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How the Inverted Retina 
Enhances Vision Acuity
Amichai M. Labin and Erez N. Ribak

The visual system is one of the most 
complex and important biological 

systems of the human body. Our eye 
forms an image on the retina, which 
converts it into an electrical signal. 
Detection is performed by the photo-
receptors, which divide into low-light-
level sensitive rods and color-sensitive 
cones. Th ey are located at the bottom 
of the retina, behind layers of transpar-
ent nuclei and neurons, which process 
and transmit the image to the brain. 
Th is backwards structure posed a major 
problem in understanding human and 
vertebrate vision. 

Across the neural layers run the glial 
cells (also called Mueller cells). Th ey span 
the entire thickness of the retina and 
open up as a funnel towards the pupil. 
On the other side, they are each con-
nected to one cone and a few rods. Until 
recently, the main functions attributed 
to Mueller cells were metabolism and 
mechanical support for the neuron layers. 
Measurements of refractive indices of 
retinal tissue and recently of glial cells 
show evidence of waveguide properties of 
the latter.1 Considering these facts, it is 
intriguing to investigate the eff ect of the 
array of glial cells on human vision acuity.

An analytical description of light 
propagation along waveguide struc-
tures,2 such as an irregular array of bio-
logical cells, is very diffi  cult to apply and 
unlikely to be accurate. Th us, we chose 
a direct three-dimensional numerical 
solution of the Helmholtz equation, 
known as the split-step beam propaga-
tion method.3 

To study the glial cells array, images 
of human cells were digitized to defi ne 
their width as a function of depth. Th ese 
were inserted in a data cube with their 
corresponding refractive indices. A 
Gaussian beam was propagated across 
this volumetric description of the retina. 
Th e output light intensity at the bottom 
of the retinal structure was calculated 

throughout the visible regime at various 
incidence angles. Th e latter are associ-
ated with increasingly eccentric entry 
positions within the pupil.4

 Th e results presented a surprising 
picture: For small incidence angles (up 
to 5°) corresponding to a smaller pupil as 
in daytime (photopic) vision, the amount 
of electromagnetic fi eld coupling  into a 
neighbor glial cell is low, less than 3 per-
cent. More signifi cant coupling occurred 
for higher incidence angles, when the 
pupil is wider—in other words, at night, 

(a) and (b) A cut across the retina model. (a) Refractive index profi les of two cells and the 
cross layers. (b) Tilting the cells by 2°, we illuminate with green light the right cell (C), but the 
fi eld amplitude does not leak to its neighbor (N). (c) Taken from above, now we illuminate 
a number of cell funnels with a Gaussian beam at 6°. (d) After propagation, the intensity is 
concentrated by a factor of nine at the cones, and the rest of the light is scattered onto the 
surrounding rods.
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when we use scotopic vision. Th us, light 
is concentrated into the cones during the 
daytime. However, more of it is scattered 
into the surrounding rods after dark. 
Another signifi cant result obtained was 
that in the center of the visible spectrum 
(0.5 to 0.6 µm), a lower coupling loss was 
calculated, even for higher arrival angles, 
thus conserving an optimal image resolu-
tion and reducing chromatic aberrations.5 

Th ese results provide evidence for a 
natural parallel waveguide array, which 
almost perfectly preserves images ob-
tained under the constraints of the pupil 
diameter, eye size and refractive index. 
We revealed the seemingly illogical in-
verted structure of the retina, long taken 
as a contradiction to its optical purpose, 
to be an optimal confi guration for im-
proving the sharpness of images. t
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Sparsity-Based Reconstruction of Subwave-
length Images from their Optical Far-Field
A. Szameit, Y. Shechtman, S. Gazit, Y.C. Eldar and M. Segev

A fundamental restriction of optical 
imaging is given by the diffraction 

limit, stating that the maximal resolution 
is half of the optical wavelength l. This is 
a result of the evanescent nature of waves 
associated with spatial frequencies exceed-
ing 1/l.1 Reaching beyond the diffraction 
limit is a subject of intense research, cul-
minating in various approaches. However, 
none captures images in real time: They 
either require point-by-point scanning 
in the near-field or necessitate averaging 
over multiple experiments with florescent 
particles. Apart from these “hardware so-
lutions,” algorithmic attempts have been 
made to extrapolate the frequency content 
above the cut-off dictated by the diffrac-
tion limit. Such extrapolation methods 
were extremely sensitive to noise in the 
measured data and the assumptions made 
about the information. They all failed in 
recovering optical sub-l information.1 

In recent papers, we have shown that 
sub-l information can be recovered from 
the far-field of an optical image.2,3 The 
idea is based on compressed sensing (CS) 
techniques,4 which are generically used 
for efficient data sampling, and are robust 
to noise in the measured data. Their 
only condition is that the information 
is sparse in a known basis (say, in real 
space). Sparse optical images are com-
mon, e.g., living cells, where the fraction 
of nonzero pixels is about 5 percent.  

Subwavelength imaging can be repre-
sented as a bandwidth extrapolation prob-
lem, where propagation is equivalent to 
passing through a low-pass filter, with the 
diffraction limit as the cutoff frequency.1 
The question is how to identify the correct 
extrapolation, out of the infinite possible 
extrapolations. Here, sparsity comes into 
play: CS implies that, in the absence of 
noise, if the original information is sparse 
in a basis that is sufficiently uncorrelated 
with the measurement basis, then the 
sparsest solution is unique. For sub-l im-
aging, this implies there is only one con-

tinuation of this truncated spectrum that 
corresponds to the sparsest image. Hence, 
if we know that our image is sparse in 
real-space, and only that, we just need to 
find the sparsest solution generating the 
observed far-field image. The uniqueness 
of the solution guarantees that this is 
the correct one. In the presence of noise, 
simulations reveal that the solutions, 
although not unique anymore, are very 
close to the original information when 
the noise is not exceedingly large. Hence, 
searching for the sparsest solution (that 
is consistent with the measured data), 
yields a reconstruction that is very close to 
ideal under typical experimental condi-
tions. Finding the sparsest solution can 
be done through various algorithms. For 
EM fields, we proposed a new algorithm2 
reconstructing amplitude and phase. 

We tested the ideas theoretically with 
sub-l information and devised experi-
mental proof-of-concept: a 4-f imaging 

(a,b,c) The original information consisting of three vertical stripes. (a) Its Fourier spectrum 
and (b) a horizontal cross-section, taken through the real-space image (c). (d,e,f) Using a 
slit, the signal is low-pass filtered at the vertical red lines (e), yielding a highly blurred image 
(d), where the three stripes merge into one (f). (g,h,k) Sparsity-based reconstruction yields 
a high-quality recovered image (g) and its Fourier spectrum (h). The strong correspondence 
between original and recovery is shown in the cross-section (k).

system with a tunable spatial filter at the 
Fourier plane. The filter mimics the opti-
cal transfer function by eliminating all 
frequencies above its cutoff. The recon-
structed images contain spatial frequen-
cies far beyond the highest frequency 
passing the low-pass filter. The figure 
displays the reconstruction of an image of 
three stripes, whereas the low-pass filtered 
image was a single broad stripe within 
which fine features can’t be resolved. 
Recently, we showed the recovery of 
true sub-l images of sparse information, 
reconstructing 100-nm features borne on 
532-nm light, at 30-nm resolution.5 t
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Lensfree Fluorescent On-Chip Imaging 
Using Compressive Sampling
Ahmet F. Coskun, Ting-wei Su, Ikbal Sencan  
and Aydogan Ozcan

Optical imaging tools have found 
widespread use in medicine and 

biology. Specifically, fluorescent micros-
copy has lately experienced a fascinating 
renaissance, expanding our capabilities 
to probe various biological processes 
with much better resolution, field-of-
view (FOV), speed, signal-to-noise ratio, 
etc. While these advanced imaging 
technologies add to our biophotonic 
toolset, there is still a mismatch in terms 
of, for example, throughput, compact-
ness and cost-effectiveness between 
these sophisticated optical platforms 
and most high-throughput lab-on-a-
chip devices. On the other hand, min-
iaturized and cost-effective formats of 
microfluidics and lab-on-a-chip analysis 
have already found several biomedical 
applications, particularly in point-of-
care and field diagnostics.

To provide a better match to this im-
portant need, lensfree on-chip imaging is 
becoming a powerful alternative to con-
ventional techniques.1-4 Today’s digital 
sensor arrays have significantly improved 
space-bandwidth products, dynamic 
ranges and signal-to-noise ratios. When 
combined with new image reconstruction 
algorithms, they provide an opportunity 
to create imaging modalities that can 
make up for the lack of complexity of 
optical components.

Recently we have introduced an 
ultrahigh throughput on-chip fluores-
cent imaging platform that can achieve 
10-µm resolution over an FOV of >8 cm2 
without the use of any lenses, thin-film 
filters or mechanical scanners.2,3 This 
lensfree fluorescent imaging modal-
ity uses a prism-interface to pump the 
objects-of-interest (e.g., cells or biomark-
ers) located within a microfluidic chip, 
where the excitation light is rejected 
through total internal reflection occur-
ring at the bottom facet of the substrate. 
Fluorescent emission from the objects is 

then collected using a dense fiber-optic 
faceplate and delivered to a large-format 
sensor array that has an active area of, 
for example, more than 8 cm2. 

Because the platform is lensless, 
the fluorescent emission from each 
source rapidly diverges, which creates 
a wide point-spread function (PSF) of 
about 40 µm in width. However, the 
limitations of such a wide PSF can be 
digitally removed by using compressive 
sampling algorithms,3 which stem from 
a recently introduced theory aiming to 
recover a sparse signal from much fewer 
samples than it is required according to 
the Shannon’s sampling theorem.5 Based 
on such compressive decoding algo-
rithms, the detected lensfree fluorescent 
image is then rapidly reconstructed to 
yield about 10-µm resolution over an 
ultra-wide FOV of more than 8 cm2.3 

To further increase the throughput, 
we also demonstrated simultaneous 
lensfree imaging of vertically stacked 
microchannels that are separated by 
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50-100 µm in depth. In such a multi-
layered micro-fluidic device, two or 
three channels can be rapidly decoded 
to digitally focus to each microchan-
nel’s fluorescent image without the use 
of any mechanical scanners. 

This platform would be useful for 
various lab-on-a-chip applications, 
including detecting and quantifying 
circulating tumor cells, monitoring 
HIV patients, and conducting high-
throughput cytometry and microarray 
research. t
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