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In fringe analysis, or in projected grids for shape-from-shade, deviations from periodicity are used for
finding phase changes. In another example, a Hartmann–Shack sensor produces a deformed grid of spots
on a camera. The gradients of the original wavefront are calculated from that image by centroiding the
spots or by demodulating them. The computation time rises linearly with the number of pixels in the
image. We introduce a method to reduce the size of the image without loss of accuracy prior to the cal-
culation to reduce the total processing time. The compressed result is superior to an image measured
with reduced resolution. Hence, higher accuracy and speed are obtained by oversampling the image and
reducing it correctly prior to calculations. Compression or expansion coefficients are calculated through
the requirement to maintain the integrity of the original phase data. © 2010 Optical Society of America
OCIS codes: 150.0150, 220.4840, 100.2650, 100.5070, 010.7350, 010.1080.

1. Analyzing Periodic Images

The image of a small source through a Hartmann–
Shack (HS) sensor is a grid of light spots, separated
by dark areas. Distortion of the phase of the incoming
wavefront causes those spots to move from their ori-
ginal position [Fig. 1(a)]. The phase deviations are
calculated from those movements [1,2]. The observed
light spots are quantized by the pixels of the image.
Smaller pixels (or a magnified image) produce more
accurate positions of the spots (relative to the inter-
spot distances). One prefers a very large image, with
a large pitch (distance in pixels) between adjacent
light spots. On the other hand, processing time is pro-
portional to the total number of pixels in the image.
Hence, one would prefer a smaller image with a
shorter pitch for quicker processing. We are faced
with the problem of wishing to have many pixels
per period for accuracy and at the same time having
fewer pixels for faster data processing. A similar con-

tradiction occurs in projected grid profilometry and
in fringe analysis.

How to resolve this conflict? We propose to record
the image using a large pitch between the light spots,
then to reduce the image in a smart manner, and pro-
cess the reduced image. The gain is enormous: using
every second column in x and every second row in y
would reduce the processing time by a factor of 4. If
the original image has a pitch of 18, and we reduce it
in each dimension by four, to get an effective pitch of
18=4 ¼ 4:5, we reduce the computation time by a fac-
tor of 16. Such a compression method should retain
the higher accuracy in the spot positions. Simple
binning of pixels does not conserve this accuracy. In-
stead, we suggest a compounded binning, where the
intensity of the source pixel is divided among a few
close destination pixels in the compressed image.
The internal division among the destinations is
chosen so as to conserve the HS phases. For example,
let us assume that we wish to compress the one-
dimensional pixel array fI1; I2; I3; I4;…g by a factor
of 2, into fI12; I34; I56;…g. An ideal binning formula
would allow one to reconstruct the original
fI1; I2; I3; ;…g from the reduced fI12; I34; I56;…g
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using an interpolation formula with few errors. The
simplest binning rule is I12 ¼ I1 þ I2, I34 ¼ I3 þ I4,
and a restoration formula of I3 ¼ 1=2I34. This causes
large restoration errors. A better procedure could be
I034 ¼ 1=4I2 þ 3=4I3 þ 3=4I4 þ 1=4I5 and a restora-
tion formula of I3 ¼ 3=4I034 þ 1=4I012, which is more
accurate (provided that the image varies slowly). In
our case, we are interested in accurate positions of
light spots. An ideal binning, for us, would have both
fI1; I2; I3; I4;…g and fI012; I034; I056…g yield identical
center-of-mass (or centroid) results.

We assess the quality of the reduction by compar-
ing the processed results of the input images versus
the reduced ones. Our aim is to reduce the image in
such a way that the calculated wavefront gradients
will remain true. The wavefront is assumed to be
sampled densely enough, such that its gradient var-
ies smoothly between grid points. We exploit this fact
to expand the gradient as a two-term Taylor series,
with the error given by the third term. The reduction
coefficients are tailored to keep the two terms exact.

Sometimes the intensity distribution at the lenslet
focal plane is larger than the diffraction spot of a sin-
gle lenslet. As an example, for calibration of perma-
nent aberrations of a system, we have been taking a
HS long exposure, averaging over many atmospheric
(or other random phase) realizations [Fig. 1(b)]. Each
integrated spot, by the central limit theorem, forms a
wide Gaussian around the average wavefront tilt,
and that average tilt is equal to the permanent local
tilt. Thus the whole HS pattern can be considered a
convolution between the array of permanent tilts and
the wide time-averaged (atmospheric) point spread
function. Thus it is possible to subtract from short-
exposure wavefronts this permanent aberration, as
well as to correct for non common path errors in
adaptive optics. Recently, a similar method has been
proposed also for phase diversity [3]. In another ex-
ample, HS wavefront sensing can also be performed

for extended sources [Fig. 1(c)], whose images require
a larger number of pixels per lenslet, even to the
point of overlapping neighbors [4]. Thus there is a
need to locate the shifts of a set of extended images,
sometimes even with a constant background. Simple
centroiding [1,2] fails, and one must resort to Fourier
analysis [5–7] or to performing lenslet-by-lenslet
matched filtering or correlation with the object to
find its shift [8–10]. Such analysis is time (and mem-
ory) consuming for extended arrays with many pixels
for each lenslet. In many other applications, one
needs to locate the centerline of a winding fringe [1]
or a projected binary grid on an object [11,12], for the
purpose of wavefront sensing or shape-from-shade
analysis. Here also, using fewer pixels per period
would make the analysis faster.

The method we propose here is valid for Fourier or
image HS phase analysis [5–7], as detailed in Sec-
tion 2. It is also useful for cases where we wish to per-
form centroiding, directly or by correlation matching,
and especially when the grid period is not a whole
number of pixels. By reducing the period to an
integer number of pixels, faster centroiding or corre-
lation can be performed. (This noninteger case was
solved by the Fourier methods by appropriate refer-
ence subtraction [5,7].)

Our technique is confined to images where, in
Fourier space, the information content is band lim-
ited. That is, the desired phase varies slowly over
the image. The HS technique measures an average
displacement of the light beam per lenslet. Other
phase-retrieval techniques give a single phase value
per oscillation. Any finer resolution is lost.

2. Data Analysis

We explain briefly how the periodic images are anal-
yzed for the HS wavefront sensor [5]. Similar meth-
ods are used for profiling surfaces with projected
grids [11] or measuring aberrations using interfer-
ence fringes [1]. While other analysis methods (such
as centroiding) can be employed, harmonic methods
simplify our explanation. We assume that the grid of
lenslets is parallel to the x and y axes. D ¼ ðDx;DyÞ is
the pitch (distance between spots in an undistorted
image) in pixels, in the x and y directions. The grid
base vectors, in the Fourier domain, are kx ¼ 2π=Dx
and ky ¼ 2π=Dy. We write the gradient components of
the wavefront phase ΦðrÞ as ΦxðrÞ and ΦyðrÞ. The
two notations, r ¼ ðx; yÞ, are used interchangeably.
Thus the HS pattern intensity is IðrÞ or Iðx; yÞ.

Three procedures are commonly used to calculate
the gradients ΦxðrÞ and ΦyðrÞ: the phasor method,
Fourier method, and centroids method. To calculate
Φx in a grid IðrÞ using the phasor method [6], we

a. Multiply the intensity in each pixel by the
complex phase in one direction, thereby creating a
phasor

UxðrÞ ¼ IðrÞ expðikx · rÞ: ð1Þ

Fig. 1. (a) Wavefront slopes shift the focal spots of the lenslets.
(b) An additional time-variable aberration widens the shifted focal
spots during long integration— the fixed error can still be recov-
ered. (c) Wider, even overlapping, spots can be formed from an
extended object.
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b. Smooth by averaging: use a flat sliding-win-
dow FSðrÞ, the window being a rectangle of size
Dx ×Dy:

WxðrÞ ¼ FSðrÞ ⊗ UxðrÞ

¼ ðDxDyÞ−1
XDx

u¼1

XDy

ν¼1

Ux

�
uþ x −

1
2
Dx; νþ y

−
1
2
Dy

�
: ð2Þ

Repeat this smoothing once or twice more. In gener-
al, get a phasorWðrÞ by smoothingUðrÞwith a kernel
FðrÞ or WðrÞ ¼ FðrÞ ⊗ UðrÞ.

c. Extract the phase of the phasor, Φx ¼
argfWðrÞg. The amplitude jWxðrÞj represents the
smoothed intensity of the spots inside the pupil. It
is assumed for the time being that all spots are
equally bright and the amplitude is constant.

d. The gradient of the wavefront is proportional
to that phase Φx, related through the pitch and
the focal length. In other applications the surface re-
lief is proportional to Φx.

e. Starting with multiplication with phase
expðiky · rÞ, repeat steps (a)–(c) to obtain Φy.

The double-pass flat window is equivalent to a tri-
angular kernel, and a third pass smooths it even
further into a bell shape similar to 1þ cosðxÞ. Other
windows or convolution kernels were also proposed
[9,10], to be used in a single pass.

As an intuitive explanation, assume that the
image is composed of a single spot of light of ampli-
tude A at ðx0; y0Þ, plus some constant background
C. Multiplying IðrÞ by the phase expðix2π=DÞ gives
Uxðx; yÞ ¼ C expðix2π=DÞ þ δðx−
x0Þδðy − y0ÞA expðix02π=DÞ. Averaging over D,
the constant term C oscillates and averages to
zero, while the concentrated peak contributes
A expðix02π=DÞ. Hence, the phase of the average is
exactly x02π=D—proportional to the peak position.
If the peak is two or three pixels wide, the resultant
phase is the center of mass of the peak. If the image is
almost periodic with period D, the next cell would
have a similar peak at position x0 þD and contribute
exactly the same phase; hence, one could average
over a few neighboring cells and get the same result.
Refer to [2] for a detailed analysis.

Performing the process by the Fourier method is
essentially the same, with a slightly different
smoothing kernel f ðxÞ ¼ sinðπxÞ=ðx − x3Þ [5,7]. The
equivalent steps are a0 and a00 replacing (a) and b0
and b00 replacing (b):

a0. Calculate the (fast) Fourier transform of the im-
age, ~IðqÞ ¼ FfIðrÞg.

a00. Translate the transform by the reciprocal wave
vector, ~IxðqÞ ¼ ~Iðq − kxÞ.

b0. Cut the high-frequency values by some low-pass
filter AðqÞ, ~WxðqÞ ¼ AðjqjÞ~IxðqÞ.

b00. Inverse transform the result into the spatial
domain, WxðrÞ ¼ F−1f ~WxðqÞg.

The resultant WxðrÞ is similar to the phasor of
stage (b) above. Both methods are identical if AðqÞ
(step b0) is a Fourier transform of the kernel FðrÞ.
Note that the direct phasor method is quicker be-
cause it skips the transformations into the Fourier
space and back.

The centroid method finds the positions of the
spots by calculating their centers of mass. The gradi-
ent Φ is proportional to the displacement of the spot
from the unperturbed position, divided by the focal
length. Here the image is divided into cells around
each unperturbed spot. The cell number ðμ; νÞ is of
dimensionsDx ×Dy, centered on an unperturbed spot
at ðμDx; νDyÞ. The intensity of light in this cell is
Iμ;νðrÞ where r varies inside the cell. The centroid
of each cell is the spot position, �rμ;ν ¼ hrIμ;νðrÞi=
Iμ;νðrÞ. Using FðrÞ ¼ 1 for −D=2 < r < D=2, FðrÞ ¼ 0;
otherwise, the intensity in each cell may be written
as Iμ;νðx; yÞ ¼ Iðx; yÞFðμDx − x; νDy − yÞ and the cen-
troid is

�rμ;ν ¼ �rðμDx; νDyÞ

¼

P
x0;y0

r0FðμDx − x0; νDy − y0ÞIðx0; y0Þ
P
x0;y0

FðμDx − x0; νDy − y0ÞIðx0; y0Þ ;

xμ;ν ¼ lim
w→0

1
w
argfFðrÞ ⊗ IðrÞeiwxg;

yμ;ν ¼ lim
w→0

1
w
argfFðrÞ ⊗ IðrÞeiwyg: ð3Þ

Hence, Eq. (3) is a special case of the phasor meth-
od where [step (c) above] Φx ¼ argfFðrÞ ⊗ UðrÞg,
with a boxcar kernel F, and w replacing jkj of
Eq. (1). Note that ðμ; νÞ are integers, as well as the
pixels x0 and y0, while the cell boundaries are frac-
tional; border pixels contribute partly to one cell,
partly to the other. In general, the centroid method
is very sensitive to slow variation in the average
background illumination, and some threshold algo-
rithm must be used. Also, the spots must lie within
the unperturbed cells, namely, the displacements
must be less than D=2.

Some may argue that the optimal smoothing FðrÞ
should be rotation invariant, others may choose de-
composable Fðx; yÞ ¼ F1ðxÞF2ðyÞ, and some others
may proclaim that FðrÞ should not be symmetric:
Fðx; yÞ ≠ Fðy; xÞ. For Φx it is Fðx; yÞ, and for Φy it is
Fðy; xÞ. Our reduction scheme applies equally well
to all such cases. We only require that it scales
with the pitch, FðDx;Dy; x; yÞ ¼ Fðx=Dx; y=DyÞ. The
examples cited below use Fðx=Dx; y=DyÞ ¼ Fðx=
DxÞFðy=DyÞ, because the equations are simpler in
this case.

3. Image Reduction or Expansion

If the pitch, D, is an integer, the calculations are sim-
pler. First, operations such as the moving average,
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centroiding, or correlations are normally defined for
integer-size windows. Fractional-size windows re-
quire interpolations. In practice, the design may aim
at D ¼ 16 and end with (measured) D ¼ 15:87 pixels.
In addition, it sometimes turns out that Dx ≠ Dy. For
instance, with resonant acousto-optic lenslets [4,13],
the pitch is set by the cell dimensions. If we are going
to change the image dimensions, why not aim at
convenient integer pitch values D ¼ Dx ¼ Dy?

Resizing physical images is a trivial operation: use
a different zoom setting of the camera lens. Once the
image is digitized, resizing requires approximate in-
terpolation formulas. Two well-known methods are
widely used for reduction by an integer factor, say
by R. The first one is binning, where each group of
R pixels is represented by a single pixel whose value
is the average of the original R values. The other one
is sampling, where that value is one of the R values,
usually the central. Those conventional binning
methods treat every group separately. We use a dif-
ferent binning process, where the representing value
for the group is influenced by values of pixels in near-
by groups. We introduce a scheme that works with
any resizing factor, integer or real, and produces
much more accurate results for HS images.

We start in one dimension and define our require-
ments. Given a measured function, IðtÞ, t ¼ 1; 2…n
create a new function I0ðgÞ, g ¼ 1; 2…m, magnified
or demagnifiedM times (Fig. 2), such that the follow-
ing properties are preserved:

I. linear relation, I0ðgÞ ¼ P
tKðg; tÞIðtÞ;

II. total intensity of each individual source pixel,P
tKðg; tÞ ¼ 1 for every g; and
III. position and amplitude of peaks in the input

data,

X∞
t¼−∞

IðtÞe−ðt−cÞ2=2σ2 ≅
X∞
g¼−∞

I0ðgÞ
M

e−ðg−cMÞ2=2σ2M2
:

Property III states that the convolution of the ori-
ginal image with a Gaussian around c is the same as
a convolution of the reduced image with a reduced
Gaussian centered around a reduced position cM00.
If this requirement is fulfilled for Gaussian peaks,
of any width σ and center c, it would be true for com-
binations thereof, namely any positive peaks, such as

FSðrÞ of Section 2 step (b). If the conditions hold only
for a wider Gaussian, σ > σ0, one should not expect it
to hold for general peaks narrower than 2σ0. To be
perfect, the conditions should hold even for fine reso-
lution steps σ. Because the digital image resolution is
one pixel at best, this condition can be met only when
σ > 1 and Mσ > 1.

Note that property II could be derived from III,
provided that III holds for any σ. But in our case,
where III holds only for wider peaks, II is not redun-
dant. The essential property of II is that the sum is a
constant independent of g.

Fortunately, we are not interested in general resiz-
ing. For our purpose, it suffices that the phasors W
andW 0, smoothed from I and I0, are the same, namely
WðcÞ ≅ W 0ðcMÞ for any position c. Even that is too
stringent: only the phase φ of the phasor is of interest
for the analysis of the HS images. Hence, we need
only require minimization of

δφðcÞ ¼ φðcÞ − φ0ðcMÞ≡ argfWðcÞg − argfW 0ðcMÞg:
ð4Þ

To keep the reduction simple, we consider redirect-
ing the intensity of each source pixel into three des-
tination ones (one-to-two binning is insufficient).
This produces both a simple and adequately accurate
formula, while the cases of four and five destination
pixels are discussed later. When we enlarge or reduce
the array, the intensity of the source pixel t, IðtÞ, is
distributed into three destination pixels at the
½tM� − 1, ½tM�, and ½tM� þ 1 positions, where ½x� is
the rounded value (the closest integer) of x. These
we designate as ½tM� þ p where p ¼ −1, 0, and 1.
Using the Kronecker δi;j (0 except when i ¼ j) we get

I0ðgÞ ¼
X1
p¼−1

δg;½tM�þp

Xn
t¼1

IðtÞKðp; tÞ

¼
X1
p¼−1

Xn
t¼1

IðtÞKðp; sÞδg−p;½tM�; ð5Þ

where we have introduced the fraction s ¼
sðtÞ ¼ tM − ½tM�, which is important in setting the
internal division of intensity among the three new
pixels. Translational invariance require that the
coefficients Kðp; sÞ should not depend on the pixel
index t. Kðp; sÞ are normalized by condition II:P

1
p¼−1 Kðp; sÞ ¼ 1. One could consider more compli-

cated formulas, with each source contributing to four
or more destinations. This differs from the conven-
tional binning process, where a source pixel t contri-
butes to a single destination at ½tM�. Because ½tM�
differs from tM, the conventional formula cannot con-
serve the center of mass. With three (or more) desti-
nations, as we propose, the center, intensity, and
gradient will be conserved.

For the special cases of reduction by an integer
fraction, M ¼ 1=R, where the reduction factor R is

Fig. 2. (Color online) Each source pixel j contributes to three des-
tination pixels, l ¼ ½jM� − 1, ½jM�, and ½jM� þ 1. The weights of the
contributions are set by conservation of location and intensity of
the original pattern.4/CO
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an integer, the solution is simpler, as there are onlyR
possible values of s. Enumerating them by d, s ¼ d=R,
we explicitly insert the Kronecker delta and get

I0ðgÞ ¼
XR−1
d¼0

X1
p¼−1

XN=R

t¼0

IðtRþ dÞKðp;dÞδg;tþ½dM�þp; ð6Þ

and
P

pKðp;dÞ ¼ 1. There are exactly 3R coefficients
K . This number of coefficients is much fewer than 3n,
required for general reduction (or expansion).

Now we wish to find the values of the coefficients
K , demanding conservation of the phasors: the one
calculated from the original image, WðrÞ ¼
FðrÞ ⊗ UðrÞ, should have the same phase as the
one calculated from the resized image W 0ðr0Þ ¼
F0ðr0Þ ⊗ U 0ðr0Þ [see step (b) in Section 2]. For an arbi-
trary point c, those are

WðcÞ ¼
X∞
t¼−∞

IðtÞeiktF
�
t − c
D

�
;

W 0ðcMÞ ¼
X∞
g¼−∞

I0ðgÞ
M

eikg=MF

�
g − cM
DM

�
;

where F is the smoothing kernel, and k ¼ 2π=D. Min-
or errors near the edges are ignored. Rewriting I0 in
terms of I [Eq. (5)] we get

WðcÞ ¼
X∞
t¼−∞

IðtÞeiktF
�
t − c
D

�
;

W 0ðcMÞ ¼
X∞

t;g¼−∞

X1
p¼−1

IðtÞKðp; sÞδg−p;½tM�

× eikg=MF

�
g − cM
DM

�
:

Using the definition of the fraction
s ¼ sðtÞ ¼ tM − ½tM�, we write ½tM� as tM − s, and
the Kronecker delta differs from zero when
g ¼ tM þ p − s, thus

W 0ðcMÞ ¼
X∞
t¼−∞

X1
p¼−1

IðtÞF
�
tM þ p − s − cM

DM

�

× Kðp; sÞeikðtMþp−sÞ=M

¼
X
t

IðtÞeikt
X
p

F

�
t − c
D

þ p − s
DM

�
Kðp; sÞ

× eþikðp−sÞ=M: ð7Þ

The formula forW 0ðcMÞ is identical to the formula for
WðcÞ, except the summation over p. The smoothing
kernel is smooth itself and is expanded as a Taylor
series:

F

�
t − c
D

þ p − s
DM

�
¼ F

�
t − c
D

�
þ p − s

DM
F0
�
t − c
D

�

þ 1
2

�
p − s
DM

�
2
F00

�
t − c
D

þ α
�
; ð8Þ

where 0 < α < ðp − sÞ=ðMDÞ. Substituting into Eq. (7)
and comparing the terms for each eitk we get from the
zeroth derivative

IðtÞeiktF
�
t − c
D

�
¼ IðtÞeiktF

�
t − c
D

�X
p

Kðp; sÞeikðp−sÞ=M:

ð9Þ

And from the first derivative

0 ¼ IðtÞeiktF0
�
t − c
D

�X
p

p − s
DM

Kðp; sÞeikðp−sÞ=M:

The conditions are

1 ¼
X1
p¼−1

Kðp; sÞeik0ðp−sÞ;

0 ¼
X1
p¼−1

ðp − sÞKðp; sÞeik0ðp−sÞ;

where k0 ¼ k=M. These are two complex conditions,
solvable by two complex K coefficients, resulting in
a complex reduced image. This valid mathematical
option—a complex image—introduces physical
complications we prefer to avoid. Writing eiρ ¼
cos ρþ i sin ρ, ρ ¼ k0ðp − sÞ, we get four real equations
for each s (fraction) value, which we wish to solve
with only three real variables Kðp; sÞ. Because we
are interested in conserving the phase of W, while
amplitudes are of secondary importance [if at all,
see Eq. (4)], we choose the three real relations:

1 ¼
X1
p¼−1

Kðp; sÞ cos½k0ðp − sÞ�; 0

¼
X1
p¼−1

Kðp; sÞ sin½k0ðp − sÞ�; 0

¼
X1
p¼−1

ðpþ sÞKðp; sÞ sin½k0ðp − sÞ�:

With the solution
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Kðp; sÞ ¼ 3p2 − 2
sin½k0ðp − sÞ� ·

1
2cotanðk0sÞ þ cotan½k0ð1 − sÞ� þ cotan½k0ð−1 − sÞ� : ð10Þ

Thus for each source pixel t in the original array I,
we first calculate the fraction s ¼ tM − ½tM�. Next we
calculate the three coefficients Kð−1; sÞ, Kð0; sÞ, and
Kð1; sÞ using Eq. (10). Then we distribute IðtÞ among
the three target pixels g ¼ ½tM� − 1, ½tM�, ½tM� þ 1 of
the resized array I0 as IðtÞKð−1Þ, IðtÞKð0Þ, and
IðtÞKð1Þ (Fig. 2). The total I0ðgÞ is the sum of all such
contributions [Eq. (6)].K depends on k0, the wave vec-
tor in the new image k0 ¼ k=M ¼ 2π=ðD;MÞ.

We have chosen to conserve the real part of the in-
tensity, rather than the intensity of the peak. This
minute change, using cos½k0ðp − sÞ� instead of 1, has
a negligible effect. In general, the optimal relations
would have both 1 ¼ P

pKðp; sÞ and 1 ¼ P
pKðp; sÞ×

cos½k0ðp − sÞ�.
The centroid method [Eq. (3)] has the same two

complex conditions, in the limit of w (or k) tending
to zero [Eq. (3)]. Those complex conditions are fully
satisfied by [in the limit k → 0, expðikxÞ is 1]

Kð−1; sÞ ¼ ðjsj − sÞ=2;
Kð0; sÞ ¼ 1 − jsj;
Kð1; sÞ ¼ ðjsj þ sÞ=2: ð11Þ

Note that one of the three constants is identically
zero, and it is a linear interpolation two-term
formula.

For five target pixels, we only provide the final va-
lues. The corresponding five-term formula is reached
by using the following parameters (notice that the or-
der of indices is inverted for clarity later):

a1 ¼ sinðk0sÞ= sin k0;

B2 ¼ 1
2
½s cosðk0sÞ − a1 cos k0�;

B1 ¼ 1
2
a1 − 2B2 cos k0; A2 ¼ 2sB2;

A1 ¼ 1
2
a1 − 4A2 cos k0;

A0 ¼ cosðk0sÞ − 2A1 cos k0 − 2A2 cosð2k0Þ;
Kð0; sÞ ¼ A0; Kð�1; sÞ ¼ A1 � B1;

Kð�2; sÞ ¼ A2 � B2: ð12Þ

4. Errors

The error δφ [Eq. (4)] is the difference in the phase
between the original and final arrays, argfWðcÞg−
argfW 0ðcMÞg. It is caused by two different contribu-
tions. First, terms with the second derivative of the
smoothing kernel F were ignored [Eq. (8)]. The smal-

ler the second derivative, the smaller is the relative
error ε:

ε ¼ 1
2

�
pþ s
DM

�
2
F00

�
t − c
D

þ α
�
=F

�
t − c
D

�
: ð13Þ

Second, the interpolation formula employs three
terms, rather than five or more, and does not con-
serve the total number of photons, losing some accu-
racy. Weighted against the smaller error is the fact
that interpolation formulas with fewer terms are
more robust and less prone to artifacts (the higher
the order, the more sensitive it is to noise).

This error estimation has two hidden assumptions
—that the kernel F has finite second derivatives, and
that F scales exactly with the expansion factor M.
When this is not true, as is the case of a single-pass
moving average (a boxcar integrator), one should use
a more detailed analysis (if possible). Fortunately,
this case is not of importance. Boxcar integration
is used by the plain-vanilla centroid method. Modern
versions [14] augment this with correlations,
matching filters, or other operations. Such compli-
cated centroid variations are best analyzed by simu-
lations, as in [14].

The second case of interest is double-pass smooth-
ing, used in the phasors method (Section 2). The con-
volution kernel for the double-pass moving average
is FðxÞ ¼ D − jxj. The second derivative {actually
the second difference, ½f ðxþ 1Þ þ f ðx − 1Þ − 2f ðxÞ�=
2}, is zero except at x ¼ −D, 0, D. Hence the error is

δφðcÞ ¼ argfW 0ðcMÞg − argfWðcÞg

¼ arg
X
p;g;t

IðtÞIðgÞF
�
t − c
D

�
F

�
g − cþ ðp − sÞ=M

D

�

× Kðp; sÞeikðg−tÞþikðp−sÞ=M

¼ arg
X
p;g;t

IðtÞIðgÞ½D − jt − cj�½D

− jg − c − ðp − sÞ=Mj�Kðp; sÞeikðg−tÞþikðp−sÞ=M:

Again, because Kðp; sÞ conserves linear terms, only
terms with jg − c − ðp − sÞ=Mj ¼ 0, �D contribute any
imaginary parts. An exact estimate is complicated;
instead, we investigated the behavior by actual com-
putations, or simulations.

We assume a practical situation: the pitch D is not
an exact integer, and one cannot align a chosen spot
to fall exactly in the center or edge of a pixel, but at
some fraction of it. This means that the original im-
age includes—right from the start—some sampling
and quantization errors, in addition to noise-induced
errors. The light distribution is sampled pixel by
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pixel, introducing a quantization of space. The distri-
bution of light inside the pixel area is never known.
Once we shrink this image, the situation worsens:
quantization of space is coarser andmay cause larger
errors, but by how much? To quantify that, we ran
simulations with three-term and five-term formulas,
as well as with different smoothing kernels. The re-
sults (Fig. 3) show that the second-derivative error is
the dominant one, and formulas with three terms are
good enough. For the tests, we simulated the problem
by a series of maxima, each a Gaussian of width σ
pixels (σ ¼ 1:5, a light spot about four pixels wide),
with the centers of the Gaussians located at cðκÞ ¼
κDþ κ2d1 þ κ3d2, where d1 ≈ 0:1D and d2 ≈ 0:2D.
Thus the distances of the peaks are shifted by a
third-order polynomial. This series was digitized at
integer values t ¼ 1; 2; 3… with I (tj0) being all the
photons in the interval t0 − 0:5 < t < t0 þ 0:5. We cal-
culated the phasor function W by multiplying I with
a rising phase (step b) and smoothing by a moving
average passing two, three, or four times over the
data [step (c)]. Next, we compressed I into I0 and cal-
culated W 0 from I0. The plot shows the phase differ-
ences δφ ¼ argðWÞ − argðW 0Þ [Eq. (4)]. Plotting the
phase differences between original and compressed
data, pixel by pixel, shows them to behave as alter-
nating signs with zero expectation value. As expec-
ted, the error drops with the number of smoothing
stages.

5. From One to Two Dimensions

In two dimensions, each source pixel Iðx; yÞ, which
would have projected into I0ðxM; yMÞ, actually contri-
butes to all neighboring pixels f½xM� þ px; ½yM� þ pyg
with p ¼ px, py ¼ −1, 0, 1. Two phasors are to be con-
served, IðrÞ expðiq1 · rÞ and IðrÞ expðiq2 · rÞ, with the

two reciprocal wave vectors q1 and q2. If the direc-
tions are purely orthogonal, along x and y, and if the
smoothing kernel F can be decomposed into FðrÞ ¼
FðxÞFðyÞ, then the coefficients Kðpx; sx;py; syÞ can
be decomposed into Kðpx; sxÞKðpy; syÞ. The resizing
can be carried out by first resizing only the x dimen-
sion, followed by a purely y resizing. Note that the
two operations are independent, each with its own
magnification factor M and wave vector q. In the
analysis of fringes and projected grids, which happen
along one dimension, a different magnification is
clearly preferred depending on data density. We
did not consider here other directions, such as the di-
agonal case Φxþy and Φx−y. In these cases, different
reduction coefficients should be used. For a general
case of linear spot grids, even not orthogonal, the
whole set of coefficients Kðpx; sx;py; syÞ≡ Kðp; sÞ
must be calculated by solving a two-dimensional
set of equations:

1 ¼
X

Kðp; sÞe−iq1·ðp−sÞ;

1 ¼
X

Kðp; sÞe−iq2·ðp−sÞ;

0 ¼
X

ðp − sÞKðp; sÞe−iq1·ðp−sÞ;

0 ¼
X

ðp − sÞKðp; sÞe−iq2·ðp−sÞ;

where all summations are now over p ¼ px, py ¼ −1,
0, 1. These are 12 real, scalar constraints, which in
general are not independent. We prefer to retain
the relations with the imaginary parts because
they influence the phase (rather than the less impor-
tant amplitude) of the phasors, together with some
normalization:

0 ¼
X

Kðp; sÞ sin½q1 · ðp − sÞ�;

0 ¼
X

Kðp; sÞ sin½q2 · ðp − sÞ�;

0 ¼
X

Kðp; sÞðpx − sxÞ sin½q1 · ðp − sÞ�;

0 ¼
X

Kðp; sÞðpx − sxÞ sin½q2 · ðp − sÞ�;

0 ¼
X

Kðp; sÞðpy − syÞ sin½q1 · ðp − sÞ�;

0 ¼
X

Kðp; sÞðpy − syÞ sin½q2 · ðp − sÞ�;

1 ¼
X

Kðp; sÞfcos½q1 · ðp − sÞ� þ cos½q2 · ðp − sÞ�g=2:

6. Examples

To test the resizing method, we produced tens of ran-
dom wavefront realizations, each distorted according

Fig. 3. (Color online) Phase errors: differences of phase between
resized and original vectors, along the array of Hartmann spots.
The parameters are as follows: pitch, D ¼ 13 pixels; spot width,
σ ¼ 1:5 pixels; and magnificationM ¼ 0:7, with the phase gradient
growing over the array from 0 to 0:1 rad. The number of smoothing
passes is two (blue, broken curve), three (red, dotted curve), and
four (green, full curve). Three-term fits (lower curves) are slightly
less accurate than five-term fits (curves shifted up by 0.01). The
difference is that slope is expressed in radians (the phase of the
phasor) proportional to the gradient of the wavefront.4/CO
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to the Kolmogorov spectrum and various Fried r0 val-
ues, and sampled by a centrally obscured telescope.
These wavefronts were then split into different
rectangular grids of lenslets, and each one was pro-
pagated to focus on the detector and squared to cre-
ate the local intensity. These focal patterns were
convolved with a simple asterism of a few nearby del-
ta functions, each multiplied by a different factor. As
a result, we obtained a set of blurry focal spots. We
added Poisson noise to the intensity at different le-
vels, from a few to thousands of photons per lenslet.
We present here a faint source case under relatively
strong turbulence [Fig. 4(a)].

We assumed that the wavefront sensor has its own
internal aberrations. In order to calibrate the result,
we also took many realizations of the atmosphere
through this aberrating sensor using the same aster-
ism. We added up these Hartmann patterns to create
more aberrated focal spots, which, on average, follow

the wavefront sensor internal aberrations, as
in Fig. 1.

For each wavefront to analyze, we resized the
Hartmann pattern according to the procedure given
above, for many reduction values. In the example
shown, we show how the method also works for dif-
ferent compression values in x and y. Both the origi-
nal and resized arrays were processed to find the
wavefront slopes according to the demodulation
steps (a)–(e) in Section 2. The resultant phasor
was multiplied by the conjugate of the reference
wavefront, processed in the same way, to remove
the instrumental aberrations [Fig. 4(b)]. Because
step (b) requires smoothing, we also tested the effect
of the number of repeated smoothing iterations.
Smoothing (or low-pass filtering in the Fourier do-
main) and image resizing both affect the final result,
and thus they cannot be discussed separately. This is
further detailed in the next section.

Thus each wavefront was processed four times,
with two or four smoothing iterations, and with three
or five interpolation coefficients. These were com-
pared to the nonresized images, and the root mean
square (RMS) of the phase difference between the
original and compressed image was calculated. It
never exceeded a few percent of the original wave-
front slopes, and usually it was much lower (Figs. 5
and 6). Brighter sources produced even fewer errors,
as did less turbulent atmospheres.

7. Discussion and Summary

We have proved that, with a smart binning formula,
one may apply the resizing scheme on nearly periodic
images andmaintain their phase. Unlike normal bin-
ning, which is confined to integer reduction factors,
with smart binning the magnification/reduction may
be any real value. The magnification or compression
scheme is independent of the smoothing kernel, but
the binning-induced errors depend on it: the smooth-
er the kernel, the smaller the errors. The same smart
binning is valid for any convolution kernel as well as
for centroiding and Fourier domain analysis.

The reduction process requires first a one-time cal-
culation of the 3n coefficients for each dimension,
then performing a matrix multiplication of the input
array by these coefficients [Eq. (6)]. However, since
only the nearest neighbors are being affected, this
can be presented as a near-diagonal matrix, which
is quicker to multiply by. For an array of size nxny,
the number of calculations is 6nxny add/multiply op-
erations, plus 3nx þ 3ny calculations of the coeffi-
cients. Reduction by an integer number R ¼ 1=M
in each of the two dimensions drops the number of
calculations to 2Rþ 6nxny. This is a single calcula-
tion, and it has to be weighed against M2 saving
in each of the next processing stages. To further
accelerate the analysis for fixed arrays, the precalcu-
lated coefficients can be implemented in hardware,
as well as the Fourier analysis.

A good way of reducing the errors is by using
third- or fourth-order sliding averages, instead of

Fig. 4. Hartmann pattern, including Poisson noise, with (a) 0–6
photons per pixel (negative image), the source being an asterism,
the reference a long exposure of the same asterism. The data were
extended beyond the edge [6], and the (b) x phase slope was calcu-
lated. On the left and bottom are pixel numbers; on the right are
(a) photons and (b) phase (radians).
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the second-order one we have advocated before
(Fig. 5). The cost is a small loss of spatial resolution
and of time. The gain is a drop in binning-induced
errors, as well as elimination of phase jumps and vor-
tices due to defective lenslets and phasors with neg-
ligible intensity. A blocked lenslet transmits no light,
causing phasors dominated by random noise; a half-
blocked lenslet causes a nonsymmetric light spot and
errors in spot position [15]. A third-order smoothing
effectively replaces a blocked lenslet with a ghost of
its neighbor lenslets. In general, it averages the lens-
let intensity with ghosts of its neighbors. Fourth-
order smoothing sums farther neighbors, too. In the
corresponding Fourier analysis (steps a0, b0 of Sec-
tion 2) a low-pass filter plays a similar role. We used
the window function cos2ðqxÞcos2ðqyÞ.

There are a few pitfalls to note and avoid:

1. Applying the same smoothing kernel for both
the reduced and the unreduced images, namely, the
same function of the pitch D. This is natural if one
smooths with a Gaussian or any other mathematical
filter that is defined for real numbers. In the case of

the sliding sum [steps (a), (b) above], or centroiding,
where operations are normally defined for an integer
number of pixels, this may require interpolation. For
instance, if the original image had been reduced by
2:27 × 2:46, and if the reduced image is smoothed
by summing over 4 × 4 pixels, this is equivalent to
smoothing the original image by 9:04 × 9:84 pixels.
In general, simple smoothing over some (integer) P ×
Q window in the compressed image corresponds to a
computation-intensive smoothing over MP ×MQ
window in the original image.

2. The position of the average, for instance the
average of pixels jþ 1 through jþ 14 should be at-
tributed to jþ 7:5 {which is then compressed into a
pixel ½ðjþ 7:5ÞM�}.

3. Edge problems: edges need to be excluded or
images extended before resizing. The same applies
to smoothing operations. If there is no information
near the edge (the HS pattern is smaller than the
measured array), this is trivial: one extends the image
by adding rows and columns of zeros around, then dis-
cards results influenced by those extra pixels. Other-
wise, one should expand the HS image smartly,
adding extra lines/columns whose values depend on
the known boundary ones [6,7,16]. In general, reduc-
tion by a factor RðR > 1Þ requires extra T lines and
columns on each side, where T ¼ ceilð1:5RÞ for the
three-term formula. Three-pass smoothing adds
1:5D to T; four-pass smoothing adds 2D.

4. The case of zero amplitude. Measured HS
images are usually composed of an aperture with
spots of light, surrounded by a region with only back-
ground noise. Any calculation of spot shifts outside
the aperture is doomed to failure: there are no lenslets
there. Some of the lenslets may be partially
occluded by the aperture andprovide limited informa-
tion [15]. Outside the aperture, the amplitude of the
phasor W drops to zero and the phase is pure noise.
This is in contrast with our assumption that the pha-
sor has constant amplitude. We employed a mechan-
ism to flag points with phasors smaller (in amplitude)
than a fraction of the average amplitude. This was
used in Fig. 4 to set the aperture borders as well.
The same caution applies to cases of wavefront vor-
tices or simply dirty lenslets, where the amplitude
also drops to zero. The unreliable pixels were given
a constant value, equal to the average of all others.
In shape-from-shade problems (profiling by projected
grids), the same problem occurs when changing fa-
cets, where the grid lines might seem to run in a dif-
ferent direction, helping also to find the facet edges.

5. Low signal cases. In stellar adaptive optics,
where the number of photons is extremely limited,
the division of photons into many pixels increases
both shot noise and readout noise, and the benefits
of large-format detectors are limited. This factor is
less important now, with the recent introduction of
very low noise detectors and with the need for posi-
tion accuracy brought about by more pixels per spot.
All large new telescopes (with diameter > 25m) are
planned to have more than eight pixels per spot.

Fig. 5. Errors introduced by shrinking. The Hartmann array of
Fig. 4 was shrunk by 0.71 in x and 0.61 in y (notice coordinates).
The results are too similar to Fig. 4(b) for changes to be visible.
Instead, the differences are drawn for (a), (b) a two-pass smoothing
(varying gray scale), (a) three-term interpolation, and (b) five-term
interpolation. The corresponding RMS of the differences in phase
are 0.0024 and 0:0015 rad. Scale bar is expressed in radians.
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6. Deviations from periodicity. We choose an op-
timal smart binning formula, in the sense that by
using appropriate procedures, both the original im-
age and the reduced one produce the same results.
If the period is known in advance to be nonconstant,
such as in closed fringes or a HS pattern of a large
defocus, then the compression coefficients will not
be global, but they might still be calculated locally.

Our method compresses grossly oversampled
images, and it should be compared to other compres-
sions methods applied to images with similar infor-
mation content, namely, slowly changing phases. The
oversampling comes about because D ×D pixels
(where D is the pitch) are used to record the x–y posi-
tion and the intensity of a single peak. That is, as
many as D2 values are used where three should suf-
fice. Ng and Ang [17] propose three figures of merit,
to quantify compressions:

1. compression ratio, in pixels: (number of com-
pressed pixels)/(number of original pixels);

2. compression ratio, in bits or bytes: (length of
compressed file)/(length of original file); and

3. root mean square error: jQ ðcompressedÞ−
Q ðoriginalÞj, where Q is the desired quantity, such
as phase versus position.

Using this terminology, our pixel compression ratio
is exactly M2, where M is the magnification ratio. In
bytes, our compression is 1=2M2, because the inten-
sity in the new image must use 16, not 8, bits. The
range of possible magnifications is limited by Ny-
quist: the pitch in the compressed image must be
D0 > 2, and practicallyD0 > 3. Under such limitation,
the compression ratio is D2=9.

What about errors? We constructed our compres-
sion formula to produce zero errors in the ideal case.
We tested our method with noisy data, and found it to
produce results Q (compressed) very close to the ori-
ginal Q, with ΔQ much smaller than the expected
noise in Q (Section 3 and Fig. 2). Figure 7 sum-
marizes many simulations: the RMS of the difference
(peaks in the reduced image minus their location be-
fore reduction). The figure demonstrates that very
high levels of noise in the input have some influence
over the produced differences. In general, five terms
are better than three terms. But spreading the infor-
mation over more than a single cell, while the phase
varies largely from cell to cell, is not recommended:
that is, using a five-term formula for a case of output
pitch of three pixels (a full cell is 3 × 3 pixels),
produces higher errors than a three-term formula.
Thus, the five-term formula should only be used
when D0 ≥ 4.

Alfalou and Brosseau [18] considered a much
wider scope of compressions, both before and after

Fig. 6. Errors introduced in reduction from Fig. 4 by 0.71 in x and
0.61 in y, as in Fig. 5, but with further smoothing and thus lower
errors. The difference between the original and the reduced slope
is shown for (a), (b) a four-pass smoothing (varying gray scale),
(a) three-term interpolation, and (b) five-term interpolation. The
corresponding RMS differences are 0.0014 and 0.0012 radians.

Fig. 7. Root mean square shift in the location of the peaks before
and after reduction, in differently reduced images and different
noise levels. An input image (as in Figs. 4–6) with a pitch of 16
pixels was reduced to various pitches as marked, both with N ¼
3 and N ¼ 5 terms formulas. The indicated peak intensities I
are realizations of 3�p

3, 12�p
12 and 36�p

36 photons.
Results were calculated using a four-pass smoothing, and are
expressed in pixels of the reduced images.
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processing, including schemes of reducing the images
for storage and transmission, such as JPEG or
JPEG2000 specially modified to the task at hand.
In this respect, our work is very limited: after proces-
sing, the only relevant information is the position of
the peak. That is, a compression ratio of D2. We dealt
only with a preprocessing operation, so we did not
improve, nor impair, this D2 ratio. Perhaps a special
version of wavelet compression, constructed to con-
serve both amplitude and position of peaks, could
do better than our method. The gain, however, could
not be larger than a factor of 2: at the very least, four
pixels must define a peak in x and y, while our tech-
nique allows for nine pixels per peak.

A test version of the program is available at http://
physics.technion.ac.il/~eribak/reduce.
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