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We look at irregularity and phase transitions in two-dimensional patterns. Two independent methods are 
provided for identifying and measuring hexagonal close packing of particles. We implemented these 
methods on images of melting colloidal films at different melting processes. We could easily spot vari-
ous defects in the hexagonal crystal film. The feasibility of the methods is also demonstrated on human 
retinal images, for measuring the unit cell size and fraction of close-packed cone photoreceptors.        

 

Statistical analysis indicates that phase transition in two-
dimensions (2D) is quite different from three dimensions. 
For instance the XY model predicts algebraic dependence of 
the correlation function at low temperatures preceding the 
exponentially decaying one. There are various theories of the 
mechanism of melting of 2D layers: formation of grains 
boundaries1, formation of topological defects prior to the 
transition2, etc. One of the main theories of phase transition 
by lattice defects predicts a continuous phase transition into 
an intermediate phase form, the hexatic phase, by disloca-
tions of pairs in the lattice2,3. Unbinding these pairs reduces 
the translational order into short range, and orientation order 
into quasi-long range. Consequently, it is important to identi-
fy changes in the shapes of lattices not only for detection of 
local defects but also for other forms of transitions.    

The 2D arrangement of retinal photoreceptors plays a ma-
jor role in determining the visual resolution (the eye size is 
much larger than the receptor spacing). Better acuity can be 
achieved with higher photoreceptors density, the maximum 
obtained by hexagonal closed packing.4 Our brain is unable 
to handle that many inputs, so only ~1mm2 of the retina has 
contiguous closely packed cones, and their density decreases 
rapidly towards the periphery. These are studied by high res-
olution imaging down to single photoreceptors, first cones5,6 
and then even smaller rods.7,8 We are interested in the grid of 
cones in order to understand how the eye samples an image. 

We introduce two analysis methods of hexagonal patterns 
of particles. The first method is based on angular analysis of 
the image's Fourier transform to measure the size of the hex-
agons, and it functions even when the number of hexagons is 
low, and their symmetry is hardly detectable. The second 
method employs a matched filter to identify the hexagonal 
pattern.      

The mean hexagon size measurement makes use of the six-
vertex symmetry of the Fourier spectrum of triangles. As 
hexagons come in different and varying orientations, their 
transform is smeared into a circle9, and the analysis has to be 
performed piecewise (Fig. 1). First the image was sectioned 
into patches corresponding to the short range order, such that 

most hexagons were more or less oriented in the same direc-
tion. The power spectrum of each section was converted 
from Cartesian into polar coordinates, (u, v) → (ρ, θ), in or-
der to identify the six-vertex symmetry. In polar coordinates 
hexagons should show as six maxima at a constant period 
along the angle axis, if indeed derived from a mosaic of un-
iformly arranged triangles in the spatial domain. The six 
points may not be distinct enough in the (ρ, θ) plane due to 
the different hexagon orientations and local density variation.  
To improve visibility, the angular content of the power spec-
trum was Fourier transformed in one dimension (1D), 
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where f (ρ, θ) is the 2D Fourier transform of the image ex-
pressed in polar coordinates, and F (ρ, ω) is the image power 
spectrum in terms of radius and angular frequency. F (ρ, 6), 
represents a frequency consisting of six equidistant vertices, 
regardless of the orientation of the hexagonal packing (simi-
lar to q6 in Ref. 2). The average size of the hexagons is the 

Fig. 1 (color online). Sizing the hexagons. Section by section of the 
lattice is Fourier transformed and converted to polar coordinates. 
Then only the angular direction is 1D Fourier transformed. The sig-
nal at the sixth frequency is analyzed for the location of the maxi-
mum and its value (shown for the rightmost section).  
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value of ρ where the maximal power of F (ρ, 6) occurs; its 
phase is the orientation angle, ignored here. Results were 
averaged over all sections to obtain the mean F (ρ, 6). To 
increase sampling, sections overlapped by half their size. The 
efficacy of this method was tested on an artificial grid of 
hexagons, each of size of 2.69 pixels. The hexagon side was 
found to be 2.67 pixels, less than 1% disagreement.  

 In the second method, we identified the hexagons posi-
tions in the lattice by applying a hexagonal matched filter on 
the image. The matched filter size was determined by the 
mean hexagon size calculated in the above method. For re-
tinal images we used two different sizes of masks, as photo-
receptors size varies across the retina. To account for differ-
ent hexagon orientations, it was sufficient to rotate each 
mask also by two more steps of π/9. Each of the filtered (or 
cross correlated) images was diluted by leaving only its local 
maxima. Then a threshold was applied to the histogram of 
the maxima to remove the filter-noise correlations. For or-
dered arrays, each of the hexagon correlation maxima was 
surrounded by lower near-neighbor correlations9. Thus the 
threshold was tuned by requiring only one correlation maxi-
mum for each hexagon in these images (ordered parts of Fig. 
2). The final result was converted to a binary image. 

In order to diminish the effect of different light levels at 
different areas, we employed a normalized cross correlation10 
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where t is the template mask (i. e. a mask of hexagon vertic-
es), f (x) is the image, fw is the mean of f (x) in the region 
under the template and t  is the mean of the template.  

Another quantity calculated was the fraction of hexagons 
out of cells or particles. For that we repeated the same analy-
sis, but instead of taking a hexagonal mask we used a circular 
one to locate single cells. The two binary images (hexagons 
and cells) were first smoothed into continuous ones, then 
divided to yield the local fraction of hexagons.  

For retinal analysis the threshold was calibrated by requir-
ing that density of single cells agreed with the ex-vivo data 
for the same retinal region11. When the threshold value was 
changed simultaneously for both steps of the analysis (hex-
agons and later cells) it had little influence on the ratio. 

To test the reliability of this method we applied it to ar-
tificial images made of one hexagon, placed among random-
ly positioned particles, which occurs in both colloids and 
retinal tissue. We could identify the hexagon out of 1000 
such particles. For the phase transition analysis we used im-
ages of different melting processes of a colloidal film of va-
rying thickness12. For thick, 12 layer films (Fig. 2 a,b,c) the 
grain boundary melting forms a wide strip and indeed the 
hexagonal lattice is reduced to floating individuals. In a thin, 
4 layers film (Fig. 2 g,h,i), the hexagon map is made of local 

clusters of defects all over the lattice. For an intermediate 5 
layers thickness, melting was spotted both at the liquid strip 
and the "lake", inside the domain, by lack of hexagon ar-
rangement in those areas (Fig 2 d,e,f). It seems that lattice 
order was also starting to break in the area between the 
“lake” and the strip, maybe indicating on a start of a merging 
process. The size of the smoothing filter in the right column 
was varied with the size of the melting area. For the 12 layers 
thickness, which has a big molten strip, we used a bigger 
smoothing filter, ~10×cell size, so that the perimeter of the 
solid could be identified with a specific contour. For 4 and 5 
layers, where the effect is more local, we used ~7×cells size 
filter. 

 

Fig 2. (color online). Left column: Melting processes for 12, 5, 
and 4 layer thickness, imaged at different magnifications and oc-
casional blurring. Center: Corresponding hexagons’ positions, 
after using the matched filter and thershold. Right: Positions 
smoothed by a circular filter into hexagons’ density contours, hot 
color signifying high density. Images courtesy of Y. Peng, Physics 
Dept., Hong Kong University of Science and Technology. 



- 3 - 

 

The mean hexagon size method yielded sizes of 5.7, 7.6 
and 9.0 pixels for 4, 5, and 12 layers, to be compared with 
manually averaged values of 6.0, 7.8 and 9.2 pixels. The av-
erage power of F (ρ, 6) was three order of magnitude higher 
than F (ρ, 5) and F (ρ, 7), indicating the dominance of hex-
agonal patterns. Fig. 3a is a magnified right part of Fig. 2d, 
exactly where Fig. 2e indicates a defect in the lattice. 

For retinal analysis we used off-center locations (nasal 
parafovea) measured by others and by us4,5. Fig. 3b is a re-
gion of the retina showing the cones. First we assumed that 
some of these cells are arranged in hexagonal packing, and 
estimated manually the nearest neighbors spacing to be 10.8 
pixels. Then we implemented our hexagon size method on 
this image, and the result was 11.1 pixels.  

In order to check the percentage of hexagonal packed 
cells, we used a retinal image that was measured using Voro-
noi diagram4 (their Fig. 3d). The fraction of hexagons was 
60% compared to their 57%. Fig. 4 displays locations of cells 
and hexagons in a retinal image, including part of the optic 
disc at the bottom right. We used our images and improved 
their resolution by weighted shift-and-add sub-pixel registra-
tion5. As expected, in the optic disc the number of cones, 
hexagons and their ratio (Fig. 4 b,c,d) is much lower than in 
the other parts of the image. The fraction of hexagons (Fig. 
4d) inside the disc is less than 10% (it should be zero), pro-
viding the level of error. Artifacts inside the large blood ves-
sels (Fig 4b) caused this deviation. In other parts of this im-
age the hexagon fraction was up to 30%. By implementing 
the mean hexagonal size method on Fig. 4a (excluding the 
optic disc), we found that the mean size is 7.69 µm. This 
agrees with the minimum spacing between cones, which is 
roughly constant at 6-8 µm across most of the retina.13 

In summary, two independent methods were presented 
for detecting and measuring the size of hexagonally packed 
particles. By being sensitive even to a small deviation in the 
pattern of particles, these methods enable early detection and 
characterization of phase transitions. By using the same 
technique for measuring single cells in the retina, the local 
fraction of close-packed photoreceptors was quantified. The 
distinction of these non-morphological methods is the ability 
to measure the hexagonal properties where pattern disconti-
nuity occurs, for instance melting boundaries, or the ar-
rangement of cells near blood vessels. Notice that the 

matched filter method can be used for detecting other repeti-
tive patterns by corresponding masks, for example in small 
grains, where the eye is the final judge today. 
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Fig 3. (a) A defect detected in hexagonal lattice of colloidal par-
ticles (Fig. 2a). (b) Photoreceptors mosaic (~7µm spacing), cour-
tesy of Dr. Laurent Vabre, Imagine Eyes Ltd., France.   

 

Fig 4. (color online). (a) Retinal image5 of the optic disc and its vicin-
ity (size 1.4×1 mm2). (b) Cells positions using a round matched filter. 
(c) Hexagons position using hexagonal filter. (d) The fraction of hex-
agons out of single cells varies from 30% to 0% (hot to cold color).  


