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In a previous article we suggested a method to over-
come the diffraction limit behind a telescope. We dis-
cuss and extend recent numerical simulations, and test 
whether it is indeed possible to use photon amplifica-
tion to enhance the angular resolution of a telescope 
or a microscope beyond the diffraction limit. An es-
sential addition is the proposal to select events with 
above-average ratio of stimulated to spontaneous pho-
tons. The analysis shows that the diffraction limit of a 
telescope is surpassed by a factor ten for an amplifier 
gain of 200, if the analysis is restricted to a tenth of the 
incoming astronomical photons. A gain of 70 is suffi-
cient with a hundredth of the photons. More simula-
tions must be performed to account for the bunching of 
spontaneous photons.
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The angular resolution of telescopes is believed to be ulti-
mately bounded by the diffraction limit. The diffraction limit
has however been overcome in other domains, perhaps most no-
tably in microscopy [1]. Unfortunately, the methods developed
for microscopy can not be applied to astronomy, because the ob-
served sample needs to be illuminated with coherent laser light
– an obvious impossibility on a distant astronomical target. We
have however recently suggested an approach to overcome the
diffraction limit in astronomy. The method is based on optical
amplification [2]: the incoming astronomical photon is copied
via stimulated emission and the momentum of the photon is
determined from the set of stimulated photons, rather than from
a single photon. Photon amplification via stimulated emission is
always accompanied by spontaneous emissions. The minimum
amount of spontaneous emissions has been discussed i.a. by
Milonni & Hardies [3], Wootters & Zurek [4], Mandel [5] and
Caves [6]: An optical amplifier emits a minimum number of
spontaneous photons; this minimum is such that the Heisenberg
uncertainty relation is preserved. Since the diffraction limit is

rooted in the Heisenberg uncertainty relation – the localization
of a photon on the entrance pupil of an optical device introduces
uncertainty on the photon’s momentum, i.e. on its direction –
one may be tempted to conclude that optical amplification can’t
allow to overcome the diffraction limit.

Kurek et al. [7] nevertheless report improved angular reso-
lution beyond the diffraction limit from simulations of single
photon amplification and an analysis that employs the ’matched
filtering method’. Here we revisit their analysis and find that
the use of the actual photon statistics behind an optical amplifier
eliminates the apparent gain in angular resolution.

An improvement in angular resolution may however be ob-
tained by a suitable selection of events with above average ratio
of stimulated to spontaneous photons. This harks back to the
idea of probabilistic noiseless amplification as discussed i.e. by
Duan & Guo [8], Ralph & Lund [9], Zavatta et al. [10] and Usuga
et al. [11]. Probabilistic noiseless amplification allows to over-
come the Heisenberg uncertainty relation on a reduced fraction
of events.

Our numerical simulations suggest an improved resolution 
in terms of photon amplification if the analysis is restricted to 
larger than average photon bursts. This is an addition compared 
to Kellerer [2] and Kurek et al.[7], who suggest to keep all am-
plification events. We find that the restriction to above average 
size of bursts is necessary in order to overcome the diffraction 
limit. Our simulations do, however, not consider the bunch-
ing of spontaneously emitted photons within diffraction limited 
patches, see for example the discussion in [12]. We plan to take 
this into account in future simulations and expect that this will 
modify the conclusions.

Prasad [13] has stated that optical amplification unacceptably
corrupts astronomical signals by adding noise: “[Amplification]
adds only an insignificant amount of noise photons, provided
that the average number of input signal photons per mode is
large compared with 1. This is not true of optical radiation
from a typical astronomical source, which is essentially a black-
body with an effective surface temperature T of the order of or
lower than that of the Sun, namely, 6000 K. The average photon
number per mode, 1/[exp(hc/(λ kT))− 1], at the characteristic
optical wavelength of λ = 500 nm and at surface temperatures
smaller than the Sun’s, is much smaller than 1.” Whilst we agree
that optical amplification cannot boost astronomical signals, we
argue that it may improve the angular resolution of telescopes.
We consider the regime that Prasad suggests to avoid – that is
the regime where the average number of photons per mode lies
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Fig. 1. An amplifier medium placed behind a telescope. The surfaces of the amplifier and telescope pupil are assumed equal to
simplify the notations, but in actuality the amplifier surface can be made substantially smaller than the pupil.

below 1. As photons pass the telescope one by one, their arrival
times are individually detected (non-destructively) and then
each photon is amplified. The burst of amplified photons arrives
on a detector, whose read-out is triggered by the quantum non-
demolition detection of the astronomical photon. The incoming
direction of the astronomical photon may then be estimated
with improved precision on the burst of amplified photons. This
article first discusses our assumptions for the photon statistics
behind an optical amplifier and then presents numerical sim-
ulations. While we take our cue from astronomy, the results
are more general and may well pertain to other cases such as
microscopy.

In an amplifier medium, the mean number of stimulated
photons per incoming photon is

< n >=
s
S

I (1)

where I is the number of excited atoms, s is the cross-section of
excited atoms and S is the aperture- and amplifier-area, see also
Fig. 1. A field of angular diameter θ0 = 2.44 λ/D – where D is
the aperture diameter, and λ the wavelength – corresponds to the
Airy disc up to its first minimum. Now that we have the number
of stimulated photons, we wish to calculate the number of spon-
taneous photons, which are created simultaneously within the
diffraction angle θ0. Within the read-out time ∆t = λ2/(c ∆λ),
equal to the photon coherence time, this ‘diffraction volume’
receives a mean number of spontaneous photons:

< m >=
π θ2

0
4
· I

4π
· A ∆t (2)

A is the emission rate of spontaneous photons within 4 π stera-
dians: A = 8π c s ∆λ/λ4 [s−1].

From these relations one obtains the average fluence ratio of
spontaneous and stimulated photons on the diffraction area:

< m >

< n >
= 0.74 π2 ∼ 7.3 (3)

The spontaneous photons within the coherence volume – i.e.
within the angular diffraction area and during the coherence
time – exceed the number of stimulated photons per incoming
photon by the factor 7.3 [2].

This level of unavoidable noise appears to rule out any im-
provement of resolution through amplification. However, < n >
and < m > represent the average numbers of stimulated and
spontaneous emissions. In the following, we indicate the prob-
ability distributions of the photon numbers: the probability
distribution of stimulated emissions has a large variance, while
the spontaneous emissions are Poisson distributed, i.e. their
numbers are fairly constant. This may enable to select favorable
events, where the ratio of stimulated to spontaneous photons is
especially large.

The probability density of the number of stimulated photons
emitted by a fully inverted amplifier medium of gain g in re-
sponse to a single incoming photon is given by i.a. by Shimoda
et al. [14] and Haus [15]:

pst(n) =
(

1− 1
g

)n 1
g

(4)

which is, for reasonably large photon numbers n, an exponential
function with mean value < n >∼ g − 1 and with standard
deviation of the photon number also equal to σst ∼ g− 1.

The probability density of the number of spontaneous pho-
tons emitted in response to a single spontaneous photon is given
by the same distribution (Eq. 4). For imaging purposes one re-
quires a multi-mode, degenerate amplifier. As discussed by
Haus [15], the observed spontaneous photons then originate
from multiple avalanches and, in the limit of a sufficiently degen-
erate amplifier (many amplified modes), the probability density
follows a Poisson distribution:

psp(n) = exp(− < m >)
< m >n

n!
(5)

It is here assumed that the spontaneous photons are emitted 
uniformly into all modes of the amplifier. The distribution√ 
has an average < m > and a standard deviation σsp = < m >. 
For an amplifier gain, g, and a field diameter, α:

< m >= 7.3 (g− 1)
(

α

θ0

)2
(6)

over one coherence time, ∆t. We assume that the spectral width
of the amplifier is matched to the spectral width of the incoming
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astronomical photons, so that the coherence time of the spon-
taneous photons equals the coherence time of the incoming,
astronomical photons.

To stress the essential point: the stimulated mode exhibits
super-Poissonian statistics, such that for high gain the standard
deviation approximately equals the mean. In addition, we as-
sume that spontaneous photons are spread over many incoher-
ent modes and thus, exhibit approximately Poissonian statistics.
Since the spontaneous photons are Poisson distributed, the rel-
ative standard deviation of psp decreases with increasing gain
factor, g. This is not the case for the stimulated photons, where
the relative standard deviation of pst is constant with increasing
gain factor. Under these assumptions, one may then focus on
large bursts of stimulated photons.

The stimulated photons arrive within the Airy pattern. The
probability density of the angular deviation, θ, from the direction
of the incoming photon is

f (θ) =
(

2J1(π D θ/λ)

π D θ/λ

)2
=

(
2J1(2.44 π θ/θ0)

2.44 π θ/θ0

)2
(7)

where D is the diameter of the telescope pupil and λ the photon 
wavelength.
The average ratio of spontaneous to stimulated photons 
equals 7.3 within the Airy disc of angular diameter θ0 = 2.44λ/
D. Our numerical simulations use a field of angular di-ameter 
α = 3 θ0, where θ0 is the diameter of the Airy disc up to its first 
minimum. We assume that spontaneous photons dis-tribute 
uniformly within the field-of-view of angular diameter α. The 
direction of the incoming photon is randomly varied between 
iterations within the circular field of diameter α. For a single 
photon the rms-error of the direction estimate equals 
approximately σ0 ∼ 0.8λ/D (Eq. 7). In the classical approach,
i.e without amplification and on an unresolved source, the rms-
error decreases to σ0/

√
n, if instead of a single incoming photon

n photons are registered.
When, on the other hand, there is uniformly distributed noise

from spontaneous emission with 7.3 n photons per diffraction
area and, superimposed on this noise, a burst – to use this short
term – of n stimulated photons distributed in an Airy pattern,
the question arises whether within the resulting point pattern
the location of the burst of stimulated photons can nevertheless
be recognized, and whether its centre might then be localized
with rms-error less than σ0. This has recently been studied by
Kurek et al. [7], who find that the angular resolution can indeed
be improved well beyond the diffraction limit. Kurek et al. [7]
assume that the probability densities of the number of stimulated
and spontaneous photons follow Poisson distributions.

To test and extend Kurek et al.’s results, we performed nu-
merical simulations in terms of different modalities:

1. The number n of stimulated photons is taken to follow a
Poisson distribution of mean value g− 1. The number of
spontaneous photons likewise follows a Poisson distribu-
tion. In a circle of angular diameter θ0 the mean number of
photons equals K = 7.3 (g− 1). The standard deviation, σ,
of the estimated location of the center is then determined
from 2000 simulated point patterns. The Airy pattern (Eq. 7)
is used for the position of the stimulated photons, while
the spontaneous photons are randomly distributed across
the field of angular diameter α = 3 θ0. The gain factor, g, is
varied between 1 and 1000.

2. The same computations as in Mode 1, but with the actual
distribution of the number, n, of stimulated photons: i.e.
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Fig. 2. The rms-deviation of the position estimate. The number
of stimulated photons either follow a Poisson distribution or
the actual distribution indicated by Eq. 4: Modes 1 and 2 in the
text.
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Fig. 3. The rms-deviation of the position estimate as a function
of amplifier gain. The analysis is restricted to a percentage of
sets with highest photon density (Modes 2, 3 and 4 in the text).

the distribution described by Eq. 4, rather than a Poisson
distribution. Note that the simulations use the distribution
described by Eq. 4 and not its exponential approximation.

Fig. 2 shows that the angular resolution is significantly im-
proved, if the numbers of stimulated photons are assumed to
follow a Poisson distribution (Mode 1). This result is in agree-
ment with Kurek et al.’s [7] findings. The actual distribution of
stimulated photons behind an optical amplifier has, however,
a substantially larger variance. The broad distribution of the
size of the stimulated bursts enhances the standard deviation
of the location estimates (Mode 2) substantially above the level
that could be reached with a Poisson distribution. It also in-
creases the standard deviation above the level reached without
amplification: thus, amplification does not provide a gain in
angular resolution, at least for gain values below g = 1000: the
Heisenberg uncertainty relation remains valid on the ensemble
of incoming astronomical photons.

The analysis is now restricted to large stimulated photon
bursts. To estimate the burst size, we measure ρ, the photon
density over the circle centered on the position estimate and of
diameter θ0/2. The value of ρ is saved after each iteration and
the iterations are sorted by order of increasing photon density, ρ.
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Fig. 4. The rms-deviation of the position estimate as a function
of the fraction of events kept for the analysis, and for different
amplifier gains.

Two further modalities are then tested:

3. The same computations as in Mode 2, but the analysis is
restricted to iterations with the highest 50% density values.

4. The same computations as in Mode 2, but the analysis is
restricted to iterations with the highest 10% density values.

Assume we want an angular resolution equal to half the 
diffraction limit: Fig. 3 shows that 90% of events need to be 
discarded if the amplification gain equals 10, while 50% of events 
can be kept for a gain g = 100.

Finally, Fig. 4 shows the improvement in the rms-dispersion 
of the position estimate as a function of the fraction of events 
kept for the analysis. For each gain value we perform 104 it-
erations, so that the rms-dispersion is still estimated on 100 
iterations when 1% of events are kept. As the selection criterion 
becomes more restrictive, the number of stimulated photons 
per burst is higher and the rms-dispersion decreases: with an 
amplifier gain g  = 64 the resolution decreases to about a tenth 
of the diffraction limit, if only the 1% best events are kept. 

The error bars on Figs. 2, 3 and 4 correspond to the standard 
error of the rms-deviation estimates. These account only for the 
uncertainty introduced by the finite number of iterations in our 
simulations. The precision of the centroiding algorithm could be 
improved by use e.g. of a matched filter. The rms-deviations of 
the position estimates can thus probably be reduced. The error 
bars do not account for this.

In conclusion, we have discussed the possibility to improve 
the angular resolution of a telescope through optical amplifica-
tion. We extend the results recently presented by Kurek et al. [7]. 
With the actual distribution of stimulated photon numbers, opti-
cal amplification does not improve the angular resolution on the 
ensemble of incoming photons. We then suggest to restrict the 
analysis to events with high ratio of stimulated to spontaneous 
photons. A fraction of events is discarded, i.e. the sensitiv-
ity is reduced, but the angular resolution is improved on the 
remaining events with large numbers of stimulated photons. 
Our simulations do not consider the bunching of spontaneous 
photons within diffraction-sized patches [12]. More refined sim-
ulations will need to explore this effect. We plan to discuss this 
in a future article.
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