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ABSTRACT   

Interferometry in space has marked advantages: long integration times and observation in spectral bands where the 
atmosphere is opaque. When installed on separate spacecraft, it also has extended and flexible baselines for better 
filling of the uv plane. Intensity interferometry has an additional advantage, being insensitive to telescope and path 
errors, but is unfortunately much less light-sensitive. In planning towards such a mission, we are experimenting with 
some fundamental research issues. Towards this end, we constructed a system of three vehicles floating on an air table 
in formation flight, with an autonomous orbit control. Each such device holds its own light collector, detector, and 
transmitter, to broadcast its intensity signal towards a central receiving station. At this station we implement parallel 
radio receivers, analogue to digital converters, and a digital three-way correlator.  

Current technology limits us to ~1GHz transmission frequency, which corresponds to a comfortable 0.3m accuracy in 
light-bucket shape and in its relative position. Naïve calculations place our limiting magnitude at ~7 in the blue and 
ultraviolet, where amplitude interferometers are limited. The correlation signal rides on top of this huge signal with its 
own Poisson noise, requiring a very large dynamic range, which needs to be transmitted in full. We are looking at open 
questions such as deployable optical collectors and radio antennae of similar size of a few meters, and how they might 
influence our data transmission and thus set our flux limit. 
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1. INTENSITY INTERFEROMETRY 
Newer and better optical stellar interferometers are being built and upgraded constantly1. Their accuracy improves and 
their sensitivity increases, even if at a slow pace. However, efforts to apply this technology to space have not been 
successful. The current requirements of sub-micron accuracy and stability, and large collecting area, among others, 
have been shown in the laboratory to be solved, but were unsuccessful in transformation to space. We have looked at 
an alternative solution, namely employing an intensity interferometer in space.  

Stellar Intensity Interferometry (II) was developed in order to solve the problem of measuring the angular size of 
extremely small bright stars. II main advantages are that it is almost unaffected by large baselines and it is less 
susceptible to the Earth’s atmosphere. II was invented by Robert Hanbury Brown and Richard Twiss2 who 
implemented it in 1956. The II was operated in Narrabri, Australia, until 1972. The technique has never been used 
since then, but there are recent attempts to renew it in practice by piggybacking on existing collector arrays3-6. 

2. WHY GO TO SPACE 
The next place to try II is space, with large collectors as independent separate units. We are actively investigating and 
developing algorithms and lab technologies that will ultimately enable space-borne II. The main advantages of 
launching an II into space are: 

1. Availability of shorter wavelengths (blue to UV), absorbed or scrambled by the atmosphere, and therefore not 
covered by amplitude stellar interferometry (the leading technology today from the ground). Shorter 
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wavelengths signifies higher resolution at any given baseline, and observation of objects not available from 
the ground, especially at high resolution.  

2. Larger obtainable baselines between the optical collectors will provide higher resolution. Large ground 
interferometers reach hundreds of meters today, but in space the sky is not the limit. 

3. Flexibility in moving collectors and thus adding baselines will improve the final image quality. Better uv 
coverage is possible by having many collectors and by changing their relative position with respect to each 
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Fig. 1: Scheme of the laboratory model intensity interferometer. 
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other, and not having to rely on earth rotation to do this for us. Positioning commands are simply sent out by 
the central control7.  

4. Larger light collectors than affordable on the ground. Not having to withstand winds and gravity, and being 
limited to 0.3 m accuracy, we can design for much more collection area. 

5. Collector position needs to be known only down to the bandwidth used, orders of magnitude lower than direct 
interference of electromagnetic fields. 

6. Increased integration times will reduce the noise in the images. While on the ground we are limited either by 
atmospheric turbulence or transmission stability (in amplitude interferometers), and in daily cycles, in space 
we can keep the detectors essentially running for very long times.  

7. There is no need to transfer photons between telescopes: it suffices to transmit their intensities by radio. 

8. Each light collector (and of course their combination) can also double up as a spectrometer, again in 
wavelengths that are not easily available.  

 We also expect problems and limitations, some of them very basic: 

1. The signal-to-noise ratio, which is barely acceptable in amplitude interferometry, is much worse in II. The fact 
that we are dealing with second order correlation of the fields, rather than their first order correlations as in 
amplitude interferometry, introduces a huge bias even before we start. Instead of measuring the normalized 
mutual coherence function γ(1) (u, v), we measure γ(2) (u, v) = 1+| γ(1) (u, v)|2 in which the phase is lost (The 
spectral correlation has the same attributes5).  

2. We cannot measure objects that are resolvable by the dishes themselves, which means (like in radio 
interferometry) that we have a severe shortage on low spatial frequencies. 

3. We are limited in bandwidth by the transmission of the signals from space to ground, and we need to have 
reliable (and hence large) radio dishes to relay these signals to the central correlator.  

4. Multispectral measurements cannot be correlated as such, as each requires its own channel. As bandwidth 
limits us in passing a single spectral channel, many channels become even more difficult. 

 
Fig. 2: Nanosatellite model. From top: photomultiplier (centre) and antenna (closer), light-collecting dish, tilt 

mechanism, signal preamplifier and transmitter, rotation propellers.  
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5. Image reconstruction from three or more baselines is more difficult due to the loss of phase, and hence to 
phase closure and other image clues. However, there is a number of algorithms which are successful in 
overcoming this issue11. 

3. INITIAL TESTS 
We have started to investigate and develop technologies that will ultimately enable space-borne II (Fig. 1). We make 
use of the Distributed Space Systems Laboratory (DSSL) at the Asher Space Research Institute at the Technion. We 
started to build a distributed II using the nanosatellite models. This system of satellites constitutes a dynamic 
autonomous multi-agents robotic system. 
 
The nanosatellite models levitate on an air-bearing table to simulate a micro-gravity environment. The air-bearing table 
reliably simulates space dynamics, since the satellites move on a space-like orbital plane. Air bearing spacecraft 
simulators have been used for nearly 50 years worldwide9.  
 
The fields of distributed and cooperative robotics emerged in the late 1980s and have grown dramatically since then10. 
We have constructed nanosatellite robotic models which are being used in this research.  Currently there are three 
nanosatellites (Fig. 2). Each satellite includes four motors with an electronic speed control, navigation and control unit, 
rechargeable battery, accelerometer, gyro, magnetometer and laser range finder. In order to track the satellites, a 
camera and image processing software are used. A wireless serial communication system (XBee) is used for 
connecting the nanosatellite control channel to the control computer. The nanosatellites levitate on an air-bearing table 
as shown in Fig. 3. The table provides a micro-friction environment for simulating the orbital motion of the 
nanosatellites. 
 

 

 
Fig. 3: Air table facility. Three nanosatellite (partial) models are placed on the table. Both “star” and radio receiver are 

installed ~3m above the centre of the table.  
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The optics part consists of two light-emitting diodes (LEDs) place high above the air table in a dark room. These are 
masked by micron size pinholes in order to mimic a binary and test the system performance. Initially we used Fresnel 
lenses for light collection, and we switched to low-quality dishes. These can be tilted to view the light source above. 
The signal is detected by a photomultiplier and amplified before being sent to the transmitter.  
 
There are three receivers and transmitters running at 0.95GHz bandwidth, at three separate frequency bands set around 
3.1, 4.2 and 5.9 GHz bands (Fig. 4). These are fed to analogue-to-digital converters running at up to 5 giga-samples per 
second (GSPS), which in turn are fed into a Field-Programmable Gate Array (FPGA). Here correlations and 
integrations are performed and saved into the host personal computer (Fig. 5).  
 
We are now at the stage of integrating all parts of the system and it seems like all components are responding as 
expected.  

 
Fig. 4: Intensity communication signal during testing. Left: Transmitters and antennae. Right: Receivers.  

 
Fig. 5: Analog to digital converters and correlator. Converters can run up to 5 GSPS. The correlator is a Virtex-6 FPGA.   
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4. SUMMARY 
Our experiment is meant as a lab demonstrator for a space intensity interferometer. Such an interferometer flown in 
formation should be easy to deploy and run, and should yield astronomical results in wave length bands and resolutions 
never tested. Potentially, and even for humble baselines, it could transcend existing interferometers in these aspects and 
at intensities close to those available to amplitude interferometry.  
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