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Fourier fringe analysis applied to measuring
the spatial refractive-index distribution
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We have applied the technique of Fourier fringe analysis to microscopic interferograms of needle crystals
that grow from a solution. We use a differential technique in which an empty field interferogram is
compared with one that contains distortion and obscuration by the growing crystal, and we demonstrate
both analytically and experimentally a phase shift sensitivity of 0.01 fringe with a spatial resolution of half
of a fringe spacing (- 1 pAm). Following the analysis of the interferogram in two dimensions, we show
that the three-dimensional refractive-index field around the crystal can be deduced, assuming that it is
axially symmetric, by an iterative method.

Introduction
We describe a technique that we have developed to
measure a three-dimensional field of refractive index
by means of an interference microscope by using
Fourier fringe analysis. 1 6 The practical application
of the technique was to determine the concentration
field around a needle crystal that grows from a
supersaturated solution; this information is impor-
tant in gaining a basic understanding of the phenom-
enon of dendritic growth.7 However, we believe that
the technique and its analysis have applications out-
side the field of crystal growth, and we present them
here in a manner that will not require the reader's
familiarity with our application. In particular, we
present a careful analysis of the accuracy of the
method and discuss the sources of error in the
measurement and their correction in some detail.

The experiment is to be envisaged as follows. We
have a refractive-index field n(x, y, z) that exists
within an externally bounded region and that may
contain some internal obscurations (the growing crys-
tal). In our case the external boundaries are two
parallel planes at z = ±zo; the lower boundary is a
plane mirror and the upper boundary is a thin optical
window. The observation was made by using a
Linnik interference microscope in reflected light.
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The interference measures the optical thickness at
each point (x, y):

zo-

l(x, y) = Jn(x, y, z) - ldz.
-zoo

(1)

This is done by observing the distortions of a fringe
pattern that, under initial conditions in which l(x, y) =
constant, shows a set of nominally straight equally
spaced fringes. We assume that in the region that
interests us the spatial variations in n are small
enough that the integration can be taken to be along a
straight line as implied by Eq. (1).

Analysis of the fringe pattern is made so as to
achieve the following aims. The first is to deter-
mine, as accurately as possible, the boundaries of the
obscured area. The second is to measure the field
l(x, y). The third is to deduce from l(x, y) a three-
dimensional field n(x, y, z) that is consistent with it
and with a minimum of additional constraints (which
of course will depend on the physical system being
investigated and the boundary conditions). This is a
problem in tomography.

Experimental System
The Linnik microscope, based on the Michelson inter-
ferometer, is shown in Fig. 1. It forms an image of
the experimental cell that interferes with a plane
wave, the two being imaged by identical 40x objec-
tives. The interference fringes are localized in the
plane of the mirrors. Although this type of interfer-
ometer is commonly used with white light, in this
application we require quasi-monochromatic illumina-
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Fig. 1. Schematic diagram of the experimental system: 1, micro-
scope stage; 2, tilting table; 3, water-cooled chamber; 4, thermoelec-
tric (Peltier) coolers; 5, copper base; 6, thin mirror (sapphire); 7,
wire spacers; 8, sample; 9, cover glass; 10, dry nitrogen flow (to
prevent mist condensation); 11, Linnik interferometer.

tion so as to get a large number of fringes. We used a
mercury discharge lamp with a filter at = 5640 A;
with such light, exact chromatic matching of the two
objectives was unnecessary.

A typical cell thickness was 2z = 28 lam as
determined by two soft copper wire spacers. The
base mirror was of sapphire coated with Cr, and the
window was a 0.1-mm glass cover slip 25 mm x 30
mm. The experiments8 were done by placing a small
drop of NH4Cl solution in the center of the cell,
cooling and inducing nucleation of needlelike crystals
that grew at a typical velocity of 140 jj s-1.

Our aim was to measure the concentration field
around the growing tip by using the refractive index
as an indicator, with enough spatial resolution and to
a sufficient degree of accuracy to differentiate be-
tween competing models for dendritic growth. The
refractive index is related to solute concentration c
and temperature T. The former relationship is lin-
ear:

n(c) = 1.3325 + 0.0019c, (2)

and the dependence on T is ignored because it is very
small around the temperature of the experiments
(4 C) and the boundary conditions were in any case
isothermal.

Fringe Pattern Analysis
The observed optical path differences were somewhat
less than one wavelength. This occurs because the
experimental cell is necessarily thin to ensure that
the fringes and crystal were both within the depth of
focus. (By using a lower magnification and a thicker
cell, Raz et al.8 obtained path differences as large as
three wavelengths but sacrificed spatial resolution.)
We considered two possible methods for extracting
phase information. The first was to use spatially
incoherent illumination and to measure the intensity

variations that result from the path-length changes
when the interferometer is adjusted for uniform
phase (one fringe across the whole field). The accu-
racy of this method is limited by intensity calibration,
and one can clearly obtain diffraction-limited resolu-
tion. An alternative that we chose is Fourier fringe
analysis,'6 which needs spatially coherent illumina-
tion and has less spatial resolution but allows a
greater degree of precision in determining the phase
(solute concentration).

We begin by arranging a uniform field (x, y) =
constant that gives a dense set of straight fringes,
with spacing A = 2rr/oo, by tilting the reference
mirror of the interferometer. As was done by Ta-
keda and Mutoh,2 we record this interference pattern,
denoted by g0(x, y), before the crystal growth begins
(the empty field), since it includes all the instrumen-
tal effects such as nonplanar mirrors. After the
initiation of crystal growth we observed a new inter-
ferogram g(x, y) in which the fringes are distorted and
part of the field is obscured by the growth crystal.

The principle of the Fourier technique is in fact
exactly equivalent to holographic interferometry car-
ried out digitally by using a Fourier hologram. We
summarize it briefly in the form we use it, and Fig. 2
shows the stages diagrammatically. Denoting the
normal to the fringes as the x axis,

g0(x, y) = a(x, y) + 2b(x, y)cos[wox + 40(x, y)], (3)

where a, b, and 4o are functions that represent
imperfections in the optics. The distorted field con-
tains additional obscuration d(x, y) and phase shift
¢(x, y), both of which are of direct interest to us, and
is

g(x, y) = d(x, y){a(x, y)

+ 2b(x, y)cos[oax + +(x, y) + +O(x, y)]. (4)

We write the Fourier transforms Go(u, v) and G(u, v)
of these two fields as, for example,

Go(u, v) = A(u, v) + B(u, v) * [(u - wo)8(v) * Po(u, v)

+ (u + .oO)B(v) * PO*(-u, -v)], (5)

where Po(u, v) is the transform of exp[i-O(x, y)]; other-
wise capital letters symbolize transforms of lowercase
symbols. Each of Go and G is centrosymmetric
(because the functions g0 and g are real) and has a
zero-order peak and two first-order peaks around u =
-wo. The orders are not 8 functions because of the
functions a, b, etc. There are also higher orders at
u = 2wo, + 3X0, . . ., but these result from nonlinear-
ities in the recording and are small enough to be
neglected. The next step is to shift one of the first
orders to the origin of the Fourier plane and to
remove all other orders. A detailed understanding
of this is needed for quantitative analysis of the
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Fig. 2. Illustration of the Fourier plane operations: (a) contour map of the imposed phase variation and obstruction (contours at
intervals of 0.027r), (b) the fringe field corresponding to (a), (c) Fourier transform of (b) (amplitude contours) with the origin at the center of
the field, (d) transform shifted so that the first order is at the origin, (e) transform after removal of zero and minus first orders, (f)
reconstructed contour map of phases with the same scale as (a).

method and is discussed below. Now we have, in
principle, the new functions

Go'(u, v) = 2B(u, v) Po(u, v), (6)

G'(u, v) = 2B(u, v) * D(u, v) * Po(u, v) * P(u, v). (7)

The inverse transform of Eq. (6) is go'(x, y) and that of
Eq. (7) is g'(x, y). We define their ratio as

g,~y g(X, y)r(x, y) = i , ) = d(x, y)exp[i (x, y)]. (8)

We are interested in two aspects of r(x, y). We have

d(x, y) = I r(x, y) , (9)

+(x, y) = phase[r(x, y)]. (10)

By thresholding d as obtained from Eq. (9) we can
deduce the outline of the obscured area, and in the
unobscured part Eq. (10) gives us the phase of the
field.

Source and Magnitude of Phase Errors
Most previous analyses of the Fourier fringe tech-
nique have centered around the problem of locating
2,rr phase jumps. 2 4 This problem does not concern
us since < 2r in our experiments. The phase

(b(x, y) as determined by the procedure is not exact
because of the need to define a window that separates
the first order from the rest of the transform. The
window tells us to accept all the transform within it
and reject all that outside. However since the orders
are continuous functions that extend throughout the
Fourier plane, the window necessarily contains some
of the outlying parts of the zero and even minus-first
orders and also rejects some of the tail of the first
order. By changing the size or shape of the window
or using an apodization function (semitransparent
window) we can alleviate the problem but not remove
it completely. It is therefore important to estimate
the size of the error introduced by the window and to
look for methods to minimize it.

A second source of error arises from the presence of
the obscured region. Unless the function d(x, y) is
centrosymmetrical, its transform D will not be real
and it seems that the phase of D might get attached to
+. In fact this error can be dealt with quite easily
once the boundary of the obscured region has been
determined. This boundary is then used to blank
out an identical obscured region from both go and g.
The same phase error then appears in both go' and g'
and disappears when their ratio is taken in Eq. (8).

A third source of error comes from the fact that the
processes involved are digital. If there is not a whole
number of fringes in the field of view, the spatial
frequency o is not at an integer point in the Fourier
plane. However, the shift to the origin has to be
rounded to a whole number. It is easy to see that
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this can introduce a phase error that is linearly
related to position in the field and can amount to as
much as Tr at the edges. If both go and g have exactly
the same number of fringes, the error disappears
when one calculates the ratio r, but in any case, once
it is recognized one can easily subtract this error
because it is linear.

To estimate the size of the errors and to determine
how to minimize them we resort to a simple analytical
model of a field in which we expect them to appear.
This model uses a window apodized by a Gaussian
function, which was chosen because its Fourier trans-
form is real and nonzero, so that it cannot introduce
spurious phase errors. In the analytical model the
phase change is assumed to be uniform; this is
obviously of little practical use but allows us to
understand the origins of phase errors. More signif-
icant from the practical point of view is the confirma-
tion of the analytical result by a simulation.

The field has fringes with spacing A in the x
direction and a rectangular obscuration of dimen-
sions 2ao x 2bo. The phase of g is while that of go
is zero. We then have

g0(x,y) = 1 + cos Box, (11)

The transform of the latter is

G(u, v) = [(u)8(v) - 4a0b0 sinc(aou)sinc(bov)]

* [(u)8(v) + 2 exp(-i4)8(u - wo)B(v)

+ 1/2 exp(i+)8(u + (o)8(v)]. (13)

This is illustrated by Fig. 3(a) in one dimension.
We create an apodized window around the first

order by multiplying the transform in Eq. (13) by the
Gaussian function exp{-[(u - oo)2 + v2]/2c2}. Then
we translate the origin by -X0 [Fig.3(b)]. We then
have two contributions to the transform G'(u, v):
the original first order now centered at

Gl'(u, v) = exp(-b)[1/28(u)8(v) - 2a0bo sinc(aou)

x sinc(bov)]exp[-(u 2 + v2 )/2g2],

and the rejected zero order

G2 '(u, v) = -4aobo sinc[ao(u - o)]

x sinc(bov)exp[-(u 2 + v2)/2o- 2 ]

(14)

rect(x/ao)rect(y/bo)][1 + cos(ox + 4)].
(12)

+ exp[-(o 2 /2or2)]8(u - oo)8(v). (15)

A third contribution from the minus first order is

0

qo

Io

(a) ~~~~~~~~0

Apodization Window

50 100 150 200 250

(b) (+1)

(0)

Rejected Zero Or-der
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Fig. 3. Fourier transform of the model field: (a) in its initial form, (b) after the apodized window operation, (c) the two vectors that
contribute to the phase field reconstruction, (d) comparison of the amplitudes of the two contributions to the reconstruction for r = oo/3.
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neglected. Retransforming each term we have

gl'(x, y) = /2 exp(-i4)[1 - rect(x/ao)rect(y/b0)]

* U;; exp[-(x2 + y2)Cr2 /2], (16)

g2 '(X, y) = exp(ixwo)exp(-o 2 12. 2 )

- [exp(ixwo)rect(x/ao)rect(y/bo)]

* exp[-(x2 + y2)U2/2]. (17)

If we look at these two contributions as vectors in the
complex plane, Fig 3(c), we see two vectors at angles
-+ and xo,0 respectively. What we interpret as the
phase is the angle of their resultant R. The error in
angle that is introduced by the second term can be no
greater than the ratio between their lengths (when
they are at right angles) and can be zero if they are
parallel (xcoo - = nr). The amplitudes of the two
functions are illustrated as functions of x (aty = 0) in
Fig. 3(d) for the case o/o = 3. The following points
should be clear from the diagram:

(a) In the field at alarge distance (>>cr-) from the
edge of the obscuration, the maximum phase error is
8( = exp(-oo02 /2u 2 ).

(b) Within a region o-1/2 of the edge it has a value
that may be somewhat larger than the above, since
the second term in Eq. (17) becomes comparable to
the first. The numerical calculation illustrated by
Fig. 3(d) suggests that the error may be an order of
magnitude larger in this region.

(c) Within the obscuration the value is meaning-
less.

Now if we are interested in reducing the error,
clearly &o/a must be made as large as possible.
However, since the transform G' is essentially re-
stricted to a region of the Fourier plane of diameter a,
the spatial resolution of g' is a-1. Thus we pay for
the accuracy of phase by degrading spatial resolution.
A compromise situation is to choose ol/u = 3, which
gives a far-field error in phase of exp(-9/2) = 0.01
rad. The resolution of the reconstructed image is
then 0.5 fringe, which is acceptable if the fringes are
closely spaced. It is of course impossible to use a
fringe spacing smaller than approximately 4 pixels
because of sampling requirements.

Figure 2 illustrates an actual numerical example of
the process. Figure 2(b) shows a field containing
horizontal fringes obscured by a parabolic crystal
with its axis at an angle to the fringes. The distorted
field contains a phase + varying with position in a
Gaussian manner, with a maximum <<ir/2 rad; the
value at each point is shown as a contour map in Fig.
2(a), in which the interval between the contours is
0.06 rad. The phase difference between the empty
field and the distorted field is recovered by the
Fourier technique and is shown in Fig. 2(f). One can

see that errors are introduced around the edges of the
frame and at the boundary of the crystal. The
maximum error in the latter region, one pixel from
the boundary, is found to be 0.08 rad., which is 0.05
fringe. However, if we exclude the region within one
resolution distance (0.5 fringe) of the edge of the
crystal, the maximum error is approximately 0.005
fringe.

Tomography
Now assume that we have obtained the best possible
estimate of +(x, y) = 2'rl(x, y)/X, which represents the
integrated value of n(x,y, z) as in Eq. (1). In order to
extract values of n in a slice of the three-dimensional
system, we have to perform a tomographic inversion
that generally involves much more input data than
we have available (several directions of observation,
for example). However, by assuming that the needle
crystal and the surrounding field have axial symme-
try within the confines of the flat cell, we can make
the problem tractable. This assumption of isotropy
is fairly realistic for the crystals that we are analyzing
at present. It was not our intention in this research
to develop tomographic algorithms, so we used an
iterative technique that is easy to code although it
may be less efficient than a direct method.9 We have
confirmed that the resultant n(x, y, z) reproduces the
input data when it is integrated by Eq. (1).

The assumption of axial symmetry as shown in Fig.
4 means that points such as B and D at the same
radius from the axis are assumed to have the same
value of n. It is then possible to look for a unique
solution to the problem. For a section normal to the
axis (which now defines they axis), the integral

t(x, y) = 2 n(x, y, z)dz = 2 f n(x' Y, 0)d dx

(18)

where D is at (x',y, 0), x' and z is related byx' 2 = x2 +
z2 . Then

IF

1~~~~(x, y) = 2 n(x',

Zo/ 2

y, 0)x'(x' 2
- x2 )-1/2dx'. (19)

z

T

0E
B

N

-Zo/21 I

Fig. 4. Geometry of the tomographic analysis.
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We solve this equation by iteration by using a field
proportional to I as an initial guess for n in the plane
z = 0, i.e., n(x', y, 0) = ol(x, y), where o = 1/2zo.
For each x outside the obscuration we calculate a new
value 11(x,y):

F

11(x, y) = 2 ato l(x', y)x'(x'2
-x

2 )-/ 2 dx'. (20)

We now calculate a new position-dependent value

a,(X, y) = aol(x, y)/l,(x, y). (21)

Now the main contribution to the integral in Eq. (20)
comes from the region in which x' x and so the
product ao(x, y)l(x, y) should be a better approxima-
tion to n(x, y) than was the original otl(x, y). So a
new value 12(x, y) is calculated:

y F

~~~12(, ) = 2 oal(X', y)l(X', y)X'(X'2 - 2)-112dX'. (22)

Once again, a new 2(x, y) = aol(x, y)/12(x, y) is
calculated and the integration repeated. This is
iterated until the indicator

2 = [ln(x, y) - l(X, y)]2

Xn j 12 (x Y) dxdy (23)

ceases to fall.
It is clear that the value of a(x, y)l(x, y), which is

obtained this way, is a field n(x, y) that is consistent
with the data and axial symmetry; it is possible,
although unlikely, that there is another solution.
In practice, the value converges after three or four
iterations. Only positions (x, y) for which the ex-
treme point E has an equivalent F in the axial plane
can be treated this way. Thus the output field is
somewhat restricted with respect to the original data
field; this will be clear from the example that follows.

Figure 5 shows an example of the data treated by
this procedure. The complete interferogram con-
tained 64k pixels and is shown in Fig. 5(a). The
optical path contour map l(x, y) is shown in Fig. 5(b),
as calculated with a Gaussian window with o = wo/3.
The final result, which is the central slice of the
refractive index, translated to a solute concentration
by using Eq. (2), is shown in Fig. 5(c). The axial
symmetry, a necessary assumption for carrying out
the algorithm, has been impressed on the data as can
be seen. It is clear that the refractive index n at any
other point in the cell can be found, but this adds no
useful information.

Conclusions
We have shown that the technique of Fourier fringe
analysis, when used in a differential mode to find the
distortion of an interference pattern, can give a phase
accuracy of approximately 0.01 fringe. The price of
such accuracy is a degradation of the spatial resolu-

0 50 100 150 200 250
(a)

(c)

Fig. 5. Results obtained for a needle crystal growing from super-
saturated solution: (a) the interferogram, (b) the optical path
l(x, y) (contour map at intervals of 0.1'r), (c) the concentration field
c(x, y, 0) in the plane that contains the axis of the crystal [contour
map at intervals of 0.1% from Eq. (2)]. Note the impressed axial
symmetry and the restricted region of the field for which calcula-
tions were possible.

tion to approximately half of a fringe spacing. By
using the data from such an analysis, applied to
interference micrographs of crystals growing from
solution, we have been able to deduce the three-
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dimensional solute field around the crystal, on the
assumption that it has axial symmetry, with a spatial
resolution of approximately 1 im. In future work
we shall try to develop techniques that will allow
relaxation of the assumption of axial symmetry in the
tomographic treatment of the data.
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