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• Part I compares bilayers to bare NbN films  
Supercond. Sci. Technol. 28 025003 (2015) & http://arxiv.org/pdf/1409.2975v1.pdf (2014) 
• Part II Magnetoresistance & gating effects on these bilayers  & films 
http://arxiv.org/pdf/1506.08584v1.pdf (2015)  
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Outline 

• Some background 
• Ultra-thin bilayers of Bi2Se3-NbN for studying topological 

superconductivity 
Part I  
• Proximity effects in these bilayers 
Part II 
• Magnetoresistance & gating effects in Bi2Se3 films 
• Magnetoresistance & gating effects in the bilayers  
• Interpretation of the results in terms of vortex physics & pinning 
• Alternative interpretations 



(a) Sb2Se3 (b) Sb2Te3 

(c) Bi2Se3 (d) Bi2Te3 

Topological insulators are bulk insulators with surface conductance  
& a single Dirac cone of the surface states  

T. Kirzhner &… A. Kanigel, meas. 
ARPES, PRB 86, 064517 (2012)  

Zhang… & S. C. Zhang,  calc. bands  
NATURE PHYSICS, 5, 438 (2009) 



Motivation for studying topological superconductors (TSC) 

• It is predicted that Majorana fermions (MFs) exist in the vortex 
cores of topological superconductors (TSC)  

• These MFs will appear as zero energy modes (or ZBCP) in 
conductance spectra of TSC/N junctions (N is a normal metal) 

• They should be robust against disorder & decoherence 
• & thus might be useful in quantum computing (*)  

 

(*) Fermionic Quantum Computation 
Sergey B. Bravyi and Alexei Yu. Kitaev, Annals of Physics 298, 210–226 (2002) 



Why studying transport in ultra-thin bilayers of Bi2Se3-NbN?  

• If the NbN film is too thick (>10nm) & T<Tc, it will short all the effects of the 
Bi2Se3 cap-layer  no TSC at the interface could be investigated. 

• Thus a thin NbN islands layer (~3 to 5nm) is needed, that behaves as  a 
network of weak-links when bridged by the Bi2Se3 cap-layer 

•  current will have to flow via the interface with the Bi2Se3 layer, allowing for 
the TSC to be studied 

•  Percolation paths of weak-links will constitutes 1D TSC, and their geometry 
relative to the voltage contacts will determine the TSC transport properties in 
the bilayers 

 
•  In the following slides, this will be explained in details  

 
 

• Some relevant parameters for 3-5nm thick NbN films: 
      Tc ~ 5-8 K,   ξ ~ 5 nm,   λ ~ 500 nm,   ∆ ~ 1.5 meV 
       A. Kamlapure et al. Appl. Phys. Lett. 96, 072509 (2010) 

http://www.tifr.res.in/%7Eask/site-assets/pdf/apl.pdf
http://www.tifr.res.in/%7Eask/site-assets/pdf/apl.pdf
http://www.tifr.res.in/%7Eask/site-assets/pdf/apl.pdf
http://www.tifr.res.in/%7Eask/site-assets/pdf/apl.pdf
http://www.tifr.res.in/%7Eask/site-assets/pdf/apl.pdf
http://www.tifr.res.in/%7Eask/site-assets/pdf/apl.pdf
http://www.tifr.res.in/%7Eask/site-assets/pdf/apl.pdf
http://www.tifr.res.in/%7Eask/site-assets/pdf/apl.pdf
http://www.tifr.res.in/%7Eask/site-assets/pdf/apl.pdf
http://www.tifr.res.in/%7Eask/site-assets/pdf/apl.pdf
http://www.tifr.res.in/%7Eask/site-assets/pdf/apl.pdf


A scheme of the film, bilayer & contacts geometry on the wafer 
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A model for the transport in the bilayer  

• Weak-links between the NbN grains (IC with serial resistance)  
• Proximity induced superconductivity in Bi2Se3 cap layer (at interface) 

20 nm Bi2Se3 

Insulating 
NbNXOY oxides 

Fused Silica wafer 

NbN NbN 5 nm NbN 

Proximity induced 
SC layer in Bi2Se3 

IC = 0 IC > 0  



Topography of: (a) a 5nm thick NbN film, and of a bilayer (b) of 
20nm Bi2Se3 on 5nm NbN on FS & typical line profiles 

On SrTiO3 the NbN films are so smooth, that there are no weak-links. 
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RT & contrast-topo of a 5nm thick NbN film on FS 

2 3 4 5 6 7 8

0

200

400

600

800

1000

1200

LAF-334, Aug 11, 2014, 70min in air
5nm NbN film on whole wafer on fused silica (FS)
0.01mA bias, on Ag paste band-contacts (for current)
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• NbN islands (bright areas) connected by weak-links (dark areas) 
• rms – roughness: ~0.5nm (0.1nm on STO – not shown)   



R vs T of a 5nm thick NbN film after 10min in air, compared to an in-situ  
deposited bilayer of 20nm Bi2Se3 on 5nm NbN (LAF-BL-334) 

• Proximity effect (PE) in BL suppresses superconductivity in NbN grains (lower TC) 
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• Induced SC in Bi2Se3 at the interface with NbN with no serial resistance 
• TC(bilayer at R=0) ~ 2.3K, No TC(film) down to 1.9K  inverse PE in BL… 

Similar wafer (LAF-BL-333): Below 3K & without normalization of R 
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Same wafer (LAF-BL-333): IVC at 1.82K 
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• Both have IC at 1.82K, but IC(bilayer) is about 6.3 times larger than IC(film) 
• IC enhancement in BL at low T indicates (inverse) PE in the TI 

 



Conductance spectra of in-situ prepared bilayer and film (LAF-BL-333) 
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• IC and Andreev peaks  
• Andreev enhancement in BL at low T indicates (inverse) PE in the TI 
• ZBC (1/R) of BL is about 20 times higher than that of the NbN film 
       [R(normal of NbN film) ~ 6 x R(normal bilayer)]  



Scattering of the data (LAF-BL-332) after 17min exposure to ambient air:  
two extreme cases for the 5nm NbN film 

• Percolation of strong-links  between the SC grains that connects the V-contacts of C2  
• Percolation of weak-links between the SC grains that cuts the V-contacts of C4 
• PE in Bi2Se3 in the BL, TC of 2.2-2.3K, low scattering of the data (thick cap layer) 
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Tunneling conductance of the C4 contact of LAF-BL-332 

• Gap-like feature at 2Δ ~ 2 mV  Δ  of the NbN grains ~ 1mV (assuming 1 SNS junction) 
• The weak-link here could originate in stronger defects like nm scratches etc. 

-8 -6 -4 -2 0 2 4 6 8
0.07

0.08

0.09

dI
/d

V
 (1

/Ω
)

V (mV)

LAF-BL-332
5nm NbN film on FS
  C4  1.9K  0T



7nm NbN film and bilayer with 20nm Bi2Se3:  R vs T & IVC 

• Stronger links in thicker film  which is less resistive at low T 
• Need a higher bias to see PE in Bi2Se3 below 3.5K, see IVC at low T. 
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Conclusions I 

• Transport properties of in-situ prepared bilayers of a TI 
(Bi2Se3) & a SC (NbN) were compared to the bare SC film 

• Standard proximity effect (PE) was observed in all bilayers in 
the main part of the SC transition (high T), where the TI layer 
(N) suppressed TC of the SC layer 

• At low T, an inverse PE in the TI of the bilayers was observed, 
as indicated by enhancement of IC & Andreev conductance in 
the bilayer compared to the SC film 

 
• Next we shall present part II which deals with gating effects 

on the magnetoresistance of even thinner bilayers and films. 



AFM image of a 3nm thick NbN layer on FS 

• Nano holes of ~70nm diameter 
• ~0.35 nm rms roughness 
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AFM image of a 10nm Bi2Se3 on 3nm NbN bilayer on FS 
& the corresponding line profiles in (b) & (c) 

~1.1 nm rms roughness   &   Quintuple steps of 1 and 2 nm can be seen in (c) 
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A schematic drawing of the bilayer & contacts geometry now 
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Gating of the bilayer 
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10 nm Bi2Se3 reference film on fused silica  
(1) R vs T results 

For similar resistivity, 
The electron densities 
according to 
Butch et al. PRB 
81, 241301R (2010) 
are: 
 
• 4-6 x 1017  elect./cc 
From Hall measurements  
 

• 3-4 x 1017  elect./cc 
From SdH oscillations 
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L438c, Jan 25 2015, AGED!!
10nm Bi2Se3 film on FS, while puting the top gate:
was baked at 170 deg C for 12 min in air
0.001mA bias, on Ag paste bands, +100Vg armed
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10 nm Bi2Se3 reference film on fused silica 
(2) MR results  

• Magnetoresistance MR = [R(H)-R(0)] / [R(H)+R(0)]/2      H is the magnetic field 
 

• H is 1T here 
 
• Fit a double- 
exponential decay, 
but not A/T0.5 

 
• Almost insensitive 
to gate-voltage Vg, 
unlike Steinberg et al. 
PRB 84, 233101 (2011) 
 
• Eg-field of top gate  
for -100Vg & ε~2.6 is: 
2.6x100V/0.00013cm 
=2 MV/cm (vs x 40 
higher of Steinberg) 
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(3) R versus H of another 10nm Bi2Se3 film on FS 
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Weak localization (WL) and Anti-localization (WAL) 
• Disordered 2D electron systems can have coherent closed-loop electron  
trajectories due to elastic scattering (a), which lead to WL when  
interfere constructively, and WAL when interfere destructively.  
• Since MR ∝ dR/dH & added flux destroys pure WL and WAL,  
MR<0 for WL & MR>0 for WAL, see (b) 
• Under strong spin-orbit int., the spins rotate & ψ(e↑) returns  to itself  
only after 2 loops -  yielding added phase of Δφ=4π.  
• For 1 loop Δφ=2π, the spins ↑ & ↑ rotate in opposite directions & one 
can show that they interfere destructively, thus WAL occurs (*).    

Incoming e↑ 
Forward scattered e↑ 
Back scattered e↑ 

(*) G. Bergmann, Sol. Stat.  
Comm.  11, 815 (1982) 



Weak anti-localization – WAL & quantum diffusion 
The Hikami-Larkin-Nagaoka (HLN) model (*) 
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For B=1T  &  phase coherence length Lφ  in nm: 
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• R(B)-R(0) is the un-normalized magnetoresistance (MR) 
• Since R is temperature dependent, this formula yields Lφ(T) 

2D + disorder 
+ spin-orbit =>  
Interference 
effects 

(*) Prog.  Theor.  Phys.  63,  707 (1980)  



10 nm Bi2Se3 reference film on fused silica 
(4) MR, WAL & power law results vs T  
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• On the same wafer, different Lφ & power-law exponents for different contacts 
• On same contact, different behavior of MR, power-low (-1/2 for 2D) & Lφ  (WAL) 
• Lφ=√Dτi  where for T>2K, τi is the electron-phonon scattering time (shortens vs T) 



(1) A second reference bilayer  
of 10 nm gold (Au) on 4nm NbN on fused silica  

R vs T results  
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(2) MR results & Flux-flow (FF) in this bilayer below Tc  
(10 nm gold (Au) on 4nm NbN on fused silica)  

• H is 2 & 4T here 
 

• MR(T<Tc) due  
     to flux-flow (FF) 
     of NbN grains 
     and in between 
     the grains in the 
     Bi2Se3 cap-layer 
 
• For 2T, negligible 
MR of ~± 0.1% above  
Tc ~ 7-8 K 
 
• At 4T, the SC MR  
starts at ~12 K due to 
      FF(4T) > FF(2T) 
 
 



(1) R vs T of a bilayer of 10 nm Bi2Se3 on 3nm NbN on 
fused silica [low Rmax case]  
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(2) dI/dV & IVC of BL362a  (10 nm Bi2Se3 on 3nm NbN on FS) 

• Vg=0V 
 
• IC(1.9K)~1.2 mA 
     (strong links) 
 
• dI/dV is almost fully 
suppressed at 1T 
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(1) R vs T of another bilayer of 10 nm Bi2Se3 on 3nm NbN on 
fused silica [highest resistance, some air in NbN deposition?]  

• Semiconducting 
 

• Very weak SC 
suppressed under 1T 

 
• Tunneling between 
NbN grains 
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(2) MR of this bilayer of 10 nm Bi2Se3 on 3nm NbN on FS 

• H is 0&1T for all 
measurements 
 
• All contacts show 
the same behavior  
vs Vg 
 
• Most MR Peaks  
are due to flux flow 
 Analysis next, on 
the model cross- 
section of SC islands 
& PE regions of the  
TI cap-layer 
 
• Possible flux flow 
in a pseudogap at 15-30K 
 
• Possible Majorana 
contribution at 1.9K  



Model: electron density (n) under E-field in the bilayer 
• +E-field  
[Vg of top gate < 0]   
Binds electrons of 
the Bi2Se3 to the 
NbN surface, 
leaving a positively 
charged depletion 
layer - DL [less n]  

 
• -E-field  binds 
holes, leaving 
electrons in the DL 
 

                    10nm Bi2Se3 
 
 
 
 

Top gate 

Back gate 

1300nm PMMA resist 

E-field 
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NbN        I 3nm  NbN 
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1.5mm thick Fused Silica 

II 

V 

MR peaks analysis: 
• For 0Vg:  MR peaks at 7-15K, due to NbN islands – regions I, and PE in region III 
                      MR knee at 2.5-6K is due to PE in region II (& IV ?) 
                     Large MR peak below 2.5 K can be due to enhanced PR in region IV or to other effects 
• For -100Vg:  MR peak at 3-4K originates in the –e depleted region II 
• For +100Vg:  Broad MR peak at 6K originates in –e rich region II  
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(3) MR of C7 of this 10 nm Bi2Se3 on 3nm NbN on FS bilayer 

• Only C7 
  shows these 
  oscillations 
   under 0Vg 
 
• No oscillations 
under ±100Vg 
 
 
 
 
• Is the magnetic  
field causing these  
oscillations? 
See next…. 
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(4) R vs H of this 10 nm Bi2Se3 on 3nm NbN on FS bilayer 

No oscillations here, but see next… 
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(5) ∆R/R(0) vs H at 9.5K of this bilayer (10 nm Bi2Se3 on 3nm NbN) 

• ∆R(H) is R(H) minus 
  a smooth background 
 
• Oscillations vs H 
     with a period of 
     ∆H ~ 0.6T 
     adding φ0  for each 
     period of ∆H~0.6T 
 
• Corresponding to 
     a hole radius of  
     r ~ 33nm  
      
• In agreement with  
     the AFM image 
 
• Tc(islands) ≥ 10K 

Similar energy scales: 
Magnetic  ~µH ~ 0.06  meV at 1T  
Thermal    ~kT ~ 0.08   meV at 1K  
∆E(Landau at 1T) = hωc/2π = 0.12 meV 



Conclusions II 

• MR & WAL of 10nm Bi2Se3 films were observed in agreement with 
the literature 

• MR of the 10nm Bi2Se3 on 3nm NbN bilayers was: 
      1. Strongly dependent on the gate voltage Vg 
      2. Varied with the peak resistance at low T  
      3. Showed Vg dependent peaks and dips structure  
      4.  Oscillations vs H at 9.5K are  
due to flux quantization in nano holes  
& indicate Tc above 10K of the SC islands 
       5. MR vs T response is due mostly to vortex physics & pinning 
       6. Enhanced  PE in the Bi2Se3 in between NbN islands at T=1.9 K 
           can be due to: helical surface currents contribution, 
                                     or to Majorana zero mode contribution  
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