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ABSTRACT
Evidence of exoplanets with orbits that are misaligned with the spin of the host star may suggest
that not all bound planets were born in the protoplanetary disc of their current planetary system.
Observations have shown that free-floating Jupiter-mass objects can exceed the number of stars
in our Galaxy, implying that capture scenarios may not be so rare. To address this issue, we
construct a three-dimensional simulation of a three-body scattering between a free-floating
planet and a star accompanied by a Jupiter-mass bound planet. We distinguish between three
different possible scattering outcomes, where the free-floating planet may get weakly captured
after the brief interaction with the binary, remain unbound or ‘kick out’ the bound planet
and replace it. The simulation was performed for different masses of the free-floating planets
and stars, as well as different impact parameters, inclination angles and approach velocities.
The outcome statistics are used to construct an analytical approximation of the cross-section
for capturing a free-floating planet by fitting their dependence on the tested variables. The
analytically approximated cross-section is used to predict the capture rate for these kinds of
objects, and to estimate that about 1 per cent of all stars are expected to experience a temporary
capture of a free-floating planet during their lifetime. Finally, we propose additional physical
processes that may increase the capture statistics and whose contribution should be considered
in future simulations in order to determine the fate of the temporarily captured planets.

Key words: scattering – methods: numerical – methods: statistical – Planets and satellites: for-
mation.

1 IN T RO D U C T I O N

The first notions of free-floating planets were brought about two
decades ago through imaging observations (Tamura et al. 1998;
Lucas & Roche 2000; Osorio et al. 2000). A decade later, the
Microlensing Observations in Astrophysics (MOA) and Optical
Gravitational Lensing Experiment (OGLE) groups conducted a
gravitational microlensing survey towards the Galactic Bulge over
two years (Sumi, Kamiya & Bennett 2011). They have estimated
the population of free-floating planets to contain twice the number
of main-sequence stars in our Galaxy.

The canonical planet formation mechanism is an in situ planet
formation theory, dictating that planets form inside a protoplane-
tary disc. If so, planetary systems would have to be the only source
of free-floating planets. An alternative suggestion adopts an ex-situ
approach,1 where Earth- to Jupiter-mass free-floating objects (here-
after referred to as ‘free-floaters’) may form by gravitational col-
lapse of interstellar gas blobs. It has been suggested that high-speed

� E-mail: nadavgs@campus.technion.ac.il (NG); eribak@physics.technion.
ac.il (ENR)
1 ‘Ex-situ formation’ usually refers to planets formed in a different part of
the protoplanetary disc. Here, we refer to the wider sense, formation outside
the planetary system.

gas blobs from the explosive death of stars may form free-floaters
by accretion of interstellar ambient matter as they slow down and
cool by radiation. Without an external source of heating, these cold
and isolated gas blobs should collapse once they exceed Jeans mass
(Dado, Dar & Ribak 2011). Such blobs and other filamentary struc-
tures are observed in large numbers in nearby supernova remnants
(Fesen et al. 2006), planetary nebulae (O’Dell et al. 2002; Matsuura
et al. 2009) or star formation regions, and are considered to be
common in these stellar stages. Some of these blobs were observed
as dense conglomerations of molecular clumps within H II regions
(Haworth, Facchini & Clarke 2015), while other are ionized and
metal-rich (Sahai, Scibelli & Morris 2016; Sato & Hughes 2017).

Measurements of the angle between the planetary orbital axis
and the stellar spin axis (spin–orbit angle) reveal that a consider-
able fraction of the hot Jupiters have misaligned spin–orbit. This
misalignment is at odds with the expectation of a close align-
ment between the spin of the star and the orbital motion of the
planets, as they all should inherit their angular momentum from
the protostellar disc. As for now, spin–orbit angles of 87 planets
were calculated from light curves that exhibit anomalies due to the
Rossiter–McLaughlin effect. About 40 per cent of them show sig-
nificant spin–orbit misalignment, and nine of them are retrograde
planets (Campante et al. 2016). There are several proposed mecha-
nisms to resolve this problem, including multiple-planet scattering
(Rasio et al. 1996; Beaugé & Nesvorný 2012), perturbations to
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protoplanetary discs by gas captures (Bate, Lodato & Pringle 2010;
Foucart & Lai 2011; Thies et al. 2011; Batygin 2012) and migra-
tion involving Lidov–Kozai oscillations (Correia et al. 2011; Naoz
et al. 2013; Petrovich 2015; Anderson, Storch & Lai 2016; Storch,
Lai & Anderson 2016). We suggest that captured free-floaters may
account for some of these misaligned orbits, especially in regions of
low velocity dispersion and with a large population of free-floaters.

Observations of supernova remnants and planetary nebulae each
show thousands of blobs that can lead to considerable number den-
sities of free-floaters, which may be large enough for captures
to be common. A wide-field image of the Helix Nebula in the
2.12 μm molecular hydrogen line shows more than 40 000 low-mass
blobs that constitute the only source of the H2 surface brightness
(Matsuura et al. 2009). If we assume that the only source of free-
floaters are planetary nebulae and that the ∼40 000 blobs found in
the Helix Nebula are a typical number for stars at this evolutionary
stage, then a planetary nebulae number density of ∼5 × 10−3 pc−3

(Holberg, Oswalt & Sión 2002) predicts a blobs number density of
nf ≈ 200 pc−3. In order to predict the capture rate of this kind of free-
floaters by planetary systems, we evaluate the capture cross-section
by simulating three-dimensional scatterings between a planetary-
mass free-floater and a star-planet binary. This work is restricted
to temporary captures, as we calculate the percent of brief interac-
tions that bind the free-floaters, and for this purpose, we assume
point mass objects and vacuum conditions. The dynamical evo-
lution of the temporary captured free-floaters may involve tidal
effects, gaseous environments and collisions with debris, for which
dedicated simulations are required.

2 A PPROACH

Significant orbit perturbations of a bound planet due to interactions
with free-floaters are expected to occur for impact parameters of
−bmax ≤ b ≤ bmax, where the value of bmax is determined by eval-
uating the maximal closest approach distance rmin from the host
star, for which significant orbital perturbations are still possible.
Let us assume that a free-floater with a relative velocity v∞ at in-
finity is approaching a star-planet binary with an impact parameter
b. Assuming that the mass of the star M is much larger then the
mass of the bound planet mB and the free-floater mf, the trajectory
of the free-floater is the one of a test-particle, and determined by
the mass of the star. The cross-section for significant perturbations
induced by this flux is the product of the geometrical area times the
gravitational focusing factor

B = πb2 = πr2
min

(
1 + 2GM

v2∞rmin

)
. (1)

We use an analytical expression for the closest approach rmin, that
holds for mf, mB � M (Donnison 1984)

rmin = rB
((1 + ρ)

3
2 − 1)2

2ρ2
, (2)

where rB is the semimajor axis of the bound planet, and ρ is the
mass ratio of the free-floater to the bound planet (hereafter the
planetary-mass ratio).

We may write the differential size of the capture cross-section
dσ as a product of the differential cross-section for a significant
interaction 2πbdb times the fraction of interactions that resulted in
a capture P:

dσ = P 2πbdb. (3)

The interaction cross-section depends on the relative velocity v, the
mass of the host star M, the planetary-mass ratio ρ and the semimajor
axis of the bound planet rB; the last two determine the closest
approach radius. The capture probability may also depend on similar
variables, but dependence on relative velocity and the inclination
angle is expected, since the perturbing impulse is affected.

Let us assume that a homogeneous flux of free-floaters with a
given mass mf, relative velocity v and a number density nf is ap-
proaching with a given inclination angle θ i at a planetary system.
This flux will produce nfvdσ (v, θ , M, rmin)/d� captures per second
per solid angle. For a given relative velocity dispersion S, the cap-
ture rate for a specific stellar mass and rmin is obtained by integrating
with respect to velocity and over the full solid angle:

R (M, rmin) =
∫∫

nfv
dσ (v, θ, M, rmin)

d�
fSdvd�, (4)

where fS is the relative velocity distribution. The expected capture
rate is obtained after integrating with respect to M and rmin according
to their corresponding distribution function, and multiplying by the
total number of stars Nstars:

〈R〉 = Nstars

∫
R (M, rmin) f (M, rmin) dMdrmin. (5)

3 N U M E R I C A L M E T H O D

We follow the work of Varvoglis, Sgardeli & Tsiganis (2012), where
they simulated scattering events of a Jupiter-mass free-floater by a
binary of Sun-mass star and a Jupiter-mass planet. The free-floater
was placed on a parabolic coplanar orbit and sufficiently far away
to be considered as an unbound object. They mapped the resulting
outcomes of the simulation for a grid of impact parameters b and
initial orbital phases φB of the planetary system, and calculated the
fraction of captures P. This is because different initial orbital phases
lead to different impulse durations and strengths. It turned out that
about 50 per cent of the initial condition grid led to a so-called
‘temporary capture’, where the fraction of captures that end up with
moderate values of semimajor axis and eccentricity is in the order
of 1 per cent. These captures are considered as temporary because
simulating this isolated system for a large number of revolutions of
the captured free-floater shows that most of them will eventually
gain energy and escape. They also performed simulations for differ-
ent free-floater masses, showing that the fraction of captures grows
linearly with the mass, but not significantly.

The free-floater, as well as the host star and the bound planet,
is set as a point-mass object. The masses of the star and the free-
floater are simulation variables, while the mass of the bound planet
is of one Jupiter mass. The bound planet is set to revolve around
the host star on simple circular orbit. We define the inclination
angle to be the one between the initial velocity vector of the free-
floater vf and the orbital axis of the bound planet (see Fig. 1).
The initial distance of the free-floater from the system is set to be
r0 =

√
40mf/mBrB + b2, so that the initial binding energy between

the free-floater and the binary is negligible. The corresponding
initial velocity is obtained through conservation of energy

1

2
mfv

2
∞ = 1

2
mfv

2 − Gmf(M + mB)√
b2 + (40rB)2

. (6)

The simulations are carried for different masses of the free-floater
and star, velocities and inclination angles. Each simulation run pre-
forms multiple scattering that corresponds to a grid of impact pa-
rameters b and initial orbital phases of the bound planets φB. The
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Figure 1. Schematic diagram of the scattering simulation. A free-floater
(blue with the mass mf) approaches a star-planet binary with a velocity of
vf and an inclination angle θ i. The brown plane, which is orthogonal to
the velocity vector, depicts the two components of the impact parameter
d = √

b2 + a2. Cases of a �= 0 will be tested separately. The bound planet
(blue with the mass mB) revolves around the star (red with the mass M) on a
circular orbit, with a radius of rB and velocity vB = φ̇Br0. The free-floater
is placed at a distance of r0 � rB from the y axis.

array of impact parameters b spans up to some maximal value bmax,
for which significant perturbation may still occur (equation 2).

One may notice from Fig. 1 that all values of b lead for the path
of the free-floater to intersect with the y-axis if no interaction with
the bound planet took place. This means that the capture statistics
that obtained from a simulation for some inclination angle θ i do
not necessarily predict the percentage of captures produced by a
flux of free-floaters that passes through an area of πb2. To account
for this, the effect of a non-zero second component of the impact
parameter, orthogonal to b and the velocity vector v0, will be be
tested separately.

The dynamical system is described by a simple Lagrangian. It
includes the kinetic term of the two planets, the interaction term
between them and their interaction terms with the star:

Lkinetic = 1

2
mfv

2
f + 1

2
mBv2

B, (7)

Linteraction = G
Mmf

rf
+ G

MmB

rB
+ G

mfmB

|r f − rB| . (8)

We do not add a kinetic term for the star since we assume standard
planetary masses, for which the displacement of the star due to
interaction is negligible down to red dwarf masses.

We preform the simulation for 175 values of −bmax < b < bmax

and 125 values of 0 < φ < 2π for each inclination angle, velocity
at infinity, mass of the free-floater and mass of the host star. The
equations of motion are integrated until the free-floater travels out
approximately twice its initial distance from the star. At this time,
we calculate the sum of the kinetic and potential energy for two

pairs: Ef – star and free-floater, and EB – star and bound planet. The
sign of the energy distinguishes between three outcomes, visualized
in Fig. 2:

(i) Flyby: Ef ≥ 0, EB < 0
(ii) Capture: Ef < 0, EB < 0
(iii) Exchange: Ef < 0, EB ≥ 0

The outcomes are saved together with their corresponding grid
parameters (b, φB), for which the fraction of captures P is calculated.

In order to maximize the simulation speed, we used a grid reso-
lution that is four times sparser then the one used by Varvoglis et al.
(2012), but still high enough for statistical purposes. The numerical
precision, however, must be sufficient enough so that the error in
energy will be at least one order of magnitude smaller than the value
itself. The numerical precision is set by two parameters: the first
is the relative tolerance rT, which determines the maximal relative
error of the solution, and the second is the absolute tolerance aT,
which determines the last important digit of the solution. These pa-
rameters were set to rT = aT = 10−7, for which the accuracy and the
simulation speed are sufficient. We assume that the maximal error
in every solution component yi, taken as |ei| = rT|yi| + aT, has been
achieved, so that the maximal error in Ef is

δEf =
√√√√∑

i

(
∂Ef

∂yi

|ei |
)2

,

where Ef = 1/2mf ṙ2 − mf/r . We calculate δEf for every run of
the simulation to assure that the number of runs that resulted with
δEf/Ef > 0.1 is less then 1 per cent.

4 R ESULTS

We start with a Jupiter-mass free-floater that approaches the binary
on a parabolic and coplanar orbit (v∞ = 0, θ i = 90◦). The resulting
outcome map is displayed in Fig. 3, where we use grey levels to
distinguish between captures, flybys and exchanges. The grey area,
which represents regions of b, φB values that led to captures, covers
almost 50 per cent of grid. The upper an lower impact parameter
values that were tested are those beyond which exchanges do not
occur, indicating that significant orbital perturbations are no longer
possible or too rare. Although statistically negligible, exchange
events may also produce misaligned orbits, and they are considered
as captures.

This outcome map agrees with the one presented by Varvoglis
et al. (2012), implying the consistency of the method. Additionally,
a variety of b, φB grid values with specific outcomes were selected
from the map and tested individually to assure that the final energy

Figure 2. The interaction between the free-floater and the bound planet leads to three different possible outcomes of interest, which are displayed from the
left- to right-hand side – a capture, a flyby and an exchange, where the free-floater ‘replaces’ the bound planet.
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Figure 3. An outcome map for an inclination angle of θ i = 90◦, where the
scatterings between the Jupiter-mass free-floater and a star-planet system
are coplanar. Each point corresponds to a specific impact parameter b (175
in total) and an initial orbital phase of the bound planet φB (125 in total).
An outcome where the free-floater remains unbound (flyby) is represented
by a black colour, while the case where the free-floater gets captured is
represented by a grey colour. Special cases where the free-floater ‘kicks out’
the bound planet and replaces it are seen as white dots on the boundary
between the two main outcomes. The resulting capture probability is P =
48.57 per cent.

Figure 4. The final energy map of the free-floater, corresponding to Fig. 3.
The colour spectrum represent the ratio between the final energy of the free-
floater and the initial energy of the bound planet. The turquoise colour that
covers most of the map represents energy ratio values that are very close to
zero (the free-floater’s original orbit is almost unaffected), while the yellow
colour indicates flyby events with a significant excess of energy and blue
colour indicates capture events with a significant negative energy (tightly
bound). Values above 0.25 or below −0.25 were cropped.

values do not vary, and that the trajectories of the bodies agree with
the outcomes.

The majority of the captures, however, end up with energies that
are ∼10−3 time smaller then the initial energy of the binary, and
are very eccentric and elongated. The outcome of the simulations is
also plotted in Fig. 4 in terms of the ratio between the final energy
of the free-floater and the initial energy of the binary. One can see
that the maximal energy transfer takes place around the boundary
between capture and flyby regions, at which exchange events are
prone to happen. For most b, φB values, the total energy of the free-
floater is almost unchanged. There is ‘line’ of significant positive
energies around b = 0, where the minimal approach of the free-
floater from the star is comparable to the numerical precision, and
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Figure 6. The dependence of the capture probability on the initial velocity at
infinity of the free-floater. This dependence is plotted for different inclination
angles of the star-planet system. The continuous curves represent the fitted
Gaussian profiles, P(v) = P0exp (−v2/2	2).

deviation from conservation of energy becomes substantial. This
small region is disregarded in the statistics.

The eccentricity as a function of the semimajor axis for the cap-
tured Jupiter-mass free-floaters is given in Fig. 5. Only ∼0.9 per cent
of the simulated scattering events ended up with a semimajor axis
of asm < 50 au, which is the distance of the Kuiper belt from the
sun. According to our result, almost all free-floaters will reach their
aphelion beyond the Kuiper belt if they would be captured by our
Sun, but the number of asm < 50 au captures drops rapidly for slight
deviations from coplanarity.

We cover a v∞ initial velocity range for which the capture prob-
ability experiences significant variations. To evaluate the effect of
the lateral impact parameter a �= 0 on the statistics (Fig. 1), we ran
additional simulations for a Jupiter mass free-floater with a fixed
maximal value of a = bmax. The resulting statistics do not show
dramatic variations in terms of capture probability, and they are av-
eraged with the ones for a = bmax. Fig. 6 shows the dependence of
the averaged capture probability on the velocity of the free-floater
for all different inclination angels that were tested. The capture
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Figure 7. Capture percentage obtained from simulations of five different
free-floater masses approaching the star-planet system at a coplanar con-
figuration and zero initial velocity at infinity. The capture percentages ob-
tained for mf = 7mJ and mf = 13mJ are slightly higher, but are still around
50 per cent.

percentage is lower for free-floaters with higher initial velocity and
lower inclination angle (towards a face-on inclination), which is
expected since the orbital perturbation of the bound planet gets
shorter. The resulting functionality is best fitted with a Gaussian
P(v) = P0exp (−v2/2	2), where the parameter P0 is capture frac-
tion for the case of v∞ = 0 and 	 is the standard deviation of the
Gaussian profile.

To evaluate the dependence of the capture probability on the
planetary-mass ratio, we preform a full simulation for two addi-
tional lighter free-floaters – Earth mass and Mercury mass and two
additional coplanar scatterings for 7mJ and 13mJ free-floaters. The
statistics for the different inclination angles and velocities hardly
differed from the ones for Jupiter mass, and are effectively inde-
pendent of the mass at this regime. The latter two exhibited a slight
increase in the capture percentage, as displayed in Fig. 7.

The dependence of capture probability on the stellar mass is also
needed to be analytically approximated. However, since 85 per cent
of all stars are sub-solar, we performed additional coplanar scatter-
ing simulations with lower mass host stars to evaluate their effect.
The resulting capture probabilities are shown in Fig. 8, and small
differences of velocity dependence between the four tested masses
can be noticed. This trend can be attributed to the shorter impulse
that is needed for the free-floater to lose its energy. Still, assum-
ing that this velocity dependence is best fitted with a Gaussian,
the resulting standard deviations differ only by ∼0.3 km s−1. Since
the typical velocity dispersion in our Galaxy is of the order of
∼102 km s−1, we do not expect the capture rate to be significantly
affected.

5 TH E C RO S S - S E C T I O N C O N S T RU C T I O N

The fitted Gaussians profiles, shown in Fig. 6, predict the fraction
of captures P for a given velocity. To account for the dependence on
the inclination angle θ i, we analyse the variations of the standard
deviation 	 and the P0 with the inclination angle, which are shown
in Fig. 9.

We fit a linear function for both 	 and P0, so that the capture
probability, given in cgs units, is approximated analytically with
P(v, θ i) = (0.018θ i + 0.451)exp [−v2/108(0.75θ i + 3.5)2]. The
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Figure 9. The dependence of the 	 and P0 parameters on the incli-
nation angle θ i of the star-planet system, obtained by fitting the cap-
ture probability with P(v) = P0exp (−v2/2	2). The error bars mark the
95 per cent confidence level error range. The dependence was fitted with
a simple linear function f(θ i) = aθ i + b for both 	 and P0. The pa-
rameter 	 is best fitted with a = (0.53 ± 0.5) × 104 cm · s−1 · rad−1 and
b = (2.47 ± 0.05) × 104 cm · s−1, while the best fit for P0 is achieved with
a = 0.018 ± 0.005 and b = 0.451 ± 0.05. The errors range is of 95 per cent
confidence levels as well.

orbital radius of the bound planet rB was constant throughout the
simulations, so a possible dependence of the capture probability on
rb is not accounted for; however, a Jupiter–Sun separation is indeed
typical according to the NASA Exoplanet Archive.2

6 TH E C A P T U R E R AT E

We evaluate the rate at which free-floaters get temporarily captured
after a brief interaction with a star-planet binary. We restrict our-
selves to the Galactic Thin Disc, which contains most of the stars in
our Galaxy (Ns ∼ 1011), under the assumptions that each star is ac-
companied by a planet (Cassan et al. 2012). With a moderate typical
velocity dispersion of σ v = 40 km s−1 and higher metallicity values,
the thin disc may be considered as a plausible source of free-floaters
and with higher capture rates (Murdin 2001). With a relative velocity
dispersion of σrv = √

2σv , we use a Boltzmann velocity distribu-
tion function for the region in question. The interaction cross-section
that results for velocities lower than vlim = 0.07 km s−1 covers an
area that is larger then the typical separation between the stars.
To overcome this difficulty, we use a constant interaction cross-
section of Blim = n

−2/3
stars � 3.7 pc2 for velocities below vlim, where

2 http://exoplanetarchive.ipac.caltech.edu/
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a function of the its mass. The red curve corresponds to the predicted free-
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nstars = 0.14 pc−3 is the number density of stars at the solar neigh-
bourhood. This accounts for slow free-floaters that enter the unit
volume of the star, while any free-floater outside of this volume is
dominated by the gravity of another star. After integrating with re-
spect to velocity and solid angle (equation 4), we obtain the capture
rate as a function of the stellar mass and the planetary-mass ratio
R(M, ρ).

We assume that a Jupiter mass is a typical mass of a free-floater,
as predicted through observations by Sumi et al. (2011), and use
the probability distribution function given by Malhotra (2015) for
planetary masses. This distribution function is based on masses
of observed Kepler exoplanets for which a debiased distribution
was constructed. We also use a present-day mass function for the
Galactic Thin Disc as presented by Chabrier (2003) and constructed
from the observed luminosity function.

The number density of free-floaters nf is assumed to be constant,
as the density distribution of the free-floaters is yet unknown. Using
a number density of nf = 0.24 pc−3, as estimated by Sumi et al.
(2011) from microlensing surveys, the capture rate in the Galactic
Thin Disc is R � 6.4 × 10−6 yr−1 (equation 5), which is about
one ‘temporary capture’ every 1.5 × 105 yr. If we adopt the ex-
situ approach for the origin of free-floater as introduced by Dado
et al. (2011), then a possible number density of nf ≈ 200 pc−3 is
predicted, for which the capture rate in the Galactic Thin Disc is
R ≈ 0.0046 yr−1; that is, we expect a ‘temporary capture’ to occur
about every 218 yr.

The lifetime of stars varies according to their mass, due to fact
that the mass is the energy source of the star and it dictates the
energy output L (luminosity). A rough relation between the lifetime
and mass is derived by evaluating the time required for the star to
consume itself,

τ (M) = f Mc2

L
∼ τ�

(
M

M�

)−2.5

, (9)

where τ� = 1010 yr is the lifetime of the Sun. We use this esti-
mation to evaluate the number of temporary captures that are ex-
pected for different stellar masses. As displayed in Fig. 10, it turns
out that about one out of every ∼760 solar-mass stars is expected
to experience capture a free-floater during its lifetime, while for
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Figure 11. Percentage of stars that are expected to capture a free-floater
during their lifetime as a function of the velocity dispersion. The red curve
corresponds to the predicted free-floater’s number density (nf) assuming that
their origin is explosive death of stars, while the blue one corresponds to a
free-floater’s number density derived from microlensing surveys.

red-dwarf stars with a mass of 0.1 M�, the expectancy is a capture
by one out of every 25 stars.

As more then 85 per cent of the stars are of sub-solar masses,
they are expected to be the main contributors to the capture rate.
We estimate the expected fraction of stars that will capture a free-
floater during their lifetime by calculating the expected value of
R(M)τ (M), where we use the initial stellar mass-function. We pre-
dict that ∼1 per cent of all 0.1 M� < M < 2 M� stars are expected
to experience a capture during their lifetime.

The capture rate has a strong dependence on the velocity disper-
sion, as illustrated in Fig. 11, indicating that the majority of captures
are expected to take place in very cold regions (i.e. of slow planets).

7 D I SCUSSI ON

The vast majority of the capture events ends up with a very small
binding energy between the free-floater and the host star, result-
ing in very elongated and eccentric orbits. Captured free-floaters
may stay bound for a finite period of time until they gain energy
back from planet–planet perturbation and get ‘kicked out’ back to
the interstellar medium. The following perturbations can also cause
the captured free-floater to lose energy and thus ‘tighten’ its or-
bit. Longer two-dimensional simulation carried by Varvoglis et al.
(2012) showed that 90 per cent of the captured free-floaters even-
tually got ejected back to the interstellar medium. This result is in
line with a direct proof by Littlewood (1952) that a non-dissipative
three-body scattering event of point mass objects cannot produce a
stable triplet. Such process is reversible and thus is analogous to a
spontaneous ejection of a planet from a stable orbit. However, once
introducing tidal effects and other possible dissipation mechanisms,
the orbital evolution is no longer reversible. In most of our scattering
simulations, the bound planet experienced only one perturbation, as
the equations of motion were integrated up to the point where the
free-floater travels about twice its initial distance.

The strong velocity dependence of the cross-section results in a
very low capture rate of one capture every 218 yr in the Galactic
Thin Disc, implying that captures are expected to occur in low-
velocity dispersion regions. Moreover, we simulated low-velocity
scatterings because captures are expected at this velocities range.
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Since typical velocities in our Galaxy are much higher, scattering
simulations at higher velocities are needed to avoid extrapolations.

Moreover, 42 per cent of the detected planetary systems contain
more then one planet, and about one third of the stellar systems
contain at least two stars. Simulating a planetary system with mul-
tiple bound planets should produce more boundaries between flyby
and capture regions (see Figs. 4 and 3), at which significant or-
bit perturbations occur and hence increase the fraction of strong
captures.

One must remember that our simulation assumed point masses
and only the gravitational forces that they produce. We did not
include any additional effects that may subtract energy from the
interacting free-floater, such as tidal force and collision with clouds
of debris; these should increase the capture fraction and tighten
the orbits of captured planets. Not all captures, however, would be
subjected to dissipation mechanisms in the same manner. Treating
the eccentricity and the semimajor axis as additional variables of the
cross-section would allow us to distinguish between captures that
are too loose and inclined to remain bound, and those that might get
tighter and circularized on reasonable time-scales. All these effects
are left for future research.

A recent analysis of a large sample of microlensing events per-
formed by Mróz et al. (2017) showed that the population of un-
bound Jupiter-mass planets is about ten times smaller then the one
predicted by Sumi et al. (2011). Yet, a potential indication of the
existence of Earth-mass and super-Earth-mass free-floating planets
was found. Since microlensing events by lower mass lenses are
harder to detect, many microlensing events by sub-Earth unbound
planets could have been left undetected.
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Unvi. Lund [Medd. Lunds Univ. Mat. Sem.], Tome Suppl´ementaire,
p. 143

Lucas P., Roche P., 2000, MNRAS, 314, 858
Malhotra R., 2015, ApJ, 808, 71
Matsuura M. et al., 2009, ApJ, 700, 1067
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