase in triple correlation7. The dark speckle 
method for search for faint stellar companions seems to be the first application of post-correction interferometry8.  

Figure 2 The size of the effective isoplanatic patch (over 

which the standard deviation of the wave front is less than 

one radian) grows with the quality of correction. For j (j 

>10) corrected Zernike modes ρ0 ≈ 1.25 j 0.158 r0, 

independent of the telescope size. As a result, the photon 

flux inside an isoplanatic volume (patch area and 

duration) grows, as compared to the uncorrected case, by 

1.95 j 0.473 . 
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These speckle imaging methods will be easier to perform following the partial correction, but will also require a fast 
speckle camera (although the speckle rate will be slower now). For the wave front deconvolution method they will 
require also a separate wave front sensor, one that is tuned to the residual – and reduced – error spectrum. Also the rate 
of measurements will be lower due to the reduction of aberrations. The pixel scale in the imaging camera will still be 
needed to be diffraction-size limited, but some of the processing can be over coarser image or Fourier coordinates and 
hence more robust to noise. Some of these attributes are being used in solar adaptive optics for improved resolution in 
the visible9. 

 
Regarding interferometric imaging, there are a number of well-developed and new methods which can be applied. 

They tend to measure the interference in the pupil plane, where the gain in integration volume is direct10,11. Folding, 
lateral, and rotational shear interferometers (Figure 3) are well established12,13,14,15,16,17. Lateral shear interferometers are 
redundant (all fringes belong with the same base-line) and thus their pixel size is limited only by ρ0. However, because 
of this redundancy they do not allow phase integration or phase closure. In addition, they have to be scanned in r-θ 
space. They have an advantage in that they are also inherently white light interferometers, and do not need any colour 
correction. 

 
Folding shear interferometers and rotational shear interferometers are not redundant, and hence their pixel size can 

be limited by spatial accuracy in the u-v domain, and not by ρ0. This means that if the pixels are too large, they might 
average over many spatial frequencies. Folding shear interferometers require additionally scanning in θ space. 

 
In contrast with these, rotational shear interferometers allow either phase closure (at 1200 shear) or Knox-Thompson 

processing (at 1800 – ρ0 / R) as will be explained below18,19. Since the interferogram is missing its central part, hidden by 
the central obscuration of the telescope, there is a need to take another measurement off centre. 

 

 
In aperture masking there will be now a similar requirement, where the mask hole size will also be set by ρ0 and be 

the requirement not to have spatial mixing. Either directly imaging in the focal plane, or using a set of lenslet-fed fibres 
to achieve multiple interference between the fibres20,21, the hole size or the lenslet size will be set by these two 
parameters. 

 

Figure 3:  It is possible to extend 

the aperture or pixel size up to the 

corrected correlation length ρ0 in 

the directions marked by a shadow. 

In the other direction it might be 

limited by u-v blurring. In the case 

of lateral (and constant) shear, both 

extension directions are possible. 

In folding shear, extension and 

shear are orthogonal directions. In 

aperture masking, between any two 

apertures the extension is normal to 

the connecting u-v vector. The 

central obscuration is not shown, 

and its lack in rotational shear 

means the loss of low frequencies.   
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3. PHASE INFORMATION 

 
Phase integration and phase closure play a significant role, where they are possible. Phase closure can be obtained in 

the simplest case by having a rotational shear of 2π / (2n+1) for any positive integer n 18. For example, in the case of 2π 
/ 3 shear, an interferogram pixel corresponds to two aperture areas separated by a vector u1 of angular extent of 2π / 3. 
Another pixel of 2π / 3 rotation corresponds to two aperture areas, one overlapping a previous one, and the other of 2π / 
3 away. A third pixel on this equilateral triangle will correspond to two areas overlapping one each of the previous two, 
forming closure in the aperture (Figure 4). 

 
Phase integration through Knox-Thompson averaging is possible by using a rotational shear of 2π / n  –  ρ0 / 2R  for 

any integer n > 1 18. Thus every pixel in the interferogram corresponds to almost two opposite areas in the telescope 
aperture. The opposite interferogram pixel, across the diameter line, corresponds to two opposite areas in the aperture, 
one of which overlaps one of the previous areas, while the other partly overlaps it. Hence the interferogram is measured 
at two vectors whose difference in the aperture is ρ0 / 2. Averaging is performed over many atmospheric realizations. 
Otherwise, it is possible to achieve similar results using non-overlapping paths19,22 or a combination of the two methods. 

 
The importance of colour correction is high, especially for the low signal case, where one wishes to integrate over 

many wave lengths simultaneously. While speckle imaging and lateral shear interferometry need no such correction, all 
others methods do. It is not clear how narrow the corrected speckle field is, but for very narrow speckle imaging, such 
as dark speckle8, colour correction is useful. This is because the fringe density varies with the wave length, and fringes 
of different colours mix on the detector. Only the central, white light fringes (as set by the spectral width detected) are 
useful. If one uses a chromatising device, which magnifies the sources according to their colours, the resulting fringes at 
different colours will have the same spacing and will have a much higher contrast (or wider extent). This was achieved 
in the past23,24,8. A similar device is proposed now for fibre beam combination in speckle masking, when it is not 
following the Fizeau or Michelson schemes25. 

Figure 4:  Left: phase closure in 2π/3 shear: 

every three points in an equilateral triangle in 

the interferogram (top) correspond to an 

equilateral closure triangle in the telescope 

aperture (bottom). Right: Knox-Thompson 

integration in the pupil is achieved by two 

opposite pixels in an interferogram which is 

between two images of the aperture, one rotated 

by π plus an additional maximal rotation of ρ0/2 

at the perimeter. The top interferogram pixel 

corresponds to two points in the aperture, and 

the bottom pixel corresponds to two points, one 

of which differs by ρ0/2 from the previous one. 

Integration around the centre yields the 

tangential component. In the 1800 rotation the 

maximum spatial frequency is larger by √3/2 

than that at 1200. The central obscuration is not 

shown. 
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The complexity of the observed object is also important. While speckle methods are hardly influenced by extended 
objects, interferometric imaging suffers from reduction in the signal-to-noise ratio as the object becomes more 
complex26. In general, interferometers are preferred to simple speckle methods19, but the assumptions in that study were 
that speckle methods were limited to signal-to-noise ratio of unity, and that one observes point sources. Both of these 
assumptions do not hold in most cases. Thus, one should decide according to the complexity of the object which method 
to use. Notice that the complexity of the object is not necessarily its extent. This is because in many cases there are prior 
assumptions about the object, such as in search for planets next to a star, in binary measurements, in stellar discs and 
more.  A simple model can be fitted to the observed data with quite a few parameters, independent of the size of the 
object. 

 
Thus, there is a number of options for interferometric imaging, each with its advantages and drawbacks. For the 

comparison, it is assumed that all use a fast photon camera and avoid additional wave front sensing in the visible. 
Estimates are summarized in the table. 
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