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Bimorph adaptive mirrors and curvature sensing
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The applicability of wave-front correction by means of a bimorph mirror in conjunction with a curvature sensor
is described. We use Zernike polynomials to describe the quality of the atmospheric-turbulence correction ana-
lytically. The match is limited by boundary conditions of the mirror and by the discreteness of the electrodes.
The correction is limited by coupling of lower- and higher-order Zernike polynomials and necessitates an inter-
facing computer between the wave-front sensor and the bimorph mirror.

1. INTRODUCTION

Recently considerable interest has arisen with respect
to the bimorph mirror as a wave-front-correcting device
coupled directly to a curvature sensor. The interest ex-
ists because of the ability of the bimorph mirror (and also
of the electrostatic membrane mirror) to act as a Poisson
equation solver. This research examines some practical
aspects of this concept. It is concerned with the bimorph
mirror but can also be applied to the membrane mirror.

As we show below, the Laplacian of the mirror surface
is proportional to the local voltage. The solution of the
Poisson equation and therefore the duplication of the wave
front is, however, possible only if adequate boundary con-
ditions are applied. We examine two practical aspects in
particular:

a. The possibility of applying boundary conditions
with only the central area of a larger bimorph mirror as
the optical aperture.

b. The use of discrete electrodes, which does not per-
mit the application of a continuous voltage distribution.

2. BIMORPH MIRROR

The bimorph mirror that interests us is made of two thin
layers that are bonded together.' One is made of a piezo-
electric material, e.g., lead zirconium titanate (PZT, which
is used in this paper to indicate all similar materials), and
the other is made of an optically polished material (e.g.,
glass or silicon). We assume that the bonding is ideal, i.e.,
that the adhesive is of negligible thickness and that it does
not relieve any shearing stresses. A thin conducting film
deposited between the two layers acts as a common elec-
trode, and the voltage is distributed via electrodes on the
back of the PZT (see Fig. 1). Another possible configura-
tion, which is more sensitive, is constructed of two layers
of PZT that are oppositely poled and are bonded together.
This configuration requires a piezoelectric material that
can be polished to optical quality.

When voltage is applied to the mirror, the transverse
piezoelectric effect leads to a variation in the area of the
PZT. The other layer of the mirror does not react, and
thus spherical bending occurs, much like the linear bend-
ing of a bimetallic strip under a temperature variation.

The thickness variation is small compared with the effect
on the area.

The PZT layer need not be made from a continuous
sheet. It can be composed of smaller elements that are
much easier to produce. The electrodes can be made to
be contiguous if they are square or hexagonal. Spaces
can be left between the electrodes, and spaces will also
occur if the electrodes are round. The electrodes cause
local bending over their area, whereas areas between the
electrodes, if not fully contiguous, take a shape that is
caused by their bent boundaries.

3. VOLTAGE RESPONSE

A bimorph mirror responds to a voltage distribution that
is applied to it according to the following differential equa-
tion,' subject to adequate boundary conditions:

V4Z = -AV 2V, (1)

where Z = Z(r,0) is the deflection of the mirror surface,
V = V(r, 0) is the voltage distribution, and A is a constant
that is related to the geometrical, mechanical, and piezo-
electric properties of the mirror. This equation can be
compared with the equation governing the bending of a
thin plate under load:

V4Z = H (2)

where q = q(r, 0) is the load intensity (force per area) and
H is the rigidity factor of the plate. According to standard
textbooks on elasticity,2 we can solve Eq. (2) in two stages
by solving two Poisson equations:

V2M =-q

V2Z = _ M,

M = + My
1 + 

(3a)

(3b)

(3c)

where Mi = Mi(r, 0) is the bending moment in direction
i = x, y and v is the Poisson ratio. If we assume boundary
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case, we assume that tl t2 = t and E1 - E2 and obtain

PZT~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. .; !A ... ... ..:5K ..!': gPZT

Optical Surface

Fig. 1. Schematic drawing of a bimorph mirror. A differ-
ent voltage can be applied to each electrode to control the local
curvature.

conditions of a simple support, i.e., Z = 0 on the edge with
no external moments, we obtain from Eq. (3a)

M = AHV, (4)

and by using Eq. (4) in Eq. (3b) we obtain

V2Z = -AV. (5)

This differential equation, subject to the boundary condi-
tions on Z, is of the form reached by Kokorowsky3 and is
equivalent to the equation of a membrane. The equation
governing the deformation of the bimorph mirror clearly
shows that the local Laplacian of the mirror surface is
proportional to the local voltage.

A solution of a Poisson equation of the general form

V2Z = - f(r, ) (6)

in a circle of radius R with the above boundary condition
(Z = 0) is given by4

Z(r,0) = Id44 pdp{ln(-)

-Z kr k _ Pk)cos[k(4 - 0)]}f(p)
k- k R2k r
1 f21 pd t n R \+ 2r J do pdPPlny-)-I ---h cos[k( - 0)]4(p, )- k pR k k\ (7)

Applying a constant voltage over the entire mirror leads to
a spherical surface of the form

Z(r) = AV(R2 - r2 ).
4

(8)

Using the analogy of a bimetallic plate, we can derive an
expression for A with the solutions for the bending of a
round bimetallic plate':

A 12dl 3(tl + t2)
t1

3 k
(9a)

t2 \ + t2 \2 E2 t2 '(1 - i) Eltl(1 - 2)
k = 4+ E,- + 4 - ++\tl/ \ti/ Eltl(1 - v2) E2t2(1- Vl)

(9b)

where t is the thickness, E is the Young modulus (the rele-
vant element of the tensor), and v, as above, is the Poisson
ratio. The subscript 1 denotes the PZT, and the subscript
2 denotes the inert material. d 3 is the transverse piezo-
electric coefficient. In general, v- v2 0.3. In a simple

A 1.5-d3 (10)

The thermomechanical analogy can be applied further,
and numerical calculations with thermomechanical soft-
ware based on finite elements have been demonstrated.'

4. COUPLING THE BIMORPH MIRROR AND
A CURVATURE SENSOR

A. Rigorous Treatment of the Mirror-Sensor Coupling
Let us now assume that we have a wave-front curvature
sensor as proposed by Roddier7 (actually a Laplacian sen-
sor) that is directly coupled to the mirror without any
computational stage such as was originally proposed by
Roddier.7 We perform curvature sensing by subtracting
intensity distributions that are measured in two planes in
front of, and behind, the focal plane. We show now that
such direct coupling leads to extra correction errors that
cannot be eliminated without the use of an intermediate
computer. In the following discussion we ignore any sen-
sor noise considerations.

The voltage distribution that is the output of the sensor
is given by

V2W + 8(p - a) ap
AV = oa

a
(11)

> a

where W = W(r, 0) is the measured wave-front surface
and a is the radius of the optical aperture. We apply this
voltage distribution to the mirror and assume that we use
a small central area for the actual correction, i.e., a << R.
In this way we attempt to deal with the boundary-
conditions problem.' Here we also assume that we can
apply a continuous voltage distribution. We include in A
all the uniform amplification factors between the sensor
and the mirror and also assume that any scale changes
resulting from reimaging optics are implicit.

Neglecting smaller terms that contain R in the denomi-
nator, from Eq. (7) we obtain

Z(r, 0) = - I d0f pdpIln(+)

k- k (r)

+ 2!f dI I pdp{ln(-)

+ I r cos[k(4 - 0)]

+ 2 I da {n )

+i 2 k(-) cos[k(4 - 0)]
k- k \a

I}V2W

]}v~

Iaw
(12)

The form of this expression is similar to that of the
solution of the Poisson equation. Let us examine it
more closely. The general solution of the Poisson equa-
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tion [Eq. (6)] is

Z(r) = 1- f f(p)G(r/p) d2p

+- I G(r/)-aW _ W(a)- Idl,
4 0c aP p=a dp p=a

(13)

where GG/p) is a suitable Green's function.
The curvature sensor supplies us with Neumann bound-

ary conditions. To yield a valid solution (up to an addi-
tive constant that is related to the mean deflection on the
boundary), the Green's function must comply with the
condition

aGE- = const. (14)
8p p=a

The Green's function that is embedded in Eq. (13) has the
form4 (in polar coordinates)

G(r/ )

|-2 ln(r) +2 1 ( ) cos[k(4 - 0)] r > 

i-2 ln(p) + - cos[k( - 0)] r < p

(15)

This function has a radial derivative at the edge:

aG = 2 1 + 2 r cos[k(o - 0)] 
ap p=a a k= a (16)

which does not comply with Eq. (14). Therefore the
mirror surface duplicates the wave-front surface up to a
mismatch term that has the form

d0 cos[k(o - 0)]Z(a,o). (17)

This form of the mismatch calls for the use of the
Zernike polynomials expansion of aberrations. The
Zernike polynomials are a set of orthonormal functions in
the unit circle that are suitable for the analysis of optical
problems. A description of the Zernike set can be found
in standard texts,8 and their application to the problems of
atmospheric propagation and adaptive optics was de-
scribed in many papers.9 -" In this study we follow the
notation and the normalization convention that was intro-
duced by Noll.9

For completeness we cite in Appendix A some definitions
and properties that we use. Below, n denotes the radial
index, and m, the azimuthal index, of the polynomials. If
we introduce a wave front of the form

tI(r, 0) = ajZj(r, 0), (18)
j=1

we can see immediately that the isotropic aberrations (i.e.,
those of the azimuthal order m = 0) are fully corrected.
This makes sense, since our boundary conditions for the
entire mirror (Z = 0) are also isotropic.

The aberrations of a higher azimuthal order induce a
disturbance term of the form

2E dr cos[k(i - 0)]cos(m4)VW(W+) (19)

for Zeven and with sin(m) replacing cos(m4) in Zodd. The
normalized radial coordinate is r' ra. The result of
the integral [relation (19)] is

(n + 1 r m cos(mO). (20)
2

A correction of an aberration of an azimuthal order m
leaves a residual aberration of the lowest radial order
for that azimuthal order (for m = 1 tilt, for m = 2 astig-
matism, and so on) with a factor that is related to the
corrected-term radial order. This effect was previ-
ously'2 detected computationally but was not explained
analytically.

We can write the correcting wave front for the mth azi-
muthal order as

C'm) = 2aj[Zjm) + kjZfm)], (21)
j=i

where Zfm) is the Zernike polynomial of the aberration of
the lowest radial order for the azimuthal order m (which is
equal to m) and kj is a constant that is given by

II n + 1/2

2 Em + 1 m> 
kj = [ (n 2 ) O2 ~M>=0 (22)

Equation (22) allows us to compute the residual mean-
squared error

f2_ fd2p((,I - DFc)2)W(p), (23)

where ( ) denotes the ensemble average over turbulence-
degraded wave fronts and w(p) is the aperture function as
defined in Appendix A. The result (see Appendix B) is

e2 = (2) - (ajI2) + 2(ajaj*)kjkj, (24)
i jj,

where (), the average of the wave-front phase, is assumed
to be zero.

The terms that are included in the above sum can be cal-
culated with the formulas that were derived by Noll.9

Now we assume that the input wave front is degraded by
atmospheric turbulence exhibiting the Kolmogorov power
spectrum. We first assume an open-loop correction
scheme, in which we sense the wave front and then correct
it. A better approach is a closed-loop operation, in which
the sensing is performed on the wave front after cor-
rection, which provides the deviations from the required
wave front (see Fig. 2). The result (with no overall tilt
correction) is

e2 6 0.25(D- * (25)
ro

The computation was performed up to the fourth azi-
muthal order; hence the approximation. D = 2a is the
diameter of the optical aperture, and r is the turbulence-
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where W is again the measured wave-front error. This
term does not contribute to the lowest radial order for
each azimuthal frequency, since the Laplacian for these
terms is zero.

A more substantial term (which couples high terms with
low terms) is

1 f21da{I 1 (pr) cos[k(o - 0)]aW a (28)

deformable
mirror

( a )

( b)
Fig. 2. (a) Open-loop adaptive-optics system (measurement of
wave fronts). (b) Closed-loop operation (measurement of wave-
front residuals).

coherence length defined by Fried' 3 (see Appendix A).
The above result is worse than just overall tilt correction,
which is 0.134 (Dro)13, but if we remove overall tilt sepa-
rately the error reduces to

0 904 (26)
\ro/

which is dramatically better. If we now consider a closed-
loop operation [see Fig. 2(b)] and assume that the control
loop is much faster then the turbulence-coherence time
(-10 ms at 0.5 /.tm), then the residual aberrations will be
eliminated within the coherence time. If the feedback
loop is not fast enough, then the results for the open-loop
operation [relation (26)] are a good approximation.

The above results are obtained for an ideal sensor-
mirror combination for which the Laplacian of the wave
front can be sensed continuously and for which the mea-
sured voltages can be applied continuously over the mirror
surface. This is impossible in practice, and, as we shall
see in Section 5, the discreteness in sensing and voltage
application introduces errors that cannot be ignored.

Let us now consider the error that results from the fi-
nite size of the mirror. There are two aberration terms.
The first is

21ri Jo pr - 1]}2W(p,+),
2f~ d''o pdpl~l& cos[k ( ) kWP )

This error, as well as the errors that we describe above,
can be dealt with if we abandon the direct coupling be-
tween the curvature sensor and the bimorph mirror and
add a computational stage. In this stage we determine
(by numerically solving the Poisson equation) the value of
the deflection on the boundary and therefore can compute
a voltage distribution that should be applied to compen-
sate for the errors that are given in expressions (19) and
(28) [we neglect the error term of expression (27)].

We should take into consideration the practical limita-
tions on the applied voltage: the maximum voltage that
can be applied to the PZT without depoling it is of the
order of 500-1000 V/mm. This voltage corresponds to a
maximum curvature that depends on the actual parame-
ters of the bimorph elements. The low aberrations would
carry the largest amplitudes, so their correction might
reach the maximum voltage. In this case the demands on
the applied voltage can be somewhat alleviated if we use
the area of the bimorph mirror outside the optical aper-
ture.' 4 For example, let us consider the error that is intro-
duced by tilt that is due to the finite size of the mirror:

a2 (a)r cos(O), (29)

where a2 is the tilt (Z2) expansion coefficient.
We can compensate for this error by applying, on the

edge of the optical aperture, a voltage distribution that
is proportional to a2(a/R) 2. Outside the optical aperture
we can apply the voltage on a circle of radius ka with a
decrease in the required voltage by a factor of k 2 .

Note that if we do add a computational phase the curva-
ture sensor loses some of its charm, and we can use a con-
ventional slope sensor (such as the Hartmann-Shack
sensor), even though its performance is less efficient.'4

The slope information can be used to derive both the wave
front and its Laplacian.

We have assumed that the mirror is fixed on its perime-
ter with Z = 0. It is probably a demanding technical re-
quirement, since the precision that is required is of the
order of a wavelength. Errors would be insignificant for
a large mirror but not for a practical one. In principle,
it is possible to compensate for the mounting errors by
applying voltage to the mirror at the price of a reduced
dynamic range.

B. Central Support of the Mirror
Let us now consider another way of supporting the mirror.
Most large astronomical telescopes are of the Cassegrain
type with a central obscuration, so no correction is re-
quired in the center of the aperture. The mirror can
therefore be supported on a central pole (see Fig. 3). We
can use simple support boundary conditions on the inner
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Optical Surface

PZT

Central Support

Fig. 3. Centrally supported bimorph mirror.

boundary, whereas the outer edge is left free.
sponse of the mirror in this case is given by

1 f27 (R {/ 1 )Z(r, 6) = i - d4)jf pdp tlIn -.

Thee re-

+ E 4 (-) cos[k(4 - 0)] f(p4)

1 2'r J {( + -L f 2 dO f pdp n(±

+ E~ -,k- () cos[k(4 - 0A)] f(p o), (30)

where we have again eliminated some constant terms and
some terms in which R' appears in the numerator (R' is the
radius of the inner boundary; R is the outer boundary).

The output of the curvature sensor is

f=AV={V2Z + (P - a) aW a + b(p - b)a 

where a and b are the outer and the inner radii of the
aperture.

The treatment continues in much the same way as that
of the clear aperture. The difference is that the Zernike
set is not orthonormal on an obscured aperture, and one
should use the modified set that is described by Wang and
Silva." This set is less convenient for analytical treat-
ment but can be handled numerically.

As a summary to this section we note that the error
terms that arise from the inner and the outer boundaries
of both the utilized aperture and the (larger) bimorph
mirror can be computed and that the appropriate compen-
sating voltage distribution can be added to the curvature-
sensor output.

5. FINITE-SIZE ELECTRODES

Until now we have assumed that the voltage that is applied
to the mirror has a continuous distribution. This is tech-
nically impossible, since the electrodes are of finite size.
Our examination will not be fully rigorous, but it does pro-
vide some insight.

We assume that the wave-front curvature is measured
spatially on a very large periodic array of sampling detec-
tors (averaging over an area equivalent to that of a piezo-
electric element) and is then reconstructed by circular
piezoelectric elements. If we neglect aliasing effects and
utilize the Poisson equation that is obeyed by the mirror,
then we obtain from linear-systems theory

k 2Z(k) = k 2W(k)12(k), (32)

where is the spatial-frequency vector, Z(k) is the
Fourier transform of the mirror deflection, W(k) is the
Fourier transform of the wave-front surface, and I(k) is
the Fourier transform of the sampling-reconstructing
function:

A(*) 2 J (rkd)
1(k) = '33

7rkd

with d being the diameter of the electrode.
We can eliminate k2 from the two sides of Eq. (32) and

obtain a mirror response that can be approximated by the
wave front doubly convolved with the electrode shape
(with the above-stated approximations). We use this rela-
tion as an approximation for a finite system. Because we
neglected the influence of the boundary terms, we exam-
ine the correction of aberrations of the zeroth azimuthal
order, since they are not influenced by the boundary
conditions. Another approximation results because the
sampling array is finite. The implications of this are dis-
cussed below.

We find in Appendix C that the correction of the nth
radial order (the amount of removable rms error that is
related to this order) is given by

0.0046 1) Jdkk
8

1 J+(27rk) 2

[J (2.k/xj] (34)

(31)

< bp > a

where x = Dd and D is the diameter of the aperture.
The number of electrodes is -x 2 . By assuming that the
limits of integration are from zero to infinity we neglect
any inner and outer turbulence-scale considerations.

As an example, we show the correction of the first
isotropic aberration orders. We define the correction as
the ratio of the removed wave-front error relative to the
full error that is contained in each aberration order. In
Fig. 4 we plot the correction of the radial orders n = 2,4,6
(the results for low x values are ignored, since we assumed
a large sampling array). Similar behavior is also expected
for aberrations of higher azimuthal orders. We can es-
timate that, for a technically achievable x = 10, most of
the error that is contained up to the fourth order can be
corrected. Therefore overall error values, which are cal-
culated in Section 4.A, can be obtained. Subtleties con-
cerning the boundary conditions and the shape of the
electrodes array should be dealt with numerically. 2 Here
we should note that aliasing effects are important because
they also introduce coupling between measured high
terms and induced low terms in closed-loop operation. 2

Therefore higher aberrations, which cannot be corrected
by the mirror, should be filtered out.

We should stress that these results are obtained for the
case of matching ordered arrays of sampling detectors and
reconstructing bimorph electrodes. A geometrical con-
figuration that is specifically designed for the correction
of low-order aberrations could achieve better results with
fewer electrodes.'5
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X (B/c)
Fig. 4. Correction of the first isotropic orders (approximate
treatment). x is the ratio of the optical aperture to the electrode
size. The Zernike radial and azimuthal orders are denoted by
(n, m). The calculation is more accurate for higher x values. The
correction is drawn relative to the full correction (no aberrations)
for each order.

For completeness let us consider two more configura-
tions. One is of a single bimorph element that is tip tilted
and deformed to compensate for overall defocus. The
overall squared error is'

C2 0.llii -
\rol (35)

A more complicated configuration is one in which a seg-
mented mirror is composed of many independent bimorph
elements, each of diameter d (and each of which has 3 de-
grees of freedom: piston, tip, and tilt). Here, following
in the footsteps of Greenwood,6 the error is given by

e2 0.111 d 

This algorithm can be represented in the matrix form

v = MDs,

where v is the vector of the voltages that are applied to the
mirror electrodes, s is the vector of the curvature or the
slope signals, D is the matrix that yields the Zernike ex-
pansion coefficients, and M is the matrix for the voltage
distribution. M can be computed analytically with the
formulas that are derived above. One performs this by
using Eq. (7) and then by taking into account the need to
compensate for induced errors in expressions (19) and (28).
Finally, MD can be combined into one matrix that can
be precalculated for faster application. This interaction
matrix can also be measured experimentally. 4 The above
research helps to clarify the source of the off-diagonal
terms and thus assists us in designing better detector-
bimorph electrode configurations.

APPENDIX A

Here we present some definitions and properties of the
Zernike polynomials by using the notations and the nor-
malization conventions of Noll.9 The polynomials are
defined by

Zjeven = V2(n +1R. m(r) cos(mO),

Zjodd= V2(n+1)Rm m(r) sin(mO),

Zi = /(5n + 1Rm (r) for m = 0. (Al)

Rnm(r) are radial polynomials based on the Jacoby
polynomials:

(n-)/2 (-l)s(n - s)! n-2s

s=0 s![(n + m)/2 - s]![(n - m)/2 - s]! r
(A2)

(36) where r is a normalized coordinate on the unit circle andj
is an ordering index that is a function of n and m. The
orthonormality relation is

6. CONCLUSIONS

We have discussed some practical aspects of the bimorph
mirror and its possible coupling to a curvature sensor (and
other sensors). It seems possible to attain a high level of
correction, up to the fourth Zernike radial order, by use
of a mirror with -100 electrodes on a rectangular grid.
The overall mean error can be decreased dramatically
with fewer electrodes but will leave the higher-aberration
orders uncorrected.

The coupling of the bimorph mirror and the curvature
sensor must be supplemented by corrections to the error
terms that are computed above. This is done with a com-
putational stage between the sensor and adaptive mirror.
It is also possible to use the bimorph mirror with a slope
sensor because the Zernike expansion of the wave front
can be easily derived from the slopes.7 A suggested strat-
egy is to derive the Zernike decomposition of the wave
front and then to apply the appropriate voltage distribu-
tion to the mirror (including error corrections). The cor-
rection is performed up to the term that is corrected to
our satisfaction.

J.,drw(r)ZjZj = Sj ,f (7 (A3)

where

w(r) = r
r 1

r > 1

The expansion of any arbitrary function
inside a circle of radius R is given by

that is defined

T(Rp, ) = ajZj (p, ),

with p = r/R and the coefficients aj being given by

aj = f d2 pw(p)i'(Rp, 6)Zj(p, 0).

(A4)

(A5)

Q1(k, O), the Fourier transforms of Zj(p, 0), are of great im-
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portance and are defined so that

w(p)Zj(p,0) = f d2kQj(k, O)exp(-2 7rik p), (A6)

Qjeven(k,4O) = V2J(n+) k (_l)(nm)/ 2im cos(mX),

_______ J~ 1 (rk)

Qjodd(k,4) = V2J(n+T1) 1 21)(nm)/ 2im sin(mo),

Qj(k,4) = n n+(2irk)(_1)n/2 for m = 0.

(A7)

Now we assume a Kolmogorov power spectrum for the at-
mospheric turbulence9 :

I(k) = 0.023ro-5 3k1 113 (A8)

where r is Fried's coherence length, defined by

ro = 1.68 [ ( ) f dzC42(z)] * (A9)

Cn is the turbulence structure constant. Noll9 derived
correlation relations between the Zernike expansion coef-
ficients of the atmospheric turbulence:

where i is the first radial order for the azimuthal order m
related to the running index j. The variance of the wave
front over the aperture is CY

2 = d2 pW(p)pT*. Using
the orthonormality relations of the Zernike polynomials
set and the definitions of the coefficients aj (Appendix A),
we obtain

E2 = c - 2(IajI2 ) - 2(kj(aj*ai + ai*aj))
j=i j=i

+ (kj(ajai*)) + I (kj(aiaj*)) + , (kjkj (a*aj))
j=i j=i j, j'-i

(B3)= cf 2 _ flajJ2) + (kjkj,(aj,*aj)).
j=i j, =i

APPENDIX C

We calculate modified correlation terms between the
Zernike coefficients to calculate the correction terms.
We follow the procedure described by Noll.9 The modi-
fied correlation terms are given by

(aj*aj ) = f dpf dYw(_p)w(;')Zj'(p 0)C(Rp, R;')Zj '(p', 0),

(Cl)

0.1524(-) (-1)(n+n'2m)/2 (n + 1)(n' + 1)]1/26mm
\ro/

r14)F(n + n - 5/3)

n - n' + 17/3)(n - n + 17/3 n + n' + 23/3)
j - even

j - j'odd * (A10)
The above relation contains a minor correction that was
introduced by Wang and Markey."0 The coefficients aj
are considered to be Gaussian random variables with a
zero mean.

APPENDIX B

We derive an expression for the residual mean-squared
error of the bimorph according to the definitions and the
assumptions that are given in Section 4.A:

where Z' is the aberration term that is modified by the
response function. C(Rp, Rp') is the covariance function:

(C2)

Equation (Cl) can be written in the Fourier domain as

(aj*aj.) = ff JddkPQ *(kY'.(.- R'( (C3)

e2= f d 2p((T - D?)2)w(p) (B1)

With the Zernike expansion and Eq. (21) this relation
becomes

e2 = f w(p)d2pK[ - > a(Z + kjZi)]

X [T* - 2 aj, (Zj, + kj Zi)])
= Syt2 - Jwpj'=2 +

= CV2 - f w(p)d 2P

X {( E a *(Zj

where 9

AR k'\ R (1)'IP I- - = 0.023 - k 18(k - k,
R'R ~~ro/

(C4)

and the transforms of the aberration terms are modified
by multiplication with the transform of the response func-
tion, i.e.,

= V( = \/T T(-l)n/2 Jn+1(27rk) [2J,(2,Tk/x) 12Qj~k) d n + (-1) rk L2,7rk/x I 

+ kZ) - I aj(Zj + kjiZj)
j=2

+ ( ajaj *(ZjZj + kjZiZj + kj ZiZj + kki
(B2)

(C5)

with x = D/d, where D is the diameter of the aperture and
d is the diameter of the electrode [see Eqs. (A7)].

We are interested in the m = 0 azimuthal order and
with j = j' terms, so the correction of the nth term is

(ajaj,*) = lo

Schwartz et al.

C(R-P) R;�) = (1Y(RP)1P*(R;�)) -
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In + fdhh1 3 [Jn+1(2irk)]2

(C6)
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