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We present what is to our knowledge a first hardware realization of a simulated annealing algorithm in an
adaptive optics system designed to image the retina of the human eye. The algorithm is applied to the reti-
nal image itself without the need for wavefront sensors in the system. We find that this optimization algo-
rithm can be an alternative to the traditional Hartmann–Shack sensing. We also compare the simulated
annealing algorithm to the stochastic parallel gradient descent algorithm. © 2006 Optical Society of America
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Adaptive optics is a method designed to correct im-
ages deformed by nonideal optical systems in real
time. In general, the distortion of the wavefront from
an ideal point source is measured by a wavefront sen-
sor, and a deformable mirror is used to compensate
the aberrations and return the wavefront to a plane
or spherical wave. An image of the object is then
taken through the same corrected optics. This Letter
utilizes methods that omit wavefront sensing hard-
ware and software from the reconstruction process.
Such methods use stochastic or directed algorithms
to find the extremum of a certain sharpness function,
thereby correcting the image without any informa-
tion on the wavefront. Theoretical work and initial
simulations1 have shown that the optical problem
can be mapped onto a model for crystal roughening
that served as a motivation to implement the simu-
lated annealing algorithm (SA).

Another random and iterative method is phase di-
versity, deduced from images taken at zero and a
small defocus.2 We did not pursue this avenue be-
cause of ocular speckle effects, even in polychromatic
light.

The SA is an optimization algorithm designed to
find the extremum of a certain cost function, which
can be regarded as the energy of the system3 and will
be called henceforth the energy function. It is based
on the physical annealing process by which a solid is
heated to a temperature close to its melting point, af-
ter which it is allowed to cool slowly so as to relieve
internal stresses and nonuniformities. The aim is to
achieve a structure with long-range order that is as
close as possible to the ground-state configuration.

The algorithm is a stochastic algorithm that gener-
ates random states and accepts not only the “good
states,” which decrease the cost function (in case of
minima search), but occasionally also accepts some
“bad states,” which increase the cost function and can
help the algorithm climb out from an occasional local
minimum.

The basic probability distribution that governs a
state’s acceptance is proportional to the control pa-
rameter T, which is analogous to the temperature of
a physical system, and to the difference between the
previous state energy E1 and the new state energy
E2. The probability acceptance condition, also called
the Metropolis criterion, is P=exp− ��E1−E2� /T�
when �E1−E2��0, and 1 otherwise. The algorithm

randomly chooses one control parameter and, accord-
ing to the assigned temperature, changes its value.
The new energy function is measured and the control
parameter’s new value is accepted by using the prob-
ability criterion above. The temperature is lowered
each step i to Ti+1=�Ti, where � is the cooling rate
factor.

A second search algorithm used in this research is
the stochastic parallel gradient descent (SPGD) algo-
rithm. This algorithm is basically a fast version of
the well-known steepest descent algorithm,4 capable
of reducing the processing time by a factor of �N,
where N is the number of control parameters or de-
grees of freedom (in our case, the number of deform-
able mirror actuators). It achieves this by applying
small random perturbations to all control parameters
simultaneously, and evaluating the gradient with two
measurements, before and after the changes. Let
�xi= ��x1 ,�x2 , . . . ,�xN� be the simultaneously applied
small random perturbations on the control param-
eters x at step i. The resulting difference in the en-
ergy function multiplied by the perturbation vector is
an approximation to the true gradient, �xi�f
��xi�f�xi+�xi�− f�xi��. Consequently, the control pa-
rameters are updated according to xi+1=xi
−��xi�f�xi�, where � is a positive weight coefficient
for a minimum search and negative for a maximum
search.

The two algorithms were first implemented nu-
merically by computer on a simulated adaptive optics
system. We have modeled the mirror as an apparatus
composed of 57 square elements arranged in a circu-
lar formation on a 15�15 grid. We restricted each el-
ement to values in the range of �−� /2 ,� /2� corre-
sponding to its height h with discretization of � /200.
As the energy function for the optimization algo-
rithms we have chosen the irradiance at the center of
the mirror’s point spread function (PSF), correspond-
ing to the Strehl ratio.

Both algorithms performed roughly the same,
reaching the global maximum in approximately 1000
steps. However, the two algorithms have different
processing times. The SA requires only one energy
evaluation per step whereas the SPGD requires two
such evaluations. These energy evaluations are the
most time-consuming operations, compared to calcu-
lating the next control parameters and updating
them. Consequently, each SPGD step is twice as long
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as the SA step and when the two algorithms are com-
pared timewise, the apparent advantage of the SPGD
algorithm is negated. Nevertheless the SPGD algo-
rithm could again claim superiority as the number of
actuators increase.

Aside from the Strehl criterion we have also used
the sharpness function �I2 introduced by Muller and
Buffington.5 However, this energy function adds de-
generacy to the state space with regard to tilt, as the
central peak might shift around. Simulations show
that the SA tends to find solutions with a high degree
of tilt in them as opposed to solutions obtained with
the SPGD algorithm, even though both start from a
random state, where on average there is no initial
tilt. SPGD searches for the closest maximum of the
energy function, which will naturally be close to zero
tilt. The SA, however, samples a wider state space
and can easily find itself in a degenerate maximum
state containing tilt.

Both algorithms were also implemented in an
adaptive optics system designed to image the human
retina. The deformable mirror used was an OKO
(Flexible Optical B.V., Delft, The Netherlands) mem-
brane mirror with 59 actuators.6 The most limiting
factor when using this mirror is its limited stroke
that sometimes hindered a full search. Figure 1
shows the results of the SA on an artificial retina at
the back of a glass eye model. The energy function
used by the algorithm is the sharpness evaluated on
a small portion of the frame (Figs. 1a–1d). The en-
ergy (Fig. 1e) converges in approximately 400 steps.

To speed up convergence of both algorithms we
have changed the search space from 59 individual ac-
tuators to the 59 eigenmodes of the mirror. These
eigenmodes were calculated by obtaining the actua-
tors’ response matrix and applying a singular value
decomposition.6 The results are shown in Fig. 2
where the algorithms were implemented on an artifi-
cial eye. Both algorithms managed to improve the im-
age dramatically in both search spaces. However, if
one looks at the energy graphs, it is evident that the
SA found a better solution, whereas SPGD got
trapped in a local minimum. Furthermore, it is evi-
dent that with the mode search scheme the SA con-
verged faster to a superior solution.

The actuators’ elevations (Fig. 2c) show, as in the
simulations, the tilt that is present in the SA final
state and missing in the SPGD final state. The same
tilt can be observed in the retinal images as well. A
closer look at the final frames reveals that the SPGD
final state is somewhat better than the rest of the fi-
nal frames, regardless of its inferior energy value.
This illustrates the difficulty of choosing the best
frame section to analyze and the correct energy
function.7

Owing to the SA insensitivity to tilt, more often
than not the algorithm found solutions that increase
the energy by adding light into the frame, at the ex-
pense of the true image sharpening. This problem
might be avoided if one is to use a different energy
function such as spatial frequency analysis8 rather
than the irradiance-dependent sharpness function.
Alternatively, if the illuminated spot size is much
smaller than the full frame, its shift will not change
the total light intensity.

Having achieved results in simulation and artifi-
cial eyes, we commenced experimenting on human
subjects and obtained preliminary results (Fig. 3). As
a reference source we used a superluminescent diode
at 0.8 �m, whose maximum raw output was 100 �W,
and after splitting the light into the eye always below
40 �W (we used an uneven beam splitter to capture
as many retinal photons as possible). By analyzing
the time scales in the system together with the labo-
ratory and simulation results, it can be shown that

Fig. 1. Typical result of the SA algorithm. Initial and final
frames (a and b). (c) Corresponding sections used to calcu-
late energy. (d) Energy graph.

Fig. 2. Comparison of algorithms on a glass eye. SAM and
SPGDM are the modal searches of simulated annealing
and stochastic parallel gradient search, respectively. a, Ini-
tial images with all algorithms operating on the same reti-
nal scene of 10 �m glass spheres. b, Final images. c, Final
mirror configurations. d, Comparison of the rise in energy
(sharpness).
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the SA can serve as a good alternative to the tradi-
tional wavefront sensing method.

There are four main time scales that govern any
adaptive optics speed, including our system: (i) acqui-
sition time of the frame, here at the standard video
rate of 40 ms; (ii) wavefront calculation, or here en-
ergy evaluation of a subframe of 100�100 pixels:
0.17 ms; (iii) actuator command calculation, for the
SA: 7 ms; (iv) voltage application to the actuators; in
our case, for 59 actuators, a total of 0.4 ms. As a re-
sult, the whole loop can be closed within 47.4 ms. In
our experiments each SA loop was actually 80 ms
long due to an additional, useless frame acquisition
each step (we used a standard frame grabber on a
personal computer running Windows XP).

We experimented with the SA and reached the op-
timum in 	400 steps in artificial eyes by using a
mode search, and 	500 steps by using a poke search.
This corresponds to a theoretical 	19 s correction
time, much longer than the required9 0.5 s. Figure 3
shows the SA performance on a human eye PSF ob-
tained in a similar time. Despite the slow time scale
of the system, there is definite improvement in the
PSF that is validated in the energy graph.

The total loop time can be easily reduced if one
uses a single photodiode to evaluate the Strehl ratio
of a limited spot rather than a full CCD image. In
this mode5 all the light that passes through a hard or
soft aperture is integrated. The acquisition step [(i)

above] can then be reduced to 1–50 �s, with the total
time for one algorithm step �0.5 ms, and with 1000
iteration steps, �0.5 s. In comparison, when a
Hartmann–Shack wavefront sensor was used, the
PSF was reconstructed in approximately 2–3 itera-
tions, where each iteration was 0.2 s long (again due
to the unnecessary loss of frames). This was checked
both on a glass eye and on a living eye.

In conclusion, we simulated and ran experiments
for comparison of optimization and direct wavefront
sensing. The SA achieved good results in converging
into a global optimum in simulations. Additional ex-
periments are needed to evaluate its reconstruction
accuracy and speed in comparison to the SPGD algo-
rithm and a full adaptive optics system. However, the
latter accuracy is only as good as its calibration,
whereas in iterative algorithms no calibration is
required.
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Fig. 3. Energy graph of a human aberrated eye (notice the
blink recovery), and a, initial and b, final PSFs. The LED
irradiance on the cornea was 10 �W. The total time was
40 s, and can easily be reduced.
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