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Abstract 

Correlations between photon currents from separate light-collectors provide information on 
the shape of the source. When the light-collectors are well separated, for example in space, 
transmission of these currents to a central correlator is limited by band-width. We study the 
possibility of compression of the photon fluxes and find that traditional compression methods 
have a similar chance of achieving this goal compared to compressed sensing. 
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1. Introduction 
Intensity interferometry was born after the Sec-

ond World War, following the development of radio 
technology. The method correlates the intensities 
from two separate light collectors pointing to the 
same object. It can be explained classically as sensi-
tive to the deviations of the object’s intensity from 
its mean, arriving at different times at the two col-
lectors, depending on its geometry (Brown 1974). 
The quantum explanation to the effect was de-
scribed by Purcell, Glauber and Mandel, and lead to 
the development of quantum optics.  

Stellar intensity interferometry was developed 
into an experiment in Narrabri, Australia, and ran 
until 1974. Unfortunately it required long integra-
tion times and large collectors, as compared to am-
plitude interferometry, also developed at the same 
time. Both methods correlate signals from separate 
telescopes, but intensity interferometry performs 
second order correlations, compared to the more ro-
bust first order correlations in amplitude interferom-
etry (see Fig. 1 and Appendix A). However, there 
are regimes where the latter is quite limited, and this 
is due to the atmosphere. First, the atmosphere is tur-
bulent, and turbulence affects more the shorter wave 
lengths, limiting amplitude interferometry mostly to 
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the infra-red. In contrast, intensity interferometry is 
oblivious to turbulence, and at the same time is more 
effective for hotter objects (where there are fewer 
photons per mode) (Brown 1974, Trippe et al. 
2014). Here the atmosphere intervenes again, as it 
becomes opaque in the ultra-violet. Today experi-
ments are being developed to increase the number 
and area of light-collecting dishes by employing 

 

Fig. 1. Two dishes at baseline b collect stellar light. 
The photocurrents i represent the intensities, and are 
correlated, after correcting for the delay d between the 
beams. At low intensities the currents can be repre-
sented by single electron evens.  
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Cherenkov collectors (Dravins et al. 2012, Nunez et 
al. 2012). More such dishes can improve the corre-
lation signal by using higher correlations (Ofir & 
Ribak 2006a, b).  

It was proposed (Ofir & Ribak 2006b, Klein et 
al. 2007, Ribak et al. 2012) to move intensity inter-
ferometry observations outside the Earth's atmos-
phere, where requirements for amplitude interfer-
ometry are still beyond reach today. This can be re-
alized by a formation flight: a fleet of satellites, each 
carrying a large, low-quality light collector. In 
space, objects can be tracked at any wave length for 
hours and days, necessary for intensity interferome-
try, and baselines (distances between satellites) can 
easily be varied, without real-estate constraints, and 
only at the accuracy of meters. These are only some 
of the reasons for the need to realize a complex sys-
tem of this type.  

When looking at the idea of intensity interferom-
etry in space (and sometimes on ground) we see 
some new problems that should be taken into ac-
count. We chose to deal here with the limited ability 
of storing optical information digitally at each satel-
lite, in order to transmit it when passing over a 
ground station. Another problem is transferring the 
information to a control center to perform the corre-
lation between the intensities of the telescopes, in 
real-time or after the fact. Unlike amplitude interfer-
ometry, the signal from each station can be dupli-
cated many times over, in order to correlate it with 
all other stations. 

In amplitude interferometry (Labeyrie at al. 
2006) the normalized correlation of two electric 
fields at two different locations and times is  
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This means that we need to have both fields hitting 
the same detector. The intensity correlation is simi-
larly defined 
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Averaging is performed over integration time T, 
which is much longer than the wave-packet coher-
ence time τc. If the baseline is b = r1 – r2, and the 
difference in times is τ = t1 – t2, we invoke ergodicity 
and define γ (r1 – r2, t1 – t2) = γ (b, τ) ≡ γb. The in-
tensity correlation is written in short as 
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Here we can correlate the separately-measured in-
tensities, simplifying the measurement and analysis. 

During the early period of development of the in-
tensity interferometry, all signal processing was me-
chanical or analogue (Brown 1974). In going to 
space, or even to remote earthly light collectors, data 
compression for storage and transmission is neces-
sary, and we wanted to test its feasibility. We first 
examined the signal processing technique of com-
pressed sensing, also known as sparse sampling 
(Elad 2010), which did not exist at earlier times. The 
motivation behind compressed sensing is that this 
method can be very useful in that the physics behind 
the signals is very well known, and if we look at the 
problem in terms of signal processing the signal can 
indeed be very sparse. If we know how to character-
ize signals in terms of physical behavior, we can 
build a dictionary consisting of several typical sig-
nals with known properties which can be used to 
represent the original signal. This is precisely the 
approach taken in the method of compressed sens-
ing. To the best of our knowledge, temporal com-
pression of interferometric signals was not proposed 
before, and it is our goal to see if indeed it can be 
useful. 

Compressed sensing allows sampling a signal at 
a rate slower than the Nyquist limit. It relies on the 
signal being sparse in some basis Φ. Another condi-
tion beyond sparsity is that the signal is spread out 
in a conjugate space (e.g. frequency), and is very 
dense in Φ. A sensing method captures the infor-
mation in the sparse signal and distills it into a small 
number of data points, even without knowledge of 
its content. Then optimisation is applied to recon-
struct the full signal from its distilled representation. 
Both processes can be very fast.  



3 
 

Compressed sensing has long been used in as-
tronomy, albeit not in the temporal sense. Radio-in-
terferometric signals, coming from far-flung anten-
nae or dishes, sample sparsely the Fourier plane of 
the celestial light distribution (as expressed in the 
Wiener-Khinchin theorem). Still, with knowledge 
of the physical constraints (e.g. object positivity and 
limited extent) it is possible to construct detailed 
maps of the object. Other examples abound. 

Our goal in the following is to see if we can gain 
by compressing intensity interferometry signals, and 
whether compressed sensing is the preferred 
method.  

 

2. Signal processing  
In this study we performed a mathematical anal-

ysis of the signal characteristics. In a two-station in-
tensity interferometer, the simplest case, we have 
two random signals, two photocurrents representing 
the two detected intensities, each having a Poisson 
distribution. Only after the correlation stage, done 
later and elsewhere, a new signal is obtained with 
known temporal properties, from which we can at-
tain the stellar spatial coherence function that we 
pursue (Appendix A). So the mission is to collect 
the two electronic signals (electrical photocurrents), 
and compress them using the typical constraints: 
signal positivity (both stellar intensity and photocur-
rent are positive), and conservation of energy (the 
average photocurrent is constant and equal to the 
mean number of photons). The measurement noise 
we encounter, Poisson noise, obeys these con-
straints.  

Once we understand the physical behavior of the 
signals, the most appropriate solution seems to be 
converting them from the time domain to the fre-
quency domain: The later correlation of two signals 
in the time domain is equal to the product of the sig-
nals in frequency domain (Fig. 2).  In this way, in-
stead of sampling the temporal signal we sample the 
spectrum of the signal. This sampling in the Fourier 
temporal domain is similar to the just quoted case of 
radio interferometry in the object’s Fourier spatial 

domain. Two such equally Fourier-sampled signals 
can be multiplied to obtain the Fourier-sampled 
transform of the correlation signal, at the same sam-
pled frequencies. An inverse transformation, and ap-
plication of the signal constraints, result in the tem-
poral correlation. To fill in the gaps in frequencies 
we need some limitations on the correlation. We do 
not know much about the final result, except to say 
that it must be positive, have a narrow maximum 
somewhere near zero delay, and taper off to the 
mean flux at infinity. Unfortunately we cannot apply 
further symmetry arguments, as we do not know if 
the signal is even. 

Thus we describe the correlation signal of mean-
subtracted fluxes x1, x2 over a signal of length N as 
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a δ function (representing the photons’ correlations 
at times much longer than the coherence time, Ap-
pendix A). To that signal we add a Gaussian random 
process with no time correlation. In other words, we 
can write the correlation as  
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Fig. 2. Correlating two intensities (top row) is equivalent 
to multiplying their Fourier transforms (central row). In 
compressed sensing in the Fourier domain, when we 
sample the two signals at the same frequencies (bottom 
row), we get their product also sampled at the same fre-
quencies.  If we have enough prior (physical) knowledge 
about the object and noise, the gaps between the correla-
tions samples might be bridged. 
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Here n is the time bin, n0 is the delay between sig-
nals, z [n] is a random gaussian vector with zero 
mean and variance of 1, x  the mean flux, τc the 
wave-packet coherence time, γb the coherence func-
tion, and T the integration time of one time bin, of 
which there are N such time bins (Appendix A). α is 
the sought signal and β is the accompanying noise 
term, that we want to reduce or filter out. So in terms 
of compressed sensing, the most appropriate dic-
tionary representing the signal (a δ function) will be 
a dictionary of δ functions. From that dictionary we 
can fit a signal using the measurements, which in 
this case are supposed to be each a delta function 
that we want to measure. The advantage of the com-
pressed sensing method is that we have to choose a 
limited number of blocks from the dictionary. In our 
specific problem the number of elements from the 
dictionary has to always be only one, which shows 
the fact that it is indeed a sparse signal. If our sam-
ples are taken in the frequency domain, the number 
of samples could be much lower than the number of 
samples we need in the temporal domain. The rea-
son is that the location of the δ function (where the 
signals match in time) can be at any point on the 
temporal axis. However, if we take the samples in 
the frequency domain, the theory predicts that only 
one frequency sample is enough to find the function 
amplitude α, and more and more samples can make 
the solution less sensitive to noise. Notice that the 
original experiment (Brown 1974) used a basic 
lock-in detector at one frequency only to get rid of 
signal drift (different frequencies were used for the 
two beams). 

We tried to figure out how much we can really 
dilute the number of samples in the frequency do-
main. We developed a model for our signal calcu-
lated its parameters to fit the theoretical expecta-
tions, and tested them by extensive simulations. The 
model (Appendix A) helps to understand the ability 
of compressed sensing to extract the signal from the 
noise and reduce the samples rate: we see (Fig. 3) 
that in the complex Fourier domain, at any fre-
quency chosen, we get a circle of radius α, and ad-
dition of noise (growing noise term β, Eq. 4) hides 

this circle until such time that we cannot see its size 
any more. 

3. Correlation of two random pro-
cesses 

Compressive sensing does not seem to fulfil the 
promise of efficient compression. This stems from 
the fact that the two photocurrents from the two 
light-collectors are Poisson processes, each without 
time correlation, and the true signal appears after 
their correlation. The information which we need for 
this correlation is distributed uniformly among all 
frequency samples simultaneously. When we take 
more samples in the Fourier domain, we can im-
prove the signal to noise ratio. On the other hand, in 
the frequency domain the two signals are not corre-
lated, and the intensity transforms are distributed 
uniformly. Our temporal process can be described 
as adding a δ function and a Gaussian process (Eq. 
4 and Appendix A). In these two types of processes, 
the amplitude of each Fourier coefficient is inde-
pendent of frequency. This means we have no room 
for manipulation in the frequency domain, because 
if the noise will be reduced so would the signal that 
we want to measure, and this is because their ampli-
tude profile is the same. Thus, if we take any linear 
transformation of the signal, the signal to noise ratio 
will not change and we cannot separate the two. 

4. Known time delay 
Compressed sensing makes use of the difference 

between signal and noise projected into some space 
where that difference is maximized. Until now we 
tried to use compressed sensing in the Fourier do-
main, but can we do better if we have prior infor-
mation in the temporal domain? Since we have a 
good guess of the delay between the two intensities, 
we can limit the time where we perform the correla-
tion to a period centered on this delay, containing 
only N’ samples compared to the full N samples, 
N’N. This decreases noise term β (Eq. 4 and Ap-
pendix A) by a factor ~ (N’/N)1 / 2 , during the cor-
relation stage. However, we still cannot reduce the 
Fourier bandwidth of the transmitted signals: by 



5 
 

putting a limit on time, we add correlations between 
the Fourier components of the signal and noise, and 
reduce the number of independent samples. This 
would not be so bad, if we did not reduce the accu-
racy of the amplitude measurement at the same rate. 
Thus we cannot use the usual advantage of com-

pressed sensing when the signal and noise have dif-
ferent spectral behavior: in our case, there is no re-
gion in the Fourier domain where the contribution to 
the signal (a δ function) is different from that of a 
white noise. Brown (1974) already showed that the 
final signal to noise ratio depends on the Fourier 

 
Fig. 3. The correlation signal in the complex (Re. vs. Imag.) frequency domain. Examples of sampling with noise val-
ues growing counterclockwise from top left. The values of β are each marked relative to the signal from 0 through 0.1 
α, 0.01 α to 0.001 α. Simulation of N = 1000 measurements. The result is independent of the measurement frequency 
or of the temporal band. 
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bandwidth, without specifying from which frequen-
cies is that bandwidth composed. 

5. Low intensity signals 
Until now, we looked at the problem of com-

pressing the analogue signal (the photocurrent). For 
low luminosity objects we can represent the inten-
sity signals, as sampled by the detectors, as sparse 
signals: modern photon counters produce a uniform 
pulse whenever a predefined noise threshold is 
crossed. The sparsity is represented here by a very 
low photon flux, namely long times between photon 
arrivals. This can also happen for brighter sources, 
if we separate the flux spectrally, with the advantage 
that each colour channel can be correlated sepa-
rately with the corresponding colour channel at no 
loss (Brown 1974). While the average flux drops in 
each channel, the stellar size is assumed to be inde-
pendent of colour and should add up with the other 
colours (and if not, we get information about their 
extended atmospheres at specific wave lengths). 
Where we can sample the signals sparsely, they are 
almost binary, and where they are not binary (i.e. 
having more than a single photon in a sample) it 
would be better to clip them and make them binary. 
This is because when we measure two electrons, 
there is much higher chance that they are due to 
noise than to two actual photons. Once the electric 
photocurrent is converted to a binary signal in the 
detector, we have to examine the possibility of using 
other compression methods. This is because com-
pressed sensing restoration is complex and inaccu-
rate for long signals. 

6. Digital Compression 
Searching for the optimal compression, there are 

algorithms intended for binary signals, but we do 
not know in advance if these 1s representing pho-
tons are correlated during the earlier stages of re-
cording and transmission. In cases where the arri-
vals are totally random no compression method is 
useful. However, when the number of photons 
dwindles (as in weak objects or in narrow spectral 
bands), then the signals are mostly zero, which adds 

some order into them. We tested prefix code com-
pression methods, where the amount of bits used is 
smaller. The advantage is realized when the detector 
sampling rate is too fast compared with its recording 
on hard disks, and using this compression we can 
reduce the bit rate needed, and make the recording 
of the digital signal possible. When the signal is 
transmitted to the central station, this compression 
method allows a lower transmission rate. 

When the flux n̅ is low, we expect statistically to 
get long strings of zeros, separated by few ones. Be-
cause neighboring cells are not correlated and we 
measure the arrival or non-arrival of a photon in a 
time slot, we are dealing with a geometric distribu-
tion p (k, n̅) = (1 - n̅) k  n̅. For convenience we denote 
P = n̅ as the probability of one (photon) and Q = 1 - 
n̅ as the complementary distribution. The average 
string will be <k> = P-1 long, but we need to consider 
all string lengths.  

For a large number of photons, we might be able 
to tolerate some losses in compression, as long as 
these losses do not contribute more than the inherent 
noise. However, here we choose to deal with loss-
less compression, and try a method which com-
presses only the number of zeros, by inserting a 
unary number of ones and a final zero before its bi-
nary representation: if the number is b digits long we 
have b-1 ones and a single zero. The number k = 150 
or binary 10010110 (8 digits long) will be repre-
sented by seven ones and one zero followed by k, 
thus: 1111111010010110. Hence the 150 zeros and 
a single one following them was reduced into 16 
bits. In general, each number k will be represented 
by b bits such that b=2 é log2(k+1) ù ,  where éx ù  de-
notes the ceiling value.  To see the compression ca-
pability of a string of numbers with a constant geo-
metric distribution, we calculate the average length 
of a compressed string to be (Appendix B)  
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For a sparse signal, the mean number of bits will be-
have as the logarithm of the uncompressed signal. 
The compression ratio of a flux n̅ will be  
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If the transmission or recording rate is S, the highest 
sampling rate of the detector is S / comp (n̅) = S / 
comp (2.5-m P A η T δω) (Eq. A1). Today’s detectors 
and amplifiers reach δω ≈ 1 GHz, and at that speed 
we gain by compression starting at magnitudes 
fainter than m > 8, and at m = 11.5 compression is 
tenfold (Fig. 4).  

 

These results are calculated for the case of inten-
sity interferometry, and show that it is possible to 
compress signals even from faint stellar objects ob-
served in space (or distant ground locations). Spec-
troscopy allows employing many parallel channels 
without loss of signal, improving the sensitivity of 
intensity interferometry (Section 5). Relaying mul-
tiple channels to the central correlation station re-
quires wide band, but the significant compression of 
each of the many weak channels will allow reducing 
that rate again. 

In addition, compression can be performed for 
other astronomical photon-counting applications, 
such as speckle imaging, faint spectroscopy, wave 
front sensing and more.  

7. Conclusions 
In the case of stellar intensity interferometry sig-

nals, compression methods were found to be ineffi-
cient due to the special characteristics of the sepa-
rate signals: without prior knowledge about which 
pieces of data are important for the later correlation, 
we cannot improve the sampling of the two signals. 
Since both signal and noise are spread evenly in time 
and in frequency, compressed sensing methods, 
which look for difference in their behavior, do not 
have any advantage. Essentially, all linear signal 
processing methods have hard time coping with the 
data, since the signal and noise information are sta-
tistically equally divided among the samples. 

When we moved to low light levels we found a 
theoretical use for the compressed sensing method 
as a way to reduce the number of samples, but even 
in this case its seems that digital compression has 
more advantages over compressed sensing, and this 
is because when we count bits and not samples, 
plain digital compression can give much higher bit 
rate reduction in less time and without losing infor-
mation on the way.
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Appendix A 
We examine the case of a star of magnitude mv at zenith, a collector area A, and detection efficiency η, for 
which the power is P (mv = 0) = 5∙10-5 sec-1 m-1Hz-1 (Labeyrie et al. 2006). Let x1[n] and x2[n] be the numbers 
of photons arriving at each detector during time n which is an integral over the interval T. Then the mean 
flux is 

 ( )i[ ] 2.5 vm

c

Tx E x n P Aη
τ

−≡ = , (A1) 

Since the two fluxes have the same mean and variance, their correlation variance is  

 
( ) ( ){ } ( )

( ) ( ) ( )

2 2 2
1 2 1 2 1 2 1 2

22 2
1 2 1

var [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] var [ ]

x n x m E x n x m E x n x m E x n x m

E x n E x m x n

= − =  

= =
. (A2) 

The covariance of the two photon fluxes is different from zero only for matching times, and the correlation 
expectation includes the sought coherence function,  
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which does not average to zero only at time difference n0. The correlation of the mean-subtracted fluxes 
over a signal of length N is  
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Thus y [n] can be thought of a mean of N random, zero-mean variables of the same variance. Since N is 
large (10~12), the mean of the sum will be the same, but the variance will be scaled down by 1/N, 
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For n ≠ n0 we get E [y (n)] = 0, but for n = n0 
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which is a random gaussian function with known mean and variance. However, the position of n0 is un-
known, although it must be close to zero delay. In other words, we can write the correlation as  
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Here z [n] is a random gaussian vector with zero mean and variance of 1, the result of averaging N  1 

random processes. We have two degrees of freedom, the delay n0 and the correlation signal α.  Experimen-
tally we try to overcome the noise by increasing the signal x and the number of measurements N.  

The correlation of the two signals of length N (Eq. A3) can be described as the product of the two 
Fourier transforms of these signals, 
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If we wish to sample them in only a few frequencies, we must do that at the same frequencies, then multiply 
them and transform back to the time domain, to obtain their correlation (Fig. 2). We express the Fourier 
correlation as Y = Ys + Yn, namely the signal and noise components.  The signal correlation will be 
 { } ( )0 0[ ]

[ ] [ ] exp 2 /s k
Y k n n i kn Nαδ α π= − =F . (A9) 

We choose L Fourier terms, κ Í {1, 2,,,N}, |κ| = L  N, the sampling vector will be C [k] which is a subset 

of Ys [k]. Here k is an index, mapping each of the group κ [k] arbitrarily into the matching index,  
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where the elements of matrix D (also called the dictionary matrix) are given by Dkn = exp [i2πκ(k)n/N]. 
We are seeking a solution giving a δ function, which means that it is of very low sparsity. We find it through 
minimization of ‖y‖0 subject to Dy = C, which is a typical compressed sensing problem with known solutions 
such as projection, matching pursuit, orthogonal matching pursuit, and other variations (Elad 2010). They 
all converge to the same solution when we only have to identify a single coefficient, by requiring the am-
plitude to provide the least error 
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Dn is the nth column vector (of length L) in matrix D. The solution is  
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whose maximum value is L α2, found at index  
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We now turn to the noise, represented by β z [n] (Eq. A7) with a Fourier transform β Z [k]. The variance at 
each frequency is  
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independent of frequency. Returning to the Fourier correlation, we have  
 ( ) ( )2 2[ ] [ ] ; var [ ]E Y k C k L Y k Nα β= ≤ = . (A15) 

The variance is a random variable made of a sum of N random complex gaussian variables. These variables 
can be written as 

 ( ) ( )2 /

1
[ ] [ ]

2

N
i k n N

n

NW k x n e u ivπκβ β
=

≡ = +∑ , (A16) 

where u and v are zero-mean real gaussian variables with unity variance. The combined signal Y[k] is shown 
in Fig. 3. 
 

Appendix B 
The expectation of the number of bits of distribution k is 



11 
 

 ( ) ( )
0k

b b k p k
∞

=

=∑ , (B1) 

where for k = 0, the number of bits is 2, and for every other value it follows the ceiling (next integer) of the 
logarithm of k 

 ( )2( ) 2 log 1b k k= +   . (B2) 

If P = n̅ is the probability to have one photon during a time slot and Q is the probability to have no photon 

(P + Q = 1), then the expectation of each k is p (k) = QkP. Thus
 

 ( ) ( ) ( )2
0 1

2 2 log 1 k

k k
b b k p k n k Q P

∞ ∞

= =

= = + +  ∑ ∑ . (B3) 

Notice that the RHS summation starts at k = 1. If we define k = 2l – 1, we get for that summation 
 

 ( )2
1 1
2 log 1 k k

k k
k Q P l Q P

∞ ∞

= =

+ =     ∑ ∑ . (B4) 

Thus we can divide this sum into sub-sums where each is an addition from one power of two to the next. 

Thus the number of bits in each such sub-sum is constant and can be taken out of the total,
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0 2 1

2 2
l

l

k

l k

b P P l Q
+∞

= = −

= + ∑ ∑ . (B5) 

Each separate sum is an algebraic. Thus
 

 
( ) ( )

1
1

1

2 2 1
2

2 2 1

1 1 12 1

2 2 2 2 2 2

l l
l

l l

l

k

l l lk

Q Q
b P P l Q P P l P l Q Q

P

+
+

+

−
∞ ∞ ∞

−

= = == −

−
= + = + = + −∑ ∑ ∑ ∑ . (B5) 

As the number of consecutive zeros, k, grows at lower flux, the sum approaches very fast (-log2 P) and the 
approximate expectation of the number of bits will be 

 ( ) ( )2 2
12 log 2 logb P P k
k
 = − ≅ +     

. (B6)

 


