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We identify wave fronts that have passed through atmospheric turbulence as fractal surfaces from the Fractional
Brownian motion family. The fractal character can be ascribed to both the spatial and the temporal behavior.
The simulation of such wave fronts can be performed with fractal algorithms such as the Successive Random
Additions algorithm. An important benefit is that wave fronts can be predicted on the basis of their past mea-
surements. A simple temporal prediction reduces by 34% the residual error that is not corrected by adaptive-

optics systems.

Alternatively, it permits a 23% reduction in the measurement bandwidth. Spatiotemporal

prediction that uses neighboring points and the effective wind speed is even more beneficial.

1. INTRODUCTION

We examine the phase of light that has passed through
a turbulent atmosphere. The degraded wave front is a
homogeneous and isotropic stochastic Gaussian process.!
This process is well described by a structure function that
behaves like a power law over many scales of length in
the so-called inertial range. This range lies between the
inner scale, which is of the order of a few millimeters, and
the outer scale, which is of the order of the height above
the ground. This structure function can be written as!

5/3
D,(r) = [¢(R + r) — p(R)]*) = 6.88(5) ) )
0

where ry is the well-known Fried length. We obtain this
expression analytically by using the Kolmogorov assump-
tions concerning the power spectrum of velocity and tem-
perature fluctuations in a turbulent medium. The
validity of this function (at least for the case of astronomi-
cal imaging) has been demonstrated in many observa-
tions.? From dimensional reasoning it is evident that the
power spectrum of the wave-front phase also has a power-
law dependence (which we call the Kolmogorov power spec-
trum) on the spatial frequency «:

P,(K) o k148, @

2. FRACTIONAL-BROWNIAN-MOTION
SURFACES

The relations that are given above resemble a mathemati-
cal entity called Fractional Brownian motion (FBm).3* A
Brownian process B(¢) (e.g., in one dimension, the tempo-
ral one) is a Gaussian stochastic process characterized by
an incremental variance that is proportional to time:

(BT + t) — B(T)]? « t. 3
An extension is the FBm, B, for which
([Bu(T + t) — By(T)]?) « 38, 4)

where H is the Hurst parameter? and is in the range 0-1.
For extension to higher dimensions one changes the
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scalars to vectors, and the variance is proportional to the
vector modulus. For H = 0.5 the process is a classical
Brownian motion [relation (3)]. Again using dimensional
analysis, we find that the power spectrum of the FBm
was?

Py(ic) o i ~@HD) (5)

where E is the standard topological dimension of the gen-
eralized surface. Thus, for a curve, E = 1; for a surface
(such as a wave front), £ = 2, etc. This kind of stochastic
process is found to describe many natural phenomena
such as the discharge of rivers, the Earth’s relief, clouds,
and 1/f noise. The generalized surface is a fractal in a
self-affine way, i.e., the surface is statistically similar for
all scale lengths, but the dependent variable (in this case,
the phase) is scaled differently from the space dimensions.*
A characterizing parameter of fractals is their dimen-
sion (also called the Hausdorff dimension), which is always
greater than the topological dimension E. The difference
between the two describes the ruggedness of the surface.
Thus a highly convoluted and complex line will almost fill
a two-dimensional plane, whereas a slightly crinkled pa-
per will remain almost two dimensional. The fractal
dimension of the FBm surface was found to be®®

F=E+1-H. ©

Thus we identify the wave front (within the inertial range)
as a FBm with a Hurst parameter H = 5/6 and a fractal
dimension F = 13/6. The fractal nature of turbulence-
related phenomena was first established by Mandelbrot,®
who dealt with the fractal dimension of isothermal sur-
faces in a turbulent medium. To our knowledge, we are
the first to identify wave fronts passing through a turbu-
lent atmosphere as fractal surfaces. Fractal properties
can also be related directly to the time behavior if one
assumes the Taylor or frozen-flow description of the atmo-
sphere.” The turbulent eddies are driven by a constant,
uniform wind across the optical aperture in a velocity v
that does not permit a significant development during the
transit time 7 = ry/v. Crosswinds at different layers
change the time to 7 = ry/Av, where Av is related to the
velocity dispersion.? Modern telescopes have a single
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Fig. 1. Power spectrum of a one-dimensional FBm generated by
the SRA algorithm (averaged over 2000 realizations) compared
with the expected 8/3 power law. High frequencies are noisy be-
cause of numerical errors.

dominant layer, so the velocity dispersion is rather small,
and the frozen-flow description is usually valid.

The time behavior of a point on the wave-front surface
is the trace that is obtained when this surface is cut by a
plane that is perpendicular to it in the direction of the
wind. Since this trace is a one-dimensional curve, the
fractal dimension is now 13/6 — 1 = 7/6. We deduce that
the Hurst parameter is again 5/6 and that the power-law
exponent of the temporal power spectrum is —8/3, as is
well known.® The character of the temporal (and the spa-
tial) power spectrum does not change when there are
several cascaded turbulent layers, but it cannot be related
so simply to the wind velocity.

The correlation function of a FBm process is, according
to the Wiener-Khinchine theorem, the Fourier transform
of the power spectrum. Unfortunately it is not defined,
since the Fourier transform does not converge for the
range of exponents in question. We deal with this point
in Section 4 and in Appendix A.

What can we gain from the identification of the wave
front as a fractal surface? We present two implications:
simulation and prediction.

3. SIMULATION

The need for simulations of turbulence-degraded wave
fronts has arisen in some areas. The first was for ex-
ploration of new algorithms for phase retrieval. Later
it became necessary to simulate the performance of
adaptive-optics systems or other optical instruments and
data-processing algorithms. Many algorithms”® have
been suggested for this purpose, and most of them are
based on some type of spectral synthesis, which requires
one or two Fourier-transform stages. Each transform
requires approximately N log N computer operations,
where N is the number of points in the array. Since we
have identified the degraded wave front as a fractal sur-
face, we can benefit from the wealth of algorithms sug-
gested for generating fractal surfaces.
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An algorithm that was suggested for efficient fractal
construction is the Successive Random Additions (SRA)
algorithm. It can be used to produce one-dimensional
traces (temporal behavior) and surfaces (wave fronts) and
is based on building a finer and finer grid with the re-
quired correlation function.® The number of operations
to create the same array of N points is now of the order of
N rather than N log N. Figure 1 is a comparison be-
tween the known power law and an average power spec-
trum that we obtained by using SRA algorithm for the
temporal case. We can deduce that the algorithm will
yield a good coarse simulation, but where small scale (high
frequency) is important the realizations are too noisy be-
cause of numerical errors in the computer. When only
low-order aberrations are important, this algorithm is a
fast and simple generator of wave-front realizations.
Figure 2 presents one realization of a wave front and the
speckle pattern that was obtained through the aperture as
depicted for a monochromatic point source.

4. PREDICTION

The Hurst parameter that is related to the turbulence-
degraded wave front is 5/6. This value implies a persis-
tent character in both the spatial and the temporal do-
mains. This persistence can be demonstrated if we
calculate a normalized correlation measure of past and
future increments (where we define the present as zero)®:

(=B (—8)B, @) _1 ([Bx(®) — Bp(—=01% — 2((B.()]>
{Br@®1% 2 {[B.®)1»

1/2(2t)2H _ t2H
= T

=21 _ 1, (7)

For H = 0.5 the process is completely uncorrelated; for
H < 0.5 the process is antipersistent; for H > 0.5 the
process is persistent, having a positive correlation between
past and future without dependence on time. This im-
plies that we can use predictive algorithms to decrease
the error that is induced by control time lag in adaptive-
optics systems.’® Below we present an approach that is
different from former studies that have assumed a chaotic-
attractor'* behavior. This is not necessarily contradic-
tory, since fractal dimensions are related to chaotic
processes. Statistical prediction for adaptive optics has
been explored earlier, but not in this manner.*

The simplest predictor is a linear estimator,™ in which a
future phase at some point is estimated by a linear combi-
nation of past phase measurements. We assume that the
phase ¢(x, y,t) is measured on a spatial grid of Ax = Ay =
I, which is small compared with the aperture and the
outer scale, and in time steps A¢, which are small com-
pared with the coherence time of the atmosphere. The
general structure of the estimator of the phase in a grid
point (x,y) is

olx, 3, 8) = Erijkgo(x + iAx,y + jAy,t — RAD). 9]

ijk

Now we consider the temporal case alone, where
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Fig. 2. (a) Realization of a wave front generated by the SRA al-
gorithm. (b) The speckle pattern of a monochromatic point

source through the aperture and the wave front shown in (a).

N
$t) = D rip(t — iAD).
The mean-square error (MSE) is defined as
N 2
€ = le® — 0% = ( |e&) = Zriot — iAt)
N N
=T(0) + X rT0) - 23 rlGAY)

N
+ 22 (i — jlAD),

i>j

9)

(10)

Schwartz et al.

where
I'(m) = (@e®e — 1)) (11)

is the temporal correlation function between consecutive
wave-front phases. We now use the identity

I'(") =T©) - %‘CT”I. (12)

Note that ¢r2# is the structure function [Eq. (1)]. After
some algebra we can write

€)= F(O)(l - %r,)z

12

N N
+ C[Z r,-(iAt)ZH - Zr,-rj(|i - JIAt)zH . (13)

>

Since I'(0) is infinite for an ideal FBm, we need to obtain a
finite value for the error. To this end we impose the
normalization constraint

>Sr=1. (14)

Minimizing with respect to each r; under the above
constraint, we obtain a set of linear equations that can be
solved for any length of estimator that is required. The
set of coefficients and the MSE for a few cases (for H =
5/6) are presented in Table 1.

We can see immediately that the improvement over
using the simplest predictor is insignificant. The coeffi-
cients are different from those of the simple extrapolation
case, which for N = 2 are r; = {2, —1}.

To introduce a finite outer scale we retrace our steps
and again write the entire phase estimator as

P, ;1) = D rpplx + iAx,y + jAy ¢t — kAt) = RT®,
ik
15

where R is the vector of the estimator coefficients and ®
is a vector containing past measurements on grid points
@, J, k). Our goal is to minimize the MSE

€ = folx, %) = ¢(x, 5117
= ([p(x, 3 1) — RT®]%) = (p?) — 2RT(e®D) + RT@PDT)R
= (¢% — 2R’P + RTMR. (16)

Table 1. Sets of Coefficients and Mean-Square
Errors for Four Linear-Predictor Lengths

Mean-Square

N Coefficients (r;) Error (€2))
1° 1 cArH®

2 {1.58740, —0.58740} 0.654960cA:™*
3 {1.47946, —0.344348, —0.153114} 0.639605cA¢%°

4 {1.47942,-0.384921,0.0233227, —0.117827}  0.630725cAt™®

“Simple time lag.
*T'wo-point temporal prediction.
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We obtain the minimizing set of estimator coefficients by
performing a gradient in R space and equating it with
zero. The result is

R, =M"P. an
The value of the minimum squared error obtained is
€n =" - P'R,. (18)

The presence of uncorrelated noise will not change R,, but
will increase the error by the amount of power that is con-
tained in the noise.

‘We now apply this theory of linear predictors to the case
of adaptive optics. This calls for the calculation of spatio-
temporal correlation terms in the matrix M and the vector
P of the general form

(plx + iAx,y + jAy,t — RAD@(x, 5, 1)). 19)

It is possible to measure these terms directly (e.g., inter-
ferometrically?). However, we can find a simple solution
by using the frozen-flow assumption, whereby these terms
can be transformed to

(o(x + iAx + kv Aty + jAy + kv, At De(x, 3, 8) = T(r).
(20)

Here v, and v, are the components of the wind speed v,
and

r=[GAx + kv, A2 + (jAy + ku,AB?]Y2 @1)

The correlation function is the Fourier transform of the
power spectrum. However, the correlation function of a
FBm is not defined because the transform of the power
spectrum in relation (5) does not converge, and we must
employ one of several modifications. One possible modi-
fication is to assume a constant power from zero up to a
certain low frequency (ko) corresponding to the outer scale
of the turbulence, and from this point a decrease accord-
ing to the —11/3 power law [relation (2)]. This modifica-
tion is not considered here since it gives too much weight
to very low spatial frequencies corresponding to length
scales that are much larger than the outer scale. Another
possibility is to ignore any contribution from the frequen-
cies that are lower than k, (having a cut-on at xp). An-
other common way is to add a constant in quadrature to
the spatial frequency to yield a form that is similar to the
von Kdrmén power spectrum (we ignore the small modifi-
cation at high frequencies):

Py = (k2 + kD)™, 22)

We can use both these modifications to calculate the cor-
relation terms and especially the normalized correlation
y(r) = I'(r)/T(0). From Appendix A we obtain for the cut-
on modification

y(r) =1 — 1.864(kor)*® + 1.25(kor)? + Olkor)™®  (283)
and for the von Kdrman modification
y(r) =1 — 1.864(<or)*® + 1.5(kor)? + Olor)™3.  (24)

Up to the first significant term the approximations are
the same. Below we neglect the second-order term, even
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though in the worst case kor is ~1072 (ko ~ 01 m™, r ~
0.1 m), and this term is smaller than the first-order term
only by a factor of 5. For more favorable cases the situa-
tion is much improved. Two examples are as follows:

(1) Let us examine a two-point estimator of the form
&x, 1) = rip(x, ¢t — AL) + rop(x,yt — 2At), (25)

i.e., we try to predict the wave front by using two former
measurements in the same place. The normalized matrix
M and vector P are

1 1 — GAt™®
M= [1 ~ GAt 1 ] @6
1— GAt®™
P= [1 - G(2At)5/3]’ @

where G is a function of the cut-on frequency «q and the
wind speed v:

G = 1.864(kov)*". (28)

After performing matrix inversion and using Eq. (10), we
choose to retain the independent terms in the solution and

obtain
223 1.58740
R, = = . 929
[1 - 22/3:| [—0.58740] @9)

These coefficients are the same as those that were ob-
tained for the case of the ideal FBm. See Fig. 3 for the
results of a numerical simulation.

Using more points in Az results in a more complex but
also more accurate estimator for the cases in which outer-
scale considerations are important. If the exact value of
the parameters is not known, then we can use a search
algorithm and can optimize on some measure of the image
quality, or we can use a neural network.” We need to
remember that, regardless of how many coefficients we

0.65 T T T T T T T T T
1 11 12 13 14 15 16 17 18 19 2

Extrapolation parameter

Fig. 3. Numerical simulation of two-point temporal extrapola-
tion. The MSE is plotted versus the first extrapolation parame-
ter, and it is normalized to unity in the simple-lag case.
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(b)

Fig. 4. Two spatiotemporal prediction schemes: (a) with nine
points in one past layer and (b) with six points in two past layers.

use or how many orders we consider, the only parameters
are Ko, Uy, Vy.

(2) In a more complex example we try to use measure-
ments that were made in the previous time interval at
and around the point of interest. The grid points that we
use are

x—Ax,y — Ay x,y—-Ay x+ Ax,y — Ay
x — Ax,y X,y x + Ax,y (30)
x—Ax,y+ Ay x,y+Ay x+ Ax,y + Ay

[see also Fig. 4(a)]. All the measurements are from time
t — At. The M matrix is now a 9 X 9 matrix. The order
of the coefficients is from the upper left-hand corner going
toward the right and downward. Here we use the as-
sumption that both the x and the y intervals are equal to /.
The terms of the matrix depend only on spatial coordi-
nates since we use information from the same time inter-
val. To simplify the presentation we show the matrix of
distances for the computation of the correlation terms in
units of /:

0 1 2 1 V2 V5 2 V5 V8
1 0 1 V2 1 V2 V5 2 V5
2 1 0 V5 V2 1 V8 V5 2
1 V2 vV5 0 1 2 1 V2 V5
V2 1 V2 1 0 1 V2 1 V2| 38D
VB V2 1 2 1 0 V5 V2 o1
2 V2 V8 1 V2 V5 0 1 2
V5 2 VB V2 1 V2 1 0 1
V8 V5 2 V5 V2 1 2 1 0

Schwartz et al.

The vector P is a function of spatiotemporal coordi-
nates, and the squared distances that are required for the
computations of the correlation terms are

[(Ax — v,AD? + Ay — v,Af?
WAL + (Ay — v,AD)?
(Ax + vAD? + Ay — v,AD)?
(Ax — v,AD? + (v,AD)?

(W:AL? + (v,At)? . (32)
(Ax + v,A8? + (v,At)?
(Ax — vAL? + (Ay + v,At)?
W:A8? + Ay + v,At)?
(Ax + vAfP + (Ay + v,Ab)?

The resulting estimator kernel, up to the first order in
A, is

0.004(v, + 6,)A/l  0.518v,A¢/l  0.004(—v, + v,)At/
0.518v,A¢/! 1 —0.518v,A¢/1
0.004(, — v)A#/I —~0.518v,At/l —0.004(v, + v,)AL/l
(33)

This kernel, as in example (1), complies with the required
condition that the sum of coefficients be unity for the so-
lution not to blow up with time. There is no dependence
on ko in this order. If we assume a wind in the x direc-
tion, then the kernel is approximated by

0.004v,At/l 0 —0.004v,At/l
0.518v.A#! 1 -—0.518v,A¢l}- 34
0.004v.At/l 0 —0.004v.At/l

The result that is obtained from a direct one-dimensional
derivation is the estimator kernel

[0.525v. A8/l 1 —0.525v,A#1]. (35)

If we regard this kind of prediction as a trivial interpo-
lation on the sampled signal, we obtain a result that is
rather similar to expression (35):

[0.5v.A¢1 1 -0.5v.A¢l]. (36)

The MSE’s for expressions (35) and (36) are quite similar,
but expression (35) does indeed give the smaller one.
These results were also verified by a one-dimensional
numerical simulation.

Another predictor that we considered utilizes informa-
tion that is obtained in six samples: the point for which
we seek to predict and its four nearest neighbors (with the
data for all five being collected in the previous sample
time), and the same grid point two time intervals ago [see
Fig. 4(b)]. Until now we have considered only the first
order in the predictor expansion. In Figs. 5 and 6 we pre-
sent the results of the full numerical treatment for the
MSE surfaces. It is clear that much better results can be
obtained with a spatiotemporal prediction than with a
temporal prediction. The drawback is that knowledge of
the wind’s effective speed and direction is required.

We assumed that the phase signal was sampled dis-
cretely. Usually the phase sensor does sample the wave
front, but the imager integrates over time, so the phase
error must be minimized over the entire sample period
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Fig. 5. MSE for three cases: (a) simple lag (no prediction),
equal to the structure function, with the structure constant being
taken as unity; (b) spatiotemporal nine-point prediction
[Fig. 4(a)]; (c) spatiotemporal six-point prediction [Fig. 4(b)].
x and y units are vA7/l. .
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Fig. 6. Cartesian cuts through the MSE surfaces (see Fig. 5) for

simple lag, two-point prediction, six-point prediction, and nine-

point prediction. Displacement units are again vA7//, and the

MSE is scaled by the structure constant.
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and not just at the sample points. In Appendix B we ex-
amine modifications that arise from this integration.

Any improvement that is obtained from applying predic-
tion algorithms is dependent on the control scheme that is
used. In Appendix B we show that the residual error de-
creases by a factor of 1.5 because of temporal prediction.
Alternatively, if we set a temporal rms residual error of 0.1
wavelength as our goal, we learn, using a calculation simi-
lar to that of Appendix B, that the sample rate for a non-
predictive mode is

fi= 3.1(2), 37

Ty

where v, is an effective wind speed defined by

35

f CH W (&)d¢
= (38

Ve

) [crea

For the two-point predictor we have an improved sample

rate of
f, = 2.4(E> : (39)
ro

We have yet to determine the optimal estimator. We
showed above that temporal prediction with more than two
samples results in only a marginal improvement but that
use of a spatiotemporal-prediction scheme will reduce the
bandwidth requirements even further. The exact values
of this bandwidth are yet to be calculated.

5. CONCLUSIONS

We have described the fractal character of turbulence-
degraded wave fronts. Algorithms for the generation of
fractal surfaces can be used in simulating wave fronts.
Correlations embedded in the wave-front surface can be
employed to explain the validity of using prediction al-
gorithms. We have examined simple statistical prediction
schemes. The MSE can be reduced, or, alternatively, the
spatial- and temporal-bandwidth requirements of the
adaptive-optics system can be relaxed.

APPENDIX A

‘We examine two possible ways of modifying the theoretical
power spectrum of the phase fluctuations to calculate the
normalized correlation terms that are required for our
computations. The first is to make a cut-on at the spatial
frequency that is related to the outer scale. The second is
to use the von Karman modification. The two modifica-
tions are summarized as follows:

-11/3
P¢(CO)(K) = ClK / ,

P(P(VK)(K) — 02(K2 + Koz)—u/a’

K = Ko, (Al)
k=0. (A2)
To obtain the correlation function we perform the

Fourier transform of the power spectrum. After the
angular integration we obtain, for both choices,
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Fig. 7. Adaptive-mirror control schemes. (a) The mirror is held
at the last sampled value until the wave front is sampled again.
(b) The mirror is moved linearly to a predicted value. No lag is
assumed in both cases, and the mirror is moved instantly to the
next sampled point.

I'(r) = 2'n'f dx k P,(k)Jo(kr) . (A3)
0

For the cut-on case we obtain

1 5/3 5 1 2.2
L) = 2wcl<K—o) {0.611«“2[—? <E’1>’" ""4r ]

- 1.11833(K07’)5/3} ) (A

where | F; is a generalized hypergeometric function. If
we use the first terms in the series expansion, we have

Ty (r) = 2aC1[0.6x0~%° — 1.1183375

+ 0.75k0" 72 + O], (A5)

The normalized correlation function is defined as y(r) =
I'(r)/T(0), or, for the cut-on case,

v1(r) =1 — 1.86389(kor)™® + 1.25(kor)? + O™, (AB)

After the spatial integration we obtain, for the

von Karmaén case,
o(r) = 27wC30.596641, % r5CK s (kor), A7)

where K is a modified Bessel function of the second kind.
The first terms in the expansion are

Lo(r) = 27Cy[0.6x,™% — 1.11833r53
+ 0.9~ P2 + 0P, (A8)

and the normalized correlation is

¥2(r) = 1 — 1.86389(kor)*® + 1.5(kor)? + O(M)™2.  (A9)

" rate.

Schwartz ef al.

The constants C;, C; in the expressions for the power
spectra [Egs. (A1) and (A2)] are deduced from the require-
ment that the correct form of the structure function,
D, (x) = 6.88(r/ry)*® [Eq. (1)], is to be maintained. For ex-
ample, for the von Kdrmén case

Cy = 0.4896r¢™%, (A10)

APPENDIX B

In the text of this paper we attempt to minimize the error
in a discretely sampled signal. The wave-front sensor
does sample the phase in intervals, but the imager inte-
grates over it. Let us assume that the deformable mirror,
which acts as the wave-front-correction device, responds
instantly and that we are limited only by the sampling
If we do not use any prediction, then the mirror is
held after the sample [Fig. 7(a)], and the MSE over the
sample period is

At t 5/3 5/3
€@ == J 6.88(—) dt = 0.375 x 6.88<£) . (BY)
At 0 To

To

Let us now assume that we use a linear estimator to pre-
dict the next point, move the mirror linearly to that point,
and then immediately correct to the new sampled point
[Fig. 7(b)]. The MSE will be

1 ¢
€ = <Ejo ((p(t) - {(p(O) + E[rgo(O)

2
+ 1 - r)qa(—At)]}) dt>-

After some integrations we obtain

(B2)

At

To

5/3
) [0.375 + 0.333(1 — r)? + 0.412(1 — r)].
(B3)

€ = 6.88(

Minimizing with respect to r, we find that r = 1.618,
which is slightly different from what we found in Eq. (29).
The value at the minimum is (€2) = 0.248 X 6.88(At/r)%,
which is significantly smaller than Eq. (B1). Using the
estimator from Eq. (29) does not result in a noticeable
increase.
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