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A simple derivation is given for the signal-to-noise ratio (SNR) in images reconstructed from incoherent
holograms. Dependence is shown to be on the hologram SNR, object complexity, and the number of pixels in
the detector. Reconstruction of involved objects becomes possible with high dynamic range detectors such as
charge-coupled devices. We have produced such white light holograms by means of a rotational shear
interferometer combined with a chromatic corrector. A digital inverse transform recreated the object.

1. Introduction

Incoherent optical Fourier transforms have an ad-
vantage over coherent transforms in that they can be
performed on natural white-light scenes as well as on
simple input devices [cathode ray tubes (CRTs), image
intensifiers]. They are also less sensitive to coherent
noise and to system vibrations. In this paper we inves-
tigate the noise characteristics of such transforms.

An incoherent optical Fourier transform is obtained
when each point of an incoherent object produces a
distinct sinusoidal fringe pattern. The incoherent ad-
dition of all the fringe patterns produces the object
Fourier transform. This is the case when an interfer-
ometer gives two images of an incoherent object, one
being rotated with respect to the other.1-14 Let o(x) be
the irradiance distribution in the incoherent object.
Without loss of generality we shall assume that the
object is at infinity so that x is a pair of angular coordi-
nates expressed in radians. The irradiance distribu-
tion I(u) in the hologram can be written in a general
way:

I(u) = 0(0) + ReO(kRu/X), (1)

where 0(-) is the Fourier transform of o(.), k is a magni-
fication factor, R is a rotation operator, and X is the
wavelength. The Fourier transform i(.) of the irradi-
ance distribution in the hologram gives

(k/X)2 i(kR-1x/X) = O(O)6(x) + /2[o(x) + O(-x)], (2)

where R 1 is the inverse rotation and (x) is a Dirac
distribution. Equation (2) shows that the object can
be recovered from the hologram as long as it does not
overlap with its mirror image with respect to the inter-
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ferometer axis. Another limitation is that the trans-
form has to be either narrowband or chromatically
corrected to utilize the polychromatic nature of real-
life objects [and increase the signal-to-noise ratio
(SNR) of the transform]. Many efforts have been
conducted15-18 toward a solution to this limitation.
For involved objects, the dc component (which may
also include scattered light) creates a demand for a
high dynamic range detector.

Incoherent holography might be called as well Fou-
rier transform imaging, since it is formally similar to
Fourier transform spectroscopy,19 time being here re-
placed with a 2-D space variable. Theoretical ana-
lyses of Fourier transform spectroscopy directly apply
to Fourier transform imaging.

II. Signal-to-Noise Ratio in the Reconstructed Image

The SNR for the reconstructed image has been dis-
cussed by Lowenthal et al.

2 0 Here we adapt a deriva-
tion due to Mertz1 for the SNR in Fourier transform
spectroscopy. The noise no in the reconstructed im-
age is a scaled version of the Fourier transform of the
noise N in the hologram. According to Eq. (2), the
Parseval theorem gives

S IN(U)I2du = (/k) 2 lno(x)I2 dx,

which can be written

NHA (X/k) 2 hOat

(3)

(4)

where A is the hologram area and a' is the mean area
over which noise extends in the plane of the recon-
structed image. N and no are the average rms noises
in the hologram and the reconstructed image, respec-
tively. We assume here that the reconstructed image
is obtained from Eq. (2), although taking the real part
of it would reduce the noise by a factor of AI_.

Let a be the area over which the reconstructed image
extends. The average signal in the image is

o=- o(x)dx=(Q) =-,
af a a (5)

where I is the average illumination in the hologram
[Eq. (1)]. We estimate the SNR for the reconstructed
image as

15 March 1988 / Vol. 27, No.6 / APPLIED OPTICS 1183



(SNRrec)max = c (SNRhoI)max

Putting Eqs. (4) and (5) into Eq. (6) yields

SNRrec= P \ X (7)
aA k V

Since the smallest resolved area in the image plane is
(X/k)2 A-1, one can introduce in Eq. (7) the number M
= (k/X)2 aA of resolved pixels in the image yielding

SNrec = -a -= A SNRhoI' (8)

where SNRhol is the SNR for the hologram. Equation
(8) is formally equivalent to that derived by Lowenthal
et al.20 Assuming detector pixels with statistically
independent noise, the noise to image area ratio a'/a in
the reconstruction is also the ratio of the number P of
independent pixels in the detector to the number of
independent samples in the hologram. To reduce the
noise, we wish the noise area a' to be as large as possible
[Eq. (4)] compared with the image area. The factor
v 7a shows that the SNR in the reconstructed image
can be improved at will by averaging each sample of the
hologram over a larger number of detector pixels.
Equation (8) now gives

SNRrec = MMfgh SNRho1 = M SNROI (9)

Ill. Discussion

Equation (9) holds for any kind of noise (as long as
different pixels have statistically independent noise).
It shows that the SNR in the reconstructed image
decreases when the image complexity increases.2 1 For
a given detector (given P) and a given object total flux
(given SNRhol), it is proportional to the inverse of the
number M of bright pixels resolved in the object, de-
fined as [Eq. (5)]

A
M = aA =- fo(x)dx. (10)

0

If the object total flux increases as M, keeping constant
the object brightness, one can match the detector size
to the object size (P oc M), keeping constant SNRhol.
In this case the SNR decreases with image complexity
M only as 1/M.

When photon noise is the main source of noise, one
has

SNRhol = UP, (11)

where N is the total number of photons detected. Put-
ting Eq. (11) into Eq. (9) gives

SNRrec = (12)

which is independent of the number of pixels in the
detector.

In all cases, the maximum achievable SNR in the
reconstructed image depends on the number of detec-
tor pixels P and the maximum achievable SNR in the
detector, which is determined by its saturation level:

Current charge-coupled device (CCD) chips can store
up to 160,000 photoelectrons before saturating, which
gives (SNRhol)max = 400. Hence a commercially avail-
able 2048- X 2048-pixel CCD can holographically re-
cord a 100 X 100-pixel image with a SNR:

2048 X 400
SNRrec - ~ = 82.

10,000
(14)

IV. Experimental Setup

To verify the dependence of the SNR on image com-
plexity, measured by the parameter M, we employed a
phase-compensated rotational-shear interferometer
as described by Roddier et al.23 Incoherent holograms
were recorded with a CCD camera 2 4 using a RCA 512-
X 320-pixel detector. However, only 250 X 256 pixels
were used for the image reconstruction. The holo-
grams were recorded with broadband white light by
means of a chromatic corrector as described in Ref. 15.

In our experiment the color correction is achieved by
a system of four afocal triplet lenses, combined with a
relay lens, all placed after the interferometer. The
relay lens reimages the twin images chromatically dis-
persed, and the beams expand freely to interfere on the
detector. The chromatic dispersion is such that the
angular distance between the twin images, as viewed
from the detector, is proportional to the wavelength.
Since fringe spacing is proportional to both the wave-
length and the inverse of this angular distance, it be-
comes wavelength independent. Indeed by putting in
Eq. (1) a magnification factor k = mX proportional to
the wavelength X we have a wavelength-independent
illumination:

1(u) = O(0) + ReO(mRu). (15)

After the chromatic corrector every image point is
smeared into a spectrum expanding radially from the
optical axis. When interfering on the detector the two
beams produced by twin points combine to create
white-light fringes. We have counted a few hundred
such fringes with the CCD detector. A test using
system illumination at a series of discrete wavelengths
between 500 and 700 nm showed < 4% error for the
desired equally spaced fringes.

An important drawback of incoherent holography is
the dc bias produced by the term O(0) in Eq. (15).
Another bias term composed of light scattered in the
system and dark current of the CCD should be added
to this term. To remove these bias terms two holo-
grams were taken per image with the fringe phase
flipped 180° between them,21 25-27 thus flipping the
sign of the last term in Eq. (15). Taking the difference
between the two (digitized) holograms gives

D(u) = ReO(mRu), (16)

i.e., a hologram with the bias terms removed. Figure 1
shows an example of hologram obtained with this pro-
cedure. It has three advantages:
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Fig. 1. Incoherent hologram recorded with broadband white light.
The dc bias has been removed (background grey level is zero, dark is
negative, bright is positive). The object consisted of 40 bright dots.

(1) It removes all the bias components including
their irrelevant spatial structure.

(2) The noise (contributed mainly by fluctuations
in the bias terms) is multiplied by A. But, since the
signal is doubled, the SNR increases by a factor of A.

(3) It improves the dynamic range. Although for
the CCD readout we still use the same dynamic range,
the digital Fourier transform that follows gains from
the more limited range of input levels.

We needed an object with a varying and definable
degree of complexity. For this purpose, we drilled a
large number of round identical holes in a metal plate
at random locations. We masked them all with black
tape and then unmasked a growing number of holes
from the center outward for each hologram. Since the
fully exposed mask was very large, the illumination of
the holes was slightly different between the center and
outer side. The object had, therefore, more than the
initially expected two levels of illumination. We esti-
mate the number a'/a of detector pixels per indepen-
dent area in the hologram to be -10 for the maximum
number of holes (sixty).

V. Experimental Results

The holograms were digitized with a dynamic range
of up to 4000 levels. The gain was approximately forty
photons per level. The readout noise was low (up to
0.025 of the full range) and, therefore, negligible com-
pared with photon noise. To utilize the full dynamic
range, different exposure times were used for different
number of holes. The hologram difference shown in
Fig. 1 was obtained with forty holes. Hologram differ-
ences were Fourier transformed digitally to recon-
struct the original object and its twin image. Figure 2

Fig. 2. Reconstructed image obtained by computing the 2-D Fouri-
er transform of the hologram displayed in Fig. 1. The picture is a
negative with a reduced dynamic range to better show the noise

distribution.

shows the image reconstructed from the hologram of
Fig. 1. The noise level in the reconstructed image was
measured outside the object extent and found to be
uniform all over the reconstruction area as expected.

Since the object had more than two levels of illumi-
nation, we defined the object area as the area over
which, in each reconstructed point, the signal was
above some fraction of its maximum value. The re-
sults below were found widely independent of the frac-
tion chosen. This area expressed in number of pixels
was taken as our measure of the object complexity M.
The SNR in the reconstructed image was obtained by
taking the ratio of the signal averaged over the above
defined area to the rms noise measured outside the
reconstructed object as indicated by Eq. (5).

Assuming pure shot noise, the noise in the hologram
was taken as the square root of the average illumina-
tion expressed in detected photons per pixels, and the
signal was taken as the maximum amplitude of the
fringes also expressed in photon units. The SNR in
the reconstructed image was then divided by the SNR
in the hologram and plotted as a function of M in a log-
log scale as shown on Fig. 3. It is clear that for a large
object complexity the 1/M dependence predicted by
Eq. (9) is well observed. However, the factor of pro-
portionality is found to be 40, well below the factor

P = 256 predicted by Eq. (9); i.e., the SNR in the
reconstructed image is -6.4 times lower than the ex-
pected value assuming photon noise as the only source
of noise in the hologram. The discrepancy is even
larger when the image complexity is small.

We believe that these discrepancies can be explained
by the imperfections of the optics, such as aberrations,
dust, and misalignment of the chromatic corrector.
Such errors are highly correlated over different detec-
tor pixels and are not included in our modelization.
We indeed observed that the point-spread function of
the full system is a sharp spike flanked by low-lying
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Fig. 3. Ratio of the SNR in the reconstructed image to the SNR in
the hologram as a function of the number of bright pixels in the
image taken as a measure of its complexity. A minus one slope is

shown for comparison with theory.

wide sidelobes. These sidelobes divert power from
what we have considered as the reconstructed image
(central peaks) and, therefore, produce a lower SNR.
When the object consists of closely packed dots the loss
of signal power is less severe as observed. The situa-
tion is a close analog to that of image reconstruction in
radio astronomy where the point spread function is
called the dirty beam. Deconvolution techniques such
as CLEAN2 8 can be used to produce images with an
improved SNR.

VI. Summary

We have recorded with a CCD camera holograms
obtained with incoherent white-light sources. The
SNR in the object reconstruction was compared to
theoretical predictions. For complex objects the de-
crease of the SNR as the inverse of the number of
resolved object pixels is well observed. Discrepancies
are explained by imperfections in the optics.
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