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a b s t r a c t

High-resolution imaging of the retina has significant importance for science: physics and optics, biology,
and medicine. The enhancement of images with poor contrast and the detection of faint structures
require objective methods for assessing perceptual image quality. Under the assumption that human
visual perception is highly adapted for extracting structural information from a scene, we introduce a
framework for quality assessment based on the degradation of structural information. We implemented a
new processing technique on a long sequence of retinal images of subjects with normal vision. We were
able to perform a precise shift-and-add at the sub-pixel level in order to resolve the structures of the size
of single cells in the living human retina. Last, we quantified the restoration reliability of the distorted
images using an improved quality assessment. To that purpose, we used the single image restoration
method based on the ergodic principle, which has originated in solar astronomy, to deconvolve
aberrations after adaptive optics compensation.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Early detection of retinal pathologies can be performed by non-
invasive observation of the retinal tissue to a cellular level. The
ability to resolve micron scale structures in the retina can help
better understand the biophysical and vision processes of the
retina [1,2], and can provide early diagnosis of retinal diseases.
Adaptive optics systems, initially developed for astronomy, can
compensate for real-time dynamic aberrations of the eye in order
to improve the resolution of images of the retina [3–6]. However,
for improving resolution, the pupil has to be dilated, and as a
consequence, primary and high-order aberrations are added to the
ocular optics, resulting in a blurry image and suffering from a low
signal-to-noise ratio. In many cases adaptive correction is partial
[7]: the images of the eye are not yet limited by diffraction and
current retinal imaging offers insufficient resolution, the reasons
for which might also be saccades (rapid eye motion). There exist
computational imaging algorithms that are able to superresolve
sets of images [8–12]. Still, adaptive optics is not always fully
successful on all patients and is not always able to reach the
theoretical resolution. Thus we seek to supplement the partial

results of adaptive optics with image processing to improve the
final image quality. Their interpretation is often difficult without a
proper deconvolution processing.

Because of the level and complexity of the aberrations in the
eye, computational imaging algorithms cannot improve the image
significantly, since they are based on deconvolution of the aberration
operator from the high-resolution image, but the time dependence of
this operator is not trivial [13]. The proper estimation of the image
quality and of the reliability of the deconvolution is certainly the
most difficult task to perform. High resolution details clearly arise
on images after the restoration with the higher contrast, but are
these true details or numerical artifacts? The simplest and most
widely used full-reference quality metric is the mean squared
error, computed by averaging the squared intensity differences of
distorted and reference image pixels, along with the related
quantity of peak signal-to-noise ratio. These are appealing because
they are simple to calculate, have clear physical meanings, and are
mathematically convenient in the context of optimization. But
they are not very well matched to perceive visual quality [14–16].

Objective methods for assessing perceptual image quality have
traditionally attempted to quantify the visibility of errors between
a distorted image and a reference image using a variety of known
properties of the human visual system [17–19]. In the matter of
sensation of light, we have to deal with quality as well as quantity.
The 19th century studies of psychophysicists Weber [20] and
Fechner [21] on the response of the human eye to light state that
this response is logarithmic: that is, that the eye essentially takes
the logarithm of the incoming optical signal.
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In this paper, we present an image processing algorithm for
resolution enhancement of retinal images. The novelty in the
suggested method is the ability to significantly improve the
resolution of an ensemble of poor quality retinal images using
a quality assessment based on the degradation of structural
information. A precise shift, select and add process is performed
on a long sequence of retinal images, using image quality
assessment based on the Weber–Fechner criterion. In order to
evaluate the restoration reliability using the improved quality
assessment, we applied successfully a restoration technique
based on an estimation of the maximum of the Laplacian of the
irradiance, in which an isotropic reference is obtained from the
analysis of details inside the isoplanatic patch using the ergodic
principle [22]. This deconvolution method arose in the cases of
extended fields-of-view such as the Sun, where the texture does
not often present punctual references to estimate the aberra-
tions, but rather high resolution details that can be exploited for
that purpose.

We recall briefly in Section 2 the theoretical background of the
Weber–Fechner criterion we used to determine the image quality
assessment, and to perform a precise shifting, selection, and
addition. In this section, we present also some improvements of
the criterion to quantify the visibility of errors between the
distorted image and the reference image. Section 3 presents the
result on real data and the different steps of the enhancement
processing. Last, in Section 4, we discuss the application of this
study in the fields of optics and imaging in astrophysics in order to
improve the visualization of the retina at very high spatial
resolution, and to implement methods for high-resolution retinal
imaging purposes.

2. Weber–Fechner assessment

Most perceptual image quality assessment approaches pro-
posed in the literature attempt to weight different aspects of the
error signal according to their visibility, as determined by psycho-
physical measurements in humans or physiological measurements
in animals. This approach was pioneered by Mannos and Sakrison
[23]. The development of an image processing algorithm for
resolution enhancement depends on our capability to assess the
image quality. Under the assumption that human visual perception
is highly adapted for extracting structural information from a
scene, we use an alternative framework for quality assessment
based on the analysis of the structural information [19]. Most
images are highly structured in the sense that each pixel is
dependent on its neighboring pixels. This dependence provides
an information on the structure of objects in a scene. In this
approach, we are more interested in comparing the structures
between the corrected and the degraded images. After all, mea-
surements of the image structural information give a better
assessment of the corrugation perception than the estimation of
errors between images. In our approach, the image quality
assessment is then determined by the modification of the struc-
tural information. To fulfill this purpose, we propose to improve
the Weber–Fechner criterion it takes into account the logarithmic
sensitivity of eyes in terms of the light and the structural
information in the image.

The image quality measurement has to take into account not
only the absolute value between two pixels but also the mean
values. Our Weber–Fechner quality criterion is Qc, the relative
distance between restored Irði; jÞ and corrugated Icði; jÞ pixels

Qc¼ 20 Log 10
Max½I2r ði; jÞ�

δd
; ð1Þ

with

δd ¼
1
IJ

∑
I

i ¼ 0
∑
J

j ¼ 0

jIrði; jÞ� Icði; jÞj
Irði; jÞþ Icði; jÞ

: ð2Þ

This quality criterion Qc drops to zero as the difference
increases between the two images, and it tends to infinity as the
two images become similar. We show below how this quality
criterion was implemented on a long sequence of retinal images of
subjects with normal vision to perform successfully a precise shift-
select-and-add at the sub-pixel level.

Nevertheless, this quality criterion suffers a lack of sensitivity
for images with poor contrast and the calibration remains difficult
on the corrugated images. The quality criterion determined by Eqs.
(1) and (2) is not able to quantify the restoration reliability of the
distorted images. Stronger structural information can be charac-
terized by the histogram of the corrugated image intensity, or by
the strength of the gradients of the images. Using the dynamic
range adjustment transformation from the raw image histogram to
increase the contrast, Eq. (2) becomes

δd ¼
1
IJ

∑
I

i ¼ 0
∑
J

j ¼ 0

½Irði; jÞ� Icði; jÞ�2
histoði; jÞ ; ð3Þ

where histoði; jÞ is the affine transformation (see Appendix A).
Similarly, for the gradient structured function, Eq. (2) becomes

δg ¼
1
IJ

∑
I

i ¼ 0
∑
J

j ¼ 0
½∇Irði; jÞ�∇Icði; jÞ�2; ð4Þ

where the gradient is taken at half scale of the image spatial
correlation.

Fig. 1. Comparison between the mean processed image (left) and the best raw
image (right) on data taken at the XV-XX Hospital. The r.m.s contrast value is 8.1%
for the restored mean image while the value is 4.1% for the best raw image.
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Fig. 2. Comparison of intensity profiles along the same selected lines across the
retina image after the complete processing (plain line) and before the processing
on the best raw image (dashed-line) of Fig. 1.
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Many methods have been proposed for determining image
quality, and they can be broadly classified into full-reference and
no-reference methods. The full-reference methods evaluate image
quality by comparing images with a reference image, which is
assumed to have perfect quality. In the case of the deconvolution
processing, no-reference methods can be used to assess the quality
of the image. We show in Section 3.2 that the last equation leads
us to a reliable estimate of the image quality after the enhance-
ment by the deconvolution processing. We verify the linear
behavior of this image quality assessment using simulation of
well-known atmospheric perturbations on solar extended images
and defined by a Strehl ratio. In the following, we show the
different applications of the criteria defined with Eqs. (2) and (4)
to respectively perform a precise shift-select-and-add at the sub-
pixel level, and to quantify the restoration reliability.

3. Results

In order to test the method, we developed software in the
Interactive Data Language (IDL) environment. We performed the
processing method on several sets of data obtained with very
different set-ups at the XV-XX Hospital and at Technion. LESIA at
the Paris Observatory has invested in this technology and has
constructed an optical bench with a retinal imaging adaptive
optics system at the XV-XX Hospital, Paris [6,24]. The Technion
invested in over-sampling large sets of retinal images use a simple

fundus camera [13]. In another version, adaptive optics is avoided
by immersing the eye in saline solution, thus reducing the corneal
aberrations [25]. The camera acquires multiple images of the
retina, each having a low contrast. A typical comparison between
a single retinal image and the final one is shown in Fig. 1 from
several sequences (130 processed images) with the optical bench
“OEIL” at the XV-XX Hospital. Intensity profiles before and after
restoration are plotted in Fig. 2.

The proposed image processing algorithm for resolution
enhancement consists of several routines which can be called in
different order depending on the aim that may be to improve the
image resolution, to correct the motion distortion, or to detect
features with a high level of certainty, for instance. Nevertheless,
the use of a multiframe mode with the shift-and-add method to
increase the signal-over-noise ratio must incorporate an image
selecting step. A possible evaluation to probe the reliability of the
deconvolution is to repeat the processing on a set of outcomes and
check the statistical apparition of the details by the structural
information assessment by comparison with a randomly displayed
image.

3.1. Shift-and-selection before addition

Our aim is to improve the image resolution with a high level of
certainty on a selected field-of-view. This is done by dual-step
accurate summation of the largest number of frames when
imaging in a multiframe mode [26], instead of a single flash mode,
and enabled us to use much less illumination power with greater
comfort to the subjects. The novelty in the suggested method is
the ability to significantly improve the resolution of an ensemble
of poor quality retinal images by an evaluation of the shift
correction accuracy using the structural information assessment
of Eq. (2). Moreover, as a consequence of its logarithmic nature,
the structural information assessment range is from 0 up to 1 and
grows smaller as the difference increases between the two images.
This assessment is able to perform a precise shift-and-add at the
sub-pixel level. Its range of application depends on the available
structural information determined by the autocorrelation function.
To save the computational resources, we proceed as follows. First,
we attempt to correct the large shifts coming from the rapid eye
motion using the correlation method based on the complex
conjugate maximum and the fast Fourier transform algorithms.
Then, we use the structural information assessment between the
reference image of interest and multiple shifted images of the
sequence to correct the residual. Then, we select the images
according to similarity criterion, i.e., using the structural informa-
tion assessment on the region of interest to select images that
have been correctly shifted. Last, we sum the selected images. The
accuracy of the shift-and-add method depends on the sub-field-
of-view inside an isoplanatic domain. The processing reveals
stochastic rotations of the field all along the retinal sequence data.Fig. 3. Flow diagram of retinal imaging approach on the region of interest (ROI).

Fig. 4. Left: raw image of the retina observed on 30 January 2009 at the XV-XX Hospital. Right: the mean image (after addition) includes supplemental stage to correct
adequately the rotation using the structural information assessment before addition. Middle: the mean image obtained without this supplemental correction creates a fake
circular stack retina cells. The shift-and-add processing includes a selection procedure depending on the selected region-of-interest using the structural information
assessment.
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In Fig. 4 we show the supplemental stage to correct adequately the
rotation using the structural information assessment before addi-
tion as indicated in the flow diagram of the Fig. 3. IDL procedure
converts to polar coordinate and applies the SIA assessment as the
shift method to evaluate the rotation angle on the region of
interest. Two-stage image registration including correcting for
rotation significantly improves the final image contrast and
sharpness. The processing of mosaics seems to be indispensable
to reach the high-resolution on a large field-of-view. The sharp-
ness map of the registered and de-rotated images shows increased
sharpness over most of the field of view. Then, we applied a k�ω
filter to cut-off low frequencies in the Fourier domain to compen-
sate for the intensity fluctuations [22,27]. In the Interactive Data
Language (IDL) environment, the calculation time required for a
current laptop is less that 1 min to perform over one hundred
images for the frame selection, the registration and the deconvo-
lution while the sub-pixel registration needs up to 20 min. To save
the computational resources, we apply the sub-pixel registration
only after selection of the best images.

The Technion group is producing series of data collected from
retinas, barely resolving the rods and cones in order to check the
efficiency of the shift and add algorithm and obtain large field-of-
view to be used for diagnostic or therapeutic purposes. It devel-
oped a method to oversample these data, and use the fact that the
eye keeps shifting, in order to add multiple shifted images [13].
This allows super-resolving features below the scale of the single
resolution element (or camera pixel). To avoid back reflection from
the cornea into the retinal camera, a wideband green LED
(520 nm) was used with a central stop, forming an annular light
pattern, which was focused on the pupil and crystalline lens and
defocused on the retina. Fig. 5 shows the result of our processing
on a relatively wide field-of-view.

3.2. Image quality assessment

An objective image quality metric can be used to dynamically
monitor and adjust image quality as well as optimize algorithms
and parameter settings of image processing systems. The simplest
and most widely used full-reference quality metric is the image
contrast, computed by

ΔI

I

� �
r:m:s:

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i ðIi� IÞ2

nI2

s
ð5Þ

An image signal whose quality is being evaluated can be
thought of as a sum of an undistorted reference signal and an
error signal. A widely adopted assumption is that the loss of
perceptual quality is directly related to the visibility of the error
signal. The simplest implementation of this concept quantifies the
strength of the error signal. But two distorted images with the
same metric may have very different types of errors, some of
which are much more visible than others. In Fig. 4, the two

Fig. 5. (Top) final image compared to (bottom) single retinal frame. The image is
4.51 across, with its right side at 141 nasal eccentricity. Scale bar, 100 μm. Final
image is made up of 77 images centered at half-pixel level. Contrast values are
equivalents (around 10%). By comparison, the structural information assessment
gives a very high value (see Table 1).

Table 1
Image quality assessment using the r.m.s. contrast criterion (second column) and
the structural information assessment ‘SIA’ (third column) for the two corrected
images displayed (middle and right) on Fig. 4. The mean image is determined after
a precise shift-and-add and image selection. The structural information assessment
is calibrated from the original raw image (one pixel shift).

Retina image (s) Contrast (%) SIA (%)

Raw (left) 4.0 100 (ref)
Mean recentered (middle) 3.85 104
Mean recentered þ rotation (right) 3.9 124

Fig. 6. Simulation of an increasing stochastic blurring determined with OTFs derived from the Zernike expansion. The retinal image left on the figure is defined as the perfect
reference image associated with a Strehl value of 1.0 (perfect OTF). By comparison, the Strehl ratio of the corresponding images left to right are 0.23, 0.15, 0.065 and 0.03.
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corrected images displayed (middle and right) have the same
metric, i.e., an image contrast around 3.9% while the human
perception distinguishes the loss of quality in the middle image.
Table 1 presents a comparison between the quality assessment
based on the contrast described by Eq. (5) and the structural
information assessment derived from Eq. (2) on images displayed
Fig. 4. By comparison, to quantify the image degradations with the
structural information assessment, one considers image degrada-
tions as perceived changes in structural information. The evalua-
tion uses the raw image in Fig. 4 (left) to calibrate the image
quality degradation. A one-pixel shift corresponds to a value of
100%, for instance. Values of the assessment based on the
structural information larger than 100% correspond to precise
shift-and-add at the sub-pixel level.

The assessment of image quality using the structural informa-
tion works well when compared to visual evaluation, although it is
not well correlated with the contrast metrics. We verify this result
using simulations of stochastic blurring taking into account our
knowledge on the effects of the earth's atmosphere on astrophy-
sical images. In the simulation, we estimate accurately the quality
of the image using optical transfer function (OTF) convolved with
the retinal images. OTFs are evaluated for a Zernike expansion
following the Wang and Markey approach [28] and are applied to
calculate the OTFs [29,30]. Fig. 6 shows the blurred image obtained
with the corresponding calculated OTFs. Both image quality
assessment using the r.m.s. contrast criterion and the structural
information assessment (SIA) for the blurred images are plotted in
Fig. 7. SIA criterion shows a linear behavior with respect to the
determination of the Strehl ratio and yields to a more precise
evaluation of the image quality assessment. The contrast criterion

shows a saturation behavior for largest corrugated images as
already indicated by Molodij et al. [22].

3.3. Reliability of the restoration on temporal sequences

Deconvolution is an ill-posed inverse problem that uses reg-
ularization in order to avoid an uncontrolled amplification of the
noise [31]. Most deconvolution techniques boil down to the
minimization (or maximization) of some criterion. The Richardson–
Lucy algorithm, also known as likelihood-expectation maximization,
is an iterative algorithmwhich converges towards the minimum of
the negative log-likelihood [32]. A possible evaluation to probe the
reliability of the deconvolution is to repeat the processing on a set
of outcomes and check the statistical presence of the details or
determine the variance. We compare the processing on each of the
images separately as well as the restoration on the mean image on
the entire sequence. In Fig. 8, the three corrected images displayed
show a metric denied by the human perception. Table 2 presents a
comparison of the quality assessment based on the contrast from
Eq. (5) and the structural information assessment derived from
Eq. (4) on images displayed in Fig. 8. The evaluation uses the raw
image in Fig. 4 (left) to calibrate the image quality degradation.
A one-pixel shift corresponds to a value of 100%, for instance. Fig. 8
shows an overcorrected image using Lucy–Richardson algorithm
and simulated optical transfer function [22]. The comparison
shows the lack of sensitivity of the contrast criteria to estimate
the reliability of the restoration especially when considering over-
compensated treatments. The difficulty to evaluate errors from
global statistical analysis is due to the fact that the quality image
estimator does not take into account the structural information
in the image (local criteria). Fig. 9 shows the reliability of the
processing on a relatively wide field-of-view observed at Technion.

4. Discussion

In this study, the purpose of retinal image registration is to
align retinal images taken at different times in order to obtain a

Fig. 7. Comparison of the contrast and SIA assessment image quality criteria versus
the Strehl ratio derived from the simulated OTFs. The two criteria are determined
on the blurred images of Fig. 6. The contrast criterion (dotted-line) shows a
saturation behavior when increasing the image degradation (e.g. for small Strehl
ratio) while the SIA assessment shows a linear behavior (plain line).

Fig. 8. Left: Mean deconvolved image of the retina at the XV-XX Hospital. Middle: One best deconvolution single image. Right: Over-correction using the simulated OTF as
the deconvolution kernel.

Table 2
Image quality assessment using the r.m.s. contrast criterion (second column) and
the modified structural information assessment ‘MSIA’ (third column) for: (left on
Fig. 8) the mean deconvolved image on the sequence, (middle) the best single
deconvolved image, (right) overcorrected image with simulated OTF. The mean
image is determined after a precise shift-and-add and image selection. The
structural information assessment is calibrated from the original raw image (one
pixel shift) of Fig. 4.

Retina image(s) Contrast (%) MSIA distance (%)

Mean deconvolved 8.1 72.9
Single deconvolved 9.2 73.1
overcorrected 16.7 37.5
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very sharp and high contrast average image, after the retinal
motion is corrected. We have carried out the registration to
measure translation in two stages; a coarse stage followed by fine
registration. Sub-pixel translation measured using the structural
information is found to give good results. We have confirmed that
correcting rotation of the images provides a significant improve-
ment, especially at the edges of the image. We observed that
selecting the better quality frame for image registration gives
improved resolution, at the expense of the signal-to-noise. The
sharpness map of the registered and de-rotated images shows
increased sharpness over most of the field-of-view. The assess-
ment of image quality using the structural information works well
when compared to visual evaluation. In this study, we consider
better quality images to mean sharp cone photoreceptors. Never-
theless, we show that the better contrast compared to the back-
ground is not a reliable assessment while the structural
information assessment matches the human perceived image
quality.

The capability to resolve single cells near the center and at
peripheral areas of the retina could help better understand vision
processes starting from single photoreceptor cells. We can also
learn about the contribution of their spatial arrangement to the
human peripheral vision [33–36]. The presented processing
method can be used as a medical early detection tool with a
current laptop, since it affords a simple, noninvasive, low-cost
measurement at relatively low illumination power.

One of the purposes of this work is also to show the sensitivity
of the proposed structural information assessment to evaluate the
reliability of a deconvolution method. We used the ergodic
principle method (see Appendix B) to replace ensemble statistics
of a random processes with spatial statistics of a single realization,
to calculate the required PSF moments by spatial averages over
selected spatial intervals. This method has the great advantage of
not using a priori constraint and can be applied on retinal images
of subjects with abnormal retina.

There is a provoking similarity between images of solar
granulation and of retinal cells, both having nearly resolved
features at very low contrast, and both suffering from fast random
shifts within a series of images and within the images themselves.
Such a similarity calls for a shared method of investigation, which
should lead to the development of novel imaging tools. We
propose to apply the local correlation tracking (LCT) method [38]
dedicated to the solar granulation to separate the effects of the
retina irregularities from artifacts resulting from the eyes move-
ments during the measurements. The granulation survey method
[39] would be useful to evaluate the density of cones. This is the

first time, to our best knowledge, that such methods will have
been applied in these two diverse fields.

5. Conclusion

Image processing and pattern recognition techniques are help-
ful to analyze biological images but are very difficult even for
state-of-the-art image processing and pattern recognition techni-
ques [41]. Collaboration with specialists of specific eye diseases
will help to develop new techniques or to choose appropriate
ones. Like medicine, research on image processing and pattern
recognition continues steadily and will make further progress in
accuracy, robustness, versatility, usability, and computational effi-
ciency. Many medical diagnoses can use future image processing
techniques for fully automatic image analysis, such as fundus
cameras, SLOs (scanning laser ophtalmoscope) and OCTs (optical
coherence tomography) of the retina. Other acquisition methods
will fit other tissues, so we did not wish to limit ourselves to these
specific devices. They also can use future (or even present) pattern
recognition techniques for improving diagnosis. In this paper, we
seek to supplement the partial results of adaptive optics with
original image processing techniques to enhance the resolution of
retinal images and perform a medical diagnosis for health care
assistance. In this work, we demonstrated a processing method
that enables resolution enhancement of retinal images. The
efficiency of this method has been demonstrated on an adaptive
optics system as well as a rather simple optical setup without
active correction of monochromatic aberrations. At this stage of
the project, an analysis of a pathological database to provide
reliable medical diagnostic algorithms will be necessary. This
means working on images at the limit of resolution close to
observation conditions with patients showing pathologies.
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Appendix A. Dynamic range adjustment transformation

In order to increase the image contrast, we applied a dynamic
adjustment reframing from the histogram distribution to change

Fig. 9. Left: Deconvolution using the Ergodic principle method on a relatively wide field-of-view by comparison with the final image (right) that is made up of 77 images
centered at half-pixel level. Contrast value is 1% for the deconvolved image (10% for the final image) while the structural information assessment gives a value of 80%.
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the dynamic of the gray levels. In the image transformation, the
gray level of the original image corresponds to a new level in the
transformed image for which each pixel is treated according to its
value. The reframing consists of extending the gray dynamic range
denoting that the transformed image histoði; jÞ is an affine trans-
formation of the raw image imaði; jÞ,
histoði; jÞ ¼ alinnimaði; jÞþblin; ðA:1Þ
with the linear coefficients:

alin ¼
xmax�xmin

Imax� Imin
;

blin ¼
1
2

xmaxþxmin�
Imaxþ Imin

Imax� Imin
ðxmax�xminÞ

� �
; ðA:2Þ

Imax being the maximum of the intensity at xmax, and Imin the
minimum of the intensity at xmin of the image histogram. Fig. A1
displays two profile cuts before and after the transformation.

Appendix B. Ergodic principle assumption for retinal imaging

Fig. B1 shows a great similarity between images of solar
granulation and of retinal cells. We propose a novel approach to
enhance the retinal imaging from the experience gained in the
treatment of extended field observations of the solar surface [22].
The Ergodic principle method is able to correct the effects of
atmospheric turbulence as well as static optical aberrations.
Alternatively, after compensation by an adaptive optics system
using a single image, it permits extraction of both object and point
spread functions (PSF) within the isoplanatic patch. With current
detectors, aberrations change significantly on time scales of a
hundredth of a second, i.e., from one short exposure to the next.
Because of ergodicity, the successive PSFs can be viewed in terms
of successive stochastic events which can be characterized by a
mean temporal function equal to the mean spatial function. In the
case of an incoherent source with a large extent compared to the

Fig. A1. Dynamic range adjustment transformation on the retinal image. The dotted line across the raw image provides a profile shown below. The plain line shows a better
dynamic range after the transformation.

Fig. B1. On the right, the solar granulation observed on 8 June 2004 at La Tour Solaire de l'Observatoire de Paris-Meudon, in the G band, during the transit of Venus (the
diameter of Venus is 21 arcsec on sky). On the left, the retina taken at the optical bench “OEIL” at the XV-XX Hospital on 30 January 2009.
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size of the defocused PSF, it is perfectly possible to separate the
perturbations from the features in the source itself [40]. The
irradiance changes of the transport equation in the focal plane of
an imaging system can be expressed in terms of the cross-axis
derivatives of the object and moments of the PSF. Most of the
contribution to the ensemble average is due to positions where the
values of the derivative of the irradiance are high. So, rather than
processing a statistical set of objects, it is adequate to select
independently a few locations in the sensed target where the
value of the Laplacian is high. Applying the Ergodic principle, the
ensemble statistics of random processes is being replaced with
spatial statistics of a single realization.

When observing a complex extended object, the illumination
patterns show structures arising from astronomical objects mixed
with variable PSFs due to atmospheric turbulence. In the speckle
technique introduced by Labeyrie [42], the turbulence effects are
estimated by mean of a temporal sequence analysis of the
astronomical source frames. For extended sources like the Sun,
the difficulty arises because each part of the object has been
convolved with different point spread functions. We derived a
mean spatial isotropic reference composed of different structures
of the irradiance coming from the same isoplanatic domain, and
calculated the required PSF moments by spatial averages over
selected spatial intervals. The selected intervals are those where
the object's Laplacian is large, that is, where the object has high
contrast. We applied successfully the method to retinal images
that allows to estimate the object with a Richardson–Lucy algo-
rithm [43,44], based only on the single image. This statistical
method is well suited to random patterns and requires only one
frame and little computational resources. A way of investigation to
improve the resolution of the images of the retina, used by the
Technion, was a time series analysis for structural characteristics of
the retina [13,37] while 3D blind deconvolution methods have
been developed in France [45]. We envision a comparison in a
future work with the Myopic deconvolution method on the same
data [45–47].
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